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Abstract
Deciding whether a given function is quasiconvex is generally a difficult task. Here,
we discuss a number of numerical approaches that can be used in the search for a
counterexample to the quasiconvexity of a given function W . We will demonstrate
these methods using the planar isotropic rank-one convex function

W+
magic(F) = λmax

λmin
− log

λmax

λmin
+ log det F = λmax

λmin
+ 2 log λmin ,

where λmax ≥ λmin are the singular values of F , as our main example. In a previous
contribution, we have shown that quasiconvexity of this function would imply quasi-
convexity for all rank-one convex isotropic planar energies W : GL+(2) → R with
an additive volumetric-isochoric split of the form
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W (F) = Wiso(F) + Wvol(det F) = ˜Wiso

(

F√
det F

)

+ Wvol(det F)

with a concave volumetric part. This example is therefore of particular interest with
regard to Morrey’s open question whether or not rank-one convexity implies quasi-
convexity in the planar case.

Keywords Nonlinear elasticity · Hyperelasticity · Planar elasticity · Rank-one
convexity · Quasiconvexity · Ellipticity · Isotropy · Volumetric-isochoric split · Finite
elements · Physics-informed neural networks

Mathematics Subject Classification 74B20 · 74A10 · 26B25

1 Introduction

The question of whether or not rank-one convexity implies quasiconvexity in the pla-
nar case is considered one of the major open problems in the calculus of variations
(Pedregal 2019; Casadio-Tarabusi 1993; Parry 1995; Kawohl and Sweers 1990). Mor-
rey (Morrey 1952, 2009) conjectured that this is not the case in general. Of course, in
order to demonstrate that these convexity properties are indeed distinct, it is sufficient
to identify a single rank-one convex function which is not quasiconvex, as was done
by Šverák in the nonplanar case (Šverák 1992). While numerous viable criteria are
known for rank-one convexity, it remains highly difficult to explicitly show that a
function is not quasiconvex. It is therefore common to apply numerics to the problem
(Dacorogna and Haeberly 1998; Pedregal 1996; Bartels et al. 2004).

In this article, we discuss different numerical approaches for demonstrating the
non-quasiconvexity of a given function. We will primarily apply our methods to a
single example, which has been the subject of a previous article (Voss et al. 2021b):
The planar isotropic energy function W+

magic is defined via

W+
magic(F) = λmax

λmin
− log

λmax

λmin
+ log det F = λmax

λmin
+ 2 log λmin (1.1)

with λmax ≥ λmin > 0 as the ordered singular values of the deformation gradient
F = ∇ϕ ∈ GL+(2). While it has already been shown that this function is rank-one
convex but nowhere strictly elliptic and not polyconvex (Voss et al. 2021b), it remains
open whether or not W+

magic is quasiconvex.
The energy candidate (1.1) is very compelling: It emerged from the investigation of

planar isotropic elastic energies with a so-called additive volumetric-isochoric split,
i.e., of energies that can be written as the sum of an isochoric part depending only on
the product λmax

λmin
and a volumetric part depending only on λmaxλmin. Details of this

structure and its characteristics are discussed in Sect. 2.1. It can be shown (Voss et al.
2021b) that W+

magic(F) is a limit case in the investigation of “least rank-one convex”
candidates in the family of energy functions with an additive volumetric-isochoric
split. In this specific setting, it was demonstrated that the question of quasiconvexity
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forW+
magic(F) also determines whether or not any other rank-one convex functionwith

an additive volumetric-isochoric split and a concave volumetric part is quasiconvex.
This work is primarily meant to serve as a guideline towards numerical investiga-

tions in the context of Morrey’s conjecture. In particular, while the general methods
described here are mostly applicable to a large class of energy functions,1 we utilize a
number of specific invariance properties exhibited by the particular example W+

magic,
as discussed in Sect. 2. Exploiting such properties can vastly improve the efficiency
of numerical approaches and, when investigating other types of functions, it should
be kept in mind that similar invariances could be identified and used to simplify the
more general numerical algorithms for finding counterexamples to quasiconvexity.

The methods we describe reliably find such counterexamples for functions which
are known to be non-elliptic and therefore non-quasiconvex. For the rank-one convex
energy candidate W+

magic, a number of microstructures with the same energy level
as the homogeneous deformation were (re-)discovered. However, we were unable to
demonstrate the non-quasiconvexity ofW+

magic with any numerical approach.Although

inconclusive, these numerical results certainly suggest that the function W+
magic is in

fact quasiconvex and therefore not suited for answering Morrey’s conjecture.

1.1 Convexity properties of energy functions

We start by recalling the classical definitions of generalized convexity properties
(Dacorogna 2008; Šilhavý 1997; Schröder and Neff 2010).

Definition 1.1 The energy function W : Rn×n → R ∪ {+∞} is quasiconvex if and
only if

∫

�

W (F0 + ∇ϑ(x)) dx ≥
∫

�

W (F0) dx = |�| · W (F0)

for all F0 ∈ R
n×n, ϑ ∈ W 1,∞

0 (�;Rn) (1.2)

for any domain � ⊂ R
n with Lebesgue measure |�|. The energy function is strictly

quasiconvex if the inequality in (1.2) is strict for all ϑ 
= 0.

While quasiconvexity, together with suitable growth conditions, is sufficient to
ensure weak lower semi-continuity of the energy functional, it has the disadvantage
of being notoriously difficult to prove or disprove directly. This led to the introduction
of various sufficient and necessary conditions for quasiconvexity.

Definition 1.2 (Ball 1976) The energy functionW : Rn×n → R∪{+∞} is polyconvex
if and only if there exists a convex function P : Rm(n) → R ∪ {+∞} with

W (F) = P
(

F, adj2(F), . . . , adjn(F)
)

for all F ∈ R
n×n , (1.3)

1 We assume throughout that the energy function is sufficiently regular (cf. Ball et al. (2000) and Conti
et al. (2005).
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with adji (F) ∈ R
n×n as the matrix of the determinants of all i × i–minors of F and

m(n) := ∑n
i=1

(n
i

)2. The energy function is strictly polyconvex if such a P exists
which is strictly convex.

For the planar case n = 2, an energy W : R2×2 → R ∪ {+∞} is polyconvex if and
only if there exists a convex mapping P : R2×2 × R ∼= R

5 → R ∪ {+∞} with

W (F) = P(F, det F) for all F ∈ R
2×2 .

Whereas polyconvexity provides a sufficient criterion for quasiconvexity, a necessary
condition is given by the rank-one convexity of a function.

Definition 1.3 The energy functionW : Rn×n → R∪{+∞} is rank-one convex if for
F1, F2 ∈ R

n×n ,

W (t F1 + (1 − t)F2) ≤ tW (F1) + (1 − t)W (F2)

for all t ∈ (0, 1) if rank(F1 − F2) = 1 . (1.4)

If the energy function is twice differentiable, rank-one convexity is equivalent to the
Legendre-Hadamard ellipticity condition

D2W (F).(ξ ⊗ η, ξ ⊗ η) ≥ 0 for all F ∈ R
n×n, ξ, η ∈ R

n, (1.5)

which expresses the ellipticity of the Euler-Lagrange equation Div DW (∇ϕ) = 0
corresponding to the variational problem

I (ϕ) =
∫

�

W (∇ϕ(x)) dx → min . (1.6)

The energy function is strictly rank-one convex if inequality (1.4) is strict.

Overall, for any W : Rn×n → R ∪ {+∞} we have the well known hierarchy (Ball
1976, 1987; Dacorogna 2008)

polyconvexity �⇒ quasiconvexity �⇒ rank-one convexity , (1.7)

with none of the reverse implications holding in general for n ≥ 3. The remaining
question whether rank-one convexity implies quasiconvexity for n = 2 is known as
Morrey’s problem.

In continuum mechanics and related applications, energy functions are often more
naturally defined on the groupGL+(n) instead ofRn×n since a deformation gradient F
with non-positive determinant would imply local self-intersection. For such functions
we introduce:
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Definition 1.4 A function W : GL+(n) → R is called quasi-/poly-/rank-one convex
if the function

̂W : Rn×n → R ∪ {+∞} , ̂W (F) =
{

W (F) if F ∈ GL+(n) ,

+∞ if F /∈ GL+(n) ,

is quasi-/poly-/rank-one convex.

1.2 Periodic boundary conditions

The definition of quasiconvexity (1.2) can be reformulated in terms of deformations
with periodic boundary conditions. As will be demonstrated in Sect. 4, this can be
helpful to find periodic microstructures numerically. In the context of planar elasticity,
periodic boundary conditions have the form

ϕ(x) = F0x + ϑ#(x) (1.8)

with a homogeneous deformation F0 ∈ GL+(2) and a periodic superposition ϑ# ∈
W 1,∞

per (�). The domain� has to be in such a geometrical shape thatR2 can be covered
by periodic replications of � and the superposition ϑ# must be�-periodic (cf. Fig. 1).
Seemingly, periodic boundary conditions are a more general concept than Dirichlet
boundary conditions with test functions ϑ ⊂ W 1,∞

0 (�;Rn) because they also allow
for changes on the boundary itself.2

However, for the notion of quasiconvexity, the two can be used interchangeably.

Proposition 1.5 Dacorogna (2008, Proposition 5.13)An energy functionW : Rn×n →
R is quasiconvex if and only if

∫

�

W (F0 + ∇ϑ#(x)) dx ≥
∫

�

W (F0) dx = |�| · W (F0)

for all F0 ∈ R
n×n, ϑ# ∈ W 1,∞

per (�) (1.9)

for any domain � ⊂ R
n with Lebesgue measure |�| such that R2 can be covered by

periodic replications of�. The energy function is strictly quasiconvex if the inequality
in (1.9) is strict for all ϑ 
= 0.

Proof Inequality (1.9) directly implies quasiconvexity, because W 1,∞
0 (�) ⊂ W 1,∞

per
(�). For the reverse direction see (Dacorogna 2008,p. 173). ��
2 While a periodic superposition ϑ# ∈ W 1,∞

per ([a, b]) allows for more modifications of the homogeneous

deformation F0x than a test function ϑ ∈ W 1,∞
0 ([a, b]) , the average rate of change of ϕ(x) = F0x+ϑ#(x)

remains constant, i.e.,

1

b − a

∫ b

a
F0 + ϑ ′

#(x) dx = F0b + ϑ#(b) − F0a − ϑ#(a)

b − a
= F0

b − a

b − a
= F0 .
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Fig. 1 Example of a periodic deformation on the domain � = [0, 1]2 which covers R
2 by periodic

replication

In the context of planar elasticity, it is sufficient to consider � = [0, 1]2, and without
loss of generality, we can assume ϑ#(0, 0) = (0, 0). The periodic replication of � to
cover R2 implies that the values of ϑ# coincide on opposite edges, i.e., every point at
the boundary belongs to two separate unit squares (four at the corners of the square).
Thus we can write �-periodicity as

ϑ#(x, 0) = ϑ#(x, 1) and ∇ϑ#(x, 0) = ∇ϑ#(x, 1) for all x ∈ [0, 1] ,

ϑ#(0, y) = ϑ#(1, y) and ∇ϑ#(0, y) = ∇ϑ#(1, y) for all y ∈ [0, 1] ; (1.10)

in particular,

ϑ#(0, 0) = ϑ#(1, 0) = ϑ#(0, 1) = ϑ#(1, 1) = (0, 0) .

1.3 Previous results related to Morrey’s conjecture

Morrey’s conjecture has long been considered one of the most important open ques-
tions in the calculus of variations, and the remaining problem of the planar case has
been the subject of extensive research. For the nonplanar case, the problem has been
conclusively solved by Šverák (1992), and further examples of rank-one convex, non-
quasiconvex functions have been found for dimension n > 2 since then (Grabovsky
2018). However, it has also been demonstrated that Šverák’s original counterexample
(Pedregal and Šverák 1998; Sebestyén and Székelyhidi 2015) is not directly adaptable
to the two-dimensional case.

The Dacorogna and Marcellini (1988) function W : R2×2 → R with

W (F) = ‖F‖2
(

‖F‖2 − γ det F
)

= (̂λ21 +̂λ22)(
̂λ21 +̂λ22 − γ̂λ1̂λ2) , γ ∈ R

(1.11)
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is a homogeneous polynomial of degree four; here, ̂λi denote the signed singular
values3 of F . It has been shown (Dacorogna and Marcellini 1988) that the function is
rank-one convex if γ ∈ [0, 4√

3
≈ 2.309], but polyconvex only if γ ≤ 2. This result

can be extended to the more general class

W (F) = ‖F‖2α
(

‖F‖2 − γ det F
)

, α ≥ 1 , γ ∈ R . (1.12)

At present, it is not known whether this expression is quasiconvex for γ ∈ (2, 4√
3
].

However, extensive numerical calculations suggest that it is quasiconvex (Dacorogna
and Haeberly 1998, 1996). In the sameworks, Dacorogna et al. study several rank-one
convex functions, including an example by Ball and Murat (1984); Dacorogna et al.
(1990):

W (F) = ‖F‖4α − 22α−1 − γ (det F)2α , α ≥ 1

4
, γ ≥ 0 . (1.13)

Together with an example by Aubert (1987), the Dacorogna–Marcellini function has
been the first example given in the literature of a planar function which is rank-one
convex but not polyconvex.

Many planar functions used in the context ofMorrey’s conjecture have the structure
W (F) = g(‖F‖2 , det F) for which additional numerical optimization is available
(Gremaud 1995; Grabovsky and Truskinovsky 2019) or are composed of polynomials
up to the degree four (Gutiérrez and Villavicencio 2007; Bandeira and Pedregal 2009).

Guerra and da Costa (2021) recently employed a systematic numerical approach
towards the question of Morrey’s conjecture. Their findings suggest that in the planar
case, rank-one convexity implies N -wave quasiconvexity for N ≤ 5. Since any func-
tion which is N -wave quasiconvex for all N ∈ N is quasiconvex (Guerra and da Costa
2021,Proposition 3.6) (cf. Sebestyén and Székelyhidi (2017)), these results provide
some evidence for the conjecture that rank-one convexity indeed implies quasicon-
vexity for planar energies.

Previous applications of machine learning in nonlinear elasticity, as we consider in
Sect. 4.1, have mostly focused on the energy function itself (Fernández et al. 2021;
Klein et al. 2022). The application to deformation functions presented here is based on
the concept of physics-informed neural networks, which have recently been employed
for finding approximate solutions to various partial differential equations (Raissi et al.
2019; Karniadakis et al. 2021).

2 Exploitable Properties of Functions

Before employing numericalmethods to investigatewhether a function is quasiconvex,
it is generally useful to identify invariances and similar properties of the specific func-
tion that may allow for an improvement of the efficiency of the numerical approach. In

3 Note that det F = λ1λ2 if and only if det F > 0, i.e., if F ∈ GL+(2). Expressing det F for all F ∈ R
2×2

requires the signed singular valueŝλ1 := λ1,̂λ2 := sign(det F)λ2.
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the following, we will focus on the particular energy function W+
magic, which exhibits

three important properties that can be exploited numerically: isotropy, scaling invari-
ance and the specific form of a volumetric-isochoric split.

2.1 The volumetric-isochoric split

The energy W+
magic emerged from the investigation of the family of planar isotropic

energies W : GL+(2) → R with an additive volumetric-isochoric split

W (F) = Wiso(F) + Wvol(det F) = ˜Wiso

(

F√
det F

)

︸ ︷︷ ︸

conformally invariant

+ Wvol(det F)
︸ ︷︷ ︸

purely area-dependent in 2D

. (2.1)

We will motivate both the additional structure one can achieve with this type of energy
functions as well as the candidate W+

magic itself. By (Martin et al. 2017, Lemma 3.1) ,
energies of the type (2.1) can be written as

W (F) = h

(

λ1

λ2

)

+ f (λ1λ2) ,

h, f : R+ → R , h(t) = h

(

1

t

)

for all t ∈ (0,∞) , (2.2)

where λ1, λ2 > 0 denote the singular values of F and h, f are real-valued functions. In
nonlinear elasticity theory, energy functionswith an additive volumetric-isochoric split
are widely used, primarily to model the behaviour of slightly compressible materials
(Ciarlet 1988; Hartmann and Neff 2003; Ogden 1978; Neff et al. 2016).

For a further representation of W , we introduce the (nonlinear) distortion function
or outer distortion

K : GL+(2) → R , K(F) := 1

2

‖F‖2
det F

= λ21 + λ22

2λ1λ2
= 1

2

(

λ1

λ2
+ λ2

λ1

)

, (2.3)

where ‖ · ‖ denotes the Frobenius matrix norm with ‖F‖2 := ∑2
i, j=1 F

2
i j . The distor-

tion function K is conformally invariant, i.e.,

K(aR∇ϕ) = K(∇ϕaR) = K(∇ϕ) for all a > 0 , R ∈ SO(2) . (2.4)

Additionally, we consider the linear distortion or (large) dilatation

K (F) : GL+(2) → R , K (F) = |F |2
det F

= λ2max

λminλmax
= λmax

λmin
, (2.5)
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where |F | = sup‖ξ‖=1 ‖Fξ‖
R2 = λmax denotes the operator norm (i.e., the largest

singular value) of F .
We can then express every conformally invariant energyW on GL+(2) asW (F) =

̂h(K (F)) = 
(K(F)) with ̂h , 
 : [1,∞) → R (Martin et al. 2017). Note that in
general,

K(F) = 1

2

(

K + 1

K

)

⇐⇒ K (F) = K(F) +
√

K(F)2 − 1 = earcoshK(F).

(2.6)

In a previous paper (Voss et al. 2021b), we motivated the reduction to the case
f (det F) = c log det F for arbitrary additive volumetric-isochoric split energies with
a newly developed rank-one convexity criterion (Voss et al. 2021a). More specifically,
we showed that if there exists a rank-one convex energy function with an additive
volumetric-isochoric split that is not quasiconvex, then we can find such a function in
the set

M∗ :=
{

W (F) = h

(

λ1

λ2

)

+ c log(λ1λ2)
∣

∣ h : (1,∞) → R , c ∈ R

}

(2.7)

as well. It is therefore sufficient to consider M∗ instead of the general class of
volumetric-isochoric split energies when discussing Morrey’s conjecture.

2.2 Scaling invariance

In general an arbitrary energy W ∈ M∗ is neither simply scaling invariant, i.e.,
W (αF) 
= W (F) for all α ∈ R and F ∈ GL+(2), nor tension-compression sym-
metric, i.e., W (F) 
= W (F−1) for all F ∈ GL+(2). However,M∗ provides additional
invariance properties that hold for rank-one convexity and quasiconvexity which we
will use to simplify numerical calculations in the following sections by reducing the
number of deformation gradients F ∈ GL+(2) that we must consider.

Lemma 2.1 Let W ∈ M∗ be twice differentiable. Then the ellipticity domain of W is
scaling invariant, i.e., a cone: if W is elliptic at F0 ∈ GL+(2), then W is elliptic at
αF0 for every α > 0.

Proof Let α > 0. The isochoric part Wiso(F) = h
(

λ1
λ2

)

of W is conformally invariant
by definition, which implies Wiso(αF) = Wiso(F), and therefore

D2Wiso[αF]·(H , H) = d2

dt2
Wiso(αF + t H)

∣

∣

∣

∣

t=0
= d2

dt2
Wiso

(

α
(

F + α−1t H
))

∣

∣

∣

∣

t=0

= d2

dt2
Wiso(F + tα−1H)

∣

∣

∣

∣

t=0
= D2Wiso(F)·(α−1H , α−1H)

= 1

α2 D
2Wiso(F)·(H , H) (2.8)

for all H ∈ R
2×2. For the volumetric part Wvol(F) = c log det F we calculate
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D2Wvol[αF].(H , H)

= d2

dt2
Wvol(αF + t H)

∣

∣

∣

∣

t=0
= d2

dt2
c log det(αF + t H)

∣

∣

∣

∣

t=0

= c
d

dt

[

1

det(αF + t H)
· D det[αF + t H ] · H

]

t=0

= − c

det(αF)2
· 〈Cof(αF), H〉2 + c

det(αF)
· D2 det[αF].(H , H) (2.9)

for all H ∈ R
2×2. For ellipticity of W , we can assume rank H = 1 and note that

the determinant is affine linear in direction of rank-one matrices (Dacorogna 2008,
Theorem 5.20), and thus D2 det[αF].(H , H) = 0 if rank(H) = 1. Therefore,

D2Wvol[αF].(H , H)

= − c

det(αF)2
· 〈Cof(αF), H〉2 = − c

α4 det(F)2
· 〈αCof(F), H〉2

= − 1

α2 · c

det(F)2
〈Cof(F), H〉2

= 1

α2 D
2Wvol(F).(H , H) , if rank(H) = 1 . (2.10)

Together with (2.8) this implies

D2W [αF].(H , H) = D2Wiso[αF].(H , H) + D2Wvol[αF].(H , H)

= 1

α2 D
2Wiso(F).(H , H) + 1

α2 D
2Wvol(F).(H , H)

= 1

α2 D
2W (F).(H , H) (2.11)

for all F, H ∈ R
2×2 with rank(H) = 1 and all α > 0, which implies the scaling

invariance of the ellipticity domain of W ∈ M∗. ��
Lemma 2.2 Let W ∈ M∗ be twice differentiable. The ellipticity domain of W is invari-
ant under inversion, i.e., if W is elliptic at F0 ∈ GL+(2), then it is elliptic at F0−1.

Proof Due to the isotropy of every W ∈ M∗, and since the singular values of F and
FT are identical, W (F) = W (FT ) and therefore

D2W [FT ].(H , H) = d2

dt2
W (FT + t H)

∣

∣

∣

∣

t=0
= d2

dt2
W

(

(F + t HT )T
)

∣

∣

∣

∣

t=0

= d2

dt2
W (F + t HT )

∣

∣

∣

∣

t=0
= D2Wiso(F).(HT , HT ) , (2.12)

thus ellipticity at F and FT are equivalent (cf. Kruzik (1999)). Moreover, Lemma 2.1
states that the ellipticity domain ofW is scaling invariant, i.e., ellipticity at F impliesW
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is elliptic for allαF withα > 0. Combining both lemmas and choosingα = 1
det F > 0,

we find that ellipticity at Cof F would imply ellipticity at 1
det F (Cof F)T = F−1.

Therefore, it remains to show that W is elliptic at Cof F .
In the planar case, the singular values of F and Cof F are identical4 and thus

W (Cof F) = W (F) for all F ∈ GL+(2) due to the isotropy of the energy. Fur-
thermore, because of the simple shape of the cofactor matrix in the planar case

Cof

(

a b
c d

)

=
(

d −c
−b a

)

we find

Cof(X + Y ) = Cof(X) + Cof(Y ) and Cof(Cof X) = X for all X ,Y ∈ R
2×2.

Note carefully that these properties do not hold for dimension n > 2. Thus

D2W [Cof F].(H , H) = d2

dt2
W (Cof F + t H)

∣

∣

∣

∣

t=0
= d2

dt2
W (Cof F + t Cof(Cof H))

∣

∣

∣

∣

t=0

= d2

dt2
W (Cof(F + t Cof H))

∣

∣

∣

∣

t=0
= d2

dt2
W (F + t Cof H)

∣

∣

∣

∣

t=0

= D2W (F).(Cof H ,Cof H) ,

which completes the proof because rank(H) = 1 implies5 rank(Cof H) = 1. ��
Lemma 2.3 Let W ∈ M∗ be twice differentiable. Then the quasiconvexity domain of
W is scaling invariant: if W is quasiconvex at F0 ∈ GL+(2), i.e., if

∫

�

W (F0 + ∇ϑ(x)) dx ≥
∫

�

W (F0) dx for all ϑ ⊂ W 1,∞
0 (�;Rn) (2.13)

for any domain � ⊂ R
2, then the energy is quasiconvex at αF0 for all α > 0.

4 For arbitrary F ∈ R
2×2 we find

F :=
(

a b
c d

)

, B = FFT =
(

a2 + b2 ac + bd
ac + bd c2 + d2

)

, Cof B =
(

c2 + d2 −ac − bd
−ac − bd a2 + b2

)

�⇒ det(B − λ1) = λ2 − (a2 + b2 + c2 + d2)λ + (a2 + b2)(c2 + d2) − (ac + bd)2
︸ ︷︷ ︸

=det B=det Cof B

= det(Cof B − λ1) .

Hence the eigenvalues of B and Cof B = (Cof F)(Cof F)T and thus the singular values of F and Cof F
are identical. In addition, the same holds for the eigenvalues of F and Cof F in the planar case.
5 The rank of a matrix M ∈ R

n×n is equal to the maximal size of nonzero minors. The cofactor Cof M is
formed by (n− 1)× (n− 1)− minors of M and consequently rank(Cof M) = 0 if rank M < n− 1. In the
case rank M = n − 1, at least one (n − 1) × (n − 1)− minor is nonzero which ensures rank(Cof M) > 0.
Because M(Cof M)T = det M ·1 = 0, the image of (Cof M)T is in the kernel of M which is of dimension
1 and therefore rank(Cof M) = 1.
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Proof We show that the so-called energy gap

∫

�

W (F0 + ∇ϑ(x)) dx − |�|W (F0) , (2.14)

i.e., the difference between the energy of ϕ(x) = F0x + ϑ(x) and the homogeneous
solution ϕ0(x) = F0x , is scaling invariant. Note that quasiconvexity at F0,

∫

�

W (∇ϕ(x)) dx ≥ |�|W (F0) if ϕ(x)|∂� = F0.x ,

implies that the energy gap is always nonnegative. We write F = ∇ϕ and compute

∫

�

W (αF) dx − |�| · W (αF0)

=
∫

�

W (αF) − W (αF0) dx

=
∫

�

Wiso(αF) + c log det(αF) − Wiso(αF0) − c log det(αF0) dx

=
∫

�

Wiso(F) − Wiso(F0) + c log(α2 det F) − c log(α2 det F0)dx

=
∫

�

Wiso(F) − Wiso(F0) + c (2 logα + log det F − 2 logα − log det F0) dx

=
∫

�

Wiso(F) + c log det F − Wiso(F0) − c log det F0 dx

=
∫

�

W (F) − W (F0) dx =
∫

�

W (F) dx − |�| · W (F0) . (2.15)

��

Remark 2.4 With Lemmas 2.1 and 2.3, we showed that both rank-one convexity and
quasiconvexity are scaling invariant for any energy W ∈ M∗. Regarding Morrey’s
question for planar isotropic energies with volumetric-isochoric split, we can therefore
assume det F0 = 1without loss of generality.More specifically, for arbitraryW ∈ M∗
we just need to prove the rank-one convexity for all F0 ∈ GL+(2) with det F0 = 1
to obtain rank-one convexity at all F ∈ GL+(2). Likewise, it is sufficient to only
check for quasiconvexity starting with a homogeneous deformation x �→ F0x with
det F0 = 1 in place of arbitrary F ∈ GL+(2) (cf. Fig. 2).

2.3 The least rank-one convex candidateW+
magic(F)

Continuingwith the classM∗, i.e., with energy functionswith c log det F as volumetric
part, we focus on positive c > 0. Asmultiplying a function by a scalar does not change
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Fig. 2 Visualization of a possible [ellipticity/quasiconvexity] domain (shaded blue) of a planar isotropic
energy function in terms of the singular values λ1, λ2 > 0. Left: for an energy W ∈ M∗: the scaling
invariance implies that [ellipticity/quasiconvexity] on a point (black dots) of an arbitrary curve of the type
det F = λ1λ2 = c (black lines) always entail [ellipticity/quasiconvexity] for the corresponding ray (green
line). Right: for an arbitrary volumetric-isochoric split energy, this invariance is lost (Color figure online)

its convexity behavior, we can consider c = 1 without loss of generality and assume
that the isochoric part is convex.6 Thus we consider the class

M∗+ :=
{

W (F) = h

(

λ1

λ2

)

+ log(λ1λ2) | h : (1,∞) → R is convex

}

. (2.16)

Using sharp rank-one convexity conditions (Voss et al. 2021a), it is possible to iden-
tify “least” rank-one convex candidates by searching for functions that satisfy those
conditions by equality. Surprisingly (Voss et al. 2021b), it is possible to show that the
question of quasiconvexity reduces to the single energy function

W+
magic(F) = λmax

λmin
− log

λmax

λmin
+ log det F = λmax

λmin
+ 2 log λmin

= K(F) +
√

K(F)2 − 1 − arcoshK(F) + log det F . (2.17)

Hence, if W+
magic were quasiconvex, then every function in the class M∗+ and thus

every rank-one convex planar isotropic energy function with an additive volumetric-
isochoric splitwhose isochoric part h(t) is convexwould be quasiconvex aswell.Afirst
analytic observation (see Appendix A) could not conclusively answer this question,
but opens the possibility to interesting microstructures having the same energy value
as the homogeneous deformation. This motivates us to proceed numerically and try
to falsify the quasiconvexity of W+

magic.

6 If the isochoric part h(t) is not convex, the combined function h
( λ1
λ2

) + log(λ1λ2) will not correspond
to a rank-one convex function (Voss et al. 2021b).
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Fig. 3 Coarse grids for square and disk domain. As the disk grid gets refined, it approximates the piecewise
polynomial boundary better and better

3 The Classical Finite Element Approach

A first way to show that a given energy density is not quasiconvex is the finite element
method. For this, we discretize the displacement field ϑ by Lagrange finite elements
(Ciarlet 2002). We use triangle grids and first-order finite elements only. That way, the
deformation gradient and hence the integrand are piecewise constant and the hyperelas-
tic energy

∫

�
W (∇ϕ) dx can be computed without quadrature error which is important

in view of exactly calculating the energy gap (2.14). Our implementation is based on
the Dune libraries (Bastian 2021; Sander 2020).

3.1 Testing for Quasiconvexity

We perform tests on two domains: The square [−1, 1]2 and the unit disk B1(0). Both
are filled with coarse triangle grids as shown in Fig. 3. For ease of implementation,
we approximate the boundary of the disk by six quadratic arcs (dashed lines). The
finite elements grids are then constructed by uniform refinement of the coarse grids.
For the disk grid, new boundary vertices are placed not at edge midpoints but on the
curved arcs approximation the boundary. The final grids consist of 16,641 vertices and
32,768 elements for the square and 12,481 vertices and 24,576 elements for the disk.
Due to the scaling invariance (the results of Sect. 2.2) it is sufficient to test with an F0
such that det F0 = 1, thus due to isotropy we consider only F0 = diag(

√
a, 1√

a
) with

arbitrary a > 0. For the result shown here, we select a = 2.
We minimize the hyperelastic energy

∫

�
W+

magic(F) dx with a trust-region algo-
rithm. These algorithms have been thoroughly studied in the literature, and they can
be shown to always converge to stationary points of the energy (Conn et al. 2000).
As trust-region methods are descent methods, maximizers and saddle-points are not
attractive points, and convergence is therefore typically towards (local) minimizers
only.

Trust-region methods perform sequences of quadratic minimization problems with
convex inequality constraints. We use a trust-region defined in terms of the maximum
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norm, and therefore the convex constraints are a set of independent bound constraints.
For the quadratic bound-constrained minimization problem we then use a monotone
multigrid method (Kornhuber 1994) as suggested in Sander (2012). Such methods
achieve multigrid convergence rates even for bound-constrained problems. We solve
each inner problem until the maximum-norm of the correction drops below 10−5.
The large but sparse tangent matrices are computed using the ADOL-C algorithmic
differentiation system (Walther and Griewank 2012).

When looking for global minimizers with a descent method, the question of initial
iterates is of central importance. As shown exemplary in the next section, when the
energy is not quasiconvex, imperfections caused by the finite-precision arithmetic are
sufficient to drive the system towards microstructures even starting from the homo-
geneous configuration. For the particular energy W+

magic, however, this did not lead to
any energy decrease. We obtained the same negative results for some other “obvious”
initial iterates, such as random perturbations of the homogeneous state. More involved
constructions of non-homogeneous initial iterates are described in Sects. 3.2 and 5.

3.2 Non-Elliptic Microstructure

In the following, we introduce several additional ideas to search for microstructures
with energy levels below the homogeneous state with more adept methods.

In order to better understand the shape of a possible microstructure, we ensured
its existence by considering slightly modified problems. We start with the weakened
energy

Wc(F) = λmax

λmin
− log

λmax

λmin
+ c log det F , c > 1 , (3.1)

which is not rank-one convex anymore but satisfies lim
c→1

Wc(F) = W+
magic(F) for all

F ∈ GL+(2). We are interested in the resulting microstructures especially if they do
not appear to be simple laminations caused by the loss of ellipticity (Ball and James
1987; Dolzmann 1999; Li 2000). Any local minimizer found for Wc can then be used
as an initial deformation for minimizing W+

magic again with the hope of maintaining
the non-homogeneous structure and thereby disproving quasiconvexity of the energy
W+

magic itself.
While ourmaterialWc indeed showsmicrostructures that contain a lamination struc-

ture, we observe radially symmetric contracting regions as well (cf. Fig. 4). However,
we already know that deformations of this kind cannot lower the energy value of
W+

magic (see Appendix A) and thus they are not suited for finding a newmicrostructure

by using them as an initial configuration for minimizing W+
magic(F) again. This is

confirmed by direct numerical experiments: when letting the trust-region solver of the
previous section minimizeW+

magic starting from the configurations shown in Fig. 4, all
we obtain is convergence to the homogeneous state.

Therefore, we continue with an alternative numerical experiment to produce more
convoluted microstructures. For this we place three disjoint balls Bri (xi ), i = 1, 2, 3
with radius 0.2 and center x1 = (−0.5, 0), x2 = (0.35, 0.35), and x3 = (0.35,−0.35)
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Fig. 4 Microstructure for the non-elliptic energy Wc with c = 1.1 and F0 = diag
(√

2, 1√
2

)

. The color

shows the determinant (left) and the distortion K(F) = 1
2

‖F‖2
det F (right)

inside the unit disk domain. We then set c > 1 inside each circles Bri (xi ) but fix c = 1
elsewhere, i.e.,

c(x) =
{

c� if x ∈ ∪i Bri (xi ) ,

1 otherwise,
with c� > 1 .

For values slightly larger than c = 1 we observe that all three circles contract
in a radially symmetric fashion (cf. Fig. 5). Again, we note that Appendix A shows
that radial symmetric contracting deformations have the same energy value for the
limit case c = 1. Increasing the weighting of log det F by raising c results in lower
energy values compared to the homogeneous deformation. For higher values of c,
the microstructure becomes more convoluted but keeps its contraction structure (cf.
Fig. 5).

We note that both microstructures are primarily located inside these circles (where
ellipticity is lost), while for the rest of the material with c = 1, the deformation
remains mostly homogeneous. In particular, the borders of the inner circles maintain
their shape to a certain extent, even though we do not impose additional internal
boundary conditions to ensure this. We interpret these observations as a first indicator
towards our energy candidate W+

magic being quasiconvex since the response of W
+
magic

is “stable” toward the assumed non-elliptic perturbation in the circle.

4 Deep Neural Networks

One may conjecture that minimizing W+
magic in a finite element space fails to find

microstructure because each finite element coefficient influences only a very local
part of the deformation function. Additionally, when the strain energy density lacks
quasiconvexity (which we consider possible forW+

magic), FEM-methods generally fail
(Kumar et al. 2020) due to the non-uniqueness of the solution, i.e., the microstructures.
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Fig. 5 Microstructures for the non-elliptic energy Wc with c = 1.1 (top) and c = 2 (bottom) inside three
smaller circles and c = 1 outside starting. The boundary deformation is F0 = diag

(√
2, 1√

2

)

. The colors

encode the determinant (left) and the distortion K(F) = 1
2

‖F‖2
det F (right)

In this chapter, we experiment with an alternative approach where this relationship is
more global.

4.1 Physics-Informed Neural Networks

We use a numerical scheme which is based on deep neural networks as an ansatz for
solving partial differential equations, an idea also referred to as physics-informed neu-
ral networks (Raissi et al. 2019; Karniadakis et al. 2021). In principle, this is similar to
the ansatz constructed classically using finite element functions. However, deep neural
networks generally lead to highly nonlinear and more efficient (in terms of number of
parameters) approximation spaces with considerable approximation properties even
for low numbers of coefficients.

In the following, we consider periodic deformations only (cf. Sect. 1.2). Consider
the following ansatz for the periodic superposition:

ϑ#,ω(x1, x2) = (1 − cos(2πx1))Fω f (x1) + (1 − cos(2πx2))Gωg (x2)
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+ (1 − cos(2πx1))(1 − cos(2πx2))Hωh (x1, x2) , (4.1)

where Fω f ,Gωg : [0, 1] → R
2 and Hωh : [0, 1]2 → R

2 are feedforward neu-
ral networks (Schmidhuber 2015) parameterized by parameters ω f , ωg , and ωh ,
respectively. The ansatz is intentionally constructed this way to identically satisfy
the periodic boundary conditions (1.10). Feedforward neural networks are essentially
just highly nonlinear functions constructed by repeated composition of successive
high-dimensional linear and nonlinear transformations. The specific neural network
architecture (or simply, the choice of linear and nonlinear transformations) is a mod-
eling choice without any specific rules as long as sufficient model complexity and
nonlinearity is ensured. In this context, we choose the following neural network archi-
tectures:

Fω f (x1) = L64→2
ω f ,5

◦ R ◦ L64→64
ω f ,4

◦ R ◦ L64→64
ω f ,3

◦ R ◦ L64→64
ω f ,2

◦ R ◦ L1→64
ω f ,1

(x1) ,

Gωg (x2) = L64→2
ωg,5

◦ R ◦ L64→64
ωg,4

◦ R ◦ L64→64
ωg,3

◦ R ◦ L64→64
ωg,2

◦ R ◦ L1→64
ωg,1

(x2) ,

Hωh (x1, x2) = L64→2
ωh,5

◦ R ◦ L64→64
ωh,4

◦ R ◦ L64→64
ωh,3

◦ R ◦ L64→64
ωh,2

◦ R ◦ L2→64
ωh,1

(x1, x2) .

(4.2)

Here, Li→ j
ω�,k , k = 1, . . . , 5 (� is a placeholder for ‘ f ’, ‘g’, and ‘h’) denotes the

kth-linear transformation parameterized by the set of weights and biases ω�,k =
{A�,k, b�,k} (with ω� = {ω�,k}) such that any z ∈ R

i is transformed via

Li→ j
ω�,k

(z) = A�,k z + b�,k , with A�,k ∈ R
j×i , b�,k ∈ R

j . (4.3)

The linear transformations are interleaved with element-wise nonlinear transforma-
tions R(·) = tanh(·).

Since each layer of a neural network is a differentiable operation, the gradient
of the superposition field ϑ# can be computed using the chain rule. This is efficiently
implemented using an automatic differentiation engine (Baydin et al. 2018). Note that,
unlike numerical differentiation by, e.g., finite differences, the gradients computed via
automatic differentiation are analytically exact.

For numerical integration of the strain energy density over the domain � we dis-
cretize the domain with a uniform grid {(xα

1 , xβ
2 ) | α, β = 1, . . . , N } of N × N points.

For a given ∇ϑ#,ω, the total strain energy is approximated via the trapezoidal integra-
tion rule as

I (ϕ) =
∫

�

W+
magic(F0 + ∇ϑ#,ω(x)) dx

≈
N

∑

α=1

N
∑

β=1

ξ(α)ξ(β)W+
magic

(

F0 + ∇ϑ#,ω(xα
1 , xβ

2 )
)

, (4.4)
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where the integration weights ξ(α) are

ξ(α) =
{

1
2

1
N−1 if α = 1 or α = N ,
1

N−1 otherwise.
(4.5)

Whether the trapezoidal integration rule over- or underestimates the integral depends
on whether the integrand is convex or concave, respectively, in the interval of the inte-
gration. However, if the integrand exhibits an inflection point (which is also observed
here), over-/underestimation of the integral cannot be guaranteed with this rule.

The optimal parametersω = {ω f , ωg, ωh} of the neural networks are then obtained
as minimizers of the total energy

ω� = argmin
ω

N
∑

α=1

N
∑

β=1

ξ(α)ξ(β)W+
magic

(

F0 + ∇ϑ#,ω(xα
1 , xβ

2 )
)

. (4.6)

Theminimization problem is solved iteratively usingAdam (Kingma andAdam2017),
an efficient first-order gradient-based stochastic optimization method. The derivatives
of the objective function with respect to the parameters ω are computed via automatic
differentiation again. Following the minimization, the periodic superposition field
ϑ# = ϑ#,ω� is given by (4.1). The Adam optimizer was used for 2000 iterations with
an initial learning rate of 10−3 which was decayed by a factor of 0.1 after the 700th,
1400th, and 1800th iterations. The numerical scheme was implemented in Paszke
(2019).

Figure 6 illustrates the representative microstructures obtained via the numerical
scheme for F0 equal to diag

(

3, 1
3

)

and diag
(

10, 1
10

)

on a grid of resolution N = 128.
For both values of F0 the microstructure has the form of a smooth laminate and its
energy seems to equal the one of the corresponding homogeneous deformation up to
machine precision7 which motivates the search for a precise form of the analytical
solution.

4.2 Smooth laminates

Guided by the numerical findings of the previous section, it turned out that the smooth
laminates can be explained analytically as well.

Lemma 4.1 Let � = [0, 1]2 be the unit square and consider W+
magic(F) = λmax

λmin
+

2 log λmin with the ordered singular values λmax ≥ λmin of F ∈ GL+(2). For any
homogeneous deformation ϕ0(x) = F0x with F0 = diag(a1, a2) and a1 ≥ a2 > 0,
the elastic energy I (ϕ) = ∫

�
W+

magic(∇ϕ) dx is equal to I (ϕ0) for all periodical

7 Due to the underestimation of integration using the trapezoidal rule, the total strain energy was observed
to be slightly below the energy of the homogeneous deformation. However, under grid-refinement with
N � 1, this error converges to zero and the total strain energy was observed to equal the energy via
homogeneous deformation up to machine precision.
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(a)

(b)

Fig. 6 Neural network minimizers of the energy W+
magic under periodic boundary conditions with two

different F0. (Left) The microstructures are visualized using (∇ϑ#)11. (Right) (∇ϑ#)11, (ϑ#)1, and (ϑ#)2
are plotted against x1 for constant x2 = 0.5. The relevance of a2 − a1 is discussed in Sect. 4.2

deformations ϕ(x) = F0x + ϑ#(x) of the type

ϑ#(x1, x2) =
(

f#(x1)
0

)

with f ′
#(x) ≥ a2 − a1 ∀ x ∈ [0, 1] . (4.7)

Proof Let ϑ# be as in (4.7). We find that

F = F0 + ∇ϑ#(x) =
(

a1 + f ′
#(x1) 0

0 a2

)

is diagonal with a1 + f ′
#(x1) ≥ a2. This implies λmax = a1 + f ′

#(x1) and λmin = a2.
Periodic boundary conditions as defined by (1.10) imply f (0) = f (1) as well as
f ′(0) = f ′(1). Thus

I (ϕ) =
∫

�

W+
magic(F0x + ϑ#(x)) dx =

∫

�

λmax

λmin
+ 2 log λmin dx

=
∫ 1

0

∫ 1

0

a1 + f ′
#(x1)

a2
+ 2 log(a2) dx1dx2
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= a1 + f#(1) − f#(0)

a2
+ 2 log(a2)

= a1
a2

+ 2 log(a2) =
∫ 1

0

∫ 1

0

a1
a2

+ 2 log(a2) dx1dx2

=
∫

�

W+
magic(F0x) dx = I (ϕ0) . (4.8)

��
We also show explicitly that any ϕ as defined in Lemma 4.1 is indeed an equilibrium
point of I by direct computation. For the corresponding Euler-Lagrange equations
we must compute the first Piola-Kirchhoff stress S1(F) = DW+

magic(F). We start by
considering the restriction to deformations of the type (4.7) as an a priori constraint
and verify that the single resulting reduced Euler-Lagrange equation holds: Since

d

dx1

∂W+
magic

∂ f ′
#

= d

dx1

∂

∂ f ′
#

[

a1 + f ′
#(x1)

a2
+ 2 log(a2)

]

= d

dx1

1

a2
= 0 (4.9)

in the class of deformations of the type (4.7), all functions are stationary points of this
constrained problem. This is a necessary condition for the general problem (Voss et al.
2020, 2021). It remains to show that any such function is also a stationary point of the
full Euler-Lagrange equations S1(F) = DW+

magic(F) as well. For this we identify

W+
magic(F) = 
(K(F)) + log det F

= K(F) +
√

K(F)2 − 1 − arcoshK(F) + log det F , (4.10)

and start with the first derivative of the nonlinear distortion function K(F):

〈DK(F), H〉 =
〈

DF

[

‖F‖2
2 det F

]

, H

〉

= 1

2

2 〈F, H〉 det F − ‖F‖2 〈Cof F, H〉
(det F)2

= 1

det F
〈F, H〉 − ‖F‖2

2 det F

〈

det FF−T

det F
, H

〉

=
〈

1

det F
F − K(F)F−T , H

〉

. (4.11)

Furthermore, using the notation from (4.10), we make use of


(t) = t +
√

t2 − 1 − arcosh t ,


 ′(t) = 1 + t√
t2 − 1

− 1√
t2 − 1

= 1 +
√

t − 1

t + 1
,
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 ′′(t) = 1

2

√

t + 1

t − 1

t + 1 − (t − 1)

(t + 1)2
= 1

(t + 1)2

√

t + 1

t − 1
(4.12)

as well as

〈D[log det F], H〉 =
〈

1

det F
Cof F, H

〉

=
〈

F−T , H
〉

, (4.13)

D
[

F−T
]

· H =
(

D
[

F−1
]

· H
)T =

(

−F−1HF−1
)T = −F−T HT F−T . (4.14)

Altogether, we find

〈S1(F), H〉 =
〈

DW+
magic(F), H

〉

= f ′(K(F)) 〈DK(F), H〉 + 〈D[log det F], H〉 ,

which implies

S1(F) =
(

1 +
√

K(F) − 1

K(F) + 1

)

(

1

det F
F − K(F)F−T

)

+ F−T

= 2K

(K + 1) det F
F − K (K − 1)

K + 1
F−T , K = λmax

λmin
. (4.15)

Next, we insert deformations of the type (4.7) as an a posteriori constraint (Voss et al.
2020):

F =
(

a1 + f ′
#(x1) 0

0 a2

)

, F−T =
(

1
a1+ f ′

#(x1)
0

0 1
a2

)

,

K = a1 + f ′
#(x1)

a2
, det F = (a1 + f ′

#(x1))a2 . (4.16)

Thus we arrive at

S1(F) =
( 1

a2
0

0
a1−2a2+ f ′

#(x1)

a22

)

. (4.17)

The full Euler-Lagrange equations are therefore satisfied since

Div DW+
magic(F) =

( ∂
∂x1

1
a2

∂
∂x2

a1−2a2+ f ′
#(x1)

a22

)

=
(

0
0

)

.

Note that the case f# ≡ 0 corresponds to the homogeneous solution and that this is
the only superposition which also complies with Dirichlet boundary conditions given
by F0. As deformations of the type (4.7) only allow for a smooth displacement in one
coordinate direction, we refer to them as smooth laminates (cf. Fig. 6).
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Remark 4.2 We can construct a continuous map remaining in the class of smooth
laminates (which only contains stationary points of W+

magic) from one candidate f# to

the identity f# ≡ 0 and from there to another solution ˜f# at constant energy value
I (ϕ). Therefore, neither the homogeneous solution nor any of these smooth laminates
are stable , since they are not locally unique minimizers of the energy potential. A
similar argument holds for the radially symmetric deformations considered in Voss
et al. (2021b).

Remark 4.3 If we allow ϑ# to be non-smooth (cf. Fig. 7), we can obtain various
(classical) lamination patterns as well. For example, as a limit of a smooth laminate
microstructure of the type (4.7), we may consider

f#(x) =
{

a1x if x ∈ [

0, a1−a2
2a1−a2

]

,

(a2 − a1)(x − 1) if x ∈ [ a1−a2
2a1−a2

, 1
]

,
(4.18)

which yields the simple two-phase laminate

F1 =
(

2a1 0
0 a2

)

, F2 =
(

a2 0
0 a2

)

,

F0 = a1 − a2
2a1 − a2

F1 + a1
2a1 − a2

F2 =
(

a1 0
0 a2

)

. (4.19)

Recall that we can only construct laminations that satisfy the constraint f ′
#(x) + a1 ≥

−a2 (cf. Lemma 4.1).

5 Relaxation to Non-Gradient Fields with a Curl-Based Penalty

While the smooth laminates discussed in Sect. 4 aswell as the contracting deformations
in Voss et al. (2021b) (cf. Appendix A) allow for non-homogeneous deformations

Fig. 7 Left: visualization of f#(x)+a1x : [0, 1] → [0, a1] (red line) of the type (4.7), i.e., f ′
#(x) ≥ a2−a1

for all x ∈ [0, 1]. Right: visualization of a two-phase laminate as described in Remark (4.3) (Color figure
online)
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whose energy level for W+
magic is as low as the homogeneous one, we have yet failed

to find strictly lower energy values.
For a new attempt, we expand our set of possible deformations ϕ. To this end, we

extend the energy functional from gradient fields F = ∇ϕ to more general matrix
fields P , but control the distance of P to the set of compatible mappings (i.e., gradient
fields) with the Curl2D operator. This approach is commonly used when dealing with
local dislocations in gradient plasticity with plastic spin (Neff and Münch 2008; Neff
et al. 2009) and with relaxed micromorphic continua (Neff et al. 2014). We expect to
obtain new microstructures numerically and, in order to gain additional insight into
our original variational problem, we will observe the material behavior as a function
of the weight parameter on the penalty term Curl2D P . The hope is that when such
new microstructures are used as initial iterates, the optimization algorithm of Sect. 3
will converge to an energy level below the homogeneous one.

More specifically, instead of the classical minimization problem in the space
W 1,2(�,R2), i.e.,

I1(ϕ) :=
∫

�

W+
magic(∇ϕ) dx → min , ϕ(x)|∂� = F0.x (5.1)

with W+
magic as in (2.17), we consider

I2(P) :=
∫

�

W+
magic(P) + L2

c

2
‖Curl2D P‖2 dx → min , P.τ |∂� = F0.τ, (5.2)

in the larger space H(Curl). Here, the vector field τ is the unit tangent vector to
∂�8 and Lc ∈ R+ is a penalty parameter. The planar operator Curl2D is discussed
in Appendix B. Note that the mapping P : � ⊂ R

2 → R
2×2 does not need to be a

gradient field, i.e., P may be incompatible, but that

inf I2(P) ≤ inf I2(∇ϕ) = inf I1(ϕ) and lim
Lc→∞ I2(P)

= +∞ if P is not a gradient field , (5.3)

since we are considering contractible domains only, and on such domains Curl2D P =
0 if and only if P = ∇ϕ for some weakly differentiable ϕ.

We minimize the functional I2 of (5.2) numerically by approximating the matrix
field P by piecewise polynomial functions Pn such that each row of Pn is a first-order
Nédélec finite element of the first kind Kirby et al. (2012) which are elements of the
space H(Curl) by construction. As the domain, we use the unit ball� = B1(0) and the
same grid as in Sect. 3.2. The algorithm used to minimize the discretized functional
is the same trust-region multigrid algorithm as in Sect. 3.2 as well.

We consider theminimization problem (5.2) for different parameters Lc and choose
the boundary deformation F0 = diag

(√
2, 1√

2

)

. We must note that for the range

8 In the three-dimensional case, we can use P × ν|∂� = F0 × ν with ν ∈ R
3 as the unit normal vector to

∂� as equivalent alternative, since (P − F0) × ν|∂� = 0 ⇐⇒ (P − F0).τ1/2|∂� = 0 where τ1, τ2 are
the tangent vectors to ∂�.
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of parameters Lc considered here, the trust-region algorithm of Sect. 3 would not
converge to a stationary point. Rather, due to the severe degeneracy of the energy
function (5.2) for low Lc, the solver would get stuck eventually. In such situations, the
trust-region control would decrease the trust-region radius further and further, without
ever finding an acceptable new iterate. In view of the finite-precision arithmetic used
in actual simulation, this is not a contradiction to the trust-region theory, which claims
that such a new iterate will always be found.

All figures show the last step computed. For Lc = 0.5, 1, 2 we observe different
non-trivial microstructures with significantly lower energy value than the homoge-
neous solution (cf. Fig. 8). The larger Lc, the closer the energy approaches the energy
of the homogeneous state.

After calculating ̂P from I2(P) → min by the above numerical method, we con-
struct a deformation field ϕ̂ : � → R

2 with a deformation gradient close to ̂P by
computing

ϕ̂ := argmin
ϕ

∥

∥∇ϕ − ̂P
∥

∥

2
L2(�)

=
∫

�

∥

∥∇ϕ − ̂P
∥

∥

2
dx , ϕ(x)|∂� = F0.x , (5.4)

in the space of first-order Lagrange finite elements.While the compatible deformations
ϕ̂ all look similar to their corresponding incompatible matrix fields ̂P (cf. Fig. 9), the
energy value I1(ϕ̂) is always higher then the homogeneous one I1(ϕ0). Starting the
minimization algorithm for I1 from ϕ̂ always results in the homogeneous configuration.

As a further attempt to reach low values of I2(P), we also started the optimization
from a non-compatible matrix field instead of the homogeneous deformation gradient
P = F0 we used for the numerical methods before. For this, we chose a checkerboard
pattern with squares of size 1

b × 1
b and alternately set the values F1 = (1 − δ)F0 and

F2 = (1 + δ)F0 with δ = 0.5 (cf. Fig. 10).
This pattern has a lower energy value without considering the regularization term

‖Curl P‖2 as it only activates the concave volumetric part log det F ofW+
magic(F). As

Fig. 8 Matrix field ̂P computed for I2(P) → min and Lc = 0.5 with a starting deformation of F0 =
diag

(√
2, 1√

2

)

. The colors encode the determinant (left) and the distortion K(̂P) = 1
2

∥

∥̂P
∥

∥

2

det ̂P
(right)
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Fig. 9 Compatible deformation ϕ̂ from
∥

∥∇ϕ − ̂P
∥

∥

L2(�)
→ min for the matrix field ̂P shown in the Fig. 8.

Colors show determinant (left) and the distortion K(∇ϕ̂) = 1
2

‖∇ϕ̂‖2
det∇ϕ̂

(right) (Color figure online)

Fig. 10 Checkerboard pattern used as initial iterate. The pattern is not a gradient and combines an inhomo-
geneous determinant with a constant distortion K

shown in Fig. 11, we indeed arrive at different microstructures. However, the compati-
ble deformations obtained fromminimizing

∥

∥∇ϕ − ̂P
∥

∥

2
L2(�)

again have higher energy
values than the homogeneous state. Furthermore, minimizing the original energy I1
from there lead back to the homogeneous configuration once again.

6 Gradient YoungMeasures and Laminates

More recently, the problem of Morrey’s conjecture has been approached from the
point of view of gradient Young measures and laminates (Kinderlehrer and Pedregal
1991a, b, 1994; Guerra and da Costa 2021; Guerra 2019; Müller 1999; Faraco and
Székelyhidi 2008; Harris et al. 2018). In the following, we give a brief overview of
this alternative approach and its relation to the optimization methods used above.
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Fig. 11 Twocompatible deformations (for Lc = 0.5 and Lc = 2, respectively) starting froma checkerboard
pattern for F0 = diag

(√
2, 1√

2

)

. This pattern remains visible for the first calculation because as explained

in the text, the trust-region algorithm did not find a local minimizer for I2(P) → min

Throughout this section, let � = [0, 1]2 denote the unit square.9 In order to posi-
tively answer Morrey’s conjecture, we would need to find a rank-one convex function
W : R2×2 → R that is not quasiconvex. More explicitly, this task can be stated as
follows:

(I) Find a rank-one convex function W : R2×2 → R, a Lipschitz mapping ϕ : � →
R
2 and F0 ∈ R

2×2 with ϕ(x) = F0.x for all x ∈ ∂� such that

∫

�

W (∇ϕ(x)) dx < W (F0) . (6.1)

In particular, such a full solution toMorrey’s problem requires both an energy function
W : R2×2 → R and a mapping ϕ : � → R

2.
The classical approach to this problem, as followed in the previous sections, consists

of choosing a plausible candidateW first before trying to find amappingϕ that satisfies
(6.1) in order to prove the non-quasiconvexity ofW . However, recent investigations of

9 Note that the term |�| = 1 will often be omitted in the following, but would need to be taken into account
carefully for a more general choice of � ⊂ R

2.
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Morrey’s conjecture have often taken a slightly different point of view, emphasizing
the search for a suitable mapping ϕ instead. More specifically, these approaches try to
establish the existence of a Lipschitz mapping ϕ : � → R

2 such that the pushforward
measure induced by ∇ϕ violates a Jensen-type inequality.

This change in perspective is mainly based on the seminal results by Kinderlehrer
and Pedregal (1991a, b, 1994) on the relation between quasiconvexity and gradient
Young measures. In particular, these results allow for Morrey’s conjecture (I) to be
rephrased in terms of properties of probability measures.

6.1 Equivalent Formulations of Morrey’s Conjecture

First, we consider the following rephrasing, which is obtained by a simple substitution
on the left-hand side of (6.1).

(II) Find a rank-one convex function W : R2×2 → R, a Lipschitz mapping ϕ : � →
R
2 and F0 ∈ R

2×2 with ϕ(x) = F0.x for all x ∈ ∂� such that

∫

R2×2
W (A) dνϕ(A) < W (F0) ,

where νϕ denotes the pushforward measure of the Lebesgue measure with respect
to ∇ϕ, i.e.,

νϕ(M) = |{x ∈ � | ∇ϕ(x) ∈ M}| for any measurable M ⊂ R
2×2 .

This phrasing ofMorrey’s problem in terms of probabilitymeasures10 is closely related
to its formulation in terms of homogeneous gradient Young measures. The exact rela-
tion between pushforward measures of gradients and homogeneous gradient Young
measures can be established by the Averaging Theorem (Kinderlehrer and Pedregal
1991b, Theorem 2.1), which directly implies the following lemma as a corollary.

Lemma 6.1 Cf. Kinderlehrer and Pedregal (1991b) Let ϕ ∈ W 1,∞(�;R2) with
ϕ(x) = F0.x for all x ∈ ∂�. Then νϕ is a homogeneous gradient Young measure
on � with barycenter νϕ = F0.

By virtue of Lemma 6.1, if (II) can be solved, so can the following problem:

(III) Find a rank-one convex function W : R2×2 → R and a homogeneous gradient
Young measure ν such that

∫

R2×2
W (A) dν(A) < W (ν) , (6.2)

where ν denotes the barycenter of ν.

In order to see that (III) is also sufficient for (and thus equivalent to) solving (II),
recall that for any homogeneous gradient Young measure ν there exists a sequence

10 Note that νϕ is indeed a probability measure on R
2×2 due to the choice 1 = |�| = νϕ(R2×2).
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(ϕk)k∈N ⊂ W 1,∞(�;R2)with affine linear boundary values induced by the barycenter
F0 = ν of ν such that

lim
k→∞

∫

R2×2
W (A) dνϕk (A) =

∫

R2×2
W (A) dν(A)

for any continuous function W : R
2×2 → R. In particular, this implies

∫

R2×2 W (A) dνϕk (A) < W (ν) = W (F0) for sufficiently large k if ν satisfies (6.2).
Finally, we can rephrase (III) by employing the notion of a laminate. In the planar

case, a laminate can be characterized as a probability measure ν on R
2×2 such that

the Jensen-type inequality

W (ν) ≤
∫

R2×2
W (A) dν(A) (6.3)

holds for any rank-one convex function W : R2×2 → R (Pedregal 1993). Since ν

is a homogeneous gradient Young measure if and only if (6.3) holds for any quasi-
convex energyW according to the Kinderlehrer–Pedregal Theorem (Kinderlehrer and
Pedregal 1991b, 1994), the following problem is equivalent to (III):

(IV) Find a homogeneous gradient Young measure ν which is not a laminate.

Note that (IV) seems to make no reference to any energy function W . In practice,
however (approximately), rank-one convex energy functions need to be applied to a
given measure ν in order to numerically establish whether it is a laminate (Guerra
and da Costa 2021). On the other hand, it is often obvious by construction that ν is
a homogeneous gradient Young measure. In particular, due to Lemma 6.1, this is the
case if ν is obtained as the pushforward measure with respect to the gradient of a
mapping ϕ : � → R

2.

6.2 The Numerical Search for Non-Laminate Gradient YoungMeasures

A specific numerical method for finding non-laminate homogeneous gradient Young
measures numerically has been suggested by Guerra and da Costa (2021). This
approach is based on selecting a dense subset K (�) ⊂ W 1,∞(�;R2) such that each
ϕ ∈ K (�) induces a discrete-valued gradient field ∇ϕ. Then the following problem
needs to be solved numerically:

(V) Find ϕ ∈ K (�) such that νϕ with νϕ(M) = |{x ∈ � | ∇ϕ(x) ∈ M}| is not a
laminate, where K (�) = ⋃

N∈N KN with

KN =
{

ϕ ∈ C(�) | ϕ(x) =
N

∑

i=1

h(〈x, ηi 〉 + ci )ξi , ηi , ξi ∈ R
2 , ci ∈ R

}

,

h(t) = tχ[0,1/2](t) + (1 − t)χ[1/2,1](t) . (6.4)

Both the barycenter νϕ and the energy value
∫

R2×2 W (A) dν(A) can be easily computed
numerically for the measure νϕ corresponding to any ϕ ∈ K (�) and a given energy
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Fig. 12 A possible combined laminate consisting of three parts: reference configuration (left) and deformed
configuration (right). The deformation is homogeneous for each area with the coloring showing the corre-
sponding value of det F

function W on R
2×2. However, in order to demonstrate that a given measure νϕ is

not a laminate, it is necessary to find a rank-one convex energy W for which (6.3) is
violated. The numerical approach suggested by Guerra and da Costa (2021) consists
of generating a large number of (approximately) rank-one convex energy functions
by computing the rank-one convex envelope for a specific class of functions based on
earlier considerations by Šverák (1992).

6.2.1 Application toW+
magic

In contrast, based on our results inVoss et al. (2021b), we conjecture that the functional
W+

magic defined in 2.17 is a good candidate energy to detect non-laminate measures.
Therefore, we do not need to perform the computationally expensive calculations
of multiple rank-one convex envelopes. Instead, we directly include the class K (�)

of deformations in our search for a counterexample to the quasiconvexity inequality
(1.2). Since the energy values of the inhomogeneous deformations ϕ ∈ K (�) and of
the corresponding homogeneous deformations given as the energy at the barycenter
W (F0) = W (νϕ) are easily computed numerically (without the need of FEM), we
can thereby test W+

magic with a large number of additional deformations with periodic
boundary conditions.Wecall these inhomogeneous deformationsϕ ∈ K (�) combined
laminates.

For a given homogeneous deformation gradient F0 and given number N of lami-
nates to combine (cf. (6.4)), our implementation selects random parameter values for
ηi , ξi , ci with i ∈ {1, . . . , N }, validating that det F > 0 for all such combinations,
and computes the energy value of the resulting combined laminate. Figures 12 and 13
show examples of such deformations with N = 3 and F0 = 1; the “phases” of the
superimposed deformations, i.e., the local values of h′(〈x, ηi 〉 + ci ), are indicated by
(+/−).
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Fig. 13 A possible combined laminate consisting of three parts of the reference configuration (left) and the
deformed configuration (right). The deformation is homogeneous for each area with the coloring showing
the corresponding value of det F

Our numerical tests focused on the case N ≥ 5.11 After testing slightly more than
one million combinations with a routine written in Python, where we started with
different F0 = diag(

√
a, 1√

a
) with a ∈ [1, 10] and tried N = 4, 5, 6, 7, we were

once more unable to obtain an energy level below W+
magic(F0). As with our previous

approaches, we always find non-trivial microstructures when we change our energy
function to be non-rank-one convex. Figure 14, for example, shows such a microstruc-
ture for the energy Wc defined in (3.1) with a modified volumetric part c log det F in
place of W+

magic; for c > 1, this method once more finds random configurations with
lower energy than the homogeneous state.

7 Discussion

We have presented several different numerical approaches to check for quasiconvexity
of a given function W .

• In Sect. 3, we demonstrated a classical finite element approach that can find easily
microstructures if we perturb the energy candidate to be slightly non-rank-one
convex. In addition, we showed a method of disturbing the homogeneous structure
of the solution by modifying the energy values on a subdomain and computing the
microstructure resulting from this material inhomogeneity.

• In Sect. 4, under the assumption of periodic boundary conditions, we introduced a
numerical scheme that is based on deep neural networks and thereby discovered a
new non-trivial microstructure (smooth laminates) with the same energy value as
the homogeneous deformation for the considered energy function, which we then
investigated analytically.

11 Configurations with N > 3 are usually too convoluted to properly visualize, especially with the addition
(+/−) to indicate the “phases”.
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Fig. 14 A combined laminate consisting of five parts of the reference configuration (left) and the deformed
configuration (right). The deformation is homogeneous for each area with the coloring showing the corre-
sponding value of det F . The energy value is lower than the homogeneous one for the non-elliptic energy
density Wc defined in (3.1) with c = 1.5

• For the relaxation technique considered in Sect. 5, we extended our numerical
calculations from gradient fields F to general matrix field P by introducing a
penalty term based on Curl P . This approach resulted in various non-compatible
fields with lower energy value than the energy of the homogeneous deformation,
even for a quasiconvex energy candidate. The fields found this way were then used
as new starting configurations for the finite elements approach. This, unfortunately,
did never lead to energies below the one of the homogeneous state.

• In Sect. 6,we discussed an alternative numerically straightforwardwayof checking
for quasiconvexity connected to the theory of gradient Young measures rather
than to optimization. Several rank-one laminations were combined so that the
resulting deformation remained piece-wise homogeneous and their energy value
were compared to the homogeneous deformation. Again, we only found lower
values for a non-rank-one convex energy density.

We tested all these methods with the energy W+
magic from Voss et al. (2021b). If we

change this energy to be non-elliptic and thus non-quasiconvex, the presentedmethods
were all able to produce non-trivial microstructures, i.e., deformations that are neither
homogeneous nor a simple first-order laminate. This demonstrates their viability as
numerical tests for quasiconvexity. On the other hand, while non-quasiconvexity of
an energy W can conceivably be proven by numerical methods (since identifying a
single suitable deformation would be sufficient), no amount of numerical testing can
be considered an actual proof that a given function is quasiconvex. However, if all
the described methods fail to yield a deformation energetically more optimal than the
homogeneous one—as was the case for the energy W+

magic(F) = λmax
λmin

+ 2 log λmin
considered here—then this should be interpreted as a strong indication that the function
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is indeed quasiconvex and therefore not a viable candidate for answering Morrey’s
conjecture.
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Appendix A: Contracting Deformations

In a previous article (Voss et al. 2021b), we found a surprising connection of W+
magic

to the work of Burkholder (1988); Astala et al. (2012); Guerra and Kristensen (2021)
in the field of complex analysis with the so-called Burkholder function12

Bp(F) = −
[ p

2
det F +

(

1 − p

2

)

|F |2
]

|F |p−2 , (A.1)

where |F | := sup‖ξ‖=1 ‖Fξ‖R2 = λmax denotes the operator norm (i.e., the largest
singular value) of F . There, we showed the existence of a first non-trivial example for
the energy W+

magic(F) for which equality with the homogeneous solution holds. We
considered the radial symmetric deformation, i.e., functions which can be described
by a mapping v : [0,∞) → R such that

ϕ(x) = v(‖x‖) x

‖x‖ with v(0) = 0 , (A.2)

and its subclasses of expanding and contracting deformations

VR :=
{

v ∈ C1([0, R]) ∣

∣ v(0) = 0 , v(R) = R ,
v(r)

r
≥ v′(r) ≥ 0 ∀ r ∈ [0, R]

}

,

(expanding)

VR
−1 :=

{

v ∈ C1([0, R]) ∣

∣ v(0) = 0 , v(R) = R , v′(r) ≥ v(r)

r
≥ 0 ∀ r ∈ [0, R]

}

.

(contracting)

In addition to the proof given in Voss et al. (2021b), we can verify that these deforma-
tions are equilibriumstates of Bp andW

+
magic bydirectly computing theEuler-Lagrange

12 The question whether the Burkholder function is quasiconvex or not is discussed extensively in the
literature with numerical evidence in favor of the former (Baernstein and Montgomery-Smith 2011). Fur-
thermore, Guerra and Kristensen give a new interesting discussion about Bp being extremal in the class of
p-homogeneous functions (Guerra and Kristensen 2021).
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equations with restriction to radial deformations. It is important to note that the
Euler-Lagrange equations given in this section are only a necessary but not a suf-
ficient condition to check for stationary points because they assume the restriction to
radial deformations as an a priori constraint. For the full system of Euler-Lagrange
equations, we have to compute the divergence of the full first Piola-Kirchhoff tensor
S1(F) = DW (F) (4.15) and insert radial deformations as a posteriori constraint after-
ward which would go beyond the scope here but has been verified with the support of
Mathematica.

We start with the Burkholder functional in the class of expanding deformations
v ∈ VR

∫

BR(0)
Bp(F) dx = π

∫ R

0
p
v′(r)v(r)p−1

r p−2 + (2 − p)
v(r)p

r p−1
︸ ︷︷ ︸

=:F(v,v′,r)

dr , (A.3)

and compute the corresponding Euler-Lagrange equation

d

dr
Fv′ = Fv ⇐⇒ d

dr

[

p
v p−1

r p−2

]

= p(p − 1)
v′v p−2

r p−2 + (2 − p)p
v p−1

r p−1 ⇐⇒

(p − 1)
v′v p−2

r p−2 − (p − 2)
v p−1

r p−1 = (p − 1)
v′v p−2

r p−2 + (2 − p)
v p−1

r p−1 , (A.4)

which is always true. Thus any v ∈ VR is an equilibrium with respect to the restricted
class of radial deformations. Now we do the same computation for the energy density
W+

magic in the opposite class of contracting deformations VR
−1

∫

BR(0)
W+

magic(F) dx = 2π
∫ R

0
r2

v′(r)
v(r)

+ 2r (log v(r) − log r)
︸ ︷︷ ︸

=:F(v,v′,r)

dr (A.5)

and compute the corresponding Euler-Lagrange equation

d

dr
Fv′ = Fv ⇐⇒ d

dr

[

r2

v

]

= −r2
v′

v2
+ 2r

v

⇐⇒ 2r

v
− r2

v′

v2
= −r2

v′

v2
+ 2r

v
, (A.6)

which is always true. Thus any v ∈ VR
−1 is an equilibriumwith respect to the restricted

class of radial deformations.
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Appendix B: Euler-Lagrange Equations with Curvature Terms

In the three-dimensional case, we have

curl

⎛

⎝

v1
v2
v3

⎞

⎠ = ∇ ×
⎛

⎝

v1
v2
v3

⎞

⎠ =
⎛

⎝

v3,y − v2,z
v1,z − v3,x
v2,x − v1,y

⎞

⎠

�⇒ curl

⎛

⎝

v1(x, y)
v2(x, y)

0

⎞

⎠ =
⎛

⎝

0
0

v2,x − v1,y

⎞

⎠ . (B.1)

Thus in the planar case we may introduce the operator

curl2D : R2 → R , curl2D(v1, v2) := v2,x − v1,y . (B.2)

In addition, in three dimensions, taking curl row-wise, it holds

Curl

⎛

⎝

P11 P12 P13
P21 P22 P23
P31 P32 P33

⎞

⎠ =
⎛

⎝

curl(P11, P12, P13)T

curl(P21, P22, P23)T

curl(P31, P32, P33)T

⎞

⎠

�⇒ Curl

⎛

⎝

P11 P12 0
P21 P22 0
0 0 0

⎞

⎠ =
⎛

⎝

curl(P11, P12, 0)T

curl(P21, P22, 0)T

0 0 0

⎞

⎠ .

Accordingly, in the planar case we may define the operator

Curl2D : R2×2 → R
2 ,

Curl2D

(

P11 P12
P21 P22

)

:=
(

curl2D(P11, P12)
curl2D(P21, P22)

)

=
(

P12,x − P11,y
P22,x − P21,y

)

. (B.3)

In order to mimic the behavior of the curl in the three-dimensional case (Curl Curl :
R
3×3 → R

3×3) we define moreover the operator

CCurl2D : R2×2 → R
2×2 ,

CCurl2D

(

P11 P12
P21 P22

)

:=
(

P12,xy − P11,yy P11,xy − P12,xx
P22,xy − P21,yy P21,xy − P22,xx

)

, (B.4)

which is the relevant 2 × 2 block of the three-dimensional expression

Curl Curl

⎛

⎝

P11 P12 0
P21 P22 0
0 0 0

⎞

⎠ = Curl

⎛

⎝

0 0 P12,x − P11,y
0 0 P22,x − P221,y
0 0 0

⎞

⎠

=
⎛

⎝

P12,xy − P11,yy P11,xy − P12,xx 0
P22,xy − P21,yy P21,xy − P22,xx 0

0 0 0

⎞

⎠
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and ensures the common condition Div CCurl2D(P) = 0.We calculate the weak form
of the Euler-Lagrange equations

d

dt
I1(ϕ + tϑ)

∣

∣

∣

∣

t=0
=

∫

�

d

dt
W+
magic(∇ϕ + t∇ϑ)

∣

∣

∣

∣

t=0
dx =

∫

�

〈

DW+
magic(∇ϕ),∇ϑ

〉

dx

P.I .=
∫

�
−

〈

Div DW+
magic(∇ϕ), ϑ

〉

dx = 0 for all ϑ ∈ C∞
0 (�) ,

d

dt
I2(P + tδP)

∣

∣

∣

∣

t=0
=

∫

�

[

d

dt
W+
magic(P + tδP) + 1

2
L2c ‖Curl2D(P + tδP)‖2

]

t=0
dx

=
∫

�

〈

DW+
magic(P), δP

〉

+ L2c 〈Curl2D P,Curl2D δP〉 dx (B.5)

P.I .=
∫

�

〈

DW+
magic(P) + L2

c CCurl2D P, δP
〉

dx = 0

for all δP ∈ C∞
0 (R2;R2×2) , (B.6)

where we used that Curl is a linear operator. With the fundamental lemma of the
calculus of variations we obtain the strong form of the Euler–Lagrange equations for
the respective cases

Div DW+
magic(∇ϕ) = 0 (compatible) , (B.7)

DW+
magic(P) + L2

c CCurl2D P = 0 (incompatible) . (B.8)

Because of Div CCurl2D(P) = 0 the Euler–Lagrange equation (B.8) always implies

Div DW+
magic(P) = 0 , (B.9)

where

Div

⎛

⎜

⎝

P11 · · · P1n
...

...

Pn1 · · · Pnn

⎞

⎟

⎠
=

⎛

⎜

⎝

Div(P11, . . . , P1n)
...

Div(Pn1, . . . , Pnn)

⎞

⎟

⎠

denotes the row-wise divergence of P ∈ C1(Rn;Rn×n).
Since in the planar case, curl can be seen as a rotated ÷, i.e.,

curl2D(v1, v2) = Div(v2,−v1) = Div

[

(v1, v2)

(

0 −1
1 0

)]

= Div

[(

0 1
−1 0

)(

v1
v2

)]

(B.10)
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we have13

Curl2D

(

P11 P12
P21 P22

)

=
(

P12,x − P11,y
P22,x − P21,y

)

= Div

(

P12 −P11
P22 −P21

)

= Div

[(

P11 P12
P21 P22

)(

0 −1
1 0

)]

⇐⇒ Curl2D P = Div[PQ] with Q =
(

0 −1
1 0

)

. (B.11)

Thus looking14 at Eq. (B.5)

∫

�

〈Curl P,Curl δP〉 dx

=
∫

�

〈Div[PQ],Div[δPQ]〉 dx P.I .= −
∫

�

〈∇Div[PQ], δPQ〉 dx

�⇒ CCurl2D P = − (∇Div[PQ]) QT , with Q =
(

0 −1
1 0

)

. (B.12)

Therefore,

d

dt
I2(P + tδP)

∣

∣

∣

∣

t=0
=

∫

�

〈

DW+
magic(P) − L2

c (∇Div[PQ]) QT , δP
〉

dx ,

which corresponds to the Euler-Lagrange equation in strong ∇Div-form

DW+
magic(P) − L2

c (∇Div[PQ]) QT = 0 (B.13)

which is equivalent to (B.8). The correspondingminimization problem (5.2) can hence
be rewritten using Curl2D P = Div[PQ] as

I2(P) =
∫

�

W+
magic(P) + L2

c

2
‖Div[PQ]‖2 dx → min . P.τ |∂� = F0.τ , (B.14)

We may now substitute ̂P := PQ ⇐⇒ P = ̂PQT . Then it holds

DW+
magic(

̂PQT ) = S1(̂PQT ) = σ(̂PQT )Cof(̂PQT )
�=σ(̂P)Cof(̂PQT )

= σ(̂P)Cof(̂P)QT = S1(̂P)QT = DW+
magic(

̂P)QT , (B.15)

13 Note that we use Div(v1, . . . , vn) = Div

⎛

⎜

⎝

v1
.
.
.

vn

⎞

⎟

⎠
and curl(v1, . . . , vn) = curl

⎛

⎜

⎝

v1
.
.
.

vn

⎞

⎟

⎠
for both row and

column vectors.
14 You arrive at the same expression (B.12) by computing (∇Div[PQ]) QT directly.
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because of the isotropy (�) of W+
magic. Altogether,

d

dt
I2(P + tδP)

∣

∣

∣

∣

t=0
=

∫

�

〈

DW+
magic(

̂P)QT − L2
c

(∇Div ̂P
)

QT , δP
〉

dx

=
∫

�

〈

DW+
magic(

̂P) − L2
c∇Div ̂P, (δP)Q

〉

dx (B.16)

which now corresponds to the Euler-Lagrange equation in strong ∇Div-form for ̂P

DW+
magic(

̂P) − L2
c∇Div ̂P = 0 (B.17)

and the new minimization problem

I ∗
2 (̂P) :=

∫

�

W+
magic(

̂P) + L2
c

2

∥

∥Div ̂P
∥

∥

2
dx → min , (̂PQT ).τ |∂� = F0.τ ,

(B.18)

with τ ∈ R
2 as the unit tangent vector to ∂�. With τ = Q.ν (since 〈Q.τ, τ 〉 = 0 in

the planar case) we compute

(̂PQT ).τ = F0.τ ⇐⇒ (̂PQT ).(Q.ν) = F0.(Q.ν) ⇐⇒ ̂P.ν = (F0Q).ν

and transform the tangential boundary conditions in the curl-formulation to the
Neumann-boundary conditions for ̂P in the div-formulation

I ∗
2 (̂P) :=

∫

�

W+
magic(

̂P) + L2
c

2

∥

∥Div ̂P
∥

∥

2
dx → min , ̂P.ν|∂� = (F0Q).ν ,(B.19)

with ν ∈ R
2 as the unit normal vector to ∂�.

For numerical experiments we may then also use the space

H(Div ;�) =
{

P ∈ L2(�) | Div P ∈ L2(�)
}

.

Because of the involved nonlinear form ofW+
magic(P) it is, however, not clear whether

or not P ∈ L2(�) holds.15

15 For the modified energy

W0(F) = W+
magic(F) + 1

det F
= K(F) +

√

K(F)2 − 1 − arcoshK(F) + log det F + 1

det F
,

(B.20)

it is possible to achieve W0(F) ≥ c+ ‖F‖q .
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