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Abstract
A variational formulation for accelerated optimization on normed vector spaces was
recently introduced in Wibisono et al. (PNAS 113:E7351–E7358, 2016), and later
generalized to the Riemannian manifold setting in Duruisseaux and Leok (SJMDS,
2022a). This variational framework was exploited on normed vector spaces in Duruis-
seaux et al. (SJSC 43:A2949–A2980, 2021) using time-adaptive geometric integrators
to design efficient explicit algorithms for symplectic accelerated optimization, and it
was observed that geometric discretizations which respect the time-rescaling invari-
ance and symplecticity of the Lagrangian and Hamiltonian flows were substantially
less prone to stability issues, and were therefore more robust, reliable, and com-
putationally efficient. As such, it is natural to develop time-adaptive Hamiltonian
variational integrators for accelerated optimization on Riemannian manifolds. In this
paper, we consider the case of Riemannian manifolds embedded in a Euclidean space
that can be characterized as the level set of a submersion. We will explore how holo-
nomic constraints can be incorporated in discrete variational integrators to constrain
the numerical discretization of the Riemannian Hamiltonian system to the Rieman-
nian manifold, and we will test the performance of the resulting algorithms by solving
eigenvalue and Procrustes problems formulated as optimization problems on the unit
sphere and Stiefel manifold.
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1 Introduction

Many data analysis algorithms are designed around theminimization of a loss function
or the maximization of a likelihood function. Due to the ever-growing scale of the data
sets and size of the problems, there has been a lot of focus on first-order optimization
algorithms because of their low cost per iteration. In 1983, Nesterov’s accelerated
gradient method (Nesterov 1983) was shown to converge inO(1/k2) to the minimum
of the convex objective function f , improving on theO(1/k) convergence rate exhib-
ited by standard gradient descent methods. ThisO(1/k2) convergence rate was shown
in Nesterov (2004) to be optimal among first-order methods using only information
about ∇ f at consecutive iterates. This phenomenon in which an algorithm displays
this improved rate of convergence is referred to as acceleration, and other accelerated
algorithms have been derived since Nesterov’s algorithm, which was shown in Su et al.
(2016) to limit to a second-order ordinary differential equation (ODE), as the timestep
goes to 0, and that f (x(t)) converges to its optimal value at a rate of O(1/t2) along
any trajectory x(t) of this ODE. It was then shown in Wibisono et al. (2016) that in
continuous time, an arbitrary convergence rate O(1/t p) can be achieved in normed
spaces, by considering flow maps generated by a family of time-dependent Bregman
Lagrangian andHamiltonian systemswhich is closed under time-rescaling. This varia-
tional framework and the time-rescaling property of this family were then exploited in
Duruisseaux et al. (2021) by using time-adaptive geometric integrators to design effi-
cient explicit algorithms for symplectic accelerated optimization. It was observed that
a careful use of adaptivity and symplecticity could result in a significant gain in compu-
tational efficiency. More generally, when applied to Hamiltonian systems, symplectic
integrators yield discrete approximations of the flow that preserve the symplectic 2-
form (Hairer et al. 2006). The preservation of symplecticity results in the preservation
of many qualitative aspects of the underlying dynamical system. In particular, when
applied to conservative Hamiltonian systems, symplectic integrators exhibit excellent
long-time near-energy preservation (Benettin and Giorgilli 1994; Reich 1999). Varia-
tional integrators provide a systematic method for constructing symplectic integrators
of arbitrarily high-order based on the numerical discretization of Hamilton’s principle
(Marsden andWest 2001; Hall and Leok 2015), or equivalently, by the approximation
of Jacobi’s solution of the Hamilton–Jacobi equation, which is a generating function
for the exact symplectic flow map.

In the past few years, there has been some effort to derive accelerated optimization
algorithms in theRiemannianmanifold setting (Duruisseaux andLeok 2022a;Alimisis
et al. 2020a, b, 2021; Zhang and Sra 2016, 2018; Ahn and Sra 2020; Liu et al. 2017). In
Duruisseaux and Leok (2022a), it was shown that in continuous time, the convergence
rate of f (x(t)) to its optimal value can be accelerated to an arbitrary convergence
rate O(1/t p) on Riemannian manifolds. This was achieved by considering a fam-
ily of time-dependent Bregman Lagrangian and Hamiltonian systems on Riemannian
manifolds which is closed under time-rescaling, thereby generalizing the variational
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framework for accelerated optimization ofWibisono et al. (2016) to Riemannian man-
ifolds. The time-adaptivity based approach relying on a Poincaré transformation from
Duruisseaux et al. (2021) was also extended to the Riemannian manifold setting in
Duruisseaux and Leok (2022a). Now, the Whitney embedding theorems (Whitney
1944a, b) state that any smooth manifold of dimension n ≥ 2 can be embedded in
R
2n and immersed in R

2n−1, and is thus diffeomorphic to a submanifold of R2n .
Furthermore, the Nash embedding theorems (Nash 1956) state that any Riemannian
manifold can be globally isometrically embedded into some Euclidean space. As a
consequence of these embedding theorems, the study of Riemannian manifolds can
in principle be reduced to the study of submanifolds of Euclidean spaces. Altogether,
this motivates the introduction of time-adaptive variational integrators on Riemannian
manifolds which exploit the structure of the embedding Euclidean space, and in this
paper, we will study how holonomic constraints can be incorporated into different
types of variational integrators to constrain the numerical solutions of the Riemannian
dynamical system to the Riemannian manifold. Incorporating holonomic constraints
in geometric integrators has been studied extensively in the past (see Marsden and
West (2001); Hairer et al. (2006); Marsden and Ratiu (1999); Holm et al. (2009) for
instance), and some work has been done from the variational perspective for the Type
I Lagrangian formulation in Marsden and West (2001) via augmented Lagrangians.

Outline of the Paper

Section 2 shows the equivalence between constrained variational principles and con-
strained Euler–Lagrange equations, both in continuous and discrete time, before
deriving analogous results for both the Type II and Type III Hamiltonian formula-
tions of mechanics in Sect. 3. In Sect. 4, we will exploit error analysis theorems for
unconstrained mechanics from Marsden and West (2001); Schmitt and Leok (2017)
to obtain variational error analysis results for the maps defined implicitly by the dis-
crete constrained Euler–Lagrange and Hamilton’s equations. Finally, in Sect. 5, we
will exploit these constrained variational integrators and the variational formulation
of accelerated optimization on Riemannian manifolds from Duruisseaux and Leok
(2022a) to solve numerically generalized eigenvalue problems and Procrustes prob-
lems on the unit sphere and Stiefel manifold.

2 Constrained Variational LagrangianMechanics

Traditionally, variational integrators have been designed based on theType I generating
function known as the discrete Lagrangian, Ld : Q × Q → R. The exact discrete
Lagrangian is the exact generating function for the time-h flow map of Hamilton’s
equations, and it can be represented in boundary value form by

LE
d (q0, qh) =

∫ h

0
L(q(t), q̇(t))dt, (2.1)
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where q(0) = q0, q(h) = qh, and q satisfies the Euler–Lagrange equations over
the time interval [0, h]. This is closely related to Jacobi’s solution of the Hamilton–
Jacobi equation. A variational integrator is defined by constructing an approximation
Ld : Q×Q → R to the exact discrete Lagrangian LE

d , and then applying the implicit
discrete Euler–Lagrange equations,

p0 = −D1Ld(q0, q1), p1 = D2Ld(q0, q1), (2.2)

which implicitly define a numerical integrator, referred to as the discrete Hamiltonian
map F̃Ld : (q0, p0) �→ (q1, p1), where Di denotes a partial derivative with respect to
the i-th argument. These equations define the discrete Legendre transforms, F±Ld :
Q × Q → T ∗Q:

F
+Ld : (q0, q1) �→ (q1, p1) = (q1, D2Ld(q0, q1)), (2.3)

F
−Ld : (q0, q1) �→ (q0, p0) = (q0,−D1Ld(q0, q1)), (2.4)

and the discrete Hamiltonian map can be expressed as F̃Ld ≡ (F+Ld) ◦ (F−Ld)
−1.

Such numerical methods are called variational integrators as they can be derived from
a discrete Hamilton’s principle, which involves extremizing a discrete action sum
Sd

({qk}Nk=0

) ≡ ∑N−1
k=0 Ld(qk, qk+1), subject to fixed boundary conditions on q0, qN .

Now, supposewe are given a configurationmanifoldM, and a holonomic constraint
function C : M → R

d . Assuming that 0 ∈ R
d is a regular point of C, we can constrain

the dynamics to the constraint submanifoldQ = C−1(0),which is truly a submanifold
of M (see Marsden and West (2001); Abraham et al. (1988)). We will now consider
variational Lagrangian mechanics with holonomic constraints C(q) using Lagrange
multipliers λ : [0, T ] → �.

2.1 Continuous ConstrainedVariational LagrangianMechanics

Webegin by presenting an equivalence between the continuous constrained variational
principle and the continuous constrained Euler–Lagrange equations:

Theorem 2.1 Consider the constrained action functionalS : C2([0, T ],Q× �) →
R given by

S(q(·), λ(·)) =
∫ T

0
[L(q(t), q̇(t)) − 〈λ(t), C(q(t))〉] dt . (2.5)

The condition thatS(q(·), λ(·)) is stationary with respect to the boundary conditions
δq(0) = 0 and δq(T ) = 0 is equivalent to (q(·), λ(·)) satisfying the constrained
Euler–Lagrange equations

∂L

∂q
− d

dt

∂L

∂q̇
= 〈λ,∇C(q)〉, C(q) = 0. (2.6)

Proof See Appendix A.1. �
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Remark 2.1 These constrained Euler–Lagrange equations can be thought of as the
Euler–Lagrange equations coming from the augmented Lagrangian L̄

(
q, λ, q̇, λ̇

) =
L(q, q̇) − 〈λ, C(q)〉.

Consider the function S(q0, qT ) given by the extremal value of the constrained
action functional S over the family of curves (q(·), λ(·)) satisfying the boundary
conditions q(0) = q0 and q(T ) = qT :

S(q0, qT ) = ext
(q,λ)∈C2([0,T ],Q×�)
q(0)=q0, q(T )=qT

S(q(·), λ(·)). (2.7)

The following theorem shows that S(q0, qT ) is a generating function for the flow of
the continuous constrained Euler–Lagrange equations:

Theorem 2.2 The exact time-T flow map of Hamilton’s equations (q0, p0) �→
(qT , pT ) is implicitly given by the following relations:

D1S(q0, qT ) = −∂L

∂ q̇
(q0, q̇(0)), D2S(q0, qT ) = ∂L

∂ q̇
(qT , q̇(T )). (2.8)

In particular, S(q0, qT ) is a Type I generating function that generates the exact flow
of the constrained Euler–Lagrange equations (2.6).

Proof See Appendix A.4. �


2.2 Discrete ConstrainedVariational LagrangianMechanics

We now introduce a discrete variational formulation of Lagrangian mechanics which
includes holonomic constraints. Suppose we are given a partition 0 = t0 < t1 < . . . <

tN = T of the interval [0, T ], and a discrete curve inQ× � denoted by {(qk, λk)}Nk=0
such thatqk ≈ q(tk) andλk ≈ λ(tk).Wewill formulate discrete constrained variational
Lagrangian mechanics in terms of the following discrete analogues of the constrained
action functional S given by Eq. (2.5):

S+
d

(
{(qk, λk)}Nk=0

)
=

N−1∑
k=0

[
Ld(qk, qk+1) − 〈λk+1, C(qk+1)〉

]
, (2.9)

S−
d

(
{(qk, λk)}Nk=0

)
=

N−1∑
k=0

[
Ld(qk, qk+1) − 〈λk, C(qk)〉

]
, (2.10)

where

Ld(qk, qk+1) ≈ ext
(q,λ)∈C2([tk ,tk+1],Q×�)
q(tk)=qk , q(tk+1)=qk+1

∫ tk+1

tk
L(q(t), q̇(t))dt . (2.11)
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We can now derive discrete analogues to Theorem 2.1 relating discrete Type I
variational principles to discrete Euler–Lagrange equations:

Theorem 2.3 The Type I discrete Hamilton’s variational principles

δS±
d

(
{(qk, λk)}Nk=0

)
= 0 (2.12)

are equivalent to the discrete constrained Euler–Lagrange equations

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) = 〈λk,∇C(qk)〉, C(qk) = 0, (2.13)

where Ld(qk, qk+1) is defined via Eq. (2.11).

Proof See Appendix A.7. �

Remark 2.2 These discrete constrained Euler–Lagrange equations can be thought
of as the discrete Euler–Lagrange equations coming from the augmented discrete
Lagrangians

L̄+
d (qk, λk, qk+1, λk+1) = Ld(qk, qk+1) − 〈λk+1, C(qk+1)〉, (2.14)

L̄−
d (qk, λk, qk+1, λk+1) = Ld(qk, qk+1) − 〈λk, C(qk)〉. (2.15)

3 Constrained Variational HamiltonianMechanics

The boundary value formulation of the exact Type II generating function of the time-h
flow of Hamilton’s equations is given by the exact discrete right Hamiltonian,

H+,E
d (q0, ph) = phqh −

∫ h

0
[p(t)q̇(t) − H(q(t), p(t))] dt, (3.1)

where (q, p) satisfies Hamilton’s equations with boundary conditions q(0) = q0 and
p(h) = ph . A Type II Hamiltonian variational integrator is constructed by using an
approximate discrete right Hamiltonian H+

d , and applying the discrete right Hamil-
ton’s equations,

p0 = D1H
+
d (q0, p1), q1 = D2H

+
d (q0, p1), (3.2)

which implicitly define the integrator, F̃H+
d

: (q0, p0) �→ (q1, p1).
Similarly, the boundary value formulation of the exact Type III generating func-

tion of the time-h flow of Hamilton’s equations is given by the exact discrete left
Hamiltonian,

H−,E
d (qh, p0) = −p0q0 −

∫ h

0
[p(t)q̇(t) − H(q(t), p(t))] dt, (3.3)
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where (q, p) satisfies Hamilton’s equations with boundary conditions q(h) = qh and
p(0) = p0. A Type III Hamiltonian variational integrator is constructed by using an
approximate discrete left Hamiltonian H−

d , and applying the discrete left Hamilton’s
equations,

p1 = −D1H
−
d (q1, p0), q0 = −D2H

−
d (q1, p0), (3.4)

which implicitly define the integrator, F̃H−
d

: (q0, p0) �→ (q1, p1).
We now derive analogous results to those of Sect. 2 from the Hamiltonian perspec-

tive. As in the Lagrangian case, we will assume we have a configuration manifoldM,
a holonomic constraint function C : M → R

d , and that the dynamics are constrained
to the submanifold Q = C−1(0).

3.1 Continuous ConstrainedVariational HamiltonianMechanics

The following theorem presents the equivalence between a continuous constrained
variational principle and continuous constrained Hamilton’s equations in the Type II
case, generalizing Lemma 2.1 from Leok and Zhang (2011) to include holonomic
constraints:

Theorem 3.1 Consider the Type II constrained action functional S : C2([0, T ],
T ∗Q × �) → R

S(q(·), p(·), λ(·)) = p(T )q(T ) −
∫ T

0
[p(t)q̇(t) − H(q(t), p(t))

−〈λ(t), C(q(t))〉] dt . (3.5)

The condition that S(q(·), p(·), λ(·)) is stationary with respect to the boundary
conditions δq(0) = 0 and δ p(T ) = 0 is equivalent to (q(·), p(·), λ(·)) satisfying
Hamilton’s constrained equations

q̇ = ∂H

∂ p
(q, p), ṗ = −∂H

∂q
(q, p) − 〈λ,∇C(q)〉, C(q) = 0. (3.6)

Proof See Appendix A.2. �

As in the Type II case, we can derive a theorem relating a continuous constrained

variational principle and continuous constrained Hamilton’s equations in the Type III
case:

Theorem 3.2 Consider theType III constrainedaction functionalS : C2([0, T ], T ∗Q
× �) → R

S(q(·), p(·), λ(·)) = −p(0)q(0) −
∫ T

0
[p(t)q̇(t) − H(q(t), p(t))

−〈λ(t), C(q(t))〉] dt . (3.7)
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The condition that S(q(·), p(·), λ(·)) is stationary with respect to the boundary
conditions δq(T ) = 0 and δ p(0) = 0 is equivalent to (q(·), p(·), λ(·)) satisfying
Hamilton’s constrained equations

q̇ = ∂H

∂ p
(q, p), ṗ = −∂H

∂q
(q, p) − 〈λ,∇C(q)〉, C(q) = 0. (3.8)

Proof See Appendix A.3. �

Remark 3.1 Hamilton’s constrained equations are the same in the Type II and Type III
formulations of Hamiltonian mechanics, and they can be thought of as the Hamilton’s
equations generated by the augmented Hamiltonian

H̄
(
q, λ, p,p

) = H(q, p) + 〈λ, C(q)〉, (3.9)

where p is the conjugate momentum for the variable λ. Furthermore, they are equiv-
alent to the constrained Euler–Lagrange Eq. (2.6), provided that the Lagrangian L is
hyperregular.

Remark 3.2 It is sometimes beneficial to augment the continuous equations with the
equation 〈 ∂H

∂ p (q, p),∇C(q)〉 = 0 (and analogously for the discrete case) to ensure
that the momentum p lies in the cotangent space to the manifold, as explained and
illustrated in (Hairer et al. 2006, Chapter VII).

We will now generalize Theorem 2.2 and its Type III analogue from Leok and
Zhang (2011) to include holonomic constraints C(q) using Lagrange multipliers λ :
[0, T ] → �.

In the Type II case, consider the function S(q0, pT ) given by the extremal value
of the constrained action functional S over the family of curves (q(·), p(·), λ(·))
satisfying the boundary conditions q(0) = q0 and p(T ) = pT :

S(q0, pT ) = ext
(q,p,λ)∈C2([0,T ],T ∗Q×�)

q(0)=q0, p(T )=pT

S(q(·), p(·), λ(·)). (3.10)

The following theorem shows that S(q0, pT ) is a generating function for the flow of
the continuous constrained Hamilton’s equations:

Theorem 3.3 The exact time-T flow map of Hamilton’s equations (q0, p0) �→
(qT , pT ) is implicitly given by the following relations:

qT = D2S(q0, pT ), p0 = D1S(q0, pT ). (3.11)

In particular, S(q0, pT ) is a Type II generating function that generates the exact flow
of the constrained Hamilton’s Eq. (3.6).

Proof See Appendix A.5. �
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In the Type III case, consider the function S(qT , p0) given by the extremal value
of the constrained action functional S over the family of curves (q(·), p(·), λ(·))
satisfying the boundary conditions q(T ) = qT and p(0) = p0:

S(qT , p0) = ext
(q,p,λ)∈C2([0,T ],T ∗Q×�)

q(T )=qT , p(0)=p0

S(q(·), p(·), λ(·)). (3.12)

The following theorem shows that S(qT , p0) is a generating function for the flow of
the continuous constrained Hamilton’s equations:

Theorem 3.4 The exact time-T flow map of Hamilton’s equations (q0, p0) �→
(qT , pT ) is implicitly given by the following relations:

q0 = −D2S(qT , p0), pT = −D1S(qT , p0). (3.13)

In particular, S(qT , p0) is a Type III generating function that generates the exact flow
of the constrained Hamilton’s Eq. (3.8).

Proof See Appendix A.6. �


3.2 Discrete ConstrainedVariational HamiltonianMechanics

Let us now extend the results of Sect. 3 from Leok and Zhang (2011) to introduce a
discrete formulation of variational Hamiltonian mechanics which includes holonomic
constraints. Suppose we are given a partition 0 = t0 < t1 < . . . < tN = T of the
interval [0, T ], and a discrete curve in T ∗Q × �, denoted by {(qk, pk, λk)}Nk=0, such
that qk ≈ q(tk), pk ≈ p(tk) and λk ≈ λ(tk).

We formulate discrete constrained variational Hamiltonian mechanics in terms of
the following discrete analogues of the constrained action functional S given by Eq.
(3.5):

S+
d

(
{(qk, pk, λk)}Nk=0

)
= pNqN −

N−1∑
k=0

[
pk+1qk+1−H+

d (qk, pk+1)−〈λk, C(qk)〉
]
,

(3.14)

S−
d

(
{(qk, pk, λk)}Nk=0

)
=−p0q0−

N−1∑
k=0

[−pkqk−H−
d (qk+1, pk)−〈λk+1, C(qk+1)〉

]
,

(3.15)

where

H+
d (qk, pk+1) ≈ ext

(q,p,λ)∈C2([tk ,tk+1],T ∗Q×�)
q(tk)=qk , p(tk+1)=pk+1

p(tk+1)q(tk+1)

−
∫ tk+1

tk
[p(t)q̇(t) − H(q(t), p(t))] dt (3.16)
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H−
d (qk+1, pk) ≈ ext

(q,p,λ)∈C2([tk ,tk+1],T ∗Q×�)
q(tk+1)=qk+1, p(tk )=pk

−p(tk)q(tk)

−
∫ tk+1

tk
[p(t)q̇(t) − H(q(t), p(t))] dt . (3.17)

We can nowderive discrete analogues ofTheorems 3.1 and 3.2 relating discrete vari-
ational principles to discrete constrained Hamilton’s equations, generalizing Lemma
3.1 from Leok and Zhang (2011):

Theorem 3.5 The Type II discrete Hamilton’s phase space variational principle

δS+
d

(
{(qk, pk, λk)}Nk=0

)
= 0 (3.18)

is equivalent to the discrete constrained right Hamilton’s equations

qk+1 = D2H
+
d (qk, pk+1), pk = D1H

+
d (qk, pk+1) + 〈λk,∇C(qk)〉, C(qk) = 0,

(3.19)

where H+
d (qk, pk+1) is defined via Eq. (3.16).

Proof See Appendix A.8. �

Theorem 3.6 The Type III discrete Hamilton’s phase space variational principle

δS−
d

(
{(qk, pk, λk)}Nk=0

)
= 0 (3.20)

is equivalent to the discrete constrained left Hamilton’s equations

qk = −D2H
−
d (qk+1, pk), pk+1 = −D1H

−
d (qk+1, pk) − 〈λk+1,∇C(qk+1)〉,

C(qk) = 0, (3.21)

where H−
d (qk+1, pk) is defined via Eq. (3.17).

Proof See Appendix A.9. �

Remark 3.3 These discrete constrained Hamilton’s equations can be thought of as the
discrete Hamilton’s equations generated by the augmented discrete Hamiltonians

H̄+
d

(
(qk, λk), (pk+1,pk+1)

) = H+
d (qk, pk+1) + 〈λk, C(qk)〉, (3.22)

H̄−
d

(
(qk+1, λk+1), (pk,pk)

) = H−
d (qk, pk+1) + 〈λk+1, C(qk+1)〉. (3.23)

This augmented Hamiltonian perspective together with the augmented Lagrangian
perspective from Remark 2.2 imply that the constrained H̄+

d variational integrator is
equivalent to the constrained L̄+

d variational integrator whenever the H+
d variational
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integrator is equivalent to the L+
d variational integrator (and similarly for the integrators

generated by H̄−
d and L̄−

d ). Exampleswhere this happens are presented in Schmitt et al.
(2018) for Taylor variational integrators provided the Lagrangian is hyperregular, and
in Leok and Zhang (2011) for generalized Galerkin variational integrators constructed
using the same choices of basis functions and numerical quadrature formula provided
the Hamiltonian is hyperregular.

4 Error Analysis for Variational Integrators

4.1 Unconstrained Error Analysis

Theorem 2.3.1 of Marsden and West (2001) states that if a discrete Lagrangian, Ld :
Q×Q → R, approximates the exact discrete Lagrangian LE

d : Q×Q → R to order
r , i.e.,

Ld(q0, qh) = LE
d (q0, qh) + O(hr+1), (4.1)

then the discrete Hamiltonian map F̃Ld : (qk, pk) �→ (qk+1, pk+1), viewed as a
one-step method defined implicitly from the discrete Euler–Lagrange equations

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) = 0, (4.2)

or equivalently in terms of the implicit discrete Euler–Lagrange equations, which
involve the corresponding discrete momenta via the discrete Legendre transforms,

pk = −D1Ld(qk, qk+1), pk+1 = D2Ld(qk, qk+1), (4.3)

has order of accuracy r .
Theorem 2.3.1 of Marsden and West (2001) has an analogue for Hamiltonian vari-

ational integrators. Theorem 2.2 in Schmitt and Leok (2017) states that if a discrete
right Hamiltonian H+

d approximates the exact discrete right Hamiltonian H+,E
d to

order r , i.e.,

H+
d (q0, ph) = H+,E

d (q0, ph) + O(hr+1), (4.4)

then the discrete right Hamiltonian map F̃H+
d

: (qk, pk) �→ (qk+1, pk+1), viewed as
a one-step method defined implicitly by the discrete right Hamilton’s equations

pk = D1H
+
d (qk, pk+1), qk+1 = D2H

+
d (qk, pk+1), (4.5)

is order r accurate. As mentioned in Schmitt and Leok (2017), the proof of Theorem
2.2 in Schmitt and Leok (2017) can easily be adjusted to prove an equivalent theorem
for the discrete left Hamiltonian case, which states that if a discrete left Hamiltonian
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H−
d approximates the exact discrete left Hamiltonian H−,E

d to order r , i.e.,

H−
d (q1, p0) = H−,E

d (q1, p0) + O(hr+1), (4.6)

then the discrete left Hamiltonian map F̃H−
d

: (qk, pk) �→ (qk+1, pk+1), viewed as a
one-step method defined implicitly by the discrete left Hamilton’s equations

pk+1 = −D1H
−
d (qk+1, pk), qk = −D2H

−
d (qk+1, pk), (4.7)

is order r accurate. Many other properties of the integrator, such as momentum con-
servation properties of the method, can be determined by analyzing the associated
discrete Lagrangian or Hamiltonian, as opposed to analyzing the integrator directly.
We will exploit these error analysis results to derive analogous results for the con-
strained versions discussed in Sects. 2 and 3.

4.2 Constrained Error Analysis

For the Lagrangian case, we can think of the Lagrange multipliers λ as extra position
coordinates and define an augmented Lagrangian L̄ via

L̄
(
(q, λ), (q̇, λ̇)

) = L(q, q̇) − 〈λ, C(q)〉. (4.8)

A corresponding augmented discrete Lagrangian is given by

L̄d ((qk, λk), (qk+1, λk+1)) = Ld(qk, qk+1) − 〈λk, C(qk)〉, (4.9)

and the discrete Euler–Lagrange Eq. (4.2)

D1 L̄d ((qk, λk), (qk+1, λk+1)) + D2 L̄d ((qk−1, λk−1), (qk, λk)) = 0, (4.10)

yield the discrete constrained Euler–Lagrange equations

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) = 〈λk,∇C(qk)〉,
C(qk) = 0, (4.11)

derived in Sect. 2.2. As a consequence, we can apply Theorem 2.3.1 of Marsden and
West (2001) to the augmented Lagrangian (4.8) and obtain the following result:

Theorem 4.1 Suppose that for an exact discrete Lagrangian LE
d and a discrete

Lagrangian Ld ,

Ld(q0, qh) − 〈λ0, C(q0)〉 = LE
d (q0, qh) −

∫ h

0
〈λ(t), C(q(t))〉dt + O(hr+1).

(4.12)
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Then, the discrete map (qk, pk, λk) �→ (qk+1, pk+1, λk+1), viewed as a one-step
method defined implicitly by the discrete constrained Euler–Lagrange equations, has
order of accuracy r .

For the Hamiltonian case, we can think of the Lagrange multipliers λ as extra
position coordinates and define conjugate momenta p, which are constants of motion
since the time-derivative of λ does not appear anywhere, and are constrained to be
zero. The augmented Hamiltonian H̄ , given by

H̄
(
(q, λ), (p,p)

) = H(q, p) + 〈λ, C(q)〉, (4.13)

yields the following augmented left and right discrete Hamiltonians

H̄−
d

(
(qk+1, λk+1), (pk,pk)

) = H−
d (qk+1, pk) + 〈λk+1, C(qk+1)〉, (4.14)

H̄+
d

(
(qk, λk), (pk+1,pk+1)

) = H+
d (qk, pk+1) + 〈λk, C(qk)〉, (4.15)

and the discrete left and right Hamilton’s equations

(pk+1,pk+1) = −D1 H̄
−
d

(
(qk+1, λk+1), (pk,pk)

)
,

(qk, λk) = −D2 H̄
−
d

(
(qk+1, λk+1), (pk,pk)

)
, (4.16)

(pk,pk) = D1 H̄
+
d

(
(qk, λk), (pk+1,pk+1)

)
,

(qk+1, λk+1) = D2 H̄
+
d

(
(qk, λk), (pk+1,pk+1)

)
, (4.17)

yield the discrete constrained left Hamilton’s equations

qk = −D2H
−
d (qk+1, pk), pk+1 = −D1H

−
d (qk+1, pk) − 〈λk+1,∇C(qk+1)〉,

C(qk) = 0, (4.18)

and the discrete constrained right Hamilton’s equations

qk+1 = D2H
+
d (qk, pk+1), pk = D1H

+
d (qk, pk+1) + 〈λk,∇C(qk)〉, C(qk) = 0,

(4.19)

derived in Sect. 3. As a consequence, we can apply Theorem 2.2 in Schmitt and
Leok (2017) and its Type III analogue to the augmented Hamiltonians and obtain the
following results

Theorem 4.2 Suppose that given an exact discrete right Hamiltonian H+,E
d and a

discrete right Hamiltonian H+
d , we have

H+
d (q0, ph) + 〈λ0, C(q0)〉 = H+,E

d (q0, ph) +
∫ h

0
〈λ(t), C(q(t))〉dt + O(hr+1).

(4.20)
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Then, the discrete map (qk, pk, λk) �→ (qk+1, pk+1, λk+1), viewed as a one-step
method defined implicitly by the discrete constrained right Hamilton’s equations, has
order of accuracy r .

Theorem 4.3 Suppose that given an exact discrete left Hamiltonian H−,E
d and a dis-

crete left Hamiltonian H−
d , we have

H−
d (qh, p0) + 〈λh, C(qh)〉 = H−,E

d (qh, p0) +
∫ h

0
〈λ(t), C(q(t))〉dt + O(hr+1).

(4.21)

Then, the discrete map (qk, pk, λk) �→ (qk+1, pk+1, λk+1), viewed as a one-step
method defined implicitly by the discrete constrained left Hamilton’s equations, has
order of accuracy r .

5 Variational Riemannian Accelerated Optimization

5.1 Riemannian Geometry

We first introduce the main notions from Riemannian geometry that will be used
throughout this section (see Absil et al. (2008); Boumal (2020); Duruisseaux and
Leok (2022a); Jost (2017); Lee (2018); Lang (1999) for more details).

Definition 5.1 Suppose we have a Riemannian manifold Q with Riemannian metric
g(·, ·) = 〈·, ·〉, represented by the positive-definite symmetric matrix (gi j ) in local
coordinates. Then, we define the musical isomorphism g� : TQ → T ∗Q via

g�(u)(v) = gq(u, v) ∀q ∈ Q and ∀u, v ∈ TqQ,

and its inverse musical isomorphism g� : T ∗Q → TQ. The Riemannian metric
g(·, ·) = 〈·, ·〉 induces a fiber metric g∗(·, ·) = 〈〈·, ·〉〉 on T ∗Q via

〈〈u, v〉〉 = 〈g�(u), g�(v)〉 ∀u, v ∈ T ∗Q,

represented by the positive-definite symmetricmatrix (gi j ) in local coordinates, which
is the inverse of the Riemannian metric matrix (gi j ).

Definition 5.2 Denoting the differential of f by d f , the Riemannian gradient
grad f (q) ∈ TqQ at a point q ∈ Q of a smooth function f : Q → R is the tan-
gent vector at q such that

〈grad f (q), u〉 = d f (q)u ∀u ∈ TqQ.

This can also be expressed in terms of the inverse musical isomorphism, grad f (q) =
g�(d f (q)).
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Definition 5.3 A geodesic in a Riemannian manifold Q is a parametrized curve
γ : [0, 1] → Q which is of minimal local length, and is a generalization of the
notion of straight line from Euclidean spaces to Riemannian manifolds. The other
generalization of straight lines involves curves having zero “acceleration" or constant
“speed," which requires the introduction of an affine connection. These two general-
izations are equivalent if the Riemannian manifold is endowed with the Levi–Civita
connection. Given two points q, q̃ ∈ Q, a vector in TqQ can be transported to Tq̃Q
along a geodesic γ by an operation 	

q̃
q : TqQ → Tq̃Q called the parallel transport

along γ .

Definition 5.4 The Riemannian Exponential map Expq : TqQ → Q at q ∈ Q is
defined via

Expq(v) = γv(1),

where γv is the unique geodesic in Q such that γv(0) = q and γ ′
v(0) = v, for any

v ∈ TqQ. Expq is a diffeomorphism in some neighborhoodU ⊂ TqQ containing 0, so
we can define its inverse map, the Riemannian Logarithm map Logp : Expq(U ) →
TqQ.

Definition 5.5 A retraction on a manifold Q is a smooth mapping R : TQ → Q
such that for any q ∈ Q, the restrictionRq : TqQ → Q of R to TqQ satisfies

• Rq(0q) = q, where 0q denotes the zero element of TqQ,
• T0qRq = ITqQ with the canonical identification T0q TqQ � TqQ, where T0qRq is
the tangent map of R at 0q ∈ TqQ and ITqQ is the identity map on TqQ.

The Riemannian Exponential map is a natural example of a retraction on a Riemannian
manifold.

Definition 5.6 A subset A of a Riemannian manifold Q is called geodesically
uniquely convex if every two points of A are connected by a unique geodesic in A.
A function f : Q → R is called geodesically convex if for any two points q, q̃ ∈ Q
and a geodesic γ connecting them,

f (γ (t)) ≤ (1 − t) f (q) + t f (q̃) ∀t ∈ [0, 1].

Note that if f is a smooth geodesically convex function on a geodesically uniquely
convex subset A,

f (q) − f (q̃) ≥ 〈grad f (q̃),Logq̃(q)〉 ∀q, q̃ ∈ A.

A function f : A → R is called geodesically α- weakly quasi-convex (α-WQC)
with respect to q ∈ Q for some α ∈ (0, 1] if

α ( f (q) − f (q̃)) ≥ 〈grad f (q̃),Logq̃(q)〉 ∀q̃ ∈ A.

Note that a local minimum of a geodesically convex or α-WQC function is also a
global minimum.
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Definition 5.7 Given a Riemannian manifold Q with sectional curvature bounded
below by Kmin, and an upper bound D for the diameter of the domain of consid-
eration, define

ζ =
{√−KminD coth (

√−KminD) if Kmin < 0

1 if Kmin ≥ 0
. (5.1)

Note that ζ ≥ 1 since x coth x ≥ 1 for all real values of x .

5.2 Hamiltonian Approach

Our approach consists in integrating the Riemannian Bregman Hamiltonian systems
derived in Duruisseaux and Leok (2022a) which evolve on the Riemannian manifold
Q, via discrete constrained variational Hamiltonian integrators which enforce the
numerical solution to lie on the Riemannian manifold Q. With ζ given by Eq. (5.1),
we know from Duruisseaux and Leok (2022a) that if we let λ = ζ in the geodesically
convex case, and λ = ζ/α in the geodesically α-weakly quasi-convex case, we obtain
the Direct approach Riemannian p-Bregman Hamiltonian

H̄p(Q̄, R̄) = p

2(Qt )λp+1 〈〈R, R〉〉 + Cp(Qt )(λ+1)p−1 f (Q) + Rt , (5.2)

and the Adaptive approach Riemannian p → p̊ Bregman Hamiltonian

H̄p→ p̊(Q̄, R̄) = p2

2 p̊(Qt )λp+ p̊/p
〈〈R, R〉〉 + Cp2

p̊
(Qt )(λ+1)p− p̊/p f (Q)

+ p

p̊
(Qt )1− p̊/p Rt . (5.3)

It is proven in Duruisseaux and Leok (2022a) that along the trajectories of the Rie-
mannian p-Bregman dynamics, f (Q(t)) converges to its optimal value at a rate of
O(1/t p), under suitable assumptions on Q.

Remark 5.1 In the vector space setting, these Riemannian Bregman Hamiltonians
reduce to the direct and adaptive approach Bregman Hamiltonians derived in Duruis-
seaux et al. (2021) for convex functions:

H̄p(q̄, r̄) = p

2(qt )p+1 〈r , r〉 + Cp(qt )2p−1 f (q) + r t , (5.4)

H̄p→ p̊(q̄, r̄) = p2

2 p̊(qt )p+ p̊/p
〈r , r〉 + Cp2

p̊
(qt )2p− p̊/p f (q) + p

p̊
(qt )1− p̊/pr t .

(5.5)
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5.3 Some Optimization Problems on RiemannianManifolds

5.3.1 Rayleigh Quotient Minimization on the Unit Sphere

An eigenvector v corresponding to the largest eigenvalue of a symmetric n× n matrix

A maximizes the Rayleigh quotient v�Av
v�v

over Rn . Thus, a unit eigenvector corre-
sponding to the largest eigenvalue of the matrix A is a minimizer of the function
f (v) = −v�Av over the unit sphere Q = S

n−1, which can be thought of as a Rie-
mannian submanifold with constant positive curvature K = 1 of Rn endowed with
the Riemannian metric inherited from the Euclidean inner product gv(u, w) = u�w.
Solving the Rayleigh quotient optimization problem efficiently is challenging when
the given symmetric matrix A is ill-conditioned and high-dimensional. Note that an
efficient algorithm that solves the above minimization problem can also be used to
find eigenvectors corresponding to the smallest eigenvalue of A by using the fact that
the eigenvalues of A are the negative of the eigenvalues of −A.

5.3.2 Eigenvalue and Procrustes Problems on the Stiefel Manifold

When endowed with the Riemannian metric gX (A, B) = Trace(A�B), the Stiefel
manifold

St(m, n) = {X ∈ R
n×m |X�X = Im} (5.6)

is a Riemannian submanifold ofRn×m . The tangent space at any X ∈ St(m, n) is given
by TXSt(m, n) = {Z ∈ R

n×m |X�Z + Z�X = 0}, and the orthogonal projection
PX onto TXSt(m, n) is given by PX Z = Z − 1

2 X(X�Z + Z�X). A retraction on
St(m, n) is given by RX (ξ) = qf(X + ξ), where qf(A) denotes the Q factor of the
QR factorization of the matrix A ∈ R

n×m as A = QR where Q ∈ St(m, n) and R is
an upper triangular n ×m matrix with strictly positive diagonal elements (Absil et al.
2008).

A generalized eigenvector problem consists of finding the m smallest eigenvalues
of a n × n symmetric matrix A and corresponding eigenvectors. This problem can be
formulated as a Riemannian optimization problem on the Stiefel manifold St(m, n)

via the Brockett cost function

f : St(m, n) → R, X �→ f (X) = Trace(X�AXN ), (5.7)

where N = diag(μ1, . . . , μm) for arbitrary 0 ≤ μ1 ≤ . . . ≤ μm . The columns of a
global minimizer of f are eigenvectors corresponding to the m smallest eigenvalues
of A (see Absil et al. (2008)). If we define f̄ : R

n×m → R via X �→ f̄ (X) =
Trace(X�AXN ), then f is the restriction of f̄ to St(m, n) so

grad f (X) = PXgrad f̄ (X), where grad f̄ (X) = 2AXN . (5.8)
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The unbalanced orthogonal Procrustes problem consists ofminimizing the function

f : St(m, n) → R, X �→ f (X) = ‖AX − B‖2F , (5.9)

on the Stiefel manifold St(m, n), for given matrices A ∈ R
l×n and B ∈ R

l×m with
l ≥ n and l > m,where‖·‖F is theFrobenius norm‖X‖2F = Trace(X�X) = ∑

i j X
2
i j .

If we define f̄ : Rn×m → R via X �→ f̄ (X) = ‖AX − B‖2F , then f is the restriction
of f̄ to St(m, n) so

grad f (X) = PXgrad f̄ (X), where grad f̄ (X) = 2A�(AX − B). (5.10)

Note that the special case where n = m is the balanced orthogonal Procrustes problem.
In this case, St(m, n) = O(n) so ‖AX‖2F = ‖A‖2F and minimizing the function
f (X) = ‖AX − B‖2F is replaced by the problem of maximizing Trace(X�A�B) over
X ∈ O(n). A solution is then given by X∗ = UV� where B�A = U
V� is the
Singular Value Decomposition of B�A with square orthogonal matrices U and V ,
and the solution is unique provided B�A is nonsingular (see Eldén and Park (1999);
Golub and Van Loan (2013)).

5.4 Numerical Methods

5.4.1 Hamiltonian Taylor Variational Integrators (HTVIs)

HTVIs were first introduced in Schmitt et al. (2018). A discrete approximate Hamil-
tonian is constructed by approximating the flow map and the trajectory associated
with the boundary values using a Taylor method, and approximating the integral by
a quadrature rule. The Hamiltonian Taylor variational integrator is then generated by
the discrete Hamilton’s equations. More explicitly, Type II HTVIs are constructed as
follows:

(i) Construct the r -order and (r+1)-order Taylor methods�
(r)
h and�

(r+1)
h approx-

imating the exact time-h flow map �h : T ∗Q → T ∗Q.
(ii) Approximate p(0) = p0 by the solution p̃0 of p1 = πT ∗Q ◦�

(r)
h (q0, p̃0),where

πT ∗Q : (q, p) �→ p.
(iii) Choose a quadrature rule of order s with weights and nodes given by (bi , ci )

for i = 1, ...,m and generate approximations (qci , pci ) ≈ (q(ci h), p(ci h)) via

(qci , pci ) = �
(r)
ci h

(q0, p̃0).

(iv) Approximate q1 via q̃1 = πQ ◦ �
(r+1)
h (q0, p̃0), where πQ : (q, p) �→ q.

(v) Use the continuous Legendre transform to obtain q̇ci = ∂H
∂ pci

.

(vi) Apply the quadrature rule to obtain the associated discrete right Hamiltonian
H+
d (q0, p1) = p1q̃1 − h

∑m
i=1 bi

[
pci q̇ci − H(qci , pci )

]
.

(vii) The variational integrator is then defined by the discrete right Hamilton’s equa-
tions.
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Note that the following error analysis result concerning the order of accuracy ofHTVIs
was derived in Duruisseaux et al. (2021) (it can be extended to the constrained case
via the strategy and results of Sect. 4.2):

Theorem 5.1 If the Hamiltonian H and its partial derivative ∂H
∂ p are Lipschitz con-

tinuous in both variables, then H+
d (q0, p1) approximates H

+,E
d (q0, p1) with at least

order of accuracy min (r + 1, s).
By Theorem 2.2 in Schmitt and Leok (2017), the associated discrete Hamiltonian map
has the same order of accuracy.

In this paper, we will use the Direct approach and Adaptive approach r = 0 Type
II HTVIs constructed in Duruisseaux et al. (2021) based on the Direct and Adaptive
discrete right Hamiltonians (respectively)

H+
d (q̄0, r̄1; h) = r�

1 q0 + r t1q
t
0 + h

p

2(qt0)
p+1 r

�
1 r1 + hCp(qt0)

2p−1 f (q0) + hr t1,

(5.11)

H+
d (q̄0, r̄1; h) = r�

1 q0 + r t1q
t
0

+ h
p2

2 p̊(qt0)
p+ p̊

p

r�
1 r1 + hC

p2

p̊
(qt0)

2p− p̊
p f (q0) + h

p

p̊
(qt0)

1− p̊
p r t1.

(5.12)

Algorithm 1: Direct and Adaptive Hamiltonian Taylor variational integrators
(HTVIs)

Input: A function f : Q → R, constants C, h, p, p̊ > 0, qt0, r
t
0 ∈ R, and (q0, r0, λ0) ∈ T ∗

q0
Q × �.

1 while convergence criterion is not met, solve the following system of equations:

Direct Approach

0 = rk+1 − rk + hCp(qtk )
2p−1∇ f (qk ) + λ�

k ∇C(qk )

0 = r tk+1 − r tk − h
p(p + 1)

2(qtk )
p+2

r�k+1rk+1

+ hCp(2p − 1)(qtk )
2p−2 f (qk )

0 = qk+1 − qk − h
p

(qtk )
p+1

rk+1

0 = qtk+1 − qtk − h

0 = C(qk+1)

Adaptive Approach

0 = rk+1 − rk + hCp2

p̊
(qtk )

2p− p̊
p ∇ f (qk ) + λ�

k ∇C(qk )

0 = r tk+1 − r tk + p p̊ − 2p3

p̊
hC(qtk )

2p− p̊
p −1

f (qk )

+ h
p3 + p p̊

2 p̊(qtk )
p+ p̊

p +1
r�k+1rk+1 + p̊ − p

p̊(qtk )
p̊
p

hr tk+1

0 = qk+1 − qk − p2

p̊
h(qtk )

−p− p̊
p rk+1

0 = qtk+1 − qtk − p

p̊
h(qtk )

1− p̊
p

0 = C(qk+1)
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5.4.2 Euler–Lagrange Simple Discretization

In Duruisseaux and Leok (2022a), the p-Bregman Euler–Lagrange equations were
rewritten as a first-order system of differential equations, for which a Riemannian
version of a semi-implicit Euler schemewas applied to obtain the following algorithm:

Algorithm 2: Semi-Implicit Euler Integration of the p-Bregman Euler–Lagrange
Equations

Input: A geodesically-convex (λ = ζ ) or α-WQC (λ = ζ/α) function
f : Q → R.
A retraction R from TQ to Q, constants C, h, p > 0, and X0 ∈ Q,
V0 ∈ TX0Q.

1 while convergence criterion is not met do
2 bk ← 1 − λp+1

k , ck ← Cp2(kh)p−2

3 Version I: ak ← bkVk − hckgrad f (Xk)

4 Version II: ak ← bkVk − hckgrad f
(RXk (hbkVk)

)
5 Xk+1 ← RXk (hak), Vk+1 ← 	

Xk+1
Xk

ak

Version I of Algorithm 2 corresponds to the usual update for the semi-implicit Euler
scheme, while Version II is inspired by the reformulation of Nesterov’s method from
Sutskever et al. (2013) that uses a corrected gradient ∇ f (Xk + hbkVk) instead of the
traditional gradient ∇ f (Xk).

5.4.3 Riemannian Gradient Descent (RGD)

This is a generalization of Gradient Descent to the setting of Riemannian manifolds
which involves the Riemannian gradient and a retraction.

Algorithm 3: Riemannian Gradient Descent (RGD)
Input: A function f : Q → R, a retractionR from TQ to Q, h > 0, and

X0 ∈ Q.
1 while convergence criterion is not met do
2 Xk+1 = RXk (−h grad f (Xk))

5.5 Numerical Results

It is noted in Duruisseaux and Leok (2022a) that although higher values of p in Algo-
rithm 2 result in provably faster rates of convergence, they also appear to be more
prone to stability issues under numerical discretization, which can cause the numer-
ical optimization algorithm to diverge. Numerical experiments in Duruisseaux et al.
(2021) showed that in the normed vector space setting, geometric discretizationswhich
respect the time-rescaling invariance and symplecticity of the Bregman Lagrangian
and Hamiltonian flows were substantially less prone to these stability issues, and
were therefore more robust, reliable, and computationally efficient. This was one of
the motivations to develop time-adaptive Hamiltonian variational integrators for the
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BregmanHamiltonians. Numerical experiments were conducted for the Rayleigh quo-
tientminimization problem on Sn−1, and for the generalized eigenvalue and Procrustes
problems on the Stiefel manifold St(m, n).

The results from Fig. 1 show how the Hamiltonian Taylor variational integrators
compare to the Euler–Lagrange discretizations from Duruisseaux and Leok (2022a)
and the standard Riemannian gradient descent. Note that for certain instances of the
Procrustes problem with certain initial values, all the algorithms converged to a local
minimizer, and not the global minimizer, of the objective function. We can observe
from Fig. 1 that for the same value of the timestep h, the Adaptive Hamiltonian
variational integrator clearly outperforms its Direct counterpart, Riemannian gradi-
ent descent and the Euler–Lagrange discretizations in terms of number of iterations
required. Furthermore, unlike the Euler–Lagrange discretizations (Algorithm 2) and
the Riemannian gradient descent (Algorithm 3), the HTVI methods (Algorithm 1)
do not require the use of retractions or parallel transports. Note that the Rayleigh
minimization results indicate that the Euler–Lagrange discretizations suffer from sta-
bility issues leading to a loss of convergence, as the polynomially growing unbounded
coefficient Cp2(kh)p−2 is multiplied with grad f , so for this product to be bounded,
the gradient has to decay to zero, but due to finite numerical precision, the gradi-
ent remains bounded away from zero, thereby causing the product to grow without
bound. This issue can be resolved by adding a suitable upper bound to the coefficient
Cp2(kh)p−2 in the updates, as can be seen both for the Euler–Lagrange discretizations
and Hamiltonian variational integrators for the problems on St(m, n).

However, the algorithms generated by these constrained Hamiltonian variational
integrators are implicit, which can significantly increase the cost per iteration as the
dimension of the problem becomes very large. In this case, it might be beneficial to
consider other options using the unconstrained explicit Hamiltonian Taylor variational
integrator, such as incorporating the constraints within the objective function as a
penalty, although this might not constrain the solution trajectory to lie exactly on the
manifold, or using projections if they can be computed efficiently and accurately for
the Riemannian manifold of interest (Duruisseaux and Leok 2021). Further, note that
the implementation of the Hamiltonian variational integrators needs a very careful
tuning of the various parameters at play, which may be challenging and thus also
motivates the development of different methods.

6 Conclusion

Motivated by variational formulations of optimization problems on Riemannian mani-
folds, we first studied the relationship between the constrained Type I/II/III variational
principles and the corresponding constrainedHamilton’s or Euler–Lagrange equations
both in continuous and discrete time, and derived variational error analysis results for
the maps defined implicitly by the resulting discrete constrained equations. We then
exploited these discrete constrained variational integrators and the variational formula-
tion of accelerated optimization onRiemannianmanifolds fromDuruisseaux andLeok
(2022a) to numerically solve the generalized eigenvalue and Procrustes problems on
S
n−1 and St(m, n).
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Fig. 1 Comparison of the Direct and Adaptive (AD) Type II HTVIs with the Riemannian Gradient Descent
(RGD) method and the Euler–Lagrange discretizations (EL V1 and EL V2) from Duruisseaux and Leok
(2022a) with p = 6 and the same timestep h = 0.001, for the Rayleigh quotient minimization problem on
the unit sphere Sn−1, and for the generalized eigenvalue and Procrustes problems on the Stiefel manifold
St(m, n)
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The numerical experiments conducted in this paper corroborated the observation
made for the vector space setting in Duruisseaux et al. (2021) that the adaptive Hamil-
tonian variational integrator is significantly more efficient than the direct Hamiltonian
variational integrator, and that it can significantly outperform the Euler–Lagrange dis-
cretizations and Riemannian gradient descent, when its parameters are tuned carefully.
Furthermore, it was noted that unlike the Euler–Lagrange discretizations and Rieman-
nian gradient descent, the Hamiltonian algorithms did not require the use of retractions
or parallel transports, which could be important when the problem considered lies on
a Riemannian manifold for which it might not be possible to compute or approximate
these objects efficiently.

We noted however that tuning the parameters of these discrete constrained varia-
tional integrators can be challenging, and also that the resulting algorithms are implicit,
which may significantly increase the cost per iteration as the dimension of the prob-
lem becomes very large, in which case it might be beneficial to consider using the
unconstrained explicit HTVIs with projections (Duruisseaux and Leok 2021) or by
incorporating the constraints within the objective function as a penalty. Moreover,
although the Whitney and Nash embedding theorems (Whitney 1944a, b; Nash 1956)
imply that there is no loss of generality when studying Riemannian manifolds only as
submanifolds of Euclidean spaces, there are limitations to the constrained integration
strategy based on embeddings presented in this paper, and an approach intrinsically
definedonRiemannianmanifoldswould be desirable. Indeed, the embedding approach
usually leads to higher-dimensional computations, and requires an effective way of
constructing the embedding or a natural way of writing down equations that constrain
the problem and the numerical solutions to the Riemannian manifold. Furthermore,
most results in Riemannian geometry or results concerning specific Riemannian man-
ifolds are proven from an intrinsic perspective because the embedding approach tends
to flood intrinsic geometric properties of the manifold with superfluous information
coming from the additional dimensions of the Euclidean space. This motivates the
development of intrinsic methods that would exploit the symmetries and geometric
properties of the manifold and of the problem at hand.

Developing an intrinsic extension of Hamiltonian variational integrators to mani-
folds will require some additional work, since the current approach involves Type II/III
generating functions H+

d (qk, pk+1), H
−
d (pk, qk+1), which depend on the position at

one boundary point, and the momentum at the other boundary point. However, this
does not make intrinsic sense on a manifold, since one needs the base point in order to
specify the corresponding cotangent space, and one should ideally consider a Hamil-
tonian variational integrator construction based on discrete Dirac mechanics (Leok
and Ohsawa 2011), which would yield a generating function E+

d (qk, qk+1, pk+1),
E−
d (qk, pk, qk+1), that depends on the position at both boundary points and the

momentum at one of the boundary points. This approach can be viewed as a dis-
cretization of the generalized energy E(q, v, p) = 〈p, v〉− L(q, v), in contrast to the
Hamiltonian H(q, p) = ext

v
〈p, v〉 − L(q, v) = 〈p, v〉 − L(q, v)|p= ∂L

∂v
. On the other

hand, the formulation of Lagrangian variational integrators presented in the introduc-
tion of Sect. 2 makes sense intrinsically on manifolds, and a framework for variable
time-stepping in Lagrangian variational integration was introduced in our subsequent
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work (Duruisseaux and Leok 2022b) to design intrinsic time-adaptive Lagrangian
variational integrators for accelerated optimization on Riemannian manifolds.

It would also be interesting to extend the proposed approach to the problem of
optimization with nonintegrable constraints, which naturally leads to the question
of whether vakonomic or nonholonomic mechanics is the appropriate description
(Cortés et al. 2002). In the context of optimization with nonintegrable constraints,
the relevant extension will likely involve vakonomic variational integrators (Benito
and Martín de Diego 2005; Jiménez and Martín de Diego 2012). However, it would
be interesting to relate the methods introduced in this paper to the existing work on
variational integrators applied to optimal control problems (Junge et al. 2005; de León
et al. 2007), and the discrete optimal control of nonholonomic dynamical systems
would likely require a combination of the methods described here and nonholonomic
integrators (Cortés andMartínez 2001; de León et al. 2004; Fedorov and Zenkov 2005;
McLachlan and Perlmutter 2006).
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Appendix A. Proofs of Theorems for Constrained Variational Mechan-
ics

A.1. Proof of Theorem 2.1

Theorem A.1 Consider the constrained action functionalS : C2([0, T ],Q×�) → R

given by

S(q(·), λ(·)) =
∫ T

0
[L(q(t), q̇(t)) − 〈λ(t), C(q(t))〉] dt . (A.1)

The condition thatS(q(·), λ(·)) is stationary with respect to the boundary conditions
δq(0) = 0 and δq(T ) = 0 is equivalent to (q(·), λ(·)) satisfying the constrained
Euler–Lagrange equations

∂L

∂q
− d

dt

∂L

∂q̇
= 〈λ,∇C(q)〉, C(q) = 0. (A.2)
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Proof Computing the variation of S yields

δS =
∫ T

0

[
∂L

∂q
(q(t), q̇(t))δq(t) + ∂L

∂q̇
(q(t), q̇(t))δq̇(t)

]
dt

−
∫ T

0
[〈λ(t),∇C(q(t))δq(t)〉 + 〈δλ(t), C(q(t))〉] dt .

Using integration by parts and the boundary conditions δq(0) = 0 and δq(T ) = 0,
we get

δS =
∫ T

0

[
∂L

∂q
(q(t), q̇(t)) − d

dt

∂L

∂ q̇
(q(t), q̇(t)) − 〈λ(t),∇C(q(t))〉

]
δq(t)dt

−
∫ T

0
〈δλ(t), C(q(t))〉dt .

Now, if δS = 0, then the fundamental theorem of the calculus of variations (Arnol’d
1989) yields the constrained Euler–Lagrange Eq. (A.2). Conversely, if (q, λ) satisfies
the constrained Euler–Lagrange Eq. (A.2), then the integrand vanishes and δS = 0.

�


A.2. Proof of Theorem 3.1

Theorem A.2 Consider the constrained action functional S : C2([0, T ], T ∗Q ×
�) → R given by

S(q(·), p(·), λ(·)) = p(T )q(T )

−
∫ T

0
[p(t)q̇(t) − H(q(t), p(t)) − 〈λ(t), C(q(t))〉] dt .

(A.3)

The condition thatS(q(·), p(·), λ(·)) is stationary with respect to the boundary condi-
tions δq(0) = 0 and δ p(T ) = 0 is equivalent to (q(·), p(·), λ(·)) satisfyingHamilton’s
canonical constrained equations

q̇ = ∂H

∂ p
(q, p), ṗ = −∂H

∂q
(q, p) − 〈λ,∇C(q)〉, C(q) = 0. (A.4)

Proof Computing the variation of S yields

δS = q(T )δ p(T ) + p(T )δq(T ) +
∫ T

0
[〈λ(t),∇C(q(t))δq(t)〉 + 〈δλ(t), C(q(t))〉] dt

−
∫ T

0

[
q̇(t)δ p(t) + p(t)δq̇(t) − ∂H

∂q
(q(t), p(t))δq(t) − ∂H

∂ p
(q(t), p(t))δ p(t)

]
dt .

(A.5)
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Using integration by parts and the boundary conditions δq(0) = 0 and δ p(T ) = 0,
we get

δS = q(T )δ p(T ) + p(T )δq(T ) − p(T )δq(T ) + p(0)δq(0) +
∫ T

0
〈δλ(t),C(q(t))〉dt

+
∫ T

0

[
ṗ(t) + ∂H

∂q
(q(t), p(t)) + 〈λ(t), ∇C(q(t))〉

]
δq(t)dt +

∫ T

0

[
∂H

∂ p
(q(t), p(t)) − q̇(t)

]
δ p(t)dt

=
∫ T

0

[
ṗ(t) + ∂H

∂q
(q(t), p(t)) + 〈λ(t), ∇C(q(t))〉

]
δq(t)dt +

∫ T

0

[
∂H

∂ p
(q(t), p(t)) − q̇(t)

]
δ p(t)dt

+
∫ T

0
〈δλ(t),C(q(t))〉dt .

Now, if δS = 0, then the fundamental theorem of the calculus of variations (Arnol’d
1989) yieldsHamilton’s constrainedEq. (A.4). Conversely, if (q, p, λ) satisfiesHamil-
ton’s constrained Eq. (A.4), then the integrand vanishes and δS = 0. �


A.3. Proof of Theorem 3.2

Theorem A.3 Consider the constrained action functional S : C2([0, T ], T ∗Q ×
�) → R given by

S(q(·), p(·), λ(·)) = −p(0)q(0)

−
∫ T

0
[p(t)q̇(t) − H(q(t), p(t)) − 〈λ(t), C(q(t))〉] dt .

(A.6)

The condition thatS(q(·), p(·), λ(·)) is stationary with respect to the boundary condi-
tions δq(T ) = 0 and δ p(0) = 0 is equivalent to (q(·), p(·), λ(·)) satisfyingHamilton’s
canonical constrained equations

q̇ = ∂H

∂ p
(q, p), ṗ = −∂H

∂q
(q, p) − 〈λ,∇C(q)〉, C(q) = 0. (A.7)

Proof The proof is almost identical to that of Theorem 3.1. We compute the variation
of S as before and get Eq. (A.5) except that the term (q(T )δ p(T ) + p(T )δq(T ))

is replaced by (−q(0)δ p(0) − p(0)δq(0)). As before, integration by parts and the
boundary conditions δq(T ) = 0 and δ p(0) = 0 yield

δS =
∫ T

0

[
ṗ(t) + ∂H

∂q
(q(t), p(t)) + 〈λ(t),∇C(q(t))〉

]
δq(t)dt

+
∫ T

0

[
∂H

∂ p
(q(t), p(t)) − q̇(t)

]
δ p(t)dt

+
∫ T

0
〈δλ(t), C(q(t))〉dt .
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Then, if δS = 0, then the fundamental theorem of the calculus of variations (Arnol’d
1989) yieldsHamilton’s constrainedEq. (A.7). Conversely, if (q, p, λ) satisfiesHamil-
ton’s constrained Eq. (A.7), then the integrand vanishes and δS = 0. �


A.4. Proof of Theorem 2.2

Theorem A.4 The exact time-T flow map of Hamilton’s equations (q0, p0) �→
(qT , pT ) is implicitly given by the following relations:

D1S(q0, qT ) = −∂L

∂ q̇
(q0, q̇(0)), D2S(q0, qT ) = ∂L

∂ q̇
(qT , q̇(T )). (A.8)

Thus, S(q0, qT ) is a Type I generating function that generates the exact flow of the
constrained Euler–Lagrange Eq. (2.6).

Proof Using integration by parts and simplifying gives

∂S
∂q0

(q0, qT ) =
∫ T

0

[
∂q(t)

∂q0

∂L

∂q
(q(t), q̇(t)) + ∂q̇(t)

∂q0

∂L

∂q̇
(q(t), q̇(t))

]
dt

−
∫ T

0

[
〈λ(t),

∂q(t)

∂q0
∇C(q(t))〉 + 〈∂λ(t)

∂q0
, C(q(t))〉

]
dt

=
∫ T

0

∂q(t)

∂q0

(
∂L

∂q
(q(t), q̇(t)) − d

dt

∂L

∂q̇
(q(t), q̇(t)) − 〈λ(t),∇C(q(t))〉

)
dt

−
∫ T

0
〈∂λ(t)

∂q0
, C(q(t))〉dt − ∂L

∂q̇
(q(0), q̇(0)),

∂S
∂qT

(q0, qT ) =
∫ T

0

[
∂q(t)

∂qT

∂L

∂q
(q(t), q̇(t)) + ∂q̇(t)

∂qT

∂L

∂q̇
(q(t), q̇(t))

]
dt

−
∫ T

0

[
〈λ(t),

∂q(t)

∂qT
∇C(q(t))〉 + 〈∂λ(t)

∂qT
, C(q(t))〉

]
dt

=
∫ T

0

∂q(t)

∂qT

(
∂L

∂q
(q(t), q̇(t)) − d

dt

∂L

∂q̇
(q(t), q̇(t)) − 〈λ(t),∇C(q(t))〉

)
dt

−
∫ T

0
〈∂λ(t)

∂qT
, C(q(t))〉dt + ∂L

∂q̇
(q(T ), q̇(T )).

By Theorem 2.1, the extremum of the action functional S is achieved when (q, λ)

satisfies the constrained Euler–Lagrange Eq. (2.6), so we get D1S(q0, qT ) =
− ∂L

∂q̇ (q0, q̇(0)) and D2S(q0, qT ) = ∂L
∂q̇ (qT , q̇(T )). �


A.5. Proof of Theorem 3.3

Theorem A.5 The exact time-T flow map of Hamilton’s equations (q0, p0) �→
(qT , pT ) is implicitly given by the following relations:

qT = D2S(q0, pT ), p0 = D1S(q0, pT ). (A.9)
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In particular, S(q0, pT ) is a Type II generating function that generates the exact flow
of Hamilton’s constrained Eq. (3.6).

Proof Using integration by parts and simplifying gives

∂S
∂q0

(q0, pT ) = ∂qT
∂q0

pT +
∫ T

0

[
〈λ(t),

∂q(t)

∂q0
∇C(q(t))〉 + 〈 ∂λ(t)

∂q0
,C(q(t))〉

]
dt

−
∫ T

0

[
∂ p(t)

∂q0
q̇(t) + ∂ q̇(t)

∂q0
p(t) − ∂q(t)

∂q0

∂H

∂q
(q(t), p(t)) − ∂ p(t)

∂q0

∂H

∂ p
(q(t), p(t))

]
dt

= p0 +
∫ T

0

∂q(t)

∂q0

(
ṗ(t) + ∂H

∂q
(q(t), p(t)) + 〈λ(t), ∇C(q(t))〉

)
dt

−
∫ T

0

∂ p(t)

∂q0

(
q̇(t) − ∂H

∂ p
(q(t), p(t))

)
dt +

∫ T

0
〈 ∂λ(t)

∂q0
, C(q(t))〉dt,

∂S
∂ pT

(q0, pT ) = qT + ∂qT
∂ pT

pT +
∫ T

0

[
〈λ(t),

∂q(t)

∂ pT
∇C(q(t))〉 + 〈 ∂λ(t)

∂ pT
,C(q(t))〉

]
dt

−
∫ T

0

[
∂ p(t)

∂ pT
q̇(t) + ∂ q̇(t)

∂ pT
p(t) − ∂q(t)

∂ pT

∂H

∂q
(q(t), p(t)) − ∂ p(t)

∂ pT

∂H

∂ p
(q(t), p(t))

]
dt

= qT +
∫ T

0

∂q(t)

∂ pT

(
ṗ(t) + ∂H

∂q
(q(t), p(t)) + 〈λ(t), ∇C(q(t))〉

)
dt

−
∫ T

0

∂ p(t)

∂ pT

(
q̇(t) − ∂H

∂ p
(q(t), p(t))

)
dt +

∫ T

0
〈 ∂λ(t)

∂ pT
, C(q(t))〉dt .

By Theorem 3.1, the extremum of the action functionalS is achieved when the curve
(q, p, λ) satisfies Hamilton’s constrained Eq. (3.6), so the integrands vanish, and thus
p0 = ∂S

∂q0
(q0, pT ) = D1S(q0, pT ) and qT = ∂S

∂ pT
(q0, pT ) = D2S(q0, pT ). �


A.6. Proof of Theorem 3.4

Theorem A.6 The exact time-T flow map of Hamilton’s equations (q0, p0) �→
(qT , pT ) is implicitly given by the following relations:

q0 = −D2S(qT , p0), pT = −D1S(qT , p0). (A.10)

In particular, S(qT , p0) is a Type III generating function that generates the exact flow
of Hamilton’s constrained Eq. (3.8).

Proof Integrating by parts and simplifying yields

∂S
∂qT

(qT , p0) = − ∂q0
∂qT

p0 +
∫ T

0

[
〈λ(t),

∂q(t)

∂qT
∇C(q(t))〉 + 〈 ∂λ(t)

∂qT
, C(q(t))〉

]
dt

−
∫ T

0

[
∂ p(t)

∂qT
q̇(t) + ∂ q̇(t)

∂qT
p(t) − ∂q(t)

∂qT

∂H

∂q
(q(t), p(t)) − ∂ p(t)

∂qT

∂H

∂ p
(q(t), p(t))

]
dt

= −pT +
∫ T

0

∂q(t)

∂qT

(
ṗ(t) + ∂H

∂q
(q(t), p(t)) + 〈λ(t), ∇C(q(t))〉

)
dt

−
∫ T

0

∂ p(t)

∂qT

(
q̇(t) − ∂H

∂ p
(q(t), p(t))

)
dt +

∫ T

0
〈 ∂λ(t)

∂qT
, C(q(t))〉dt,
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∂S
∂ p0

(qT , p0) = −q0 − ∂q0
∂ p0

p0 +
∫ T

0

[
〈λ(t),

∂q(t)

∂ p0
∇C(q(t))〉 + 〈 ∂λ(t)

∂ p0
,C(q(t))〉

]
dt

−
∫ T

0

[
∂ p(t)

∂ p0
q̇(t) + ∂ q̇(t)

∂ p0
p(t) − ∂q(t)

∂ p0

∂H

∂q
(q(t), p(t)) − ∂ p(t)

∂ p0

∂H

∂ p
(q(t), p(t))

]
dt

= −q0 +
∫ T

0

∂q(t)

∂ p0

(
ṗ(t) + ∂H

∂q
(q(t), p(t)) + 〈λ(t), ∇C(q(t))〉

)
dt

−
∫ T

0

∂ p(t)

∂ p0

(
q̇(t) − ∂H

∂ p
(q(t), p(t))

)
dt +

∫ T

0
〈 ∂λ(t)

∂ p0
, C(q(t))〉dt .

By Theorem 3.2, the extremum of the action S is achieved when the curve (q, p, λ)

satisfies Hamilton’s constrained Eq. (3.8), so the integrands vanish, and thus pT =
− ∂S

∂qT
(qT , p0) = −D1S(qT , p0) and q0 = − ∂S

∂ p0
(qT , p0) = −D2S(qT , p0). �


A.7. Proof of Theorem 2.3

Theorem A.7 The Type I discrete Hamilton’s variational principles

δS±
d

(
{(qk, λk)}Nk=0

)
= 0 (A.11)

are equivalent to the discrete constrained Euler–Lagrange equations

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) = 〈λk,∇C(qk)〉, C(qk) = 0, (A.12)

where Ld(qk, qk+1) is defined via Eq. (2.11).

Proof Using the fact that δq0 = 0 and δqN = 0, we have

δS−
d = δ

(
N−1∑
k=0

[
Ld(qk, qk+1) − 〈λk, C(qk)〉

])

=
N−1∑
k=0

[
D1Ld(qk, qk+1)δqk + D2Ld(qk, qk+1)δqk+1

]

−
N−1∑
k=0

(〈λk,∇C(qk)δqk〉 + 〈δλk, C(qk)〉)

=
N−1∑
k=1

[
D1Ld(qk, qk+1) + D2Ld(qk−1, qk) − 〈λk,∇C(qk)〉

]
δqk

−
N−1∑
k=0

〈δλk, C(qk)〉,

δS+
d = δ

(
N−1∑
k=0

[
Ld(qk, qk+1) − 〈λk+1, C(qk+1)〉

])
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=
N−1∑
k=0

[
D1Ld(qk, qk+1)δqk + D2Ld(qk, qk+1)δqk+1

]

−
N−1∑
k=0

(〈λk+1,∇C(qk+1)δqk+1〉 + 〈δλk+1, C(qk+1)〉)

=
N−1∑
k=1

[
D1Ld(qk, qk+1) + D2Ld(qk−1, qk) − 〈λk,∇C(qk)〉

]
δqk

−
N−1∑
k=0

〈δλk+1, C(qk+1)〉.

If the discrete constrained Euler–Lagrange Eq. (A.12) are satisfied, then each term
vanishes and δS±

d = 0. Conversely, if δS±
d = 0, then a discrete fundamental theorem

of the calculus of variations yields the discrete constrainedEuler–LagrangeEq. (A.12).
�


A.8. Proof of Theorem 3.5

Theorem A.8 The Type II discrete Hamilton’s phase space variational principle

δS+
d

(
{(qk, pk, λk)}Nk=0

)
= 0 (A.13)

is equivalent to the discrete constrained right Hamilton’s equations

qk+1 = D2H
+
d (qk, pk+1), pk = D1H

+
d (qk, pk+1) + 〈λk,∇C(qk)〉, C(qk) = 0,

(A.14)

where H+
d (qk, pk+1) is defined via Eq. (3.16).

Proof Using the fact that δq0 = 0 and δ pN = 0 since (q0, pN ) is fixed, we obtain the
following expression for the variations of S+

d :

δS+
d = δ

(
pNqN −

N−1∑
k=0

[
pk+1qk+1 − H+

d (qk, pk+1) − 〈λk, C(qk)〉
])

= δ

(
−

N−2∑
k=0

pk+1qk+1 +
N−1∑
k=0

[
H+
d (qk, pk+1) + 〈λk, C(qk)〉

])

= −
N−2∑
k=0

(qk+1δ pk+1 + pk+1δqk+1)

+
N−1∑
k=0

(
D1H

+
d (qk, pk+1)δqk + D2H

+
d (qk, pk+1)δ pk+1

)
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+
N−1∑
k=0

(〈λk,∇C(qk)δqk〉 + 〈δλk, C(qk)〉)

= −
N−1∑
k=1

(qkδ pk + pkδqk)

+
N−1∑
k=1

D1H
+
d (qk, pk+1)δqk +

N−2∑
k=0

D2H
+
d (qk, pk+1)δ pk+1

+
N−1∑
k=0

(〈λk,∇C(qk)δqk〉 + 〈δλk, C(qk)〉)

= −
N−1∑
k=1

(qkδ pk + pkδqk) +
N−1∑
k=1

D1H
+
d (qk, pk+1)δqk

+
N−1∑
k=1

D2H
+
d (qk−1, pk)δ pk

+
N−1∑
k=0

(〈λk,∇C(qk)δqk〉 + 〈δλk, C(qk)〉)

=
N−1∑
k=1

[−qk + D2H
+
d (qk−1, pk)

]
δ pk +

N−1∑
k=0

〈δλk, C(qk)〉

+
N−1∑
k=1

[−pk + D1H
+
d (qk, pk+1) + 〈λk,∇C(qk)〉

]
δqk .

If the discrete constrained right Hamilton’s Eq. (A.14) are satisfied, then each term
vanishes and δS+

d = 0. Conversely, if δS+
d = 0, then a discrete fundamental theorem

of the calculus of variations yields the discrete constrained rightHamilton’s Eq. (A.14).
�


A.9. Proof of Theorem 3.6

Theorem A.9 The Type III discrete Hamilton’s phase space variational principle

δS−
d

(
{(qk, pk, λk)}Nk=0

)
= 0 (A.15)

is equivalent to the discrete constrained left Hamilton’s equations

qk = −D2H
−
d (qk+1, pk), pk+1 = −D1H

−
d (qk+1, pk) − 〈λk+1,∇C(qk+1)〉,

C(qk) = 0, (A.16)

where H−
d (qk+1, pk) is defined via Eq. (3.17).

123



42 Page 32 of 34 Journal of Nonlinear Science (2022) 32 :42

Proof Using the fact that δqN = 0 and δ p0 = 0 since (qN , p0) is fixed, we obtain the
following expression for the variations of S−

d :

δS−
d = δ

(
−p0q0 −

N−1∑
k=0

[−pkqk − H−
d (qk+1, pk) − 〈λk+1,C(qk+1)〉

])

= δ

(
N−1∑
k=1

pkqk +
N−1∑
k=0

[
H−
d (qk+1, pk) + 〈λk+1,C(qk+1)〉

])

=
N−1∑
k=1

(qkδ pk + pkδqk) +
N−1∑
k=0

(
D1H

−
d (qk+1, pk)δqk+1 + D2H

−
d (qk+1, pk)δ pk

)

+
N−1∑
k=0

(〈λk+1,∇C(qk+1)δqk+1〉 + 〈δλk+1,C(qk+1)〉)

=
N∑

k=0

(qkδ pk + pkδqk) +
N−2∑
k=0

D1H
−
d (qk+1, pk)δqk+1 +

N−1∑
k=1

D2H
−
d (qk+1, pk)δ pk

+
N−1∑
k=0

(〈λk+1,∇C(qk+1)δqk+1〉 + 〈δλk+1,C(qk+1)〉)

=
N−1∑
k=1

(qkδ pk + pkδqk) +
N−1∑
k=1

D1H
−
d (qk , pk−1)δqk +

N−1∑
k=1

D2H
−
d (qk+1, pk)δ pk

+
N∑

k=1

〈λk ,∇C(qk)δqk〉 +
N−1∑
k=0

〈δλk+1,C(qk+1)〉

=
N−1∑
k=1

[
qk + D2H

−
d (qk+1, pk)

]
δ pk +

N−1∑
k=0

〈δλk+1,C(qk+1)〉

+
N−1∑
k=1

[
pk + D1H

−
d (qk , pk−1) + 〈λk ,∇C(qk)〉

]
δqk .

If the discrete constrained left Hamilton’s Eq. (A.16) are satisfied, then each term
vanishes and δS−

d = 0. Conversely, if δS−
d = 0, then a discrete fundamental theorem

of the calculus of variations yields the discrete constrained left Hamilton’s Eq. (A.16).
�
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