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Abstract
In this paper, we analyze the landscape of the true loss of neural networks with one
hidden layer and ReLU, leaky ReLU, or quadratic activation. In all three cases, we
provide a complete classification of the critical points in the case where the target
function is affine and one-dimensional. In particular, we show that there exist no
local maxima and clarify the structure of saddle points. Moreover, we prove that non-
global local minima can only be caused by ‘dead’ ReLU neurons. In particular, they
do not appear in the case of leaky ReLU or quadratic activation. Our approach is of a
combinatorial nature and builds on a careful analysis of the different types of hidden
neurons that can occur.

Keywords Neural networks · Shallow networks · Landscape analysis · Loss surface ·
Nonconvex optimization

Mathematics Subject Classification 68T07

1 Introduction

An important aspect of neural network theory in machine learning is the dynamic
behavior of gradient-based training algorithms. Although empirical evidence suggests
that training is often successful, meaning that the algorithm reaches a point that is close
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to a global minimum of the loss function measuring the error (see, e.g., LeCun et al.
2015), a full theoretical understanding of gradient-based methods in network models
is still lacking. One branch of recent research has been investigating the effects of
overparametrization, i.e. using an exceedingly large number of neurons in the network
model, on the convergence behavior (we refer to Chizat et al. (2019), Allen-Zhu et al.
(2019) and the references therein for more details on this), but here we focus on
landscape analysis of the loss surface. This landscape analysis provides an indirect
tool for studying the dynamics of gradient-based algorithms, as these dynamics are
governed by the loss surface. One goal of landscape analysis is a better understanding
of the occurrence and frequency of critical points of the loss function and obtaining
information about their type, that is, whether they constitute extrema, local extrema, or
saddle points. Using the hierarchical structure of networks, some partial results have
been obtained (see Fukumizu and Amari 2000). However, the choice of activation
function in the network model can have a significant impact on the landscape. For
instance, it is known that the loss surface of a linear network, that is, a network with
the identity function as activation, only has global minima and saddle points but no
non-global local minima (see Baldi and Hornik 1989; Kawaguchi 2016). However,
the picture becomes less clear if a nonlinearity is introduced (see Mannelli et al. 2020;
Safran and Shamir 2018).

In the last decade, progress has been made in this more difficult nonlinear case.
In Choromanska et al. (2015a), the loss surface has been studied by relating it to a
model from statistical physics. This way, detailed results have been obtained about the
frequency and quality of local minima. Although the findings of Choromanska et al.
(2015a) are theoretically insightful, their theory is based on assumptions that are not
met in practice (see Choromanska et al. 2015b). In Soudry and Hoffer (2017), similar
results have been obtained for networks with one hidden layer with less unrealistic
assumptions. We refer to Dauphin et al. (2014) for experimental findings, on which
(Choromanska et al. 2015a; Soudry and Hoffer 2017) is based.

Besides work studying the effects of overparametrization on gradient-based meth-
ods directly, there have also been investigations of its impact on the loss landscape. For
instance, it has been shown in Safran and Shamir (2016) that taking larger networks
increases the likelihood to start from a good initialization with small loss or from
which there exists a monotonically decreasing path to a global minimum. However,
it is still not fully understood in which situations a gradient-based training algorithm
follows such a path. If the quadratic activation function is used in a network with
one hidden layer, then in the overparametrized regime only global minima and strict
saddle points remain, but no non-global local minima; see (Du and Lee 2018; Venturi
et al. 2019). Even for deeper architectures, all non-global local minima disappear with
high probability for any activation function if the width of the last hidden layer is
increased (see Soudry and Carmon 2016; Soltanolkotabi et al. 2019; Livni et al. 2014)
and, under some regularity assumptions on the activation, this continues to hold if any
of the hidden layers is sufficiently wide and the proceeding layers have a pyramidal
structure (see Nguyen and Hein 2017). However, note that these results only apply in
this level of generality if the loss is measured with respect to a finite set of data. In
particular, these global minima are potentially prone to overfitting.
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In contrast to the literature mentioned above, our results concern the landscape of
the true loss instead of the empirical loss. The final goal in machine learning is to
minimize not only the empirical loss, but the true loss, so it is of essence to understand
its landscape. In this paper, we consider networks with a single hidden layer with
(leaky) rectified linear unit (ReLU) or quadratic activation. As an alternative to the
popular theme of overparametrization, we do not impose assumptions on the network
model that are not met in practice, but instead focus on special target functions. In
Cheridito et al. (2021), this strategy has been pursued with constant target functions.
In this paper, we expand the scope from constant to affine functions. This represents
a first step toward a better understanding of the true loss landscape corresponding to
general target functions.

In this framework with affine target functions, we provide a complete classification
of the critical points of the true loss. We do so by unfolding the combinatorics of
the problem, governed by different types of hidden neurons appearing in a network.
We find that ReLU networks admit non-global local minima regardless of the number
of hidden neurons. At the same time, it turns out that these local minima are solely
caused by ‘dead’ ReLU neurons. In particular, for leaky ReLU networks, which are
often used to avoid the problemof dead neurons, there are only saddle points and global
minima. This suggests that using leaky ReLU instead of ReLU not onlymakes sense to
avoid issues with training itself, but also to work with a better behaved loss surface on
which training takes place to beginwith. Interestingly, also for the quadratic activation,
non-global local minima do not appear, which is in line with the observations in Du
and Lee (2018), Venturi et al. (2019) for the discretized loss but does not require
overparametrization. In addition, for networks with quadratic activation, all saddle
points have a constant realization function, whereas for (leaky) ReLU networks we
show that there exist saddle points with a non-constant realization.

These complete classifications in the proposed approach to consider special target
functions shed new light on important aspects of gradient-basedmethods in the training
of networks. Knowledge of the loss surface can be transformed into results about
convergence of such methods as done in, e.g., (Jentzen and Riekert 2021). In a smooth
setting, a recent strand of work has shown that the domain of attraction of saddle points
under gradient descent has zero Lebesgue measure as long as the Hessian at the saddle
points has a strictly negative eigenvalue (see Lee et al. 2019, 2016; Panageas and
Piliouras 2017). This indicates that it also becomes necessary to study the spectrum
of the Hessian of the loss function as previously pursued in, e.g., (Pennington and
Bahri 2017; Du and Lee 2018). Using the classification in this paper, we are able to
derive results about the existence of strictly negative eigenvalues of the Hessian at
most of the saddle points (understood in a suitable sense because we have to deal with
differentiability issues arising from the (leaky) ReLU activation). Furthermore, the
set of non-global local minima, being caused by dead ReLU neurons, consists of a
single connected component in the parameter space. In particular, these extrema are
not isolated. The behavior of (stochastic) gradient descent at not necessarily isolated
local minima has been studied in, e.g., (Fehrman et al. 2020).

The remainder of this article is organized as follows. The first activation function
we consider is the ReLU activation in Sect. 2. We begin by introducing the relevant
notation and definitions, including a new description of the types of hidden neurons
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that can appear in a ReLU network, in Sects. 2.1 and 2.2. The first main result, the
classification for ReLU networks, is Theorem 2.4 in Sect. 2.3. The remainder of Sect. 2
is dedicated to proving the classification. More precisely, we discuss a few important
ingredients for the proof in Sect. 2.4. Thereafter, Sect. 2.5 is devoted to differentiability
and regularity properties of the loss function in view of the non-differentiability of the
ReLU activation. The heart of the proof is contained in Sects. 2.6 and 2.7. Finally, we
establish in Sect. 2.8 a special case of Theorem 2.4 and deduce it in full generality
afterward in Sect. 2.9. Section 3 is concerned with extending the classification to
leaky ReLU, stated as our second main result in Theorem 3.5, which heavily relies
on understanding the ReLU case. To conclude, we also classify the critical points for
networks with the quadratic activation in our third main result, Theorem 4.1 in Sect. 4.

2 Classification for ReLU Activation

2.1 Notation and Formal Problem Description

We consider shallow networks, by which we mean networks with a single hidden
layer. For simplicity, we focus on networks with a single input and output neuron. The
set of such networks with N ∈ N hidden neurons can be parametrized by R3N+1. We
begin by describing the problem for the ReLU activation function x �→ max{x, 0}.
We will always write an element φ ∈ R

3N+1 as φ = (w, b, v, c), wherew, b, v ∈ R
N

and c ∈ R. The realization of the network φ with ReLU activation is the function
fφ ∈ C(R,R) given by

fφ(x) = c +
N∑

j=1
v j max{w j x + b j , 0}. (2.1)

We suppose that the objective is to approximate an affine function on an interval
[T0, T1] in the L2-norm. In other words, given A = (α, β) ∈ R

2 and T = (T0, T1) ∈
R
2, one tries to minimize the loss function LN ,T ,A ∈ C(R3N+1,R) given by

LN ,T ,A(φ) =
∫ T1

T0
( fφ(x) − αx − β)2 dx . (2.2)

The purpose of the first half of this paper is to classify the critical points of the loss
function LN ,T ,A. Since the ReLU function is not differentiable at 0, we work with
the generalized gradient GN ,T ,A : R3N+1 → R

3N+1 of the loss obtained by taking
right-hand partial derivatives;

(GN ,T ,A(φ))k = lim
h↓0

LN ,T ,A(φ + hek) − LN ,T ,A(φ)

h
(2.3)

for all k ∈ {1, . . . , 3N + 1}, where ek is the kth unit vector in R
3N+1. The function

GN ,T ,A is defined on the entire parameter space R3N+1 and agrees with the gradient
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of LN ,T ,A if the latter exists. We verify this and study regularity properties of LN ,T ,A
more thoroughly in Sect. 2.5.

Definition 2.1 Let N ∈ N and A, T ∈ R
2. Then, we call φ ∈ R

3N+1 a critical point
of LN ,T ,A if GN ,T ,A(φ) = 0 and a saddle point if it is a critical point but not a local
extremum.1

It can be shown that if φ is a critical point of LN ,T ,A, then 0 belongs to the limiting
sub-differential of LN ,T ,A; see2 [Eberle et al. (2021), Prop. 2.12]. With Definition
2.1, it is not immediately clear whether all local extrema are critical points. However,
we will show that this is the case by demonstrating that local extrema are points of
differentiability of the loss function. In particular, Definition 2.1 is well suited for our
purposes. The next notion relates the outer bias, i.e., the coordinate c, to the target
function x �→ αx + β.

Definition 2.2 Let N ∈ N, φ = (w, b, v, c) ∈ R
3N+1, A = (α, β) ∈ R

2, and
T = (T0, T1) ∈ R

2. Then, we say that φ is (T ,A)-centered if c = α
2 (T0 + T1) + β.

To motivate this definition, note that α
2 (T0 + T1) + β is the best constant L2-

approximation of the function [T0, T1] → R, x �→ αx + β.

2.2 Different Types of Hidden Neurons

In this section, we introduce a few notions that describe how the different hidden
neurons in a network are contributing to the realization function. In the definition
below, we introduce sets I j , which are defined such that [T0, T1]\I j is the interval on
which the output of the j th hidden neuron is rendered zero by the ReLU activation.

Definition 2.3 Let N ∈ N,φ = (w, b, v, c) ∈ R
3N+1, j ∈ {1, . . . , N }, andT0, T1 ∈ R

such that T0 < T1. Then, we denote by I j the set given by I j = {x ∈ [T0, T1] : w j x +
b j ≥ 0}, we say that the j th hidden neuron of φ is

• inactive if I j = ∅,
• semi-inactive if #I j = 1,
• semi-active if w j = 0 < b j ,
• active if w j �= 0 < b j + maxk∈{0,1} w j Tk ,
• type-1-active if w j �= 0 ≤ b j + mink∈{0,1} w j Tk ,
• type-2-active if ∅ �= I j ∩ (T0, T1) �= (T0, T1),
• degenerate if |w j | + |b j | = 0,
• non-degenerate if |w j | + |b j | > 0,
• flat if v j = 0,
• non-flat if v j �= 0,

and we say that t ∈ R is the breakpoint of the j th hidden neuron of φ if w j �= 0 =
w j t + b j .

1 We consider non-strict local extrema, i.e. φ is a local minimum (maximum) ofLN ,T ,A ifLN ,T ,A(φ) ≤
LN ,T ,A(ψ) (≥) for all ψ in an open neighborhood of φ, allowing equality LN ,T ,A(φ) = LN ,T ,A(ψ).
2 In Eberle et al. (2021), the authors use a different generalization of the gradient, which can be obtained
by taking left-hand partial derivatives. However, if GN ,T ,A is zero at some φ, then its left-hand analog is
also zero at φ, so [Eberle et al. (2021), Prop. 2.12] is applicable.
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Fig. 1 Regions with different
types of a hidden neuron as seen
in the (w j , b j )-plane in the case
T0 = 0, T1 = 1. The general
case is obtained by a shear
transformation.
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Let us brieflymotivate these notions.Everyhiddenneuron is exactly oneof: inactive,
semi-inactive, semi-active, active, or degenerate. Moreover, observe that I j is always
an interval.

For an inactive neuron, applying the ReLU activation function yields the constant
zero function on [T0, T1]. The breakpoint t j might not exist (if w j = 0 and b j < 0),
or it might exist and lie outside of [T0, T1] with t j < T0 if w j < 0 and t j > T1 if
w j > 0. Note that inactivity is a stable condition in the sense that a small perturbation
of an inactive neuron remains inactive.

Applying the ReLU activation to a semi-inactive neuron also yields the constant
zero function on [T0, T1]. But in this case, a breakpoint must exist and be equal to one
of the endpoints T0, T1 (which one depends on the sign of w j similarly to the inactive
case). However, a perturbation of a semi-inactive neuron may yield a (semi-)inactive
or a type-2-active neuron; see Fig. 1. In this sense, semi-inactive neurons are boundary
cases.

The realization of a semi-active neuron is also constant, but not necessarily zero
since the corresponding interval I j is [T0, T1]. As can be seen from Fig. 1, perturbing
a semi-active neuron always yields a semi- or type-1-active neuron.

Non-flat active neurons provide a non-constant contribution to the overall realiza-
tion function.Note that a hidden neuron is active exactly if it is type-1- or type-2-active.
These two types distinguish whether the breakpoint t j , which exists in either case, lies
outside or inside the interval (T0, T1) and, hence, whether the contribution of the
neuron is affine (corresponding to I j = [T0, T1]) or piecewise affine (corresponding
to I j = [T0, t j ] or I j = [t j , T1]). Type-1 and type-2-active neurons both form two
connected components in the (w j , b j )-plane; see Fig. 1. A perturbation of an active
neuron remains active.

The case w j = 0 = b j is called degenerate because it leads to problems with
differentiability. Perturbing a degenerate neuron may yield any of the other types of
neurons.

Lastly, a flat neuron also does not contribute to the overall realization, but the reason
for this lies between the second and third layer and not between the first and second
one, which is why this case deserves a separate notion.
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2.3 Classification of the Critical Points of the Loss Function

Now, we are ready to provide a classification of the critical points of the loss function.

Theorem 2.4 Let N ∈ N, φ = (w, b, v, c) ∈ R
3N+1, A = (α, β) ∈ R

2, and T =
(T0, T1) ∈ R

2 satisfy α �= 0 and 0 ≤ T0 < T1. Then, the following hold:

(I) φ is not a local maximum of LN ,T ,A.
(II) If φ is a critical point or a local extremum of LN ,T ,A, then LN ,T ,A is differen-

tiable at φ with gradient ∇LN ,T ,A(φ) = 0.
(III) φ is a non-global local minimum of LN ,T ,A if and only if φ is (T ,A)-centered

and, for all j ∈ {1, . . . , N }, the j th hidden neuron of φ is

(a) inactive,
(b) semi-inactive with I j = {T0} and αv j > 0, or
(c) semi-inactive with I j = {T1} and αv j < 0.

(IV) φ is a saddle point ofLN ,T ,A if and only ifφ is (T ,A)-centered,φ does not have
any type-1-active neurons, φ does not have any non-flat semi-active neurons, φ
does not have any non-flat degenerate neurons, and exactly one of the following
two items holds:

(a) φ does not have any type-2-active neurons and there exists j ∈ {1, . . . , N }
such that the j th hidden neuron of φ is
(i) flat semi-active,
(ii) semi-inactive with I j = {T0} and αv j ≤ 0,
(iii) semi-inactive with I j = {T1} and αv j ≥ 0, or
(iv) flat degenerate.

(b) There exists n ∈ {2, 4, 6, . . . } such that (
⋃

j∈{1,...,N }, w j �=0{− b j
w j

}) ∩
(T0, T1) =⋃n

i=1{T0+ i(T1−T0)
n+1 } and, for all j ∈ {1, . . . , N }, i ∈ {1, . . . , n}

with w j �= 0 = b j + w j (T0 + i(T1−T0)
n+1 ), it holds that sign(w j ) = (−1)i+1

and
∑

k∈{1,...,N }, wk �=0=bk+wk (T0+ i(T1−T0)

n+1 )
vkwk = 2α

n+1 .

(V) If φ is a non-global local minimum of LN ,T ,A or a saddle point of LN ,T ,A
without type-2-active neurons, then fφ(x) = α

2 (T0+T1)+β for all x ∈ [T0, T1].
(VI) If φ is a saddle point of LN ,T ,A with at least one type-2-active neuron, then

there exists n ∈ {2, 4, 6, . . . } such that n ≤ N and, for all i ∈ {0, . . . , n},
x ∈ [T0 + i(T1−T0)

n+1 , T0 + (i+1)(T1−T0)
n+1 ], one has

fφ(x) = αx + β − (−1)iα

n + 1

(
x − T0 − (i + 1

2 )(T1 − T0)

n + 1

)
. (2.4)

Theorem 2.4.(IV.b) says that the set of breakpoints of all type-2-active neurons
agrees with the set of n equally spaced points T0 < q1 < · · · < qn < T1. Furthermore,
for any type-2-active neuron with breakpoint qi , the sign of the coordinate w is given
by (−1)i+1. Lastly, the sum of vkwk , where k ranges over all type-2-active neurons
with breakpoint qi , is equal to 2α

n+1 . The term vkwk is the contribution of the kth hidden
neuron to the slope of the realization.

123



64 Page 8 of 45 Journal of Nonlinear Science (2022) 32 :64

Remark 2.5 Note that, by Theorem 2.4.(II), all local extrema and all critical points of
LN ,T ,A, which we defined as zeros of GN ,T ,A, are actually critical points of LN ,T ,A
in the classical sense, i.e. points of differentiability ofLN ,T ,A with vanishing gradient.
In particular, the classification in Theorem 2.4 turns out to be a classification of the
critical points in the classical sense as well.

Remark 2.6 Gradient descent-type algorithms typically use generalized gradients to
train ReLU networks. For instance, they might compute G, its left-hand analog, the
average of the two, or quantities obtained by artificially defining the derivative of the
ReLU function at 0. For each of these versions, a similar classification of critical points
could be derived.

Theorem 2.4.(V) shows that any non-global local minimum has the constant real-
ization α

2 (T0 + T1) + β. In particular, there is only one value that the loss function
can take at non-global local minima. Similarly, it follows from Theorem 2.4.(VI) that
a saddle point can lead to exactly one of �N/2 + 1 possible loss values.

Corollary 2.7 Let N ∈ N,A = (α, β) ∈ R
2, and T = (T0, T1) ∈ R

2 satisfy 0 ≤ T0 <

T1, and assume that φ ∈ R
3N+1 is a critical point of LN ,T ,A. Then, the following

hold:

(i) If φ is a non-global local minimum of LN ,T ,A, then LN ,T ,A(φ) = 1
12α

2(T1 −
T0)3.

(ii) If φ is a saddle point of LN ,T ,A, then there exists n ∈ {0, 2, 4, . . . } such that
n ≤ N and LN ,T ,A(φ) = 1

12(n+1)4
α2(T1 − T0)3.

Formally, Corollary 2.7 only follows from Theorem 2.4 for α �= 0. But for α = 0,
it holds trivially since for constant target functions there exist no critical points other
than global minima (see Cheridito et al. 2021).

2.4 Ingredients for the Proof of the Classification

As a first step, let us provide a simple argument to establish Theorem 2.4.(I).

Lemma 2.8 Let N ∈ N, A ∈ R
2, and T = (T0, T1) ∈ R

2 satisfy T0 < T1. Then,
LN ,T ,A does not have any local maxima.

Proof Write A = (α, β). The lemma directly follows from the simple fact that

LN ,T ,A(w, b, v, c) =
∫ T1

T0

(
c +

N∑

j=1
v j max{w j x + b j , 0} − αx − β

)2
dx (2.5)

is strictly convex in c. ��
As a consequence of this lemma, whenever we want to show that a critical point φ

is a saddle point, it suffices to show that it is not a local minimum, that is, it suffices
to show that, in every neighborhood of φ, L attains a value that is below L(φ).
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Remark 2.9 The previous proof only used linearity of the realization function in the c-
coordinate and strict convexity of the square function. In particular, the same argument
shows that the square loss never has local maxima regardless of the target function,
the activation function, and the architecture of the network.

Let us now provide a sketch of the proofs to come. Instead of proving Theorem 2.4
directly, we first assume that the affine target function is the identity on the interval
[0, 1], corresponding to the special case T0 = β = 0 and T1 = α = 1 in Theorem 2.4.
Afterward, we will verify that the general case can always be reduced to this one. For
convenience of notation, we assume the following convention to hold throughout the
remainder of Sect. 2.

Setting 2.10 Fix N ∈ N and denote L = LN ,(0,1),(1,0) and G = GN ,(0,1),(1,0). We say
that a network φ ∈ R

3N+1 is centered if it is ((0, 1), (1, 0))-centered.

The generalized gradientG was defined in terms of the right-hand partial derivatives
of L. These are given by

∂+

∂w j
L(φ) = 2v j

∫

I j
x( fφ(x) − x)dx,

∂+

∂b j
L(φ) = 2v j

∫

I j
( fφ(x) − x)dx,

∂+

∂v j
L(φ) = 2

∫

I j
(w j x + b j )( fφ(x) − x)dx,

∂+

∂c
L(φ) = 2

∫ 1

0
( fφ(x) − x)dx .

(2.6)

Regularity properties of the loss function will be discussed in detail in the next section.
We will see then that these right-hand partial derivatives are proper partial derivatives
if the j th hidden neuron is flat or non-degenerate. If these partial derivatives are zero,
then we encounter the system of equations

0 = 2v j

∫

I j
x( fφ(x) − x)dx,

0 = 2v j

∫

I j
( fφ(x) − x)dx,

0 = 2
∫

I j
(w j x + b j )( fφ(x) − x)dx,

0 = 2
∫ 1

0
( fφ(x) − x)dx,

(2.7)

from which we deduce that any non-flat non-degenerate neuron of a critical point or
local extremum φ satisfies

∫

I j
( fφ(x) − x)dx = 0 =

∫

I j
x( fφ(x) − x)dx . (2.8)

This simple observationwill be used repeatedly in the proof of Theorem2.4.Moreover,
for a type-1-active neuron (for which I j = [0, 1]), (2.8) is even satisfied if the neuron
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is flat as can be seen from the third and fourth line of (2.7). Here is an example of how
(2.8) can be employed: note that any affine function f : [0, 1] → R satisfying

∫ 1

0
( f (x) − x)dx = 0 =

∫ 1

0
x( f (x) − x)dx (2.9)

necessarily equals the identity on [0, 1]. Thus, if φ is a critical point or local extremum
ofL forwhich fφ is affine and ifφ admits a type-1-active or non-flat semi-active neuron
(so that I j = [0, 1]), then we obtain from (2.8) that φ is a global minimum. If fφ is
not affine, we will be able to develop similar arguments for each affine piece of fφ .
In this case, we will obtain a system of equations from (2.7) that intricately describes
the combinatorics of the realization function.

2.5 Differentiability of the Loss Function

Since the ReLU function is not differentiable at 0, the loss function is not everywhere
differentiable. However, a simple argument establishes that L is differentiable at any
of its global minima as the following lemma shows.

Lemma 2.11 Let φ ∈ R
3N+1. If fφ(x) = x for all x ∈ [0, 1], then L is differentiable

at φ.

Proof It is well known that the realization function R
3N+1 → C([0, 1],R), φ �→

fφ |[0,1] is locally Lipschitz continuous ifC([0, 1],R) is equipped with the supremums
norm (see, e.g., Petersen et al. 2020). Thus, there is a constant L > 0 depending only
on N and φ with | fφ+ψ(x)− fφ(x)| ≤ L‖ψ‖ uniformly on [0, 1] for allψ sufficiently
close to φ. Then,

L(φ + ψ) − L(φ)

‖ψ‖ = 1

‖ψ‖
∫ 1

0
( fφ+ψ(x) − fφ(x))2dx ≤ L2‖ψ‖, (2.10)

which shows that L is differentiable at φ. ��
The next result shows that there even are regions in the parameter space where L

is infinitely often differentiable in spite of the ReLU activation.

Lemma 2.12 The loss functionL is everywhere analytic in (v, c). Moreover, if the j th
hidden neuron of φ ∈ R

3N+1 is inactive, semi-active, or type-1-active with breakpoint
neither 0 nor 1 for some j ∈ {1, . . . , N }, then L is also analytic in (w j , b j , v, c) in
a neighborhood of φ, and mixed partial derivatives of any order can be obtained by
differentiating under the integral. In particular,

∂

∂w j
L(φ) = 2v j

∫

I j
x( fφ(x) − x)dx,

∂

∂b j
L(φ) = 2v j

∫

I j
( fφ(x) − x)dx,

∂

∂v j
L(φ) = 2

∫

I j
(w j x + b j )( fφ(x) − x)dx,

∂

∂c
L(φ) = 2

∫ 1

0
( fφ(x) − x)dx .

(2.11)
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Proof For the first part, note thatL is a polynomial in the coordinates (v, c). Secondly,
assume that the j th hidden neuron of φ0 ∈ R

3N+1 is inactive. Then, for all φ in a
sufficiently small neighborhood of φ0 and all x ∈ [0, 1] we have max{w j x +b j , 0} =
0. Hence, L is constant in the coordinates (w j , b j ) near φ0 and it is a polynomial
in (w j , b j , v, c). Thirdly, assume that the j th hidden neuron of φ0 is semi-active or
type-1-active with breakpoint neither 0 nor 1. Then, for all φ in a sufficiently small
neighborhood of φ0 and all x ∈ [0, 1] we have max{w j x + b j , 0} = w j x + b j . In
particular, L is a polynomial in the coordinates (w j , b j , v, c) near φ0. The statement
about differentiating under the integral follows from dominated convergence. ��

In regions of the parameter space not covered by Lemma 2.12, we cannot guarantee
as much regularity of the loss function, but we can still hope for differentiability.
Indeed, we already noted in the proof of Lemma 2.11 that the realization function
R
3N+1 → C([0, 1],R), φ �→ fφ |[0,1] is locally Lipschitz continuous. So, it follows

from Rademacher’s theorem that G is, in fact, equal to the true gradient ∇L of L
almost everywhere. In the next result, we obtain insights about the measure-zero set
on which G may not be the true gradient.

Lemma 2.13 For all j ∈ {1, . . . , N }, the right-hand partial derivatives ∂+L(φ)/∂w j

and ∂+L(φ)/∂b j exist everywhere and are given by

∂+

∂w j
L(φ) = 2v j

∫

I j
x( fφ(x) − x)dx and

∂+

∂b j
L(φ) = 2v j

∫

I j
( fφ(x) − x)dx .

(2.12)

Moreover, if the j th hidden neuron is flat or non-degenerate, then L is differentiable
in (w j , b j , v, c) and, in particular, the right-hand partial derivatives ∂+L(φ)/∂w j

and ∂+L(φ)/∂b j are proper partial derivatives.

Proof Let φ ∈ R
3N+1 be arbitrary and denote by φh , h = (h1, h2) ∈ R

2, the network
with the same coordinates as φ except in the j th hidden neuron, where φh has coor-
dinates w j + h1 and b j + h2. We use the notation I hj for the interval I j associated to
φh and denote

ε = L(φh) − L(φ) − 2v j h
1
∫

I j
x( fφ(x) − x)dx − 2v j h

2
∫

I j
( fφ(x) − x)dx .

(2.13)

The proof is complete if we can show that ε goes to zero faster than (h1, h2). To do
that, we estimate the two terms of the last line of

ε =
∫ 1

0
( fφh (x) − fφ(x))2dx + 2

∫ 1

0
( fφh (x) − fφ(x))( fφ(x) − x)dx

− 2v j

∫

I j
(h1x + h2)( fφ(x) − x)dx =

∫ 1

0
( fφh (x)− fφ(x))2dx
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+2v j

∫ 1

0
(w j x + b j + h1x + h2)( fφ(x)−x)(1I hj

(x) − 1I j (x))dx . (2.14)

To control the first term, we use local Lipschitz continuity of the realization function,
which yields a constant L > 0 depending only on φ so that | fφh (x) − fφ(x)| ≤
L(|h1| + |h2|) uniformly on [0, 1] for all sufficiently small h. To estimate the second
term, we note that the absolute value of 1I hj

− 1I j is the indicator function of the

symmetric difference I j�I hj . By definition of these sets, we obtain the bound |w j x +
b j | ≤ |h1x + h2| for any x ∈ I j�I hj . This yields

|ε|
|h1| + |h2| ≤ L2(|h1| + |h2|) + 4|v j |

∫ 1

0
| fφ(x) − x |1I j�I hj

(x)dx . (2.15)

The term L2(|h1| + |h2|) vanishes as h → 0. We need to argue that the second term
also vanishes as h → 0. If the j th hidden neuron is flat, then the second term is
trivially zero. On the other hand, if the j th hidden neuron is non-degenerate, then
the Lebesgue measure of I j�I hj tends to zero as h → 0. Thus, in this case, the
integral also vanishes as h → 0. If the j th hidden neuron is non-flat degenerate, then
we consider the directional derivatives from the right, i.e. with h1, h2 ↓ 0. But then
I j = [0, 1] = I hj , so 1I j�I hj

is constantly zero. ��

It is well known that a multivariate function is continuously differentiable if it has
continuous partial derivatives. The following result is a slight extension for the loss
function L.
Lemma 2.14 The loss function L is continuously differentiable on the set of networks
without degenerate neurons. In addition, L is differentiable at networks without non-
flat degenerate neurons.

Proof The preceding two results established existence of all partial derivatives of first
order at networks without degenerate neurons. Furthermore, these partial derivatives
are continuous in the network parameters. This is clear for (v, c) and it also holds for
(w, b) because the endpoints of I j vary continuously in w j and b j as long as not both
are zero. This concludes the first statement.

To prove that L is still differentiable if flat degenerate neurons appear, assume
without loss of generality that the first M ≤ N hidden neurons of φ ∈ R

3N+1 are flat
degenerate and the remaining N − M hidden neurons are non-degenerate. Denote by
φ1 ∈ R

3M+1 the network comprised of the first M hidden neurons of φ (with zero
outer bias) and by φ2 ∈ R

3(N−M)+1 the network comprised of the last N − M hidden
neurons.WewriteLN−M for the loss defined on networkswith N−M hidden neurons.
Then, for any perturbationφh = φ+h ∈ R

3N+1 ofφwith the same decomposition into
its first M and last N − M hidden neurons, we can write fφh (x) = fφ1,h (x)+ fφ2,h (x)
and, hence,

L(φh) =
∫ 1

0
fφ1,h (x)

2dx + 2
∫ 1

0
fφ1,h (x)( fφ2,h (x) − x)dx + LN−M (φ2,h). (2.16)
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Since the first M hidden neurons of φ are flat degenerate, fφ1,h (x) is given by

fφ1,h (x) =
M∑

j=1
h j+2N max{h j x + h j+N , 0}. (2.17)

In particular, fφ1,h (x)/‖h‖ → 0 uniformly in x ∈ [0, 1] as h → 0. Denote by h̃ the
last 3(N − M) components of h. Since φ2 has only non-degenerate neurons, LN−M

is differentiable at φ2 with some gradient A. Using that the first M hidden neurons of
φ do not contribute to its realization and, hence, L(φ) = LN−M (φ2), we find

lim
h→0

L(φh) − L(φ) − Ah̃

‖h‖ = lim
h→0

LN−M (φ2,h) − LN−M (φ2) − Ah̃

‖h̃‖
‖h̃‖
‖h‖

+ lim
h→0

1

‖h‖
( ∫ 1

0
fφ1,h (x)

2dx + 2
∫ 1

0
fφ1,h (x)( fφ2,h (x) − x)dx

)
= 0.

(2.18)

This proves differentiability of L at φ. ��
So far, we have seen that, in some regions of the parameter space, the loss is

differentiable while in others it may not be. In the following, we show that, for type-
2-active neurons, one even has twice continuous differentiability.

Lemma 2.15 Let i, j ∈ {1, . . . , N }. If the i th and jth hidden neuron of φ ∈ R
3N+1

are type-2-active, then L is twice continuously differentiable in (wi , w j , bi , b j , v, c)
in a neighborhood of φ in R3N+1.

Proof Note that we established twice continuous differentiability of L in (v, c) in
Lemma 2.12. Suppose the i th and j th hidden neuron of φ0 = (w0, b0, v0, c0) ∈
R
3N+1 are type-2-active. Since a small perturbation of a type-2-active neuron remains

type-2-active and since a type-2-active neuron is non-degenerate, it follows from
Lemma 2.13 that L is differentiable in (w j , b j ) in a neighborhood U ⊆ R

3N+1

of φ0 with partial derivatives

∂

∂w j
L(φ) = 2v j

∫

I j
x( fφ(x) − x)dx and

∂

∂b j
L(φ) = 2v j

∫

I j
( fφ(x) − x)dx

(2.19)

for any φ = (w, b, v, c) ∈ U . Because the j th hidden neuron is assumed to be type-
2-active, the interval I 0j is exactly [0, t0j ] or [t0j , 1] for the breakpoint t0j = −b0j/w

0
j ∈

(0, 1). Assume I 0j = [0, t0j ] as the other case is dealt with analogously. By shrinkingU
if necessary, we therefore integrate over [0,−b j/w j ] in the above partial derivatives
for all φ = (w, b, v, c) ∈ U . In particular, the integration boundaries vary smoothly in
(w j , b j ) inU . So, it follows fromLeibniz’ rule that these partial derivatives are contin-
uously differentiable with respect to (w j , b j ). Furthermore, since t j = −b j/w j does
not depend on (wi , bi , v, c), it follows from dominated convergence that ∂L(φ)/∂w j
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and ∂L(φ)/∂b j are also differentiable with respect to (wi , bi , v, c). The mixed partial
derivative with respect to wi and w j is given by

∂

∂wi

∂

∂w j
L(φ) = 2v j

∫

I j
x

∂

∂wi
fφ(x)dx = 2viv j

∫

Ii∩I j
x2dx . (2.20)

That the i th and j th hidden neuron are type-2-active ensures that
∫
Ii∩I j

x2dx is

continuous in (wi , w j , bi , b j ) and, hence, that ∂2L(φ)/(∂wi∂w j ) is continuous in
(wi , w j , bi , b j , v, c). Analogous considerations show that all mixed partial deriva-
tives with respect to wi , w j , bi , b j , v, c up to second order exist and are continuous.
Thus, L restricted to (wi , w j , bi , b j , v, c) is twice continuously differentiable in a
neighborhood of φ0. ��

Remark 2.16 Wementioned in Remark 2.5 that all critical points and local extrema of
L are actually proper critical points and, hence, the classification actually does not deal
with points of non-differentiability. Furthermore, by modifying the gradient descent
algorithm and the initialization in an appropriate way, one can ensure that the tra-
jectories of the algorithm avoid any points of non-differentiability; see (Wojtowytsch
2020) and also the appendix in Chizat andBach (2020). Nonetheless, to formally prove
the classification, including that all critical points are proper, an extensive regularity
analysis of the loss function as done in this section is necessary.

2.6 Critical Points of the Loss Function with Affine Realization

In this and the next section, we develop the building blocks necessary for proving the
main result. The first lemma establishes one direction of the equivalence in Theorem
2.4.(III).

Lemma 2.17 Suppose φ ∈ R
3N+1 is centered and all of its hidden neurons satisfy one

of the properties (III.a)–(III.c) in Theorem 2.4. Then, φ is a local minimum of L.

Proof Denote by J0 ⊆ {1, . . . , N } the set of those hidden neurons of φ that satisfy
Theorem 2.4.(III.b), and, likewise, denote by J1 ⊆ {1, . . . , N } the set of those hidden
neurons of φ that satisfy Theorem 2.4.(III.c). Write φ = (w0, b0, v0, c0) and consider
ψ = (w, b, v, c) ∈ U in a small neighborhood U of φ. Since a small perturbation of
an inactive neuron remains inactive, we have for all ψ ∈ U and every x ∈ [0, 1] that

fψ(x) = c + ∑

j∈J0∪J1

v j max{w j x + b j , 0} (2.21)

if U is small enough. Moreover, for any j ∈ J0 and ψ ∈ U , note that max{w j x +
b j , 0} = 0 for all x ∈ [1/4, 1]. Similarly, max{w j x + b j , 0} = 0 for all x ∈ [0, 3/4]
if j ∈ J1. Since we also know v0j > 0 for all j ∈ J0 and v0j < 0 for all j ∈ J1, we
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find that the realization of ψ ∈ U satisfies

fψ(x) =

⎧
⎪⎨

⎪⎩

c +∑ j∈J0 v j max{w j x + b j , 0} ≥ c if x ∈ [0, 1/4]
c if x ∈ [1/4, 3/4]
c +∑ j∈J1 v j max{w j x + b j , 0} ≤ c if x ∈ [3/4, 1]

(2.22)

for sufficiently small U . In particular, it follows that | fψ(x) − x | ≥ |c − x | for all
x ∈ [0, 1] and, because φ is centered, that

L(ψ) ≥
∫ 1

0
(c − x)2dx ≥

∫ 1

0
( 12 − x)2dx = L(φ). (2.23)

Thus, φ is a local minimum. ��
The proof of the next lemma revolves, for the most part, around the argument (2.9),

presented in Sect. 2.4. The last statement of the lemma paired with Lemma 2.14 shows
that saddle points with an affine realization are also points of differentiability of L.
Lemma 2.18 Suppose φ ∈ R

3N+1 is a critical point or a local extremum of L but not
a global minimum and that fφ is affine on [0, 1]. Then, φ is centered and does not have
any active or non-flat semi-active neurons, so, in particular, fφ ≡ 1/2. Moreover, if
φ is a saddle point, then it also does not have any non-flat degenerate neurons.

Proof We know from Lemma 2.13 that L is differentiable in those coordinates that
correspond to non-degenerate neurons and its partial derivatives must vanish at φ.
Thus, the argument using (2.9) shows that φ does not have any type-1-active or non-
flat semi-active neurons. If φ had a non-flat type-2-active neuron, say the j th, then we
could, using the same argument with I j in place of [0, 1], conclude that fφ(x) = x
on I j . But since fφ was assumed to be affine, this could only be true if φ were a
global minimum. Having no type-1-active or non-flat type-2-active neurons, fφ must
be constant. By the fourth equation of (2.7), this constant is 1/2, so φ is centered.

Next, suppose that the j th hidden neuron is flat type-2-active. In particular, I j =
[0, t j ] or I j = [t j , 1], where t j = −b j/w j ∈ (0, 1) is the breakpoint. After dividing
by 2w j , the integral in the third equation of (2.7) evaluates to

0 =
∫

I j
(x − t j )(

1
2 − x)dx =

{
− 1

6 t
2
j (

3
2 − t j ) if I j = [0, t j ]

− 1
6 (1 − t j )2(t j + 1

2 ) if I j = [t j , 1]
}

�= 0,

(2.24)

yielding a contradiction. Lastly, suppose φ is a saddle point. If there were a non-flat
degenerate neuron, then G(φ) = 0 would imply 0 = ∫ 1

0 x( fφ(x) − x)dx . But since
we know that fφ(x) ≡ 1/2, this cannot be. ��

The next lemma serves as the basis of Theorem 2.4.(IV.a). However, note that
we also consider the possibility of a non-flat degenerate neuron, whereas Theorem
2.4.(IV.a.iv) requires the degenerate neuron to be flat. This generalization is needed in
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the proof of Theorem 2.4.(III), which will be given later by way of contradiction. In
addition, Lemma 2.19 shows that non-global local minima with an affine realization
cannot have non-flat degenerate neurons and, hence, are points of differentiability of
L by Lemma 2.14. Together with the preceding lemma and Lemmas 2.11 and 2.14, we
conclude that all critical points and local extrema with an affine realization are points
of differentiability.

Lemma 2.19 Suppose φ ∈ R
3N+1 is a critical point or a local extremum of L but not

a global minimum and that fφ is affine on [0, 1]. Suppose further that at least one of
its hidden neurons satisfies one of the properties (IV.a.i)–(IV.a.iii) in Theorem 2.4 or
is degenerate. Then, φ is a saddle point.

Proof Since, by Lemma 2.8, L cannot have any local maxima, it is enough to show
that L is strictly decreasing along some direction starting from φ. First, assume that
the j th hidden neuron of φ is flat semi-active. Then, Lemma 2.12 asserts smoothness
of the loss in the coordinates of the j th hidden neuron and

∂

∂w j

∂

∂w j
L(φ) = 2v j

∫ 1

0
x

∂

∂w j
fφ(x)dx = 0,

∂

∂v j

∂

∂w j
L(φ) = 2v j

∫ 1

0
x

∂

∂v j
fφ(x)dx + 2

∫ 1

0
x( fφ(x) − x)dx

= 2
∫ 1

0
x( fφ(x) − x)dx =: R,

∂

∂v j

∂

∂v j
L(φ) = 2

∫ 1

0
(w j x + b j )

∂

∂v j
fφ(x)dx =: S,

(2.25)

whereweused that the j th hidden neuron is flat. Since 2
∫ 1
0 ( fφ(x)−x)dx = ∂

∂cL(φ) =
0, we must have R �= 0 for otherwise φ would be a global minimum by the argument
(2.9). This yields

det

(
∂

∂w j

∂
∂w j

L(φ) ∂
∂w j

∂
∂v j

L(φ)
∂

∂v j

∂
∂w j

L(φ) ∂
∂v j

∂
∂v j

L(φ)

)

= det

(
0 R
R S

)

= −R2 < 0. (2.26)

In particular, this matrix must have a strictly negative eigenvalue, and a second order
expansion of the loss restricted to (w j , v j ) shows that L is strictly decreasing along
the direction of an eigenvector associated to this negative eigenvalue.

Next, assume that the j th hidden neuron is semi-inactive with I j = {0} and v j ≤ 0
(case one) or that it is degenerate with v j ≤ 0 (case two). In either case, note that
b j = 0 and consider the perturbation φs = (ws, bs, vs, cs), s ∈ [0, 1], of φ = φ0
given by ws

j = w j − s, bsj = −sws
j , and vsj = v j − s (all other coordinates coincide

with those of φ). Note that we have ws
j < 0 and vsj < 0 for all s ∈ (0, 1] in both

cases. For simplicity, denote as = vsjw
s
j . By Lemma 2.18, we already know that φ is

centered and does not have any active or non-flat semi-active neurons. Thus, for every
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s, x ∈ [0, 1], we can write

fφs (x) = c + vsj max{ws
j x + bsj , 0} = c + vsj max{ws

j (x − s), 0}
= 1

2 + as(x − s)1[0,s](x). (2.27)

Using this formula, we have for all s ∈ [0, 1]

L(φs) − L(φ) =
∫ s

0
[as(x − s)]2dx −

∫ s

0
2as(x − s)(x − 1

2 )dx

= 1
3a

s(as + 1)s3 − 1
2a

ss2

=

⎧
⎪⎨

⎪⎩

− 1
2v jw j s2 + O(s3) if w j �= 0 �= v j

− 1
2 |v j + w j |s3 + O(s4) if w j �= 0 = v j or w j = 0 �= v j

− 1
2 s

4 + O(s5) if w j = 0 = v j ,

(2.28)

which is strictly negative for small s > 0. Hence, φ is a saddle point.
Lastly, assume that the j th hidden neuron is semi-inactive with I j = {1} and v j ≥ 0

(case one) or that it is degenerate with v j > 0 (case two). This is dealt with the same
way as the previous step. Let φs ∈ R

3N+1, s ∈ [0, 1], be given by ws
j = w j + s,

bsj = −(1−s)ws
j , and vsj = v j +s. This time, we havews

j > 0 and as = vsjw
s
j > 0 for

all s ∈ (0, 1] in both cases. The realization of φs on [0, 1] is given for all s, x ∈ [0, 1]
by

fφs (x) = c + vsj max{ws
j x + bsj , 0} = 1

2 + as(x − 1 + s)1[1−s,1](x). (2.29)

Essentially by the same computation as in the previous step,

L(φs) − L(φ) = 1
3a

s(as + 1)s3 − 1
2a

ss2

=

⎧
⎪⎨

⎪⎩

− 1
2v jw j s2 + O(s3) if w j �= 0 �= v j

− 1
2 (v j + w j )s3 + O(s4) if w j �= 0 = v j or w j = 0 �= v j

− 1
2 s

4 + O(s5) if w j = 0 = v j ,

(2.30)

from which we conclude that φ is a saddle point. ��
This finishes the treatment of the affine case, and we now tend to the more involved

non-affine case in the next section.

2.7 Critical Points of the Loss Function with Non-affine Realization

The following lemma is the main tool for this section. It generalizes the argument (2.9)
that we presented in Sect. 2.4; see Lemma 2.20.(vi) below. This lemma captures the
combinatorics of piecewise affine functions satisfying conditions of the form (2.8).
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Lemma 2.20 Let n ∈ N0, A0, . . . , An, B0, . . . , Bn, q0, . . . , qn+1 ∈ R satisfy q0 <

· · · < qn+1, and consider a function f ∈ C([q0, qn+1],R) satisfying for all i ∈
{0, . . . , n}, x ∈ [qi , qi+1] that f (x) = Ai x + Bi and

∫ qi+1
qi

( f (y) − y)dy = 0. Then,

(i) we have for all i ∈ {0, . . . , n} that

Ai − 1 = (−1)i
q1 − q0
qi+1 − qi

(A0 − 1),

Bi = (−1)i+1 qi+1 + qi
2

q1 − q0
qi+1 − qi

(A0 − 1),
(2.31)

(ii) we have f = id[q0,qn+1] ⇐⇒ ∀i ∈ {0, . . . , n} : Ai = 1, Bi = 0

⇐⇒ ∃i ∈ {0, . . . , n} : Ai = 1, Bi = 0

⇐⇒ ∃i ∈ {0, . . . , n} : f |[qi ,qi+1] = id[qi ,qi+1],

(iii) for all i ∈ {0, . . . , n} we have sign(Ai − 1) = (−1)i sign(A0 − 1).

If, in addition, 0 = ∫ qn+1
q0

x( f (x) − x)dx, then

(iv) we have 0 = (A0 − 1)
∑n

i=0(−1)i (qi+1 − qi )2,
(v) if f �= id[q0,qn+1], then 0 =∑n

i=0(−1)i+1(qi+1 − qi )2,
(vi) if n = 0, then f = id[q0,q1].

Proof First note that we must have Aiqi+1 + Bi = Ai+1qi+1 + Bi+1 for all i ∈
{0, . . . , n − 1}. Moreover, the assumption 0 = ∫ qi+1

qi
( f (x) − x)dx is equivalent to

Bi = − 1
2 (qi+1 + qi )(Ai − 1). Combining these yields

Ai+1 − 1 = − qi+1 − qi
qi+2 − qi+1

(Ai − 1) (2.32)

for all i ∈ {0, . . . , n − 1}. Induction then proves the formula for Ai − 1, and the
formula for Bi follows. Lastly, by plugging the formulas for Ai and Bi into f (x), we
compute

∫ qn+1

q0
x( f (x) − x)dx =

n∑

i=0

∫ qi+1

qi
x((Ai − 1)x + Bi )dx

= q1 − q0
12

(A0 − 1)
n∑

i=0

(−1)i (qi+1 − qi )
2. (2.33)

The remaining items follow immediately. ��
In order to apply this lemma later on, let us verify that our network always satisfies

the condition
∫ qi+1
qi

( f (y) − y)dx = 0 for suitable choices of qi and qi+1.
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Lemma 2.21 Suppose φ ∈ R
3N+1 is a critical point or a local extremum of L and

denote by 0 = q0 < q1 < · · · < qn < qn+1 = 1, for n ∈ N0, the roughest partition
such that fφ is affine on all subintervals [qi , qi+1]. Then, we have for all i ∈ {0, . . . , n}
that

∫ qi+1

qi
( fφ(x) − x)dx = 0. (2.34)

Proof First, note that φ must have a non-flat type-2-active neuron whose breakpoint
is qi , for all i ∈ {1, . . . , n}. From the fourth line of (2.7), we know that

∫ 1
0 ( fφ(x) −

x)dx = 0. This and the second line of (2.7) imply, for any non-flat type-2-active
neuron j ,

∫

I j
( fφ(x) − x)dx = 0 =

∫

[0,1]\I j
( fφ(x) − x)dx . (2.35)

Since either I j = [0, t j ] or [0, 1]\I j = [0, t j ], it follows that
∫ qi
0 ( fφ(x) − x)dx = 0,

for all i ∈ {0, . . . , n + 1}. Taking differences of these integrals yields the desired
statement. ��

Next, as a first application of Lemma 2.20, we prove that only global minima can
have type-1-active or non-flat semi-active neurons. We already established this in
Lemma 2.18 in the affine case, but now we extend it to the non-affine case. The state-
ment from Lemma 2.18 about saddle points not having non-flat degenerate neurons
also holds in the non-affine case, but we will not see this until later in Sect. 2.8.

Lemma 2.22 Suppose φ ∈ R
3N+1 is a critical point or a local extremum of L but not

a global minimum. Then, φ does not have any type-1-active or non-flat semi-active
neurons.

Proof For affine fφ , the result has been established in Lemma 2.18. Thus, suppose fφ
is not affine on [0, 1] and that φ has a type-1-active or non-flat semi-active neuron.
Denote by 0 = q0 < q1 < · · · < qn < qn+1 = 1, for n ∈ N, the roughest partition
such that fφ is affine on all subintervals [qi , qi+1]. We know from Lemma 2.21 that∫ q1
q0

( fφ(x) − x)dx = 0, and we claim that also
∫ q1
q0

x( fφ(x) − x)dx = 0. To prove
this, note that φ must have at least one non-flat type-2-active neuron (without loss
of generality the first) with breakpoint −b1/w1 = q1. Moreover, (2.8) shows that
0 = ∫ 1

0 x( fφ(x) − x)dx if applied with the type-1-active or non-flat semi-active
neuron. Using this and ∂

∂w1
L(φ) = 0, one deduces the claim as in the proof of Lemma

2.21. Hence, we conclude fφ |[q0,q1] = id[q0,q1] with the argument (2.9). But then we
also get fφ = id[q0,qn+1] byLemma2.20.(ii) andLemma2.21, yielding a contradiction.

��
We now turn to the proof of Theorem 2.4.(IV.b). More precisely, we show that

critical points and local extrema whose realizations are not affine must take a very
specific form. The only degree of freedom of their realization functions is a single
parameter varying over the set of even integers in {1, . . . , N }. Examples of the possible
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Fig. 2 Examples of the network realizations (red) in Lemma 2.23 for the cases n = 2 and n = 4. The blue
line is the target function (identity function) (Color figure online)

realizations are shown in Fig. 2, which illustrates that the degree of freedom is reflected
by the number of breakpoints. Once this number is fixed, the shape of the function is
uniquely determined: the breakpoints are equally spaced in the interval [0, 1], and the
slope of the realization on each affine segment alternates between two given values in
such a way that the function symmetrically oscillates around the diagonal. In addition,
we deduce in Lemma 2.23 that critical points and local extrema can realize these
functions only in a very specific way, limited by few combinatorial choices.

Lemma 2.23 Suppose φ ∈ R
3N+1 is a critical point or a local extremum of L but

not a global minimum and that fφ is not affine on [0, 1]. Denote by 0 = q0 < q1 <

· · · < qn < qn+1 = 1, for n ∈ N, the roughest partition such that fφ is affine on
all subintervals [qi , qi+1], and denote by Ki ⊆ {1, . . . , N } the set of all type-2-active
neurons of φ whose breakpoint is qi . Then, the following hold:

(i) n is even,
(ii) qi = i

n+1 for all i ∈ {1, . . . , n},
(iii) −b j/w j ∈ {q1, . . . , qn} for all type-2-active neurons j ∈ {1, . . . , N } of φ,
(iv) sign(w j ) = (−1)i+1 for all i ∈ {1, . . . , n}, j ∈ Ki ,
(v)

∑
j∈Ki

v jw j = 2/(n + 1) for all i ∈ {1, . . . , n},
(vi) φ is centered,

(vii) fφ(x) = x − (−1)i

n+1

(
x − i+1/2

n+1

)
for all i ∈ {0, . . . , n}, x ∈ [qi , qi+1].

The proof of this lemma requires a successive application of Lemma 2.20. We
prove the statements of the lemma in a different order than stated. First of all,
Lemma 2.20. (ii) will enforce the correct sign for each w j , j ∈ Ki . That n is even
will be a consequence of these signs. It will also follow from the signs together
with Lemma 2.20. (v) that qi = i

n+1 . Afterward, we use the formulas (2.31) from
Lemma 2.20 to verify that any type-2-active neuron must have as breakpoint one of
q1, . . . , qn . Once this has been shown, we obtain a more explicit version of those
formulas and deduce

∑
k∈Ki

vkwk = 2/(n + 1). That fφ takes exactly the form in
Lemma 2.23. (vii) is a by-product of the last derivation, and that φ is centered is shown
last.
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Proof of Lemma 2.23 We begin by noting that none of the sets Ki , i ∈ {1, . . . , n},
can be empty. Furthermore, the third equation of (2.7) and Lemma 2.21 imply that
(2.8) holds for all neurons in

⋃
i Ki even if they are flat. Applying Lemma 2.20.(ii),

which we can do by Lemma 2.21, ensures that fφ |[qi ,qi+1] �= id[qi ,qi+1] for all i ∈
{0, . . . , n}. In particular, (2.8) and the argument (2.9) show for all i ∈ {1, . . . , n − 1}
and j0 ∈ Ki , j1 ∈ Ki+1 that sign(w j0) �= sign(w j1) for otherwise we would have
I j0\I j1 = [qi , qi+1] or I j1\I j0 = [qi , qi+1] (depending on the sign) and, hence,

∫ qi+1

qi
( fφ(x) − x)dx = 0 =

∫ qi+1

qi
x( fφ(x) − x)dx . (2.36)

Likewise, we must have
∫ q1
0 x( fφ(x) − x)dx �= 0 and, hence, w j > 0 for any j ∈

K1. Combining the previous two arguments establishes sign(w j ) = (−1)i+1 for any
i ∈ {1, . . . , n}, j ∈ Ki . Just like w j > 0 for any j ∈ K1, we must also have w j < 0
for any j ∈ Kn . Thus, −1 = sign(w j ) = (−1)n+1 for all j ∈ Kn , so n is even. Now
that we know the sign of each parameter w j for neurons j ∈⋃i Ki , we can use (2.8)
again to find that

∫ qi+2
qi

x( fφ(x) − x)dx = 0 for all i ∈ {0, . . . , n − 1}. Then, Lemma
2.20.(v) (with the partition qi , qi+1, qi+2) tells us

0 = (qi+2 − qi+1)
2 − (qi+1 − qi )

2. (2.37)

This can only hold for all i ∈ {0, . . . , n − 1} if the points q1, . . . , qn are equidis-
tributed, which means qi = i/(n + 1). Next, if we denote fφ(x) = Ai x + Bi on
[qi , qi+1], then the formulas (2.31) must hold for all i ∈ {0, . . . , n}. Since q1, . . . , qn
are equidistributed, the formulas simplify to

Ai − 1 = (−1)i (A0 − 1) and Bi = (−1)i+1 i + 1
2

n + 1
(A0 − 1) (2.38)

for all i ∈ {0, . . . , n}. Using (2.38), one can verify that any type-2-active neuron of φ
must have as breakpoint one of the points q1, . . . , qn . If this were not the case, say the
j th hidden neuron were type-2-active with breakpoint t j = −b j/w j , then one could
choose i ∈ {0, . . . , n} such that qi < t j < qi+1. Using (2.8), (2.38), and Lemma 2.21,
the integral from the third line of (2.7) reads (after dividing by 2w j )

∫

I j
(x − t j )( fφ(x) − x)dx

=
∫

[qi ,qi+1]∩I j
(x − t j )( fφ(x) − x)dx −

{
0 if i is even∫ qi+1
qi

x( fφ(x) − x)dx if i is odd

=

⎧
⎪⎪⎨

⎪⎪⎩

1
6 (A0 − 1)(t j − qi )2(qi+1 − t j + 1

2(n+1) )
if I j = [0, t j ] and i is even
or if I j = [t j , 1] and i is odd

1
6 (A0 − 1)(qi+1 − t j )2(t j − qi + 1

2(n+1) )
if I j = [0, t j ] and i is odd
or if I j = [t j , 1] and i is even.

(2.39)
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So, the partial derivative of L with respect to v j does not vanish, yielding a contra-
diction. This proves that all type-2-active neurons lie in

⋃
i Ki . In particular, we can

write

Al =
l∑

i=1
i odd

∑

j∈Ki

v jw j +
n∑

i=l+1
i even

∑

j∈Ki

v jw j (2.40)

for all l ∈ {0, . . . , n} because φ does not have any type-1-active neurons by Lemma
2.22. We can combine this formula with (2.38) to find for all i ∈ {0, . . . , n − 1}

− (A0 − 1) = (−1)i (Ai+1 − 1) = (−1)i (Ai − 1) + ∑

j∈Ki+1

v jw j

= A0 − 1 + ∑

j∈Ki+1

v jw j . (2.41)

Thus, the quantity a :=∑ j∈Ki
v jw j is independent of i ∈ {1, . . . , n}. Consequently,

we obtain Ai = an/2 for even i (including i = 0) and Ai = a(1 + n/2) for odd i .
The identity A1 − 1 = 1 − A0 then forces a = 2/(n + 1). That φ has to be centered
follows from fφ(0) = B0. ��

As our final building block for the proof of Theorem 2.4, we show that the networks
from Lemma 2.23 are saddle points of the loss function. To achieve this, we will find
a set of coordinates in which L is twice differentiable and calculate the determinant of
the Hessian of L restricted to these coordinates. It will turn out to be strictly negative,
from which it follows that we deal with a saddle point.

Lemma 2.24 Suppose φ ∈ R
3N+1 is a critical point or a local extremum of L but not

a global minimum and that fφ is not affine on [0, 1]. Then, φ is a saddle point of L.

Proof Take n ∈ N satisfying the assumptions of Lemma 2.23 and let K1 ⊆ {1, . . . , N }
denote the set of those type-2-active neurons with breakpoint 1/(n + 1). Denote by
K−
1 ⊆ K1 the set of all those hidden neurons j ∈ K1 with v j < 0. It may happen that

K−
1 is empty. However, the complement K1\K−

1 is never empty since
∑

j∈K1
v jw j =

2/(n+1) and sign(w j ) = 1 for all j ∈ K1 by Lemma 2.23. Let j1 ∈ K1 be any hidden
neuron with v j1 > 0 and denote by j2, . . . , jl , for l ∈ {1, . . . , N }, an enumeration
of K−

1 . Moreover, let k ∈ {1, . . . , N } be any type-2-active neuron with breakpoint
tk = 2/(n + 1).

We know from Lemma 2.15 that L is twice continuously differentiable in the
coordinates of type-2-active neurons and in (v, c). We will show that the Hessian H
of L restricted to (b j1, . . . , b jl , vk, c) has a strictly negative determinant.

In order to compute this determinant, we introduce some shorthand notation. For
i ∈ {1, . . . , l}, denote λi = n+1

2 v ji w ji so that
∑l

i=1 λi ≤ 1 by the choice of neurons
in the collection { j1, . . . , jl}. Define μ = n+1

2n and the vectors u1 = (v j1 , . . . , v jl ),
u2 = ( −1

4n2μ
wk, 1), and u = (u1, u2). Furthermore, let D be the diagonal matrix with

entries −v2ji
/(4λi n), i ∈ {1, . . . , l}, let A be the Hessian of L restricted to (vk, c), let
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B = μA− u2uT2 , and let E be the diagonal block matrix with blocks D and B. Then,
H = 1

μ
(E + uuT ) and, hence,

det(H) = μ−(l+2)(1 + uT E−1u) det(E) (2.42)

once we verified that E is invertible. We calculate directly

det(A) = det

(
2

3(nμ)3
w2
k

−1
(nμ)2

wk
−1

(nμ)2
wk

n+1
nμ

)

= 2n − 1

3(nμ)4
w2
k > 0. (2.43)

Next, we compute

	 := 1

μ
uT2 A

−1u2 = 32n2 − 21n + 3

16n(2n − 1)
∈ (0, 1). (2.44)

Using 	, we obtain det(B) = μ2(1 − 	) det(A) > 0 and B−1 = 1
μ
A−1 +

1
μ2(1−	)

A−1u2uT2 A
−1. In particular, E is invertible. Using uT2 B

−1u2 = 	
1−	

, we
can write

uT E−1u = uT1 D
−1u1 + uT2 B

−1u2 = −4n
l∑

i=1
λi + 	

1 − 	
. (2.45)

The determinant of D is −(4n)−l∏l
i=1 v2ji

|λi |−1 < 0 so that


 := −μ−(l+2)(1 − 	)−1 det(D) det(B) (2.46)

is strictly positive. Summing up, we obtain that the determinant of H is

det(H) = 

(
4n(1 − 	)

l∑

i=1
λi − 1

)
. (2.47)

We already mentioned that
∑l

i=1 λi ≤ 1. Finally, we compute 4n(1−	) = 5n−3
8n−4 < 1

to conclude det(H) < 0, which finishes the proof. ��
We now have constructed all the tools needed to prove Theorem 2.4 in the special

case in which the target function is the identity on [0, 1]. This will be done in the next
section.

2.8 Classification of the Critical Points if the Target Function is the Identity

In this section, we gather the results of the previous two sections to prove the main
theorem in the case where the target function is the identity on [0, 1].
Proposition 2.25 Let φ = (w, b, v, c) ∈ R

3N+1. Then, the following hold:
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(I) φ is not a local maximum of L.
(II) If φ is a critical point or a local extremum of L, then L is differentiable at φ

with gradient ∇L(φ) = 0.
(III) φ is a non-global local minimum of L if and only if φ is centered and, for all

j ∈ {1, . . . , N }, the j th hidden neuron of φ is

(a) inactive,
(b) semi-inactive with I j = {0} and v j > 0, or
(c) semi-inactive with I j = {1} and v j < 0.

(IV) φ is a saddle point of L if and only if φ is centered, φ does not have any type-
1-active neurons, φ does not have any non-flat semi-active neurons, φ does
not have any non-flat degenerate neurons, and exactly one of the following two
items holds:

(a) φ does not have any type-2-active neurons and there exists j ∈ {1, . . . , N }
such that the j th hidden neuron of φ is
(i) flat semi-active,
(ii) semi-inactive with I j = {0} and v j ≤ 0,
(iii) semi-inactive with I j = {1} and v j ≥ 0, or
(iv) flat degenerate.

(b) There exists n ∈ {2, 4, 6, . . . } such that (
⋃

j∈{1,...,N }, w j �=0{− b j
w j

}) ∩
(0, 1) = ⋃n

i=1{ i
n+1 } and, for all j ∈ {1, . . . , N }, i ∈ {1, . . . , n}

with w j �= 0 = b j + iw j
n+1 , it holds that sign(w j ) = (−1)i+1 and

∑

k∈{1,...,N }, wk �=0=bk+ iwk
n+1

vkwk = 2
n+1 .

(V) If φ is a non-global local minimum of L or a saddle point of L without type-2-
active neurons, then fφ(x) = 1/2 for all x ∈ [0, 1].

(VI) Ifφ is a saddle point ofLwith at least one type-2-active neuron, then there exists
n ∈ {2, 4, 6, . . . } such that n ≤ N and, for all i ∈ {0, . . . , n}, x ∈ [ i

n+1 ,
i+1
n+1 ],

one has

fφ(x) = x − (−1)i

n + 1

(
x − i + 1

2

n + 1

)
. (2.48)

Proof Statement (I) follows from Lemma 2.8 and the ‘if’ part of the ‘if and only if’
statement in (III) is the content of Lemma 2.17. Moreover, if φ is as in (IV.a), then
it is a critical point because it satisfies (2.7) and it is a saddle point by Lemma 2.19.
Next, denote qi = i/(n + 1) for all i ∈ {0, . . . , n + 1}. If φ is as in (IV.b), then its
realization on [0, 1] is given by

fφ(x) = 1

2
+ 2

n + 1

n∑

i=1
(−1)i+1 max{(−1)i+1(x − qi ), 0}. (2.49)

which coincides with the formula (2.48). In particular, we have
∫ qi+1
qi

( fφ(x)− x)dx =
0 for all i ∈ {0, . . . , n} and ∫ qi+2

qi
x( fφ(x) − x)dx = 0 for all i ∈ {0, . . . , n − 1}. The
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latter asserts that
∫ 1
qi
x( fφ(x) − x)dx = 0 for odd i and

∫ qi
0 x( fφ(x) − x)dx = 0 for

even i . Thus, φ satisfies (2.7) and, hence, is a critical point. Furthermore, it is a saddle
point by Lemma 2.24. This proves the ‘if’ part of the ‘if and only if’ statement in (IV).

Now, suppose φ is a non-global local minimum. Then, fφ is affine by Lemma
2.24. Lemma 2.18 asserts that φ is centered and does not have any active or non-flat
semi-active neurons. Furthermore, for each hidden neuron, Lemma 2.19 rules out all
possibilities except (III.a)–(III.c). This proves the ‘only if’ part of (III).

Next, suppose φ is a saddle point. If fφ is affine, then φ is centered and does not
have any active, non-flat semi-active, or non-flat degenerate neurons by Lemma 2.18.
If there is no hidden neuron as in (IV.a.i)–(IV.a.iv), then all hidden neurons satisfy
one of the conditions in (III.a)–(III.c). But this contradicts Lemma 2.17. This proves
(IV.a). If fφ is not affine, then it still does not admit any type-1-active or non-flat
semi-active neurons by Lemma 2.22. Moreover, Lemma 2.23 shows that φ is centered
and its type-2-active neurons satisfy (IV.b). We need to argue that φ does not have
any non-flat degenerate neurons in this case either. If there were a non-flat degenerate
neuron, then G(φ) = 0 implies 0 = ∫ 1

0 x( fφ(x) − x)dx . But Lemma 2.20.(v) and
Lemma 2.23 ensure that this integral is different from zero. This finishes the proof of
the ‘only if’ part of (IV).

Next, we prove (II). If φ is a saddle point, then it does not have any non-flat
degenerate neurons by (IV). Ifφ is a non-global local extremum, then (I) and (III) imply
that φ does not have any non-flat degenerate neurons either. Thus, L is differentiable
at φ by Lemma 2.14. If φ is a global minimum, then φ is point of differentiability by
Lemma 2.11.

Statement (V) follows immediately from (III) and (IV.a). The remaining statement
(VI) is implied by (IV.b) and (2.49). ��

2.9 Completion of the Proof of Theorem 2.4

In this section, we show that Theorem 2.4 can always be reduced to its special case,
Proposition 2.25, by employing a transformation of the parameter space.

Proof of Theorem 2.4 First, we assume that T = (0, 1). Consider the transforma-
tion P : R3N+1 → R

3N+1 of the parameter space given by P(w, b, v, c) =
(w, b, v

α
,
c−β
α

). We then have LN ,T ,A(φ) = α2L ◦ P(φ) for all φ ∈ R
3N+1. Since

the coordinates w and b remain unchanged and the vector v only gets scaled under
the transformation P , the transformation P does not change the types of the hidden
neurons. Moreover, a network φ ∈ R

3N+1 is (T ,A)-centered if and only if P(φ) is
centered. Themap P clearly is a smooth diffeomorphism and, hence, Theorem2.4with
T = (0, 1) is exactly what we obtain from Proposition 2.25 under the transformation
P .

Now, we deduce Theorem 2.4 for general T . This time, setB = (α(T1−T0), αT0+
β) and denote by Q : R3N+1 → R

3N+1 the transformation Q(w, b, v, c) = ((T1 −
T0)w, T0w + b, v, c). Then, LN ,T ,A(φ) = (T1 − T0)LN ,(0,1),B ◦ Q(φ) for any φ ∈
R
3N+1. As above, the transformation Q does not change the types of the hidden
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neurons. Note for the breakpoints that

− b j

w j
= T0 + i(T1 − T0)

n + 1
⇐⇒ − T0w j + b j

(T1 − T0)w j
= i

n + 1
. (2.50)

Also, φ ∈ R
3N+1 is (T ,A)-centered if and only if Q(φ) is ((0, 1),B)-centered. Since

we have shown the theorem to hold for T = (0, 1), the smooth diffeomorphism Q
yields Theorem 2.4 in the general case. ��

3 From ReLU to Leaky ReLU

In this section, we attempt to derive Theorem 2.4 for leaky ReLU activation, given by
x �→ max{x, γ x} for a parameter γ ∈ (0, 1). We denote the realization f γ

φ ∈ C(R,R)

of a network φ = (w, b, v, c) ∈ R
3N+1 with this activation by

f γ
φ (x) = c +

N∑

j=1
v j max{w j x + b j , γ (w j x + b j )}. (3.1)

Analogously to the ReLU case, given A = (α, β) ∈ R
2 and T = (T0, T1) ∈ R

2, the
loss function Lγ

N ,T ,A ∈ C(R3N+1,R) is the L2-loss given by

Lγ

N ,T ,A(φ) =
∫ T1

T0
( f γ

φ (x) − αx − β)2 dx . (3.2)

Again, we call a point a critical point of Lγ

N ,T ,A if it is a zero of the generalized
gradient defined by right-hand partial derivatives. The notions about types of neurons
remain the same as in Definition 2.3. Strictly speaking, the notions ‘inactive’ and
‘semi-inactive’ are no longer suitable for leaky ReLU activation, but it is convenient
to stick to the same terminology. We will deduce the classification for leaky ReLU by
reducing it to the ReLU case in some instances and deal with other instances directly.

3.1 Partial Reduction to the ReLU Case

As before, we first consider the special case where the target function is the identity on
[0, 1]. Let us abbreviateLγ = Lγ

N ,(0,1),(1,0) andL = L2N ,(0,1),(1,0). Let P : R3N+1 →
R
6N+1 denote the smooth map P(w, b, v, c) = (w,−w, b,−b, v,−γ v, c). Then,

f γ
φ = fP(φ) and Lγ = L ◦ P . Hence, if L is differentiable at P(φ), then Lγ is

differentiable at φ, so differentiability properties of L convert to Lγ . The partial
derivatives of Lγ at any network φ and any non-degenerate or flat degenerate neuron
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j are given by

∂

∂w j
Lγ (φ) =

( ∂

∂w j
L
)
(P(φ)) −

( ∂

∂w j+N
L
)
(P(φ)),

∂

∂b j
Lγ (φ) =

( ∂

∂b j
L
)
(P(φ)) −

( ∂

∂b j+N
L
)
(P(φ)),

∂

∂v j
Lγ (φ) =

( ∂

∂v j
L
)
(P(φ)) − γ

( ∂

∂v j+N
L
)
(P(φ)),

∂

∂c
Lγ (φ) =

( ∂

∂c
L
)
(P(φ)).

(3.3)

We can also write these in explicit formulas. To do so, we complement the notation
I j by the intervals Î j = {x ∈ [0, 1] : w j x + b j < 0} = [0, 1]\I j . Then,

∂

∂w j
Lγ (φ) = 2v j

∫

I j
x( f γ

φ (x) − x)dx + 2γ v j

∫

Î j
x( f γ

φ (x) − x)dx,

∂

∂b j
Lγ (φ) = 2v j

∫

I j
( f γ

φ (x) − x)dx + 2γ v j

∫

Î j
( f γ

φ (x) − x)dx,

∂

∂v j
Lγ (φ) = 2

∫

I j
(w j x+b j )( f

γ
φ (x) − x)dx+2γ

∫

Î j
(w j x+b j )( f

γ
φ (x) − x)dx,

∂

∂c
Lγ (φ) = 2

∫ 1

0
( f γ

φ (x) − x)dx .

(3.4)

This notation allows to treat non-flat degenerate neurons. For such neurons, the right-
hand partial derivatives of Lγ are also given by the above formulas. We now show
how the reduction to the ReLU case works.

Lemma 3.1 Suppose φ ∈ R
3N+1 is a critical point or a local extremum of Lγ but not

a global minimum and that
∫ 1
0 x( f γ

φ (x) − x)dx = 0. Then, all neurons of φ are flat
semi-active, flat inactive with w j = 0, or flat degenerate.

Proof We first show that P(φ) is a critical point of L and then apply Theorem 2.4 to
P(φ). Since the partial derivative of Lγ with respect to c exists and must be zero, we
have

1

2

∂

∂c
Lγ (φ) =

∫ 1

0
( fP(φ)(x) − x)dx = 0 =

∫ 1

0
x( fP(φ)(x) − x)dx . (3.5)

This shows that the (right-hand) partial derivatives ofL are zero at P(φ)with respect to
coordinates corresponding to inactive, semi-inactive, semi-active, type-1-active, and
degenerate neurons. We need to verify that also partial derivatives ofLwith respect to
type-2-active neurons vanish at P(φ). To see this, note that, for a type-2-active neuron
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j of φ, the partial derivative of Lγ with respect to w j exists at φ and

0 = ∂

∂w j
Lγ (φ) = 2(1 − γ )v j

∫

I j
x( f γ

φ (x) − x)dx . (3.6)

Thus,

0 = 2v j

∫

I j
x( f γ

φ (x) − x)dx =
( ∂

∂w j
L
)
(P(φ)),

0 = −2γ v j

∫

Î j
x( f γ

φ (x) − x)dx =
( ∂

∂w j+N
L
)
(P(φ)),

(3.7)

and analogously for the coordinates b j , b j+N , v j , v j+N . This concludes that P(φ) is
a critical point of L. By Theorem 2.4, P(φ) does not have any type-1-active, non-flat
semi-active, or non-flat degenerate neurons. By definition of the map P , it follows
that φ does not have any type-1-active, non-flat semi-active, or non-flat degenerate
neurons, nor does it have any semi-inactive, non-flat inactive, or inactive neurons with
w j �= 0 for otherwise P(φ)would have one of the former types. Further, by definition
of P , any type-2-active neuron of φ gives rise to two type-2-active neurons of P(φ)

with the same breakpoint but with opposite signs of the w-coordinate. This is not
possible by (IV.b) of Theorem 2.4, so φ cannot have any type-2-active neurons. In
summary, φ can only have flat semi-active, flat degenerate, or flat inactive neurons
with w j = 0. ��

The condition
∫ 1
0 x( f γ

φ (x) − x)dx = 0 in the previous lemma is easily converted
into a condition about existence of certain types of neurons. This is done in the first
part of the next lemma. For the second part, we recycle some arguments we learned
from the ReLU case.

Lemma 3.2 Suppose φ ∈ R
3N+1 is a critical point or a local extremum ofLγ but not a

global minimum. Then, all neurons of φ are flat semi-active, flat inactive withw j = 0,
degenerate, or type-2-active. Moreover, if φ does not have any non-flat type-2-active
neurons, then φ is a saddle point and it also does not have any flat type-2-active or
non-flat degenerate neurons.

Proof Suppose φ had a neuron of a different type than in the first statement of this
lemma, say the j th. Note that one of the intervals I j and Î j is empty and the other
one is [0, 1] (up to possibly a singleton). Since the j th neuron is non-degenerate, Lγ

is differentiable with respect to the coordinates of the j th neuron, so
∫ 1
0 x( f γ

φ (x) −
x)dx = 0. This contradicts Lemma 3.1.

The remainder of the proof is similar to the ones of Lemmas 2.18 and 2.19. Assume
φ does not have any non-flat type-2-active neurons. Then, f γ

φ is constant on [0, 1], and
this constant is 1/2 since ∂

∂cLγ (φ) = 0. We claim that φ cannot have any flat type-2-
active neurons. Suppose for contradiction the j th neuron was that. Let τ = sign(w j )
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and t j = −b j/w j ∈ (0, 1). Then, ∂
∂v j

Lγ (φ) = 0 implies

0 =
∫ 1

t j
(x − t j )(

1
2 − x)dx + γ τ

∫ t j

0
(x − t j )(

1
2 − x)dx

= 1

12

(− 1 + (1 − γ τ )(3 − 2t j )t
2
j

)
. (3.8)

But, for any γ, t ∈ (0, 1), τ ∈ {−1, 1}, we have−1+(1−γ τ )(3−2t)t2 < 0, which is
a contradiction. Thus, all neurons of φ are flat semi-active, flat inactive with w j = 0,
or degenerate. With an argument analogous to the proof of Lemma 2.19, we find that
φ is a saddle point of Lγ . Indeed, if there is a flat semi-active or flat inactive neuron
j with w j = 0, then, with τ = 1 − sign(b j ),

det

(
∂

∂w j

∂
∂w j

Lγ (φ) ∂
∂w j

∂
∂v j

Lγ (φ)
∂

∂v j

∂
∂w j

Lγ (φ) ∂
∂v j

∂
∂v j

Lγ (φ)

)

=−
(

2γ τ/2
∫ 1

0
x( 12 − x)dx

)2

=− 1

36
γ τ < 0.

(3.9)

Instead, if there is a degenerate neuron j , then, for the perturbation φs , s ∈ [0, 1], in
the coordinates of the j th neuron given by ws

j = τ s, bsj = −τ s2, and vsj = v j + τ s
with τ = 1 if v j ≥ 0 and τ = −1 if v j < 0, we have

Lγ (φs) − Lγ (φ) = 1

6
vsjw

s
jγ

(1−τ)/2(− 1 + (1 − γ τ )(3 − 2s)s2
)

+ 1

3
(vsjw

s
j )
2γ 1−τ

(
(1 − s)3 + γ 2τ s3

)

= −1

6
s(|v j | + s)γ (1−τ)/2 + 1

3
|v j |2s2γ 1−τ + O(s3),

(3.10)

which is strictly negative for small s > 0. This concludes that φ is a saddle point. In
particular, any degenerate neuron j must be flat because

0 = ∂+

∂w j
Lγ (φ) = 2v j

∫ 1

0
x( 12 − x)dx = −v j

6
. (3.11)

��

We finished dealing with critical points of Lγ that have a constant realization
function. In the next section, we find saddle points of Lγ analogous to the ones in
Theorem 2.4.(IV.b). For these, we cannot reduce the analysis entirely to the known
ReLU case. However, the arguments are analogous to the ones developed in Lemmas
2.23 and 2.24, and we can use a shortcut for small γ by arguing that we approximate
the ReLU case in a suitable sense.
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3.2 Explicit Analysis for Leaky ReLU

The following is the analog of Lemma 2.23 in the leaky ReLU case. Informally, one
recovers Lemma 2.23 from Lemma 3.3 in the limit γ → 0. We will discuss this in
more detail after having proved the lemma.

Lemma 3.3 Suppose φ ∈ R
3N+1 is a critical point or a local extremum of Lγ but not

a global minimum and that φ has a type-2-active neuron. Denote by 0 = q0 < q1 <

· · · < qn < qn+1 = 1, for n ∈ N0, the roughest partition such that f γ
φ is affine on

all subintervals [qi , qi+1], and denote by Ki ⊆ {1, . . . , N } the set of all type-2-active
neurons of φ whose breakpoint is qi . Then, n ≥ 1 and there exists σ ∈ {−1, 1} such
that, abbreviating

δ = γ (1−σ)/4 + γ (1−σ(−1)n)/4 + (n − 1)
√
1 + γ , (3.12)

the following hold:

(i) (a) qi = q1 + (i−1)(qn−q1)
n−1 for all i ∈ {2, . . . , n − 1},

(b) q1 = δ−1γ (1−σ)/4, and qn = 1−δ−1γ (1−σ(−1)n)/4, and qn −q1 = δ−1(n−
1)

√
1 + γ ,

(ii) −b j/w j ∈ {q1, . . . , qn} for all type-2-active neurons j ∈ {1, . . . , N } of φ,
(iii) sign(w j ) = σ(−1)i+1 for all i ∈ {1, . . . , n}, j ∈ Ki ,

(iv) (a)
∑

j∈Ki
v jw j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

γ −1/2 if i = 1 = n,
1
δ

( 1√
1+γ

+ 1
γ (1−σ)/4

)
if i = 1 �= n,

1
δ

2√
1+γ

if 2 ≤ i ≤ n − 1,
1
δ

( 1√
1+γ

+ 1
γ (1−σ(−1)n )/4

)
if i = n �= 1,

(v) φ is centered,

(vi) f γ
φ (x)−x= −σ(−1)i (1−γ )

δ
·

⎧
⎪⎪⎨

⎪⎪⎩

x
γ (1−σ)/4 − 1

2δ if i =0,
x√
1+γ

− i−1/2
δ

− γ (1−σ)/4

δ
√
1+γ

if 1≤ i ≤n−1,
x

γ (1−σ(−1)n )/4 + 1
2δ − 1

γ (1−σ(−1)n )/4 if i =n

for all i ∈ {0, . . . , n}, x ∈ [qi , qi+1].
Proof First, note that φ must have at least one non-flat type-2-active neuron by Lemma
3.2. For any such neuron j ,

0 = 1

2v j

∂

∂w j
Lγ (φ) = (1 − γ )

∫

I j
x( f γ

φ (x) − x)dx + γ

∫ 1

0
x( f γ

φ (x) − x)dx, (3.13)

so the two integrals

∫

I j
x( f γ

φ (x) − x)dx = −γ

1 − γ

∫ 1

0
x( f γ

φ (x) − x)dx,

∫

Î j
x( f γ

φ (x) − x)dx = 1

1 − γ

∫ 1

0
x( f γ

φ (x) − x)dx

(3.14)
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are independent of the non-flat type-2-active neuron j . Doing the same with the coor-
dinate b j and using that 2

∫ 1
0 ( f γ

φ (x) − x)dx = ∂
∂cLγ (φ) = 0, we find

∫

I j
( f γ

φ (x) − x)dx = 0 =
∫

Î j
( f γ

φ (x) − x)dx . (3.15)

The function f γ
φ cannot be affine for otherwise we could apply Lemma 2.20 with the

partition 0 < t j < 1 for the breakpoint t j of any non-flat type-2-active neuron j and
obtain a contradiction with φ not being a global minimum. In other words, n �= 0.
Moreover, since each Ki , i ∈ {1, . . . , n}, must contain a non-flat neuron, we deduce
from (3.15) that

∫ qi+1
qi

( f γ
φ (x) − x)dx = 0 for all i ∈ {0, . . . , n}. It follows from this

and ∂
∂v
Lγ (φ) = 0 that (3.14) holds even for flat neurons j ∈ ⋃i Ki . Also, Lemma

2.20 implies that the two integrals in (3.14) are not zero. In particular,

∫

I j
x( f γ

φ (x) − x)dx �=
∫

Î j
x( f γ

φ (x) − x)dx (3.16)

for any j ∈ ⋃
i Ki and, hence, sign(w j0) = sign(w j1) if j0 and j1 belong to the

same set Ki . Furthermore, we find from (3.14) that sign(w j0) �= sign(w j1) for all
i ∈ {1, . . . , n − 1} and j0 ∈ Ki , j1 ∈ Ki+1 by taking differences of the integrals∫
I j
x( f γ

φ (x) − x)dx for different j . This establishes item (iii). Consequently, we
obtain from Lemma 2.20.(v) (with the partition qi , qi+1, qi+2) that

0 = (qi+2 − qi+1)
2 − (qi+1 − qi )

2, (3.17)

for all i ∈ {1, . . . , n−2} (note thatwe do not obtain this equality for i = 0 or i = n−1).
Thus, the pointsq1, . . . , qn are equidistributed in [q1, qn] (but not necessarily in [0, 1]),
which is exactly item (i.a). Next, we prove item (i.b). To do so, we distinguish between
even n and odd n. In the former case, sign(w j1) �= sign(w jn ) for all j1 ∈ K1, jn ∈ Kn

by item (iii) and, hence, by (3.14),

∫ q1

0
x( f γ

φ (x) − x)dx =
∫ 1

qn
x( f γ

φ (x) − x)dx . (3.18)

Write f γ
φ (x) = Ai x + Bi on [qi , qi+1], for all i ∈ {0, . . . , n}, so that the formulas in

(2.31) hold. We compute

1

12
(A0 − 1)q31 =

∫ q1

0
x( f γ

φ (x) − x)dx =
∫ 1

qn
x( f γ

φ (x) − x)dx

= (−1)n

12
(A0 − 1)q1(1 − qn)

2. (3.19)
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Thus, q1 = 1 − qn and, by (i.a),

∫ 1

0
x( f γ

φ (x) − x)dx = 1

12
(A0 − 1)q1

n∑

k=0

(−1)k(qk+1 − qk)
2

= 1

12
(A0 − 1)q1

(

2q21 −
(
1 − 2q1
n − 1

)2
)

. (3.20)

Hence, it follows from (3.14) and item (iii) that

q21 = σγ (1−σ)/2

1 − γ

(

2q21 −
(
1 − 2q1
n − 1

)2
)

. (3.21)

Solving this as a quadratic equation in q1 under the constraint q1 ∈ (0, 1/2) yields
q1 = δ−1γ (1−σ)/4. Now, assume n is odd. Recall that

∫ qi+2
qi

x( f γ
φ (x) − x)dx = 0 for

all i ∈ {1, . . . , n − 2}. In particular, ∫ qnq1
x( f γ

φ (x) − x)dx = 0. Note that σ is already
determined as the sign of w j for any j ∈ K1. The partial derivative with respect to w j

being zero for a non-flat neuron j ∈ K1 implies

0 =
∫ 1

qn
x( f γ

φ (x) − x)dx + γ σ

∫ q1

0
x( f γ

φ (x) − x)dx

= − 1

12
(A0 − 1)q1((1 − qn)

2 − γ σq21 ). (3.22)

Thus, 1 − qn = γ σ/2q1. From this, the formula for q1 follows in the case n = 1. If
n �= 1, then we use that the partial derivative with respect to w j for a non-flat neuron
j ∈ K2 is zero to calculate

0 =
∫ 1

q2
x( f γ

φ (x) − x)dx + γ −σ

∫ q2

0
x( f γ

φ (x) − x)dx

=
∫ 1

qn−1

x( f γ
φ (x) − x)dx + γ −σ

∫ q2

0
x( f γ

φ (x) − x)dx

= 1

12
(A0 − 1)q1

[

γ −σq21 − (1 − qn)
2 + (1 − γ −σ )

(
qn − q1
n − 1

)2
]

.

(3.23)

Using 1 − qn = γ σ/2q1, the term in the rectangular brackets becomes a quadratic
polynomial in q1, and solving for q1 leads to q1 = δ−1γ (1−σ)/4. This finishes item
(i.b). From here on, we no longer treat even n and odd n separately. Next, we show
item (ii). Given any type-2-active neuron j ∈ {1, . . . , N }, take i ∈ {0, . . . , n} with
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qi ≤ t j ≤ qi+1 and denote τ = sign(w j ). Then, ∂
∂v j

L(φ) = 0 implies

0 =
∫ qi+1

t j
(x − t j )( f

γ
φ (x) − x)dx + γ τ

∫ t j

qi
(x − t j )( f

γ
φ (x) − x)dx

+
∫ 1

qi+1

x( f γ
φ (x) − x)dx + γ τ

∫ qi

0
x( f γ

φ (x) − x)dx .

(3.24)

A direct computation with the formulas in (2.31) yields

∫ qi+1

t j
(x − t j )( f

γ
φ (x) − x)dx + γ τ

∫ t j

qi
(x − t j )( f

γ
φ (x) − x)dx

= (−1)i

12
(A0 − 1)

q1
qi+1 − qi

[
(qi+1 − qi )

3 − (1 − γ τ )(t j − qi )
2(3qi+1 − 2t j − qi )

]
.

(3.25)

Furthermore, if i �= 0 and τ = σ(−1)i+1, then

∫ 1

qi+1

x( f γ
φ (x) − x)dx + γ τ

∫ qi

0
x( f γ

φ (x) − x)dx

= −
∫ qi+1

qi
x( f γ

φ (x) − x)dx +
∫ 1

qi
x( f γ

φ (x) − x)dx + γ τ

∫ qi

0
x( f γ

φ (x) − x)dx

= −
∫ qi+1

qi
x( f γ

φ (x) − x)dx = − (−1)i

12
(A0 − 1)q1(qi+1 − qi )

2,

(3.26)

where the second-last equality is implied by ∂
∂wk

L(φ) = 0 for a non-flat type-2-active

neuron k ∈ Ki . Similarly, if i �= n and τ = σ(−1)i+2, then

∫ 1

qi+1

x( f γ
φ (x) − x)dx + γ τ

∫ qi

0
x( f γ

φ (x) − x)dx

= −γ τ

∫ qi+1

qi
x( f γ

φ (x) − x)dx = −γ τ (−1)i

12
(A0 − 1)q1(qi+1 − qi )

2.

(3.27)

The remaining cases are i ∈ {0, n}with τ = −σ , respectively, τ = σ(−1)n , for which
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∫ 1

qi+1

x( f γ
φ (x) − x)dx + γ τ

∫ qi

0
x( f γ

φ (x) − x)dx

= (−1)n−i

12
(A0 − 1)γ iτ/nq1 ·

{
γ (n−i)σ/nq21 if n is odd,

q21 − (q2 − q1)2 if n is even.
(3.28)

In conclusion, we obtain from (3.24) and (3.25) that

0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(t j − qi )
2(3qi+1 − 2t j − qi ) if i �= 0 and τ = σ(−1)i+1,

(qi+1 − qi )
3 − (t j − qi )

2(3qi+1 − 2t j − qi ) if i �= n and τ = σ(−1)i+2,

(1 − γ σ )q31 − (1 − γ −σ )t2j (3q1 − 2t j ) if n is odd, i = 0, and τ = −σ,

(1 + γ σ )(1 − qn)q21 − (t j − qn)2(3 − 2t j − qn) if n is odd, i = n, and τ = −σ,

2q31 − q1(q2 − q1)
2 − (1 − γ −σ )t2j (3q1 − 2t j ) if n is even, i = 0, and τ = −σ,

(1 + γ σ )q31 − γ σ q1(q2 − q1)
2

−(1 − γ σ )(t j − qn)2(3 − 2t j − qn) if n is even, i = n, and τ = σ.

(3.29)

In the first case, we must have t j = qi . In the second case, the term can be rewritten as
(qi+1 − t j )2(qi+1 + 2t j − 3qi ), so we must have t j = qi+1. In the third case, the two
summands always have opposite signs, so their difference is always strictly positive or
strictly negative but not zero. In the fourth case, the right hand side is lower bounded
by (1 − qn)q21 , so it cannot be zero. In the fifth case, after plugging in q1 and q2, we
find that t j must satisfy

0 = √
γ γ (1+σ)/4 + t2j δ

2(3γ (1−σ)/4 − 2t jδ). (3.30)

However, there is no solution t j to this equation with t j ∈ [0, q1]. Lastly, in the sixth
case, 1 − t j must satisfy the same equation, which is incompatible with t j ∈ [qn, 1].
This proves item (ii). Now, we tend to item (iv). Since

⋃
i Ki contains all type-2-active

neurons of φ and there are no type-1-active neurons by Lemma 3.2, we can write the
slopes of f γ

φ as

Al =
l∑

i=1
γ

1+σ(−1)i
2

∑

j∈Ki

v jw j +
n∑

i=l+1
γ

1−σ(−1)i
2

∑

j∈Ki

v jw j , (3.31)

for all l ∈ {0, . . . , n}, by item (iii). With this, we find, for all i ∈ {1, . . . , n},

− q1
qi+1 − qi

(A0 − 1) = (−1)i−1(Ai − 1)

= (−1)i−1(Ai−1 − 1) + σ(1 − γ )
∑

j∈Ki

v jw j

= q1
qi − qi−1

(A0 − 1) + σ(1 − γ )
∑

j∈Ki

v jw j .

(3.32)
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Thus, for all i ∈ {1, . . . , n},
∑

j∈Ki

v jw j = −σ

1 − γ
(A0 − 1)q1

qi+1 − qi−1

(qi+1 − qi )(qi − qi−1)
. (3.33)

Combining this with the formula (3.31) for A0 yields

−σ(1 − γ )

A0 − 1
= σ(1 − γ ) + q1

n∑

i=1

γ
1−σ(−1)i

2
qi+1 − qi−1

(qi+1 − qi )(qi − qi−1)
= γ (1−σ)/4δ.

(3.34)

Plugging this back into the formula for
∑

j∈Ki
v jw j , we obtain for n = 1 that

∑
j∈K1

v jw j = γ −1/2 and for n ≥ 2, i ∈ {1, . . . , n} that

∑

j∈Ki

v jw j = 1

δ2

qi+1 − qi−1

(qi+1 − qi )(qi − qi−1)

=

⎧
⎪⎨

⎪⎩

δ−1
(
(1 + γ )−1/2 + γ −(1−σ)/4

)
if i = 1,

2δ−1(1 + γ )−1/2 if 2 ≤ i ≤ n − 1,

δ−1
(
(1 + γ )−1/2 + γ −(1−σ(−1)n)/4

)
if i = n.

(3.35)

This establishes item (iv). By the formulas in (2.31) and (3.34),

Ai − 1 = σ(−1)i+1(1 − γ )δ−1 ·

⎧
⎪⎨

⎪⎩

γ −(1−σ)/4 if i = 0,

(1 + γ )−1/2 if 1 ≤ i ≤ n − 1,

γ −(1−σ(−1)n)/4 if i = n

(3.36)

and

Bi = 1

2
σ(−1)i (1 − γ )δ−2 ·

⎧
⎪⎨

⎪⎩

1 if i = 0,

2i − 1 + 2γ (1−σ)/4(1 + γ )−1/2 if 1 ≤ i ≤ n − 1,

2γ −(1−σ(−1)n)/4δ − 1 if i = n.

(3.37)

In particular, item (vi) holds. Lastly, we know from Lemma 3.2 and item (iii) that

0 = f γ
φ (0) − B0 = c −

n∑

i=1

γ
1−σ(−1)i

2 qi
∑

j∈Ki

v jw j − B0. (3.38)

After plugging in the formulas for B0, δ, qi , and
∑

j∈Ki
v jw j , a lengthy but straight-

forward computation results in c = 1/2. Thus, φ is centered, which concludes the
proof. ��
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We make a few remarks about the relationship between the previous lemma and
Lemma 2.23. The quantity δ in Lemma 3.3 replaces the factor n + 1 that appears
throughout Lemma 2.23. In the limit γ → 0,

δ →

⎧
⎪⎨

⎪⎩

n if n is odd,

n + 1 if n is even and σ = 1,

n − 1 if n is even and σ = −1.

(3.39)

Thus, in order to match Lemma 2.23 with the limit case γ → 0 of Lemma 3.3, one
would need to apply the former lemma with

ñ =

⎧
⎪⎨

⎪⎩

n − 1 if n is odd,

n if n is even and σ = 1,

n − 2 if n is even and σ = −1

(3.40)

in place of n so that δ → ñ + 1. One would hope that the quantities in Lemma
3.3 converge to their counterparts from Lemma 2.23 with ñ as γ → 0. Although
the number of breakpoints in each lemma is different in most cases (i.e. n �= ñ),
this convergence actually happens: on the one hand, if n is odd and σ = 1, then
qn → 1 ‘degenerates’ into the endpoint of the interval [0, 1] and only the (n−1)-many
breakpoints q1, . . . , qn−1 remain, which converge to i

ñ+1 , i ∈ {1, . . . , ñ}. Similarly, if
n is odd and σ = −1, then q1 → 0 degenerates and q2, . . . , qn remain and converge
to the correct breakpoints i

ñ+1 , i ∈ {1, . . . , ñ}. On the other hand, if n is even and
σ = 1, then none of the breakpoints degenerate and q1, . . . , qn remain and converge.
Lastly, if n is even and σ = −1, then both q1 → 0 and qn → n, and we are left with
q2, . . . , qn−1, which converge.

In addition, note that the parity of the w-coordinate of the type-2-active neurons
match in each lemma even though these are σ(−1)i+1 and (−1)i+1, respectively. They
match because q1 can only degenerate into 0 if σ = −1. Lastly, note that the quantities∑

j∈Ki
v jw j also converge to their counterparts as γ → 0.

Lemma 3.4 Suppose φ ∈ R
3N+1 is a critical point or a local extremum of Lγ but

not a global minimum and that φ has a type-2-active neuron. There exists γ0 ∈ (0, 1]
depending only on N such that if γ < γ0, then φ is a saddle point of Lγ .

Recall that, in the proof of Lemma 2.24, we studied the Hessian of Lγ restricted to
a suitable set of coordinates, taken from type-2-active neurons with breakpoints i

n+1 ,
i ∈ {1, 2}. To prove Lemma 3.4, we proceed analogously, which works for sufficiently
small γ by the above observation about Lemmas 2.23 and 3.3.More precisely, if n �= 1
and σ = 1, then we will be able to work with the same set of coordinates because
q1 → 1

ñ+1 and q2 → 2
ñ+1 . On the other hand, if n ≥ 3 and σ = −1, then q1 → 0 but

q2 → 1
ñ+1 and q3 → 2

ñ+1 . In this case, we will use the analogous set of coordinates
with q2 and q3 in place of q1 and q2. However, the argument does not work if n = 1
or if n = 2 and σ = −1 because then q1 → 0, q2 → 1, and f γ

φ becomes an affine
function as γ → 0. We will treat these two cases separately.
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Proof of Lemma 3.4 Take n, δ, q1, . . . , qn , and σ fromLemma 3.3. First, assume n = 2
with σ = 1 or n ≥ 3. Abbreviate τ = (3 − σ)/2 ∈ {1, 2}. Similar to the proof of
Lemma 2.24, let Kτ ⊆ {1, . . . , N } denote the set of those type-2-active neurons with
breakpoint qτ , and let K−

τ ⊆ Kτ be the subset of those neurons j ∈ Kτ with v j < 0.
Let j1 ∈ Kτ with v j1 > 0, which exists since a := ∑

j∈Kτ
v jw j > 0 and w j > 0

for all j ∈ Kτ , and let j2, . . . , jl , for l ∈ {1, . . . , N }, be an enumeration of K−
τ .

Moreover, let k ∈ {1, . . . , N } be any type-2-active neuron with breakpoint qτ+1. As
in the ReLU case, we consider the Hessian H of Lγ restricted to (b j1 , . . . , b jl , vk, c).

We again introduce some shorthand notation. For all i ∈ {1, . . . , l}, denote λi =
a−1v ji w ji so that

∑l
i=1 λi ≤ 1. Defineμ = 1

2 (1− (1−γ 2)qτ )
−1 > 0 and the vectors

u1 = (v j1 , . . . , v jl ),

u2 = μ

(
wk
(
γ (1 − 2qτ+1) − (1 − γ )(qτ+1 − qτ )

2
)

2(1 − (1 − γ )qτ )

)

, (3.41)

and u = (u1, u2). Furthermore, let D be the diagonal matrix with entries −μ(1 −
γ )2v2ji

/(aδ2λi ), i ∈ {1, . . . , l}, let A be the Hessian of Lγ restricted to (vk, c), let

B = μA− u2uT2 , and let E be the diagonal block matrix with blocks D and B. Then,
H = 1

μ
(E + uuT ). The matrix A is

A =
(

2
3w

2
k

(
q3τ+1 + γ 2(1 − qτ+1)

3
) −wk

(
q2τ+1 − γ (1 − qτ+1)

2
)

−wk
(
q2τ+1 − γ (1 − qτ+1)

2
)

2

)

, (3.42)

ofwhich both the determinant and the upper left entry are strictly positive. In particular,
A is positive definite and, hence, 	 := 1

μ
uT2 A

−1u2 is strictly positive. If 	 < 1, then
the same considerations as in the proof of Lemma 2.24 show that B and E are invertible
and

det(H) = μ−(l+2)(1 + uT1 D
−1u1 + uT2 B

−1u2) det(E)

= 

( a

μ

( δ

1 − γ

)2
(1 − 	)

l∑

i=1
λi − 1

)
, (3.43)

where 
 = −μ(l+2)(1 − 	)−1 det(D) det(B) > 0. So far, we did not impose any
restrictions on γ . To verify that 	 < 1, we use the limit argument to reduce the
calculation to the one we performed in the proof of Lemma 2.24. To this end, we point
out that 	 is independent of wk and that δ, qτ , qτ+1, and μ only depend on n and γ .
For fixed n, if we let γ tend to zero, then δ → ñ + 1, qτ → 1

ñ+1 , qτ+1 → 2
ñ+1 , and

μ → ñ+1
2ñ , where we take ñ = n − 1+ σ if n is even and ñ = n − 1 if n is odd. These

limits coincide with the corresponding objects from the proof of Lemma 2.24 with ñ
in place of n as discussed prior to stating Lemma 3.4. The same goes for the limits of
a, u2, and A. Thus, we find from (2.44) that, for sufficiently small γ ,

	 ≈ 32ñ2 − 21ñ + 3

16ñ(2ñ − 1)
< 1 and

a

μ

( δ

1 − γ

)2
(1 − 	) ≈ 4ñ(1 − 	) ≈ 5ñ − 3

8ñ − 4
< 1.

(3.44)
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This concludes the existence of a γ0 ∈ (0, 1] such that if γ < γ0, then det(H) < 0.
This γ0 depends only on n. Since n ≤ N , we can shrink γ0 if necessary so that it
depends only on N .

It remains to treat the cases n = 1 and n = 2 with σ = −1. Assume n = 1. This
time, let j1 ∈ {1, . . . , N } be any type-2-active neuron with sign(v j1) = σ , and let
j2, . . . , jl , for l ∈ {1, . . . , N }, be an enumeration of all type-2-active neurons with
sign(v j1) = −σ . As before, let a = γ −1/2, λi = a−1v ji w ji , μ = 1

2γ
−1/2(1 − √

γ +
γ )−1, Di = −μ(1 − γ )2v2ji

/(aδ2λi ), and u1 = (v j1 , . . . , v jl ) so that
∑l

i=1 λi ≤ 1

and det(D) < 0. On the other hand, let u2 = σμ
√

γ (1 − γ )λ1/(δ
2v j1) and B =

μ ∂2

∂v2j1

Lγ (φ) − u22 = 1
3μ

2γ λ21v
−2
j1

> 0. Then, the Hessian of Lγ restricted to the

coordinates (b j1 , . . . , b jl , v j1) is H = 1
μ
(E + uuT ), where E is the diagonal block

matrix with blocks D and B. Hence,

det(H) = μ−(l+1)B det(D)(1 + uT1 D
−1u1 + u22/B)

= −μ−(l+1)B det(D)
4(1 − √

γ + γ )

(1 + √
γ )2

(
1

2

(
1 + √

γ

1 − √
γ

)2 l∑

i=1
λi − 1

)

.

(3.45)

In particular, det(H) < 0 for sufficiently small γ .
Lastly, assume n = 2 andσ = −1. Similar as in the beginning, let K1 ⊆ {1, . . . , N }

denote the set of those type-2-active neurons with breakpoint q1, and let K+
1 ⊆ K1

be the subset of those neurons j ∈ K1 with v j > 0. Let j1 ∈ K1 with v j1 < 0, which
exists since a = ∑

j∈K1
v jw j > 0 and w j < 0 for all j ∈ K1, and let j2, . . . , jl ,

for l ∈ {1, . . . , N }, be an enumeration of K+
1 . Further, denote the same shorthand

λi = a−1v ji w ji and u1 = (v j1, . . . , v jl ) but set μ = 3
2 (q

3
1 + γ 2 − γ 2q31 )

−1 and
Di = −μ(1−γ )2q21v

2
ji
/(aδ2λi ). Then, the Hessian ofLγ restricted to (w j1, . . . , w jl )

is H = 1
μ
(D + u1uT1 ) with determinant

det(H) = μ−l(1 + uT1 D
−1u1) det(D) = −μ−l det(D)

(
aδ2

μ(1 − γ )2q21

l∑

i=1
λi − 1

)

.

(3.46)

By construction,
∑l

i=1 λi ≤ 1 and, by plugging in the formulas for a, q1, and δ from
Lemma 3.3,

aδ2

μ(1 − γ )2q21
= 2

3

√
1 + γ + √

γ

(1 − γ )2
√
1 + γ

(1 + √
γ δ3 − γ 2) = 2

3

1

(1 − γ )2
+ O(

√
γ ).

(3.47)

In particular, det(H) < 0 for small γ . ��
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3.3 Classification for Leaky ReLU Activation

In the following, we state the classification of critical points of the L2-loss for leaky
ReLU networks. It is almost analogous to Theorem 2.4, but the main difference is
the absence of non-global local minima. These critical points vanish for leaky ReLU
because they were caused solely by dead ReLU neurons.

Theorem 3.5 Let N ∈ N, φ = (w, b, v, c) ∈ R
3N+1, A = (α, β) ∈ R

2, and T =
(T0, T1) ∈ R

2 satisfy α �= 0 and 0 ≤ T0 < T1. Then, there exists γ0 ∈ (0, 1] such that
for all γ ∈ (0, γ0) the following hold:

(I) φ is not a local maximum of Lγ

N ,T ,A.

(II) If φ is a critical point or a local extremum ofLγ

N ,T ,A, thenLγ

N ,T ,A is differentiable

at φ with gradient ∇Lγ

N ,T ,A(φ) = 0.

(III) φ is not a non-global local minimum of Lγ

N ,T ,A.

(IV) φ is a saddle point of Lγ

N ,T ,A if and only if φ is (T ,A)-centered, for all j ∈
{1, . . . , N } the j th hidden neuron ofφ is flat semi-active, flat inactive withw j = 0,
flat degenerate, or type-2-active, and exactly one of the following two items holds:

(a) φ does not have any type-2-active neurons.
(b) There existσ ∈ {−1, 1}, n ∈ N such that if δ = γ (1−σ)/4+γ (1−σ(−1)n)/4+(n−

1)
√
1 + γ and qi = T0 + T1−T0

δ

(
γ (1−σ)/4 + (i − 1)

√
1 + γ

)
, i ∈ {1, . . . , n},

then
⋃

j∈{1,...,N }, w j �=0{− b j
w j

} = {q1, . . . , qn} and, for all j ∈ {1, . . . , N },
i ∈ {1, . . . , n} with w j �= 0 = b j + w j qi , it holds that sign(w j ) = σ(−1)i+1

and

∑

k∈{1,...,N },
wk �=0=bk+wkqi

vkwk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α√
γ

if i = 1 = n,

α
δ

( 1√
1+γ

+ 1
γ (1−σ)/4

)
if i = 1 �= n,

α
δ

2√
1+γ

if 2 ≤ i ≤ n − 1,
α
δ

( 1√
1+γ

+ 1
γ (1−σ(−1)n )/4

)
if i = n �= 1.

(3.48)

(V) If φ is a saddle point of Lγ

N ,T ,A without type-2-active neurons, then f γ
φ (x) =

α
2 (T0 + T1) + β for all x ∈ [T0, T1].

(VI) If φ is a saddle point of Lγ

N ,T ,A with at least one type-2-active neuron, then
there exist σ ∈ {−1, 1}, n ∈ N such that n ≤ N and, for all i ∈ {0, . . . , n},
x ∈ [qi , qi+1], one has
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f γ
φ (x) − αx − β =

[−σ(−1)i (1 − γ )α

δ

]

×

⎧
⎪⎪⎨

⎪⎪⎩

x−T0
γ (1−σ)/4 − T1−T0

2δ if i = 0,
x−T0√
1+γ

− (i−1/2)(T1−T0)
δ

− γ (1−σ)/4(T1−T0)
δ
√
1+γ

if 1 ≤ i ≤ n − 1,
x−T0

γ (1−σ(−1)n )/4 + T1−T0
2δ − T1−T0

γ (1−σ(−1)n )/4 if i = n,

(3.49)

where δ and q1, . . . , qn are the same as in item (IV.b).

Proof We prove Theorem 3.5 in the special case A = (1, 0) and T = (0, 1). The
general case follows from this the sameway as Theorem2.4 followed fromProposition
2.25 in Sect. 2.9. The first item is shown in Lemma 2.8; see Remark 2.9.

Supposeφ is a critical point or a local extremumofLγ but not a globalminimum.By
Lemma 3.2, all neurons of φ are flat semi-active, flat inactive withw j = 0, degenerate,
or type-2-active. If, in addition, φ does not have any type-2-active neurons, then it also
does not have any non-flat degenerate neurons, it is a saddle point, and φ must be
centered since ∂

∂cLγ (φ) = 0. If, on the other hand, φ has a type-2-active neuron, then
φ is as in item (IV.b) by Lemma 3.3 apart from potentially having non-flat degenerate
neurons, and φ is a saddle point by Lemma 3.4. However, a posteriori, φ cannot have
non-flat degenerate neurons because, by Lemma 3.3.(vi),

∫ 1

0
x( f γ

φ (x) − x)dx = − (1 − γ )2

12δ4
< 0, (3.50)

so ∂+
∂w j

Lγ (φ) could not be zero for a non-flat degenerate neuron j . This proves item
(III) and the ‘only if’ part in item (IV). This also implies that any critical point or local
extremumofLγ is a globalminimumor does not have any non-flat degenerate neurons.
Hence, the relation Lγ = L ◦ P with the smooth map P and the differentiability
properties of L assert item (II).

If φ is as in item (IV.a), then it clearly is a critical point of Lγ , and it is a saddle
point by Lemma 3.2. If φ is as in item (IV.b), then f γ

φ is given by the formula in item

(VI). We can calculate
∫ qi+1
qi

( f γ
φ (x) − x)dx = 0 for all i ∈ {0, . . . , n} and

∫ 1

qi
x( f γ

φ (x) − x)dx + γ σ(−1)i+1
∫ qi

0
x( f γ

φ (x) − x)dx = 0 (3.51)

for all i ∈ {1, . . . , n}. It follows from this that φ is a critical point of Lγ , and it
is a saddle point by Lemma 3.4. This proves the ‘if’ part in item (IV). Item (V) is
immediate and the last item was implicit in the previous step. ��
Remark 3.6 The restriction on γ to lie in (0, γ0) is only needed in the proof of Lemma
3.4. All other proofs were carried out for general γ ∈ (0, 1). We believe that, in fact,
one can take γ0 = 1 in Lemma 3.4 and, hence, that Theorem 3.5 also holds for general
γ ∈ (0, 1).
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4 Classification for Quadratic Activation

As the last case, we consider the quadratic activation function. The realization f quadφ ∈
C(R,R) of a network φ = (w, b, v, c) ∈ R

3N+1 with the quadratic activation is

f quadφ (x) = c +
N∑

j=1
v j (w j x + b j )

2. (4.1)

Given A = (α, β) ∈ R
2 and T = (T0, T1) ∈ R

2, the loss function Lquad
N ,T ,A is the

L2-loss given by

Lquad
N ,T ,A(φ) =

∫ T1

T0
( f quadφ (x) − αx − β)2dx . (4.2)

This time, there are no issues with differentiability since Lquad
N ,T ,A is infinitely times

differentiable, even analytic, everywhere. The classification turns out to be simpler
than in the ReLU and leaky ReLU case as there are no local extrema and only saddle
points with a constant realization function.

Theorem 4.1 Let N ∈ N, φ = (w, b, v, c) ∈ R
3N+1, A = (α, β) ∈ R

2, and T =
(T0, T1) ∈ R

2 satisfy α �= 0 and T0 < T1. Then, the following hold:

(I) φ is not a local maximum of Lquad
N ,T ,A.

(II) φ is not a non-global local minimum of Lquad
N ,T ,A.

(III) φ is a global minimum of Lquad
N ,T ,A if and only if N ≥ 2 and Lquad

N ,T ,A(φ) = 0.

(IV) φ is a saddle point of Lquad
N ,T ,A if and only if φ is (T ,A)-centered and, for all

j ∈ {1, . . . , N }, the j th hidden neuron of φ satisfies v j b j = 0 = w j or
w j �= v j = 0 = b j + 1

2 (T0 + T1)w j .

(V) If φ is a saddle point of Lquad
N ,T ,A, then f quadφ (x) = α

2 (T0 + T1) + β for all
x ∈ [T0, T1].

Proof As for the other activation functions, the first item is shown in Lemma 2.8; see
Remark 2.9. Now, suppose φ is a critical point of Lquad

N ,T ,A and Lquad
N ,T ,A(φ) > 0. Since

Lquad
N ,T ,A is smooth, we have, for any j ∈ {1, . . . , N },

0 = ∂

∂w j
Lquad
N ,T ,A(φ) = 4v j

∫ T1

T0
x(w j x + b j )( f

quad
φ (x) − αx − β)dx,

0 = ∂

∂b j
Lquad
N ,T ,A(φ) = 4v j

∫ T1

T0
(w j x + b j )( f

quad
φ (x) − αx − β)dx,

0 = ∂

∂v j
Lquad
N ,T ,A(φ) = 2

∫ T1

T0
(w j x + b j )

2( f quadφ (x) − αx − β)dx,

0 = ∂

∂c
Lquad
N ,T ,A(φ) = 2

∫ T1

T0
( f quadφ (x) − αx − β)dx .

(4.3)
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Thus, if there exists j ∈ {1, . . . , N } with v j �= 0 �= w j , then
∫ T1
T0

xm( f quadφ (x) −
αx − β)dx = 0 for all m ∈ {0, 1, 2}. However, note that the zero polynomial is
the only polynomial p of degree at most two satisfying

∫ T1
T0

xm p(x)dx = 0 for all

m ∈ {0, 1, 2}. Hence, since Lquad
N ,T ,A(φ) > 0, we must have v j = 0 or w j = 0 for all

neurons. In particular, f quadφ is constant and
∫ T1
T0

x( f quadφ (x) − αx − β)dx �= 0. Thus,
for all j , if v j �= 0, then b j = 0. So far, we have shown that all neurons must satisfy
v j = 0 or w j = 0 = b j . It follows that φ is (T ,A)-centered. For a neuron j with
w j �= 0 and t j = −b j/w j , we have

0 = 2
∫ T1

T0
(w j x + b j )

2(c − αx − β)dx = −2αw2
j

∫ T1

T0
(x − t j )

2(x − T0+T1
2 )dx,

(4.4)

which is true if and only if t j = (T0+T1)/2. This proves the ‘only if’ direction in (IV).
Next, we show that φ must be a saddle point.Wewill pick a path φs = (ws, bs, vs, cs),
s ∈ (−1, 1), through φ = φ0, which differs only in the coordinates of the first neuron
and in

cs = c − vs1(b
s
1)

2 − 1

3
As(T

2
0 + T0T1 + T 2

1 ) − Bs(T0 + T1), (4.5)

where As = vs1(w
s
1)

2 and Bs = vs1w
s
1b

s
1. Then,

Lquad
N ,T ,A(φs) − Lquad

N ,T ,A(φ0)

(T1 − T0)3
= 1

45
A2
s (4T

2
0 + 7T0T1 + 4T 2

1 ) + 1

3
As Bs(T0 + T1)

+ 1

3
B2
s − α

6
(As(T0 + T1) + 2Bs). (4.6)

Wedistinguish three cases. First, ifv1 = 0 �= w1, thenweusews
1 = w1,bs1 = b1−sw1,

and vs1 = −sign(α)s2. In this case, Bs = − 1
2 As(T0 + T1) − s As and, hence,

Lquad
N ,T ,A(φs) − Lquad

N ,T ,A(φ0)

(T1 − T0)3
= −|α|

3
w2
1s

3 + O(s4). (4.7)

This is strictly negative for sufficiently small s > 0, so φ is a saddle point. Secondly, if
v1 �= 0 = w1, then we use ws

1 = s, bs1 = − 1
2 (T0 + T1)s + sign(αv1)s2, and vs1 = v1.

In this case,

Lquad
N ,T ,A(φs) − Lquad

N ,T ,A(φ0)

(T1 − T0)3
= −|α|

3
|v1|s3 + O(s4). (4.8)
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In the last case, namely v1 = 0 = w1, we use ws
1 = sbs1, b

s
1 = b1 + s, and vs1 =

sign(α)s3(bs1)
−2. Then,

Lquad
N ,T ,A(φs) − Lquad

N ,T ,A(φ0)

T1 − T0
= −|α|

3
s4 + O(s5). (4.9)

We have shown that if φ is a critical point with Lquad
N ,T ,A(φ) > 0, then it is a saddle

point. This establishes item (II) and it also implies that if φ is a global minimum, then
Lquad
N ,T ,A(φ) = 0. The latter is only possible if N ≥ 2. Conversely, if N ≥ 2, then

there are networks with zero loss, so item (III) holds. If φ is (T ,A)-centered and all
of its neurons are as in item (IV), then ∇Lquad

N ,T ,A(φ) = 0 and φ is a saddle point since

clearly Lquad
N ,T ,A(φ) > 0. This finishes (IV), and (V) follows. ��

The conditions in Theorem 4.1.(IV) are equivalent to all neurons being flat semi-
active, flat inactive with w j = 0, flat type-2-active with breakpoint −b j/w j = (T0 +
T1)/2, or degenerate. However, for the quadratic activation, the notions of in-/active
neurons seem no longer appropriate.

Remark 4.2 In Theorem 4.1, the case N = 1 of a single neuron is special due to the
absence of globalminima. The loss can still be arbitrarily small, but there is no network
achieving the infimum. Indeed, for all (w, b) ∈ R

2 with w �= 0,

inf
(v,c)∈R2

Lquad
1,T ,A(w, b, v, c) = 1

12
α2(T1 − T0)

3

×
⎛

⎜
⎝1 −

60
(
T0+T1

2 + b
w

)2

(T1 − T0)2 + 60
(
T0+T1

2 + b
w

)2

⎞

⎟
⎠

T0+T1
2 + b

w
→±∞−−−−−−−−−−→

monotone
0. (4.10)
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