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Abstract
A physical rattleback is a toy that can exhibit counter-intuitive behavior when spun on
a horizontal plate. Most notably, it can spontaneously reverse its direction of rotation.
Using a standard mathematical model of the rattleback, we prove the existence of
reversing motion, reversing motion combined with rolling, and orbits that exhibit
such behavior repeatedly.

Keywords Nonholonomic system · Computer assisted proof · Periodic orbits ·
Heteroclinic orbit · Rattleback · Rigid body

Mathematics Subject Classification 37C27 · 37C29 · 70E15 · 37J60 · 70K44

1 Introduction

We consider the energy-conserving motion of a solid three-dimensional ellipsoid that
is in no-slip contact with a fixed horizontal plate and subject to a vertical gravitational
force. If the solid is homogeneous, then the axes of inertia agree with the geometric
axes of the ellipsoid. In this case, the equations of motion can be solved explicitly
(Chaplygin 1897). More interesting behavior is observed when the axes of inertia
are rotated by a nonzero angle δ about the geometric axis that corresponds to the
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Fig. 1 Some vectors associated
with the rattleback

smallest diameter of the ellipsoid (Walker 1895). This is a standard model for the
so-called rattleback or Celtic stone, where δ is usually chosen close to zero (Walker
1896; Bondi 1986). Like the homogeneous ellipsoid, it admits a rotating motion with
constant angular velocity about the vertical axis, if this axis corresponds to the smallest
diameter of the body. But if this angular velocity (lies within a certain range and) gets
perturbed in a non-vertical direction, then the rotation is observed to gradually slow
down and eventually reverse direction. The reversal is accompanied by a rattling
motion, whence the name rattleback. Some videos of such reversing orbits are posted
at (https://web.ma.utexas.edu/users/koch/papers/rback/).

This behavior is somewhat counter-intuitive and appears to violate conservation of
angular momentum. But angular momentum can be exchanged with the plate; and if
the center of gravity is not vertically above the contact point, then the resulting torque
can slow down rotation and even reverse its direction. (There is a preferred direction
that is related to the sign of δ.) For amore detailed description of the rattleback reversal,
the underlying physics, modeling of contact forces, numerical experiments, and more,
we refer to Lindberg and Longman (1983), Garcia and Hubbard (1988), Borisov and
Mamaev (2003), Gonchenko et al. (2005), Borisov et al. (2006), Borisov et al. (2012),
Franti (2013), Awrejcewicz and Kudra (2019) and references therein.

Similar behavior is observed, both in physical models and numerical experiments,
for rattlebacks whose bodies are cut-off elliptic paraboloids. But to our knowledge,
there are no rigorous results in either case that establish the existence of reversing
orbits. In this paper, we prove the existence of such orbits, including orbits that are
periodic and thus reverse infinitely often. Our presentation is self-contained and can
serve as an introduction to the rattleback model for a mathematically oriented reader.

To be more specific, let us first introduce the equation of motion. The position of a
rigid body inR3 canbedescribedby specifying its center ofmassG and anorthonormal
3 × 3 matrix Q representing a rotation about G. The unit vector e3 = [0 0 1]� will
be referred to as the vertical direction.

Here, and in what follows, A� denotes the transpose of a matrix A. The corre-
sponding vertical direction in the body-fixed frame is the third column γ = Qe3 of
the matrix Q. Consider now a body that is moving as a function of time t , and denote
by d

dtx or ẋ the time-derivative of a vector-valued function x. Then, d
dt Q

�x = Q�x′,
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where x′ = ẋ − x × ω. Here, ω is the angular velocity, and a × b denotes the
cross-product of two vectors a and b in R3.

In the case of the rattleback with mass m, a vertical gravitational force −mgγ acts
at the center of mass G, where g is a gravitational acceleration. Suppose that the body
stays in contact with a fixed horizontal plate and satisfies a no-slip conditionv = r×ω.
Here, v is the velocity of G and r denotes the vector from G to the point of contact C .
Assuming conservation of momentum, we havemv′ = f−mgγ , where f is the force
exerted on the body at C . Assuming conservation of angular momentum as well, we
have (Iω)′ = r × f, where I is the inertia tensor about G.

Notice thatr×f = mr×v′+mgr×γ due tomomentumconservation. Substituting
this expression into the equation (Iω)′ = r×f, we end upwith the equation ofmotion

I ω̇ − (Iω) × ω = mr × v̇ − mr × (v × ω) + mgr × γ . (1.1)

In addition, we have γ̇ = γ × ω, due to the fact that γ ′ = 0. The dynamic variables
here are γ and ω. For the velocity v, we can substitute r× ω, and the vector r can be
expressed in terms of γ by using the geometry of the body.

In this paper, we consider the body to be an ellipsoid in R3 with principal semi-
axes b1 > b2 > b3 > 0. Consider the 3 × 3 matrix B = diag(b1, b2, b3). Then, the
equation for the surface of the body and the tangency condition at the point of contact
C are given by

F(r) = 1 , ∇F(r) = −‖∇F(r)‖γ , F(r)
def= ∥

∥B−1r
∥
∥
2
. (1.2)

Using these equations, one easily finds that

r = −s−1B2γ , s
def= ‖Bγ ‖ . (1.3)

The inertia tensor I is assumed to be a symmetric strictly positive definite 3×3matrix.
Then, I is invertible, and (1.1) together with the equation γ̇ = γ × ω defines a flow
onR6. This flow preserves the length � = ‖γ ‖. A straightforward computation shows
that another flow-invariant quantity is the total energy

H = 1
2ω

�
Iω + 1

2m‖v‖2 + mgs . (1.4)

The three terms on the right-hand side of this equation can be identified with the
rotational kinetic energy, the translational kinetic energy, and the potential energy,
respectively. We note that the no-slip condition v = r × ω is a non-holonomic con-
straint, so the rattleback model is not a Hamiltonian system.

In what follows, we restrict to ‖γ ‖ = 1, unless specified otherwise. Then, the phase
space for our flow is S2 ×R3, where S2 denotes the unit sphere inR3. The dimension
can be reduced further from 5 to 4, if desired, by choosing an energy E > mgb3 and
restricting to the fixed-energy surface

ME = {

x ∈ M : H(x) = E
}

, M = S2 × R3 . (1.5)
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Clearly, these invariant surfaces are all compact. So in particular, every orbit returns
arbitrarily close to a point that it has visited earlier. This allows for a variety of different
types of motion, including periodic, quasiperiodic, and chaotic orbits. For the param-
eters and energies considered in this paper, orbits that look periodic are abundant.
However, finding nontrivial periodic orbits turns out to difficult, unless one focuses
on reversible orbits.

An important feature of the rattleback flow is reversibility. To be more precise, let
� be the flow for some vector field X on Rn . That is, d

dt �t = X ◦ �t for all t ∈ R.
Given an invertible map R onRn , we say that � is R-reversible if R ◦ �t = �−t ◦ R
for all times t . Reversible dynamical systems share many qualitative properties with
Hamiltonian dynamical systems (Devaney 1976, 1977; Golubitsky et al. 1991; Lamb
and Roberts 1998). But they need not preserve a volume. In fact, one of our results
exploits the existence of stationary solutions that attract (or repel) nearby points with
the same energy. Nontrivial attractors of the type seen in dissipative systems have
been observed numerically in Borisov and Mamaev (2003), Gonchenko et al. (2005),
Borisov et al. (2012).

A well-known consequence of R-reversibility is the following. Assume that � is
R-reversible, and that some orbit of � includes two distinct points x and �τ (x) that
are both R-invariant. Then, the orbit is time-periodic with period 2τ . The proof is one
line:

�2τ (x) = �τ (�τ (x)) = �τ (R(�τ (x))) = �τ (�−τ (R(x))) = R(x) = x . (1.6)

This property will be used to construct symmetric periodic orbits for the rattleback
flow.

It is well-known that the rattleback flow is R-reversible for the reflection

R(γ ,ω) = (γ ,−ω) . (1.7)

Here, and in what follows, we use the notation (x1, . . . , xn) = [x1 . . . xn]� for
vectors in Rn . A rattleback with ellipsoid geometry (1.2) has another symmetry: the
flow commutes with the reflection S0(γ ,ω) = (−γ ,ω). Additional symmetries exist
for special choices of the inertia tensor I. A standard choice in experiments is to take
I13 = I23 = 0. Then, the system is invariant under a rotation by π about the vertical
axis e3. Inwhat follows, we always restrict to this situation. As a consequence, the flow
commutes with the reflection S(γ ,ω) = ((−γ1,−γ2, γ3), (−ω1,−ω2, ω3)). And it
commutes with the reflection S′ = SS0 as well. Given that S′ commutes with R, our
flows are RS′-reversible, where

RS′(γ ,ω) = (

(γ1, γ2,−γ3), (ω1, ω2,−ω3)
)

. (1.8)

As part of our investigation, we have carried out numerical simulations for various
choices of the model parameters. For simplicity, we focus here on a single set of
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parameters, namely

m = 4 , b1 = 5 , b2 = 17
16 , b3 = 1 ,

I11 = 2223
1024 , I12 = − 3021

1024 , I22 = 2603
128 , I33 = 669

32 ,
(1.9)

and I13 = I23 = 0. For the gravitational acceleration we choose the value g = 40141
4096 .

These parameters can be realized in a physical experiment, with the proper choice of
units for length, mass, and time. (Possible units would be centimeters, decagrams, and
deciseconds, respectively.) We note that the matrix I is strictly positive definite, and
that the smallest possible energy of a point inM ismgb3 = 40141

1024 = 39.2001953125.
The chosen inertia tensor is of the form I = R−1

I0R, where I0 is roughly the
inertia tensor of a homogeneous solid ellipsoid with the given mass m and semi-axes
b j , and where R is a rotation about the vertical axis e3 by an angle δ � π

20 .

2 Main Results

A trivial solution of the rattleback equation is the stationary solutionwith γ = (0, 0, 1)
and ω = (0, 0, ω3). If ω3 	= 0, then this corresponds to a steady rotation about the
vertical axis. As mentioned earlier, one of the peculiar features of the rattleback is
observed when starting with a nearby initial condition that is not a stationary point. If
ω3 is within a certain range of values, then the rotation is observed to slow down and
eventually reverse direction. In order to give a precise definition of reversal, consider
the column vectors α, β, and γ of the rotation matrix Q, and define the angle ψ0 by
the equation

tanψ0 = α1

β1
, ψ0 ∈ R/(πZ) . (2.1)

When evaluated along an orbit, this “yaw-angle” ψ0 typically varies as a function of
time. Denote by ψ : R → R a continuous lift of ψ0 to the real line. We say that
the body reverses its direction of rotation on a time interval [a, b], if there exists a
time c ∈ [a, b] such that the differences ψ(c) − ψ(a) and ψ(c) − ψ(b) have the
same sign and are bounded away from zero by some positive constant C . The largest
such constant C will be referred to as the amplitude of the reversal, and the sign of
ψ(c) − ψ(a) will be called the sign of the reversal.

Theorem 2.1 There exists an R-symmetric periodic orbit of period T = 227.471 . . .

that reverses its direction of rotation on [−T /2, T /2] and on [0, T ], with opposite
signs and amplitudes larger than 4. The energy for this orbit is E = 39.683 . . .

Our proof of this theorem is computer-assisted, in the sense that it involves estimates
that have been verified (rigorously) with the aid of a computer. The same applies to
the theorems stated below. The statement E = 39.683 . . . in Theorem 2.1 means that
39.683 ≤ E < 39.684. The same notation is used for other interval enclosures. We
note that our actual bounds are much more accurate.
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Fig. 2 Components γ j (left) and Mj (right) for the orbit described in Theorem 2.1

The orbit mentioned in Theorem 2.1 is shown in Fig. 2. To bemore precise, consider
the angular velocityM = Iω−mr×v about the contact pointC . This angular velocity
has been used as primary variable (in place of ω) in several papers. A straightforward
computation shows that

M = [I + mK (r)]ω , K (r) = ‖r‖2I − rr� . (2.2)

The matrix I+mK (r) is strictly positive, so (2.2) could be used to express ω in terms
ofM. We note that the reflections R, S, and S′ commute with the change of variables
(γ ,ω) �→ (γ ,M).

Figure 2 shows the components of γ (left) and of M (right) as functions of time t ,
for the orbit described in Theorem 2.1. The R-reversibility of the orbit is equivalent
to the condition that γ is an even function of t , while M is an odd function of t .

Remark 1 All of our results that refer to the parameters (1.9) hold for an open set of
parameter values nearby. This is a consequence of nondegeneracy properties that are
verified as part of our proofs.

Our next result concerns the existence of a reversing heteroclinic orbit between two
stationary points of the form zc = (e3, c e3). As will be shown in the next section,
there exists a value c∗ = 1.048 . . . such that zc is repelling for c < −c∗ and attracting
for c > c∗, if the flow is restricted to the surface of fixed energy E = H(zc).

Theorem 2.2 Consider the parameter values (1.9). For c = 1.849 . . . there exists a
heteroclinic R-reversible orbit connecting z−c to zc. This orbit reverses its direction
of rotation on [−b, b] for large b > 0, and the amplitude tends to infinity as b → ∞.
An analogous orbit (in fact a one-parameter family) exists for c = 1.467 . . . that is

Fig. 3 Components γ j (left) and Mj (right) for the first orbit described in Theorem 2.2
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RS-reversible. The energies of these two orbits are E = 74.95 . . . and E = 61.72 . . .,
respectively.

The first orbit described in this theorem is shown in Fig. 3. We note that this orbit
must pass through an R-invariant point x at time t = 0. Since z−c is repelling and zc
attracting (for fixed energy), every point that is sufficiently close to x and has the same
energy as x lies on some heteroclinic orbit connecting z−c to zc. We expect that there
exists heteroclinic orbits between z±c for a range of values c > c∗, and it is possible
that such orbits exist for some range of values c < c∗ as well.

Numeral experiments are most often carried out for rattlebacks whose body is a
cut-off elliptic paraboloid. If we replace F(r) = ‖ρ‖2 by F(r) = ρ2

1 +ρ2
2 − 2ρ3 − 1,

where ρ = B−1r, then the behavior can be expected to be similar to the behavior of
the ellipsoid, as long as γ stays close to e3. Among the features of the ellipsoid-shaped
rattleback that cannot be studied in the cut-off paraboloid case is roll-over motion.

A possible definition of “rolling over e1” can be given in terms of the angle φ0
defined by the equation

tan φ0 = γ2

γ3
, φ0 ∈ R/(πZ) . (2.3)

When evaluated along an orbit, this “roll-angle” φ0 typically varies as a function of
time. Denote by φ : R → R a continuous lift of φ0 to the real line. We say that the
body rolls over e1 on a time interval [a, b], if the difference φ(b) − φ(a) is no less
than π in absolute value. The sign of φ(b) − φ(a) will be called the direction of the
roll-over.

Theorem 2.3 Consider the parameter values (1.9). There exists a periodic orbit of
period T = 254.286 . . . that rolls over e1 on two time-intervals, once in the positive
direction, and once in the negative direction. In addition, the orbit reverses its direction
of rotation on [−T /2, T /2] and on [0, T ], with opposite signs and amplitudes larger
than 24. The orbit is R-symmetric, andwhen translated in time by T /4, it becomes RS′-
symmetric. Its energy is E = 42.0308 . . . Furthermore, there exists a one-parameter
family of such orbits.

The orbit described in this theorem is shown in Figs. 4 and 5.
The right part of Fig. 5 shows the lifted yaw-angleψ and the lifted roll-angle φ. The

left part shows the behavior of M near t = 0. It illustrates that the rattleback motion

Fig. 4 Components γ j (left) and Mj (right) for the orbit described in Theorem 2.3
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Fig. 5 Components Mj (left) and angles ψ , φ (right) for the orbit described in Theorem 2.3

exhibits many rapid variations, especially during reversals. Controlling such orbits
rigorously involves rather accurate estimates. Typical error bounds in our analysis are
of the order 2−2000.

3 Some Simpler Solutions

After describing a periodic orbit that rolls over e1 repeatedly in the same direction,
we will discuss some stationary solutions and their stability.

Theorem 3.1 Consider the parameter values (1.9). There exists a RS′-symmetric peri-
odic orbit of period T = 18.061 . . . and energy E = 42.99 . . . that rolls over e1 on
two adjacent time-intervals of combined length T , both times with the same direction.
In fact, there exists a two-parameter family of such orbits.

The orbit described in this theorem is shown in Fig. 6. Our numerical results suggest
that both the yaw-angle ψ and the roll-angle φ are monotone for this orbit, but we did
not try to prove this.

We note that there exist trivial roll-over orbits as well as trivial heteroclinic orbits.
Consider the manifold Fix(S′) = {(γ ,ω) ∈ M : γ3 = ω1 = ω2 = 0} that is invariant
under the flow. At energy mgb1, we have a heteroclinic orbit in Fix(S′) between the
points z± = ((±1, 0, 0), 0). For energies below mgb1, the orbits are all closed and
avoid z±. For energies above mgb1, the orbits are closed and clearly roll over e2 with
the obvious definition of such a roll-over.

Next, we consider some stationary solutions. A stationary point x = (γ ,ω) neces-
sarily satisfies ω = ±‖ω‖γ , since γ̇ = γ × ω has to vanish. The stability of x is best
discussed in terms of the vector field X : (γ ,ω) �→ (γ̇ , ω̇). If x is invariant under

Fig. 6 Components γ j (left) and Mj (right) for the first orbit described in Theorem 3.1
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R, RS, or RS′, then the set of eigenvalues λ of DX(x) is invariant under λ �→ λ̄ and
λ �→ −λ.

The simplest stationary points are x j = (e j , 0), where e j is the unit vector parallel
to the j-th coordinate axis. A straightforward computation shows that besides two
eigenvalues zero (due to the conservation of � and H), DX(x1) has four real eigen-
values, DX(x2) has two real and two imaginary eigenvalues, and DX(x3) has four
imaginary eigenvalues. This holds for any ellipsoid body with b1 > b2 > b3 > 0.

The stationary point x3 is part of a family of stationary points zc = (e3, c e3)
parametrized by a real number c. The stability of these points has been investigated
in several papers, including (Markeev 1983; Bondi 1986; Garcia and Hubbard 1988;
Pascal 1994; Franti 2013). The consensus is that, for many choices of parameters, an
analogue of the following holds.

Lemma 3.2 Consider the parameter values (1.9). There exists a constant c∗ =
1.048 . . . such that the stationary point zc is repelling for c < −c∗, hyperbolic for
0 < |c| < c∗, and attracting for c > c∗, if the flow is restricted to the surface ME of
constant energy E = H(zc).

A pencil-and-paper proof of this lemma is possible, but tedious; so we carried out
the necessary (rigorous) computations with a computer. Notice that it suffices to prove
the assertions for c > 0, since DX(z−c) = DX(Rzc) = −DX(zc) by R-reversibility.
We remark that Lemma 3.2 excludes the existence of a real analytic first integral that
is independent of � and H. A result on the non-existence of analytic integrals was
proved also in Dullin and Tsygvintsev (2008).

Finally, let us describe two one-parameter families of RS′-invariant stationary
points. We have not found them discussed in the literature.

Lemma 3.3 Consider the parameter values (1.9) and points z = (γ ,ω) with γ3 = 0
andω = ±‖ω‖γ . There exist a real number q∗ = 0.025941 . . . such that the following
holds. If −q∗ <

γ1
γ2

≤ 0, then z is a stationary point. For γ1 = 0 we have ‖ω‖ = 0,

and ‖ω‖ → ∞ as γ1
γ2

→ −q∗ from above. Furthermore, if 0 ≤ γ2
γ1

< q∗, then z is

a stationary point. For γ2 = 0 we have ‖ω‖ = 0, and ‖ω‖ → ∞ as γ2
γ1

→ q∗ from
below.

The existence of stationary points near (±e2, 0) or (±e1, 0) may be a known fact.
What seems surprising is that the two critical solutions (corresponding to ‖ω‖ = ∞)
are related via a rotation by π

2 . This part of Lemma 3.3 is not specific to the choice of
parameter values (1.9).

The remaining parts of this paper are devoted to our proofs of the results stated in
Sects. 2 and 3.

4 Integration and Poincaré Sections

The equation (1.1) determines ω̇ as a function of x = (γ ,ω). Together with the
equation γ̇ = γ × ω, this defined a vector field X = (γ̇ , ω̇) on R6. This vector field
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is considered only in a small open neighborhood ofM inR6 where it is real analytic.
The resulting flow (t, x) �→ �t (x) is then real analytic as well.

In order to construct an orbit for a non-small time-interval [0, r ], we partition
this interval into m small subintervals [τk−1, τk] with τ0 = 0 and τm = r . On each
successive subinterval, starting with k = 1, we solve the initial value problem ẋ =
X(x) with given initial conditions at time τk−1 via the integral equation

x(τk−1 + t) = x(τk−1) +
∫ t

0
X(x(τk−1 + s)) ds , 0 ≤ t ≤ τk − τk−1 . (4.1)

If ρ = τk − τk−1 is a sufficiently small positive real number, then for 1 ≤ j ≤ 6, the
function g defined by g(t) = x j (τk−1 + t) is given by its Taylor series about t = 0
and has a finite norm

‖g‖ =
∞
∑

n=0

|bn|ρn , bn = g(n)(0)

n! . (4.2)

This norm is convenient for computer-assisted proofs, since it is easy to estimate,
and since the corresponding function space Gρ is a Banach algebra for the pointwise
product of functions. Each function g ∈ Gρ extends analytically to the complex disk
|z| < ρ and continuously to its boundary. In what follows, ρ is a fixed but arbitrary
positive real number.

Consider now the integral equation (4.1), with k = 1 to simplify the discussion.
Let x0(t) = x(0). Since the vector field X defines an analytic function on some open
neighborhood of x(0), the equation (4.1) can be solved order by order by iterating the
transformation K given by

(K(x))(t) = x0 +
∫ t

0
X(x(s)) ds , (4.3)

starting with x = x0. That is, the Taylor polynomial xn of order n for Kn(x0) agrees
with the Taylor polynomial of order n for x .

This is of course the well-known Taylor integration method. In order to estimate
the higher-order correction x − xd for some large degree d, we use a norm on G6

ρ of
the form

‖x‖ = max
1≤ j≤6

w j‖x j‖ , (4.4)

with appropriately chosen weights w j > 0. A common approach is to apply the
contraction mapping theorem on a ball centered at xd . Instead, we use Theorem 5.1
in Arioli and Koch (2015), which only requires that some closed higher-order set
gets mapped into itself. In our programs, the radius ρ and the weights w j are chosen
adaptively, depending on properties of X(xd).

Computing K(x) from the Taylor series for x involves only a few basic operations
like sums, products, antiderivatives, multiplicative inverses, and square roots. This
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is done by decomposing each function g involved into a Taylor polynomial gd of
some (large) degree d and a higher-order remainder g − gd . For sums, products, and
antiderivatives of functions in Gρ , it is trivial to estimate the higher-order remainder
of the result.

Consider now the multiplicative inverse 1 + h of a function 1 + g, where

g = g∞ , gn(t) =
n

∑

k=1

bkt
k , h = h∞ , hn(t) =

n
∑

k=1

ckt
k . (4.5)

The following is straightforward to prove.

Proposition 4.1 Let g ∈ Gρ with ‖g‖ < 1. Then, h = (1 + g)−1 − 1 belongs to Gρ .
The Taylor coefficients cn of h are given recursively by

cn = −bn −
n−1
∑

k=1

bkcn−k , n = 1, 2, . . . (4.6)

and

‖h − hn‖ ≤ 1

1 − ‖g‖
∥
∥1 − (1 + g)(1 + hn)

∥
∥ . n = 1, 2, . . . (4.7)

We note that the same holds if g takes values in some commutative Banach algebra
X with unit. Then, the Taylor coefficients bn and cn in (4.5) are vectors in X . This
fact is used when estimating the flow for initial points that depend on parameters.

Next, consider the (principal branch of the) square root of a function 1 + g.

Proposition 4.2 Let g ∈ Gρ with ‖g‖ < 1
2 . Then h = (1 + g)1/2 − 1 belongs to Gρ .

The Taylor coefficients cn of h are given recursively by

cn = 1

2

[

bn −
n−1
∑

k=1

ckcn−k

]

, n = 1, 2, . . . (4.8)

Furthermore,

‖h − hn‖ ≤ 8

5

∥
∥(1 + g) − (1 + hn)

2
∥
∥ , n ≥ 2 , (4.9)

provided that the norm on the right-hand side of this inequality does not exceed 1
4 .

Proof We will use that

h − hn = 1

2
(1 + hn)

−1([(1 + g) − (1 + hn)
2 ] − (h − hn)

2) . (4.10)

Verifying this identity and (4.8) is straightforward.
Let now n ≥ 2. Using the power series for z �→ (1 + z)1/2 − 1, and the fact that

∣
∣
(1/2

k

)∣
∣ ≤ 1

8 for k ≥ 2, one easily finds that ‖hn‖ ≤ 5
8‖g‖. This in turn yields a bound∥

∥(1 + hn)−1
∥
∥ ≤ 8

5 . So from (4.10), we find that δ = 4
5‖h − hn‖ satisfies
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δ2 − δ + 16
25ε ≥ 0 , ε

def= ∥
∥(1 + g) − (1 + hn)

2
∥
∥ . (4.11)

Assuming that ε ≤ 1
4 , this implies the bound (4.9). ��

Next, we consider the problem of constructing reversible orbits for the given flow.
In what follows, we will use M as a primary variable instead of ω. The equation of
motion in the variables (γ ,M) is given by

γ̇ = γ × ω , Ṁ = mg r × γ + M × ω + mṙ × (ω × r) . (4.12)

Here, r and ṙ are obtained from (1.3), while ω is determined from r andM via (2.2).
In order to simplify notation, we will now write x = (γ ,M) and X = (γ̇ , Ṁ). Recall
that R and RS′ commute with the change of variables (γ ,ω) �→ (γ ,M).

For the construction of periodic orbits, it is convenient to consider return maps to
some codimension 1 surface �. The surfaces used in our analysis are

� j = {(γ ,M) ∈ R6 : Mj = 0} , (4.13)

for j = 1 or j = 3. Since we are exploiting reversibility, only half-orbits or quarter-
orbits need to be considered. Each partial orbit starts at some symmetric (meaning
R-invariant or RS′-invariant) point. The goal is to determine such a point x , as well
as a positive time τ = τ(x), such that �τ (x) is again symmetric. To this end, we first
determine a symmetric numerical approximation x̄ for x and an approximation τ̄ for
τ . After choosing a real number τ ′ slightly smaller than τ̄ , the associated Poincaré
map P is then defined by setting

P(x) = �τ(x)(x) , τ (x) = min
{

t ∈ R : t ≥ τ ′ and �t (x) ∈ �
}

, (4.14)

for all (symmetric) starting points x in some neighborhood of x̄ .
Consider now the problem of constructing the orbit described in Theorem 2.1. The

starting point at time t = 0 is R-invariant and thus of the form x = (γ , 0). Restricting
to ‖γ ‖ = 1, the possible starting points are parametrized by a vector γ = (γ1, γ2)

in R2 of length less than 1. For the Poincaré section, we choose � = �1. Then,
x̃ = P(x) is of the form x̃ = (

γ̃ , M̃
)

with M̃1 = 0. Define P(γ ) = (

M̃2, M̃3
)

.

Lemma 4.3 There exists a vector γ̄ ∈ S2 such that the following holds. Let x̄ = (γ̄ , 0)
and τ ′ = 113. Then, the Poincare map P with � = �1 is well-defined and real
analytic in an open neighborhood Bg × BM of x̄ in M. When restricted to Bg, the
associated mapping P is real analytic, has a nonsingular derivative, and takes the
value (0, 0) at some R-invariant point. Furthermore, all orbits with starting points
in Bg × {0} have Poincaré time τ(x) = 113.7359 . . ., energy E = 39.683 . . ., and
reverse as described in Theorem 2.1.

Our proof of this lemma is computer-assisted andwill be described in Sect. 6.Notice
that if γ ∈ Bg is a solution of P(γ1, γ2) = (0, 0), and if we set x = (γ , 0), then the
point �τ (x) is R-invariant for τ = τ(x). Thus, as described earlier, this implies that
�T (x) = x with T = 2τ(x). So Theorem 2.1 follows from Lemma 4.3.
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In order to construct the orbit described in Theorem 2.3, we use a Poincare map P
with� = �3. The starting point x is again R-invariant, but the desired point x̃ = P(x)
is RS′-invariant, meaning that γ3 = M3 = 0. So the goal is to find zeros of the function
P defined by P(γ ) = γ̃3.

Lemma 4.4 There exists a vector γ̄ ∈ S2 such that the following holds. Let x̄ = (γ̄ , 0).
Then, the Poincare map P with � = �3 and τ ′ = 63 is well-defined and real
analytic in an open neighborhood Bg × BM of x̄ in M. When restricted to Bg, the
associated function P is real analytic and takes the value 0 at some RS′-invariant
point. Furthermore, all orbits with starting points in Bg × {0} have Poincaré time
τ(x) = 63.57172 . . ., energy E = 42.0308 . . . and reverse/roll-over as described
in Theorem 2.3. The same holds for a two-parameter family of RS′-invariant initial
points.

Our proof of this lemma will be described in Sect. 6. Notice that if γ ∈ Bg is
a solution of P(γ1, γ2) = 0, and if we set x = (γ , 0), then the point �τ (x) is
RS′-invariant for τ = τ(x). Thus, by R-reversibility, the point x ′ = �−τ (x) is RS′-
invariant as well. As described earlier, this implies that �T (x ′) = x ′ with T = 4τ(x).
So Theorem 2.3 follows from Lemma 4.4.

Remark 2 A lemma analogous to Lemma 4.4 holds for the orbit described in Theo-
rem 3.1, with RS′-invariant starting points x . Choosing again � = �3 and P = γ̃3,
the equation that needs to be solved is P(γ1, M1, M2) = 0. Here, the value of τ ′ used
in (4.14) is τ ′ = 8.5.

5 Stationary Points and Heteroclinic Orbits

Consider the flow on R6 in the variables (γ ,ω). Clearly, x̄ = ((0, 0, γ3), (0, 0, ω3))

is a stationary point for any real values γ3 	= 0 and ω3. So the derivative DX(x̄)
has two trivial eigenvalues 1, with eigenvectors ((0, 0, u), (0, 0, v)). The remaining
eigenvalues agree with those of the 4 × 4 matrix PDX(x̄)P�, where P is the 4 × 6
matrix defined by P(γ ,ω) = (γ, ω), with γ = (γ1, γ2) and ω = (ω1, ω2).

In what follows, we fix γ3 = 1 in the definition of x̄ . Define two 2 × 2 matrices J
and B by setting

J = d−1
[

I22 + mb23 −I12

−I21 I11 + mb23

]

, Bi j = Ji, jmb2j , (5.1)

where d = (

I11 + mb23
)(

I22 + mb23
) − I12I21. Notice that J is the inverse of P[I +

K (r̄)]P�. A straightforward computation shows that

PDX(x̄)P� = L(ω3) = L0 + ω3L1 + ω2
3L2 , (5.2)
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where

L0 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 −J21 −J22
0 0 J11 J12
0 mg(b3 − a2) 0 0

−mg(b3 − a1) 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

, (5.3)

L1 =

⎡

⎢
⎢
⎢
⎣

−B21 1 − B22 0 0

−1 + B11 B12 0 0

0 0 −I33 J21 1 − I33 J22
0 0 −1 + I33 J11 I33 J12

⎤

⎥
⎥
⎥
⎦

, (5.4)

and

L2 =

⎡

⎢
⎢
⎢
⎣

0 0 0 0

0 0 0 0

−I33B21 −I33B22 0 0

I33B11 I33B12 0 0

⎤

⎥
⎥
⎥
⎦

. (5.5)

Here, a1 = b21/b3 and a2 = b22/b3 are the principal radii of curvature of the ellipsoid
at r1 = r2 = 0 and r3 = ±b3,

Sketch of a proof of Lemma 3.2. Our aim is to apply the Routh–Hurwitz crite-
rion, which is commonly used for such stability problems. It involves the coefficients
p0, . . . , p4 of the characteristic polynomial

det
(

L(ω3) − λI
) =

4
∑

n=0

pn(ω3)λ
n , (5.6)

and two other polynomials p5 and p6 that are constructed from the coefficients
p0, . . . , p4. By the Routh–Hurwitz criterion, the eigenvalues λ = λ(ω3) of L(ω3)

all have a negative real part if and only if pn(ω3) > 0 for all n. For the parameters
values (1.9), an explicit computation shows that deg(pn) = 4 − n for n ≤ 4 and
deg(pn) = n − 2 for n > 4. Furthermore, each polynomial pn is either even or odd;
and up to a factor d4, its coefficients are rationals with denominators that are powers
of 2. The value of c∗ mentioned in Lemma 3.2 is the positive zero of p5. The other
polynomials pn have no zeros on the positive real line, as can be seen immediately
from their coefficients. The source code of our program Hurwitz that computes all
these coefficients can be found in Supplementary material. ��

Consider now the two orbits described in Theorem 2.2. The first orbit is chosen
to pass at time t = 0 through the point x = (γ , 0) with γ1 = −43585 × 2−17 =
−0.3325 . . . and γ2 = −144635 × 2−20 = −0.1379 . . .. Since x is R-invariant, the
orbit of x is R-symmetric. The energy of x is E = H(x) = mbs, with s given
by (1.3). The claim is that �t (x) approaches one of the above-mentioned stationary
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points x̄ = (e3, ω3e3) as t → ∞. The value of ω3 > 0 is determined by the equation
E = 1

2 I33ω
2
3 + mgb3.

The second orbit mentioned in Theorem 2.2 passes at time t = 0 through the
point x = (e3, (M1, M2, 0)) with M1 = −285332 × 2−20 = −0.2721 . . ., and with
M2 < 0 determined by prescribing the energy E = 252819 × 2−12 = 61.72 . . ..
Since x is RS-invariant, the orbit of x is RS-symmetric. Defining ω3 > 0 by the
equation E = 1

2 I33ω
2
3 +mgb3, the claim is that �t (x) approaches the stationary point

x̄ = (e3, ω3e3) as t → ∞.
In both cases, the goal is to prove that there exists a time τ > 0 such that �τ (x)

belongs to an open neighborhood of x̄ inME that is attracted to x̄ under the flow. To
this end, consider the map PE : ME → R4 given by PE(x) = Px , where P is as
defined at the beginning of this section. Then, the equation of motion onME near the
origin is conjugate via PE to the equation

ẏ = Y (y) , y = (γ1, γ2, ω1, ω2) , (5.7)

where Y = PX ◦ P−1
E in some open neighborhood of x̄ inME . The stationary point

for the associated flow is ȳ = 0.
Notice that DY (0) = L(ω3). Using Lemma 3.2, we have chosen x̄ in such a way

that ω3 > c∗. So we know that all eigenvalues of L(ω3) have a negative real part. We
expect that all eigenvalues are simple. Then, there exists an inner product 〈. , .〉 onR4

such that the matrix

� = 1

2

[

L(ω3) + L(ω3)
∗] (5.8)

is strictly negative definite, where L(ω3)
∗ denotes the adjoint of L(ω3) with respect

to the above-mentioned inner product. Assume for now that � is strictly negative
definite, meaning that 〈u,�u〉 is negative for every nonzero vector u ∈ R4. Then, the
derivative

d

dt
〈y, y〉 = 2〈y,�y〉 + 2

〈

y, N (y)
〉

, N (y) = Y (y) − L(ω3)y , (5.9)

is negative, if the nonlinear part N (y) is sufficiently small compared to y.
Let now yτ = P�τ (x). In order to prove that yτ is attracted to zero by the flow

associated with Y , it suffices to show that yτ belongs to a ball B ⊂ R4 that is centered
at the origin, with the property that |〈y, N (y)〉| < |〈y,�y〉| for all nonzero y ∈ B.
This property is equivalent to

∣
∣
〈

u, ϑ−1N (ϑu)
〉∣
∣ < |〈u,�u〉| , u ∈ ∂B , 0 < ϑ ≤ 1 . (5.10)

Lemma 5.1 Let yτ = P�τ (x), with τ = 100 and x as described above (either the
R-invariant or the RS-invariant choice). Then, there exists an inner product 〈. , .〉 on
R4 such that 〈u,�u〉 is negative for every nonzero u ∈ R4. Moreover, there exists
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δ > 0 such that yτ belongs to the ball B = {

y ∈ R4 : |〈y, y〉|1/2 < δ
}

, and such that
the condition (5.10) holds. Furthermore, the orbit for x has the energy and reversing
property described in Theorem 2.2.

Our proof of this lemma is computer-assisted and will be described in Sect. 6.
Notice that �t (x) → x̄ as t → ∞, since the norm of y(t) = P�t (x) tends to zero
by (5.9) and (5.10). Furthermore Sx̄ = x̄ . So by reversibility, �t (x) converges to
Rx̄ = RSx̄ as t → −∞. In other words, we have a heteroclinic orbit connecting
Rx̄ = RSx̄ = (e,−ω3e) to x = (e, ω3e). So Theorem 2.2 follows from Lemma 5.1.

In the remaining part of this section, we give a proof of Lemma 3.3, based in part on
(trivial) estimates that have been carried out with the aid of a computer (Supplementary
material). These estimates are specific to the choice of parameters (1.9), but analogous
estimates should work for many other choices. The remaining arguments only use that
b1 	= b2 and I13 = I23 = 0.

Sketch of a proof of Lemma 3.3. We consider the equation for a stationary solution
(γ ,ω) with the property that γ3 = ω3 = 0. Then, ω = (ω1, ω2) must be parallel to
γ = (γ1, γ2). So ω = ±‖ω‖γ . Consider also the condition Ṁ = 0. From (4.12),
we see that the first two components of Ṁ vanish automatically. And the condition
Ṁ3 = 0 becomes

g(r1γ2 − r2γ1) + m−1(M1ω2 − M2ω1) = 0 . (5.11)

This condition can be written as an equation for r = (r1, r2) by using that γ j =
−sb−1

j r j and ω = ±‖ω‖γ . To be more specific, we define two functions P andQ by
the equation

P(r) = −sg
(

b−2
2 − b−2

1

)

r1r2 ,

s2Q(r) = (

m−1
I12 − r1r2

)(

b−4
2 r22 − b−4

1 r21
)

+[

m−1(I11 − I22) + r22 − r21
)]

b−2
1 b−2

2 r1r2 . (5.12)

A straightforward computation shows that (5.11) reduces to

P(r) + ‖ω‖2Q(r) = 0 . (5.13)

If we stay away from the zeros of Q, then the condition is satisfied for some value of
‖ω‖ if and only if P(r) and Q(r) have opposite signs.

In addition to (5.13), we also have the ellipse condition (r1/b1)2+(r2/b2)2 = 1. So
define p(θ) = P(r) and q(θ) = Q(r), using r1 = b1 sin(θ/2) and r2 = b2 cos(θ/2).
Both p and q are 2π -periodic functions, since P andQ are even functions of r . In the
remaining part of this paragraph, we consider just the parameters (1.9). Restricting θ to
the interval [−π, π ], the sign of p(θ) is just the sign of −θ . So it suffices to determine
the sign of q(θ). This is easily done by using interval arithmetic. By estimating q and
its derivative q ′ on subintervals, one finds that q has exactly two zeros. Finally, using
a (rigorous) Newton method, the zeros are located at values θ∗ = −0.242951 . . . and
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θ ′∗ = 3.13056 . . .. For details, we refer to the source code of the program RSp_Stat
in Supplementary material.

Notice that γ1
γ2

= b2
b1

tan(θ/2). When computing these ratios numerically, it appears
that the the vector γ for the angle θ = θ∗ is orthogonal to the vector γ ′ for the angle
θ ′∗. The following argument confirms this observation.

Consider now Q as a function of γ , say Q(r) = Q(γ ). Let γ be a solution of
Q(γ ) = 0. This property of γ is equivalent to M2ω1 − M1ω2 = 0, meaning that
M = (M1, M2) is parallel to ω. Recall that M = (I + mK (r))ω, where K (r) =
‖r‖2I−rr�. So ω is an eigenvector of I+mK (r). Equivalently, ω is an eigenvector of
m−1

I − rr�. But ω is parallel to γ , so γ is an eigenvector as well. Setting ρ = B−1r
with B = diag(b1, b2), we have

[

m−1
I − Bρρ�B

]

γ = λγ , (5.14)

for some real number λ. This property is equivalent to the condition Q(γ ) = 0.
Using that the matrix [· · · ] in the above equation is symmetric, we also have

[

m−1
I − Bρρ�B

]

γ ′ = λ′γ ′ , γ ′ =
[−γ2

γ1

]

, (5.15)

for some real number λ′. Notice that ρ = −‖Bγ ‖−1Bγ . Let ρ′ = −‖Bγ ′‖−1Bγ ′.
Then,

[

m−1
I − Bρ′ρ′�B

]

γ ′ = μγ ′ + νγ , (5.16)

for some real numbers μ and ν. Subtracting (5.16) from (5.15) yields

B
[

ρ′ρ′� − ρρ�]

ρ′ = (λ′ − μ)B−1ρ′ − cνB−1ρ , (5.17)

where c is a nonzero constant. Notice that ρ′ρ′�ρ′ = ρ′ and ρ�ρρ� = ρ�. Thus,
multiplying both sides of (5.17) from the left byρ�B−1 yields 0 = (λ′−μ)ρ�B−2ρ′−
cνρ�B−2ρ. But ρ�B−2ρ′ = 0 since γ �γ ′ = 0. This implies that ν = 0. So the
equation (5.16) holds with ν = 0, and this is equivalent to Q(γ ′) = 0. This proves
the claim in Lemma 3.3 concerning the limits with ‖ω‖ → ∞. ��

6 Computer Estimates

What remains to be done is to prove Lemmas 4.3, 4.4, and 5.1. (Our proof of the
lemma referred to in Remark 2 is analogous to the proof of Lemma 4.4, so we will
not discuss it separately here.) The necessary estimates are carried out with the aid of
a computer. This part of the proof is written in the programming language Ada [24]
and can be found in Supplementary material. The following is a rough guide for the
reader who wishes to check the correctness of our programs.
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6.1 Enclosures and Data Types

By an enclosure for (or bound on) an element x in a space X we mean a set X ⊂ X
that includes x and is representable as data on a computer. For points inRn , this could
be rectangles that contains x . Working rigorously with such enclosures is known as
interval arithmetic. What we need here are enclosures for elements in Banach spaces,
such as functions g(t) = ∑

n bnt
n in the spaces Gρ described earlier. In addition,

when considering orbits that depend on parameters (such as initial conditions), the
coefficients bn can be functions themselves.

In our programs, enclosures are associatedwith a data type. LetX be a commutative
real Banach algebra with unit 1. Our data of type Ball are pairs B = (B.C,B.R),
where B.C and B.R are representable numbers, with B.R ≥ 0. The enclosure asso-
ciated with a Ball B is the ball BX = {x ∈ X : ‖x − (B.C)1‖ ≤ B.R}. For specific
spaces X , other types of enclosures will be described below. In all cases, enclosures
are closed convex subsets of X that admit a canonical finite decomposition

S =
∑

n

xnB(n)X , (6.1)

where each xn is a representable element in X , and where each B(n) is a Ball
centered at 0 or at 1.

Assume that X carries a type of enclosures named Scalar. For vectors in
X 3, we use a Scalar-type enclosure for each component. The correspond-
ing data type SVector3 is simply an array(1..3) of Scalar. Our type
Point defines enclosures for points x = (γ ,M) with γ ,M ∈ X 3. But
a Point P is in fact a 7-tuple P=(P.Alpha, P.Beta, P.Gamma, P.M,
P.Energy, P.YawPi, P.RollPi), where the first four components are of type
SVector3. The component P.Energy is a Scalar that defines an enclosure for
the energy of a point, while P.YawPi and P.RollPi are integers. More specifi-
cally, P.YawPi = (ψ −ψ0)/π and P.RollPi = (φ −φ0)/π , whereψ is the lifted
yaw-angle and φ the lifted roll-angle for points x in the enclosure given by P. The
type Point is defined in the Ada package Rattleback.

Consider now a function g : D → X on a disk D = {z ∈ C : |z| < ρ} with
representable radius ρ > 0. Denote by G the space of all such functions that admit
a Taylor series representation g(z) = ∑∞

n=0 bnz
n and have a finite norm ‖g‖ =

∑∞
n=0 ‖bn‖ρn . Here, bn ∈ X for all n. A large class of enclosures for functions in

this space is determined by the type Taylor1, which is defined in the Ada package
Taylors1. Since this type has been used several times before, we refer to (Arioli
and Koch 2018) for a rough description and to Supplementary material for details.

Our integration method uses a much simpler type named Taylor. A Taylor
P is an array(0..d) of Scalar, where d is some fixed positive integer. The
associated enclosure is the set

PG =
d−1
∑

n=0

P(n)X Zn + P(d)G Zd , Z(z) = z . (6.2)
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Here, P(d)G is obtained from S = P(d)X by replacing each ball B(n)X in the
decomposition (6.1) of S by the corresponding ball B(n)G . The first d terms in (6.2)
provide enclosures for the polynomial part gd−1 of a vector g ∈ G, as defined in
(4.5), while the last term provides an enclosure for both the coefficient bd and the
remainder g − gd . A precise definition of the type Taylor is given in the package
ObO (an abbreviation for order-by-order). For analytic curves with values in X 3, we
use Taylor-type enclosures for each component via a type TVector3, which is
simply an array(1..3) of Taylor.

Enclosures for real analytic curves t �→ x(t) on D are defined by the type Curve
that is introduced in the packageRattleback.Flows. In our programs, aCurveC
is a quadruple (C.Alpha,C.Beta,C.Gamma,C.M) whose four components are
of type TVector3. These enclosures are used in our bounds on the integral operator
K defined by (4.3).

We note that the types Point, Taylor, and Curve depend on choice of the
Banach algebra X via the type Scalar. In the case X = R, we instantiate the
package Rattleback and others with Scalar => Ball. For our analysis of the
characteristic polynomial (5.6), which depends on two parameters ω3 and λ, we use
an instantiation of Rattleback with Scalar => TTay, where TTay defines
enclosures for real analytic functions of two variables. (Hurwitz.TTay is a Taylor
series in λ whose coefficients are Taylor series in ω3.)

Another Banach algebra T that is very useful consists of pairs (u, u′), where u ∈ X
and u′ ∈ X n . Addition and multiplication by scalars is as in X n+1. The product of
(u, u′) with (v, v′) is defined as (uv, uv′ + u′v). If one thinks of u and v as being
functions of n parameters, then u′ and v′ transform like gradients. Enclosures for
element in T use a data type Tangent that is defined in the package Tangents.
They are used to obtain bounds on the derivative of Poincaré maps (by using Scalar
=> Tangent) without first having to determine a formula for the derivative.

6.2 Bounds and Procedures

The next step is to implement bounds onmaps between the various spaces. By a bound
on a map f : X → Y , we mean a function F that assigns to a set X ⊂ X of a given
type (say Xtype) a set Y ⊂ Y of a given type (say Ytype), in such a way that
y = f (x) belongs to Y whenever x ∈ X . In Ada, such a bound F can be implemented
by defining an appropriate procedure F(X: in Xtype; Y: out Ytype). In
practice, the domain of F is restricted: if X does not belong to the domain of F, the F
raises an Exception which causes the program to abort.

The type Ball used here is defined in the package MPFR.Floats.Balls,
using centers B.C of type MPFloat and radii B.R ≥ 0 of type LLFloat. Data
of type MPFloat are high-precision floating point numbers, and the elementary
operations for this type are implemented by using the open source MPFR library
[27]. Data of type LLFloat are standard extended floating-point numbers [26] of
the type commonly handled in hardware. Both types support controlled rounding.
Bounds on the basic operations for this type Ball are defined and implemented in
MPFR.Floats.Balls.
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The Ada package that defines a certain type also defines (usually) bounds on the
basic operations that involve this type. In particular, bounds on the maps g �→ g−1

and g �→ g1/2 on G are implemented by the procedures Inv and Sqrt, respectively,
in the package Obo that defines the type Taylor. In the spirit of order-by-order
computations, these procedures include an argument Deg for the order (degree) that
needs to be processed. At the top degree, which corresponds to the last term in (6.2),
the procedures Inv and Sqrt determine bounds on the higher order terms, using the
estimate given in Propositions 4.1 and4.2, respectively.

Bounds involving the type Point are defined mostly in Rattleback. This
includes a procedure Ham that implements a bound on the energy function H, and a
procedureVecField that implements a bound on the vector field (γ ,M) �→ (γ̇ , Ṁ).
Several other procedures deal with the construction of points (initial conditions) with
prescribed properties; their role is described by short comments in our programs.

The package Rattleback.Flows implements bounds on the time-t maps �t

and various Poincaré maps. The first few procedures deal with the order-by-order
computation of cross products and other basic operations. They maintain temporary
data, so that lower order computations do not have to be repeated. And some of them
can run sub-tasks in parallel, using the standard tasking facilities that are part of Ada
[24]. The procedure VecField combines these computations into a bound on the
vector field x �→ ẋ as maps between enclosures of the type Curve.

A bound on the solution of the integral equation K(x) = x is implemented by
the procedure Integrate. After the polynomial part xd of the solution x has been
determined, a bound on x − xd is obtained by first guessing a possible enclosure
S ⊂ G6 for this function, and then checking that xd + S is mapped into itself by the
operatorK. Using Theorem 5.1 in Arioli and Koch (2015), this guarantees thatK has a
unique fixed point in xd +S. We note that Integrate first determines a proper value
of the domain parameter ρ for the space G = Gρ . This defines the time-increments
τk − τk−1 used in (4.1).

Poincaré maps are now straightforward to implement. The type Flt_Affine
specifies an affine functional F : X 6 → X whose zero defines a Poincaré section �.
To bemore specific, F(γ ,M)only depends onM. Besides an argumentF that specifies
F , the procedure Sign_Poincare also includes an argument TNeed for the time
τ ′ that enters the definition (4.14). Now, Sign_Poincare uses (an instantiation of)
the procedure Generic_Flow to iterate Integrate, until �t (x) with t ≥ τ ′ lies
on�. A bound on the zero of t �→ F(�t (x)) is determined by using the Newton-based
procedure ObO.FindZero. We note that t is of type Scalar, so the stopping time
τ = τ(x) can depend on parameters, if X 	= R.

The anglesψ0 andφ0 are computed via their definitions (2.1) and (2.3), respectively.
This involves integrating the equations α̇ = α × ω and β̇ = β × ω besides (4.12).
The lifts of these angles to R are obtained by estimating their derivatives

ψ̇ = α̇1β1 − α1β̇1

α2
1 + β2

1

, φ̇ = γ̇2γ3 − γ2γ̇3

γ 2
2 + γ 2

3

, (6.3)

along the flow. This is done via the procedures YawNumPi and RollNumPi, respec-
tively, in the package Rattleback.Flows. The values of ψ and φ at the Poincaré
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time τ(x) and the intermediate times τ0, τ1, . . . , τm are shown on the standard out-
put. Our claims concerning reversals and roll-over can be (and have been) verified by
inspecting the output of our programs.

6.3 Main Programs

Our proof of Lemma 4.3 is organized in the programs R_Der and R_Point. The
initial point x = (γ , 0) is determined from data of type Point that are read from a file
(Supplementarymaterial). It suffices to control themap P described before Lemma 4.3
on a square centered at γ = (γ1, γ2). The chosen square is 2ε × 2ε, with ε = 2−2000.
This square also determines a domain Bg ⊂ S2 via the constraint ‖γ ‖ = 1.

After instantiating the necessary packages, the programR_Der computes an enclo-
sure for the derivative DP on R and saves the result to a file. It also verifies that Bg×BM

belongs to the domain of the Poincaré map for some open neighborhood BM of the
origin inR3. The program R_Point uses the above-mentioned enclosure for DP to
verify that a quasi-Newton map associated with P maps R into its interior.

The necessary bounds forLemma4.4 are verified using the programRSpR_Point.
The program takes an argument Sign_DG1 with values in {−1, 0, 1}. The starting
point is of the form x = (γ , 0), with γ2 = −125174× 2−17. If Sign_DG1 = 0, then
the value of γ1 ranges in the interval [−δ, δ], where δ = 2−2500. To be more precise,
the Point-type enclosure P0 for x is chosen to include an open subset of M, with
P0.Gamma(1) including [−δ, δ]. In this case,RSpR_Pointmerely verifies thatP0
is included in the domain of the associated Poincaré map. If Sign_DG1 = ±1, then
γ1 = ±δ. In these cases, RSpR_Point computes and shows an interval containing
γ̃3 = P(γ ). Inspecting the output confirms that the sign of γ̃3 agrees with the sign of
Sign_DG1. Thus, there exist a value γ1 ∈ [−δ, δ] such that P(γ1, γ2) = 0.

An additional program RSpR_Der can be used (optionally) to prove that DP is
nonzero. This implies that the two-parameter family mentioned in Lemma 4.4 is real
analytic.

The bounds referred to in Remark 2 are verified via the program Roll_Point.
This program is analogous to RSpR_Point. And there is an analogue Roll_Der
of RSpR_Der.

The bounds needed for Lemma 5.1 are organized by the programs Het, HetRS,
and Basin. Both Het and HetRS run Plain_Flow for a time τ = 100. The initial
point x is as described in Sect. 5. Enclosures for x and �τ (x) are saved to data files.
These files are then read by the procedure Check in Basin.

An upper bound LambdaMax on the spectrum of the (negative) linear operator �

defined by (5.8) is determined and shown byBasin.Show_Linear. This is done by
via approximate diagonalization. The matrix that diagonalizes � approximately also
defines the inner product used in (5.10). Then,Basin.Show_NonLinear computes
and shows an upper bound on the absolute value of the ratio 〈y, ϑ−1N (ϑ y)〉/〈y, y〉 for
y ∈ ∂B. By construction, this bound is non-decreasing in ϑ , so it suffices to consider
ϑ = 1. At the end, (5.10) can be (and has been) checked by inspecting the output from
Basic.
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All of these programs were run successfully on a standard desktop machine, using a
public version of the gcc/gnat compiler (https://www.gnu.org/software/gnat/). Instruc-
tions on how to compile and run these programs can be found in the file README that
is included with the source code in Supplementary material. We note that the running
times are rather long-days for some programs. This is due to the fact that our orbits
are quite long, and that we need to use MPFR and rather high Taylor orders to get the
accuracy needed.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00332-022-09797-7.
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