
Journal of Nonlinear Science (2022) 32:29
https://doi.org/10.1007/s00332-022-09788-8

Interchanging Space and Time in Nonlinear Optics
Modeling and Dispersion Management Models

Reika Fukuizumi1 · Guido Schneider2

Received: 12 May 2021 / Accepted: 31 December 2021 / Published online: 25 March 2022
© The Author(s) 2022

Abstract
Interchanging the role of space and time is widely used in nonlinear optics for mod-
eling the evolution of light pulses in glass fibers. A phenomenological model for the
mathematical description of light pulses in glass fibers with a periodic structure in
this set-up is the so-called dispersion management equation. It is the purpose of this
paper to answer the question whether the dispersion management equation or other
modulation equations are more than phenomenological models in this situation. Using
Floquet theory we prove that in case of comparable wave lengths of the light and of the
fiber periodicity the NLS equation and NLS like modulation equations with constant
coefficients can be derived and justified through error estimates under the assumption
that rather strong stability and non-resonance conditions hold. This is the first NLS
approximation result documented for time-periodic dispersive systems. We explain
that the failure of these conditions allows us to prove that these modulation equations
in general make wrong predictions. The reasons for this failure and the behavior of
the system for a fiber periodicity much larger than the wave length of light shows that
interchanging the role of space and time for glass fibers with a periodic structure leads
to unwanted phenomena.
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Fig. 1 In geometric or nonlinear optics, cf. Rauch (2012) and Agrawal (2013), the space variable xphys
is very often taken as the evolutionary variable. The initial condition is given by the time evolution at the
lower end of the fiber. Since the system is periodic in space we have chosen (1) to be periodic w.r.t. our
evolutionary variable t = xphys

1 Introduction

Dispersion management is used in various applications such as in mode-locked fiber
lasers or in optical fiber communication, cf. Ganapathy (2008). These systems are
described by Maxwell’s equations with a weakly nonlinear material law for the polar-
ization of the medium. In such systems dispersion occurs, i.e., the scattering of energy,
which is an unwanted phenomenon w.r.t. the purpose of these devices. An active dis-
persion management is used in order to minimize the possible dispersion of the light
pulses. One aims to stabilize the pulses by a periodic arrangement of two materials
with opposite dispersion coefficients, cf. Kurtzke (1993). See Turitsyn et al. (2003)
for a nice review article.

For the subsequent considerations we use time-periodic systems instead of spatially
periodic systems due to the modeling used in nonlinear optics. There, the role of the
spatial variable xphys and of the temporal variable tphys is interchanged, and xphys is
taken as evolutionary variable, see Fig. 1. In order to have the usual mathematical
notation we use t for the evolutionary variable which corresponds in the physical
model to the spatial variable xphys.

As a toy model for discussing these questions we consider in this introduction the
following time-periodic dispersive system

∂2t u = α1∂
2
x u + α2∂

2
x ∂

2
t u − α3u + α4u

3, (1)

with x, t, u(x, t) ∈ R, and where the α j = α j (t) for j = 1, 2, 3, 4 are real-valued
2L-time-periodic (step) functions which are defined by

α j (t) =
{

α j;1, for t ∈ [0, L),

α j;2, for t ∈ [L, 2L),
(2)
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with α j;1, α j;2 ∈ R and L > 0. (1) is not derived from Maxwell’s equations, but
we strongly believe that the subsequent results hold similarly for models which come
directly from Maxwell’s equations. For notational simplicity we have chosen both
intervals to be of the same length L . In the following many 2L-time periodic step
functions will occur. They are defined as in (2). The two coefficients of such a step
function a are denoted by a;n ∈ R for n = 1, 2.

Remark 1.1 a) Except of the term +α2∂
2
x ∂

2
t u Eq. (1) is the cubic Klein–Gordon equa-

tion which is a phenomenological model often used in nonlinear optics.
b) The term +α2∂

2
x ∂

2
t u is added to change the convex curves of eigenvalues for

α2 = 0 into curves with a local concave behavior which is necessary for dispersion
management.

c) The step functions w.r.t. time are used in the introductory Sects. 1 and 2 and
in the discussion Sect. 7.2 in order to simplify our explanations. In the subsequent
approximation and non-approximation theorem we use smooth functions w.r.t. time.
This is justified by the fact that all phenomena which we would like to address already
appear in smooth systems.

Light pulses are modulated electromagnetic waves consisting of an underlying
carrier wave modulated by a pulse-like envelope. The carrier wave and the envelope
live on different temporal and spatial scales. For an approximate description of this
multiple scaling problem effective equations1 for the dynamics of the envelope can
be derived by perturbation analysis. We are interested in the question: which of these
modulation equations make correct predictions about the dynamics of the original
system in the above set-up? We do so by proving error estimates for these identified
formal approximations.

In the homogenous situation, i.e., in case α j = α j;1 = α j;2, by inserting the ansatz

u(x, t) ≈ εψε(x, t) = εA(X , T )E(x, t) + c.c. + O(ε3), (3)

with the envelope A(X , T ) ∈ C, the carrier wave E(x, t) = ei(k0x+ω0t) with k0, ω0 ∈
R, the small perturbation parameter 0 < ε2 � 1, the slow time variable T = ε2t ,
and the slow spatial variable X = ε(x + ct) with c ∈ R, into (1) and by equating the
coefficients in front of εE , ε2E , and ε3E to zero yields that the temporal wave number
ω0 and the spatial wave number k0 have to satisfy the linear dispersion relation

ω2
0 = α1k

2
0 − α2k

2
0ω

2
0 + α3,

that the group velocity c is given by

c = dω0

dk
|k=k0 = α1k0 − α2ω

2
0k0

(1 + α2k20)ω0
,

1 Other words used here and in the existing literature: modulation equation, amplitude equation, or envelope
equation

123



29 Page 4 of 39 Journal of Nonlinear Science (2022) 32 :29

and that A satisfies in lowest order the NLS equation

iν0∂T A = ν1∂
2
X A + 3ν2A|A|2, (4)

with coefficients

ν0 = 2ω0 + 2α2k
2
0ω0, ν1 =

(
α1 − c2 + α2ω

2
0

)
, and ν2 = α4.

Since (1) contains no quadratic terms, the proof of the following approximation the-
orem is straightforward and can be found for instance in Kirrmann et al. (1992).

Theorem 1.2 Fix T0 > 0 and let A ∈ C([0, T0], H6(R, C)) be a solution of (4).
Then there exist ε0 > 0, C > 0 such that for all ε ∈ (0, ε0) there are solutions
u ∈ C([0, T0/ε2], H1(R, R)) of (1) with

sup
t∈[0,T0/ε2]

sup
x∈R

|u(x, t) − εψε(x, t)| ≤ Cε3/2,

where εψε has been introduced in (3).

It is the purpose of this paper to answer the question which modulation equation
takes over the role of the NLS equation from the homogeneous to the time-periodic
case, in particular we would like to investigate whether the so-called dispersion man-
agement equation

i∂T A = ε̃−1ν2

(
T

ε̃

)
∂2X A + νnl A|A|2, (5)

with νnl ∈ R, ν2 a 2π -periodic real-valued function, which is widely used for under-
standing dispersionmanagement phenomena, is more than a phenomenological model
in this situation. Its properties have been analyzed in a number of papers, cf. Bronski
and Kutz (1997), Zharnitsky et al. (2001), Kunze et al. (2005), Erdoğan et al. (2011),
Hundertmark et al. (2015) and Green and Hundertmark (2016), in particular, when the
mean value of ν2 vanishes. The present paper will shed some new light on the validity
of the dispersion management equation in the chosen set-up.

Our results are as follows. Using Floquet theory we prove that, in case of compara-
ble wave lengths of the light and of the fiber periodicity, NLS andNLS likemodulation
equations, with constant time-independent coefficients, can be derived and justified
through error estimates under the assumption that rather strong stability and nonlinear
non-resonance conditions hold. In detail, in Sect. 3 we use linear Floquet theory to
transfer (1) into a system with autonomous linear part. In Sect. 4 we make two pre-
liminary considerations about linear instabilities occurring in time-periodic systems
and about nonlinear resonances. In Sect. 5 we justify the NLS equation (4) and the
modulation equation, which appears for vanishing mean dispersion, by proving error
estimates for the associated approximations under the assumption that various linear
stability and nonlinear non-resonance conditions hold. This is the first NLS approx-
imation result documented for time-periodic dispersive systems. In Sect. 6 we prove
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that in case of a failure of the linear stability conditions the modulation equations
make wrong predictions. In all these sections we consider the situation L = O(1).
The paper is closed with a longer discussion. In Sect. 7.1 we discuss possible gener-
alizations of the presented theory. In Sect. 7.2 we explain that for the fiber periodicity
L � O(1) which has to be chosen for a possible derivation of the dispersion manage-
ment equation a cascade of modulated wave packets occur which cannot be described
by a single dispersionmanagement equation. Thus, it turns out that in the chosen set-up
the dispersion management equation is at most a phenomenological model. It cannot
be derived and justified for the modeling of Nonlinear Optics used in this paper.

Before we start, in Sect. 2 we give a number of heuristic arguments for the occur-
rence of various modulation equations and their validity. These arguments will make a
connection to the dispersion management equation. However, our heuristics will turn
out to be rather misleading as the subsequent mathematics will show.

Notation The Fourier transform of a function u is denoted by û. Similarly, to an
operator M the associated operator in Fourier space is denoted by M̂ . L2

s is the subset
of L2 for which the norm

‖û‖L2
s

=
(∫

R

|̂u(k)|2(1 + k2)sdk

) 1
2

is finite. The Sobolev space Hs is equipped with the norm ‖u‖Hs = ‖û(k)‖L2
s
. This

norm coincides with the usual Sobolev norm for s ∈ N0.

Possibly different constants are denoted with the same symbol C if they can be
chosen independently of the small perturbation parameter 0 < ε � 1.

2 Some Heuristics

In this section we explain why variants of the dispersion management equation can be
expected to occur as effective modulation equations in the time-periodic case. Already
in this section it will be clear that for periods 2L = O(1) no dispersion management
equation can occur asmodulation equation and that autonomousmodulation equations,
such as the NLS equation, will appear in a natural way.

2.1 The Time-Oscillatory Modulation Equation

One way to come from (1), with step functions α j = α j (t), to a time-oscillatory
modulation equation is as follows. For each of the two intervals we make the usual
multiple scaling NLS ansatz as before, namely

u(x, t) ≈ εψε(x, t) = εA(X , T )E(x, t) + c.c. + O(ε3), (6)

but now with step functions c(t), ω0(t) ∈ R defining the carrier wave E(x, t) =
ei(k0x+ω0(t)t), and the slow spatial variable X = ε(x + c(t)t). Inserting the ansatz εψε

into (1) gives now the conditions

123



29 Page 6 of 39 Journal of Nonlinear Science (2022) 32 :29

ω2
0;n = α1;nk20 − α2;nk20ω2

0;n + α3;n, (7)

c;n = dω0;n
dk

|k=k0 = α1;nk0 − α2;nω2
0;nk0

(1 + α2;nk20)ω0;n
, (8)

and that A satisfies in lowest order the non-autonomous NLS equation

iν0∂T A = ν1∂
2
X A + 3ν2A|A|2, (9)

with 2L-periodic coefficient functions ν j (t) = ν j (T /ε2), where

ν0;n = 2ω0;n + 2α2;nk20ω0;n, ν1;n = (α1;n − c2;n + α2;nω2
0;n), and ν2;n = α4;n .

For every t ∈ [nL, (n + 1)L), with n ∈ N, the modulation equation (9) is an NLS
equation with constant coefficients. In Antonelli et al. (2013) local and global well-
posedness results and the possibility of finite time blow-up in Sobolev spaces has
been established. At the jump points t = nL , with n ∈ N, there is continuity in time
such that (9) is a well-defined dynamical system. However, as we will see in Sect. 7
we not only have to approximate the original system in the interior of the intervals
(nL, (n + 1)L), but also have to control the handover of the solutions at the jump
points.

The question occurs whether (9) with its highly oscillating coefficient functions
makes correct predictions about the dynamics of (1). In order to answer this question
positively one has to prove an approximation result in the sense of Theorem 1.2.
However, already on a formal level a number of questions occur which we will discuss
now.

2.2 The AveragedModulation Equation

A description by the limit equation (9) is not satisfactory since the coefficient func-
tions ν j of (9) are highly oscillating and depend singularly on the small perturbation
parameter 0 < ε � 1.

In order to obtain a limit equation which is independent of 0 < ε � 1 we write (4)
as

i∂T A = μ0∂
2
X A + μ1A|A|2, (10)

with the 2L-periodic coefficient functions μ j = μ j (T /ε2) = μ j (t), where μ0;n =
ν1;n/ν0;n andμ1;n = ν2;n/ν0;n . Because of the highly oscillating coefficient functions
μ j it can be expected that the effective dynamics of (4) can be described by the averaged
equation

i∂T Aav = 〈μ0〉∂2X Aav + 〈μ1〉Aav|Aav|2, (11)

where 〈μ j 〉 = 1
2 (μ j;1 + μ j;2). In Antonelli et al. (2013) the scaling limit of fast

dispersion management has been considered and the convergence of the solutions of
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(10) towards the solutions of (11) has been established for time-independentμ1. Again
the question occurs whether for (11) an approximation result in the sense of Theorem
1.2 can be proven.

2.3 TheVanishingMean Dispersion Case

The case of a vanishing averaged dispersion coefficient 〈μ0〉 is of particular interest
since it is the physically desired situation. For the description of the effective dynamics
we then make the modified ansatz

u(x, t) ≈ εψε(x, t) = εA(ξ, T )E(x, t) + c.c. + O(ε3), (12)

still with the slow time variable T = ε2t , but now with the slow spatial variable
ξ = εθ (x + c(t)t) with θ suitably chosen below.

We proceed as above. Again at εE we find the linear dispersion relation and ε1+θ E
determines the linear group velocity c. At ε3E we find that the modulation A satisfies
in lowest order the non-autonomous modulation equation

i(ν0 + iεθν3∂ξ )∂T A = ν1ε
2θ−2∂2ξ A + 3ν2A|A|2, (13)

with coefficient functions ν0, ν1, and ν2 as above, and 2L-periodic coefficient function
ν3 = ν3(t) with

ν3;n = −2c;n − 4α2;nk0ω0;n .

At a first view it seems that various orders w.r.t. ε have been mixed up but we kept
the higher-order term εθν3∂ξ ∂T A on the left-hand side to compensate below the lower
order term ν1ε

2θ−2∂2ξ A on the right-hand side. As before the coefficient functions ν j

in (13) depend periodically on the fast time variable t = T /ε2. Inverting formally the
operator on the right-hand side by

(ν0;n + iεθν3;n∂ξ )
−1 = ν−1

0;n − iεθν−2
0;nν3;n∂ξ + O(ε2θ )

yields formally

i∂T A = μ0ε
2θ−2∂2ξ A + iμ3ε

3θ−2∂3ξ A + μ1A|A|2, (14)

with 2L-periodic coefficient functions μ0 = μ0(t) and μ1 = μ1(t) as above, and
the 2L-periodic coefficient function μ3 = μ3(t) with μ3;n = ν−2

0;nν3;nν1;n . In (14)

we ignored terms of order O(εmin(θ,4θ−2,1)) and higher. The choice θ = 1 has been
considered above inSects. 2.1 and 2.2 and leads to a degenerated equation for vanishing
mean dispersion.

Remark 2.1 The higher-order term +iμ3ε
3θ−2∂3ξ A in (14) is smaller than O(1) if

θ > 2
3 and then can be ignored. The term
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ε2θ−2μ0(t)∂
2
ξ A = ε2θ−2μ0(ε

−2T )∂2ξ A = ε2θ−2μ̃0(ε
2θ−2T )∂2ξ A

has a prefactor going to infinity if θ < 1. Hence, in case of step functions α j =
α j (t) = α̃ j (ε

2θ t), with α̃ j (τ ) = α̃ j (τ +2π), the scaling as it appears in the dispersion
management equation (5) appears with ε̃ = ε2−2θ for 2

3 < θ < 1 and the periodicity
L = O(ε−2θ ). This situation will be discussed below in Sect. 7.

In case θ = 2/3 the higher-order linear dispersive term +iμ3ε
3θ−2∂3ξ A is of the

same order as the nonlinear term +μ1A|A|2 and appears in the effective modulation
equation, cf. Kunze et al. (2005). The modulation equation (14) is then given by

i∂T A = μ0ε
−2/3∂2ξ A + iμ3∂

3
ξ A + μ1A|A|2. (15)

In order to have three terms on the right-hand side of the averaged equation of
the same order, we assume the following scaling property of the averaged dispersion
coefficient 〈μ0〉: There exist a μ∗

0 and a C > 0, which are both independent of
0 < ε � 1, such that

|〈μ0ε
−2/3〉 − μ∗

0| = | 1

2L

∫ 2L

0
μ0(t)ε

−2/3dt − μ∗
0| ≤ Cε2/3, (16)

where at this point a rate o(1) on the right-hand side is sufficient. The rate ε2/3 is
chosen to simplify the notation subsequently in Sect. 5.5. As above, it can be expected
that the effective dynamics of (14) can be described by the averaged equation

i∂T Aav = μ∗
0∂

2
ξ Aav + i〈μ3〉∂3ξ Aav + 〈μ1〉Aav|Aav|2, (17)

where 〈μ j 〉 = 1
2 (μ j;1 + μ j;2). Again the question occurs whether for (14) and (17)

an approximation result in the sense of Theorem 1.2 can be proven.

3 The Fourier–Floquet Transformed System

Now we change from heuristic to mathematical arguments. In case of comparable
wave lengths of light and of fiber periodicity, i.e. L = O(1), we use linear Floquet
theory to transfer (1) into a system with autonomous linear part. The resulting system
will be the basis of our subsequent analysis.

In the introductory Sect. 1 we considered (1) with step functions α j in order to
simplify our heuristic explanations. For the subsequent analysis we consider smooth
periodic functions α j in (1) in place of (2). This is justified by the fact that all phe-
nomena which we would like to address already appear in smooth systems.

The Fourier transform of (1) w.r.t. x is given by

∂2t û(k, t) = −α1k
2û(k, t) − α2k

2∂2t û(k, t) − α3û(k, t) + α4û
∗3(k, t), (18)
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where û∗3 = û ∗ û ∗ û stands for the two-times convolution. Thus, (18) can be written
as

∂2t û = −ω̂2û + ρ̂û∗3, (19)

with

ω̂(k)2 = α3 + α1k2

1 + α2k2
and ρ̂(k) = α4

1 + α2k2
. (20)

In the following we develop our theory for systems of the form (19) with 2L-time
periodic coefficient functions ω̂ = ω̂(k, t) and ρ̂ = ρ̂(k, t), whose properties will be
specified below. For notational simplicity we choose L = π in the following.

We use Floquet theory in order to discuss the dynamics of this time-periodic system.
In the following we assume smoothness of ω̂ w.r.t. t and that ω̂ �= 0. Then, we write
(19) as a first-order system and introduce v̂ by ∂t û = iω̂v̂. This implies ∂2t û =
i(∂t ω̂)̂v + iω̂∂t v̂, and so

∂t v̂ = iω̂û − 1

ω̂
(∂t ω̂)̂v + 1

iω̂
ρ̂û∗3.

This resulting system is abbreviated as

∂t Û (k, t) = L̂(k, t)Û (k, t) + N̂3(Û )(k, t),

where

L̂ =
(

0 iω̂
iω̂ − 1

ω̂
(∂t ω̂)

)
and N̂3(Û ) =

(
0

1
iω̂ ρ̂û∗3

)
.

Using the Floquet’s theorem, cf. Verhulst (1996, Theorem 6.5), for each k ∈ R the
solutions of the linear system

∂t Û (k, t) = L̂(k, t)Û (k, t),

with L̂(k, t) = L̂(k, t + 2π), can be written as

Û (k, t) = P̂(k, t)eM̂(k)t Û (k, 0),

with invertible P̂(k, t) ∈ C
2×2 such that P̂(k, t) = P̂(k, t + 2π) satisfying ∂t P̂ +

P̂M̂ = L̂P̂ , and with time-independent matrix M̂(k) ∈ C
2×2. With the help of the

transformation Û (k, t) = P̂(k, t)V̂ (k, t) we obtain the system

∂t V̂ (k, t) = M̂(k)V̂ (k, t) + P̂−1(k, t)N̂3(P̂(·, t)V̂ (·, t))(k, t).
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The linear part of this system is now autonomous and can be diagonalized (or brought
into its Jordan normal form) with V̂ (k, t) = Ŝ(k)Ŵ (k, t) and Ŝ(k) ∈ C

2×2 suitably
chosen. For W = (W1,W−1) we find

∂tW (x, t) = 
W (x, t) + G(W ,W ,W )(x, t) (21)

in physical space or

∂t Ŵ (k, t) = 
̂(k)Ŵ (k, t) + Ĝ(Ŵ , Ŵ , Ŵ )(k, t) (22)

in Fourier space, with 
̂(k) a diagonal matrix in case that M̂ can be diagonalized.
The nonlinearity Ĝ is defined through its components2

(Ĝ(Ŵ , Ŵ , Ŵ )(k, t)) j = (Ŝ−1(k)P̂−1(k, t)N̂3(P̂(·, t)Ŝ(·)Ŵ (·, t))(k, t)) j
=

∑
j1, j2, j3=−1,1

∫ ∞

−∞

∫ ∞

−∞
i ĝ j

j1, j2, j3
(k, k − l, l − m,m, t)

×Ŵ j1(k − l, t)Ŵ j2(l − m, t)Ŵ j3(m, t)dmdl,

for j = −1, 1. The kernel ĝ j
j1, j2, j3

(k, k − l, l −m,m, t) ∈ R is symmetric w.r.t. inter-
changing the tuples ( j1, k−l), ( j2, l−m), and ( j3,m). This property will simplify the
notation in Sect. 5 subsequently. This systemwill be the basis for our subsequent anal-
ysis. It is of the form of all the other original systems for which the NLS approximation
has already been justified, provided that


̂(k) = diag(iω̂b(k),−iω̂b(k)),

2 We have for j = −1, 1 that

(N̂3(Û )) j =
∑

j1, j2, j3=−1,1

∫ ∞
−∞

∫ ∞
−∞

i n̂ j
j1, j2, j3

(k, t)Û j1 (k − l, t)Û j2 (l − m, t)Û j3 (m, t)dmdl,

with n̂−1
1,1,1(k, t) = 1

iω̂(k,t) ρ̂(k, t) and n̂ j
j1, j2, j3

(k, t) = 0 for all other choices of indices. Moreover, we
introduce

(P̂(k, t))i, j = p̂i j (k, t), (Ŝ(k, t))i, j = ŝi . j (k, t)

and

(P̂−1(k, t))i, j = p̂−1
i, j (k, t), (Ŝ−1(k, t))i, j = ŝ−1

i, j (k, t).

Therefore,

ĝ j
j1, j2, j3

(k, k − l, l − m,m, t) =
∑

j4,..., j11

ŝ−1
j , j4

(k, t) p̂−1
j4, j5

(k, t )̂n
j5
j6, j7, j8

(k, t)

× p̂ j6, j9 (k − l, t )̂s j9, j1 (k − l) p̂ j7, j10 (l − m, t )̂s j10, j2 (l − m) p̂ j8, j11 (m, t )̂s j11, j3 (m).

123



Journal of Nonlinear Science (2022) 32 :29 Page 11 of 39 29

for some iω̂b(k) ∈ iR and provided the resonances coming from the time-periodicity
of the nonlinear terms can be controlled. What is meant by this will be explained in
the next section.

4 Some Preliminary Considerations

Before we derive modulation equations for (21) and later on prove their validity, we
make some preliminary considerations about nonlinear resonances and linear insta-
bilities occurring in time-periodic systems.

4.1 Nonlinear Resonances

We explain with a simple example that the time-periodic situation and the autonomous
situation are rather different.

Example 4.1 We consider the time-periodic system

∂2t u = ∂2x u − u − (1 + 2α cos(2βt))u3, (23)

with α, β, t, x, u(x, t) ∈ R. Inserting the ansatz

u(x, t) = εA(εx, ε2t)eit + c.c. + O(ε3)

gives

ε3(2i∂T A)eit + O(ε5) + c.c.

= ε3(∂2X A)eit − 3ε3A|A|2eit − ε3A3e3i t

−3αε3A|A|2e2iβt−i t − αε3A3e2iβt+3i t

−3αε3A|A|2e−2iβt−i t − αε3A3e−2iβt+3i t + O(ε5) + c.c..

We obtain the modulation equation for A by equating the coefficient at ε3eit to zero.
If β �= ±1 the usual NLS equation

2i∂T A = ∂2X A − 3A|A|2, (24)

appears, but in case β = ±1 two of the terms with an α in front are resonant and
appear in the modulation equation for A. It reads then

2i∂T A = ∂2X A − 3A|A|2 − 3αA|A|2 − αA3. (25)

With normal form transformations the non-resonant terms can be transformed into
higher O(ε5)-order terms.

Hence, due to temporal resonances additional nonlinear terms can occur in themodula-
tion equation. Therefore, in order to come to the classical NLS nonlinearity additional
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non-resonance conditions have to be imposed. However, since our equations do not
explicitly depend on x , this problem does not occur for k0 > 0. Hence, w.r.t. to appli-
cations in nonlinear optics, where k0 > 0, this problem has an academical character.

4.2 Linear Instabilities

Weneed that the semigroup generated by the operator
 is uniformly bounded in order
to prove bounds for the error made by the NLS approximation, cf. the subsequent Sect.
5. For this we need that the eigenvalues of 
̂ are purely imaginary. These eigenvalues
are given by the Floquet exponents of the operator L̂, respectively of the equation

∂2t û(k, t) = −ω̂2(k, t )̂u(k, t).

For fixed k such ODEs are well studied in the existing literature. They are studied for
instance in the form

∂2t û(k, t) + (a(k) − 2q(k)V (2t))̂u(k, t) = 0, (26)

with V (2t) = V (2t + 2π). The associated spectral problem is called Hill’s equation.
A special example of Hill’s equation is Mathieu’s equation

∂2t û(k, t) + (a(k) − 2q(k) cos(2t))̂u(k, t) = 0 (27)

for which the associated stability picture is plotted in Fig. 2 as a function of a(k) and
q(k). For the Matthieu problem it is well known (Avron and Simon 1981) that the n-th
instability gap openswithO(δn) if q = O(δ) for δ → 0. Thismeans, for a(k) and q(k)
in this instability region positive eigenvalues occur. For the Hill problem in general
the gaps open with O(δ), cf. Erdelyi (1934). Thus, in general it cannot be expected
that the semigroup generated by 
 is uniformly bounded. See Fig. 3. The occurrence
of such positive growth rates will prevent the validity of the NLS approximation, cf.
the subsequent Sect. 6.

For time-independent coefficients α1 > 0, α2 > 0, and α3 > 0 no positive growth
rates occur, since then ω̂(k)2 is then given by (20). However, even for small periodic
perturbations

α j (t) = α j,0 + δα j,per (t),

with δ > 0 small, one has to make sure to avoid the instability regions plotted for an
example in Fig. 2. Hence, the validity of the NLS approximation can only be expected
if a number of assumptions on (21) hold, cf. Sect. 5.2. The assumptions turn out to be
sharp in the sense that no approximation property holds if the subsequent Assumptions
(ASS1)–(ASS3) do not hold, cf. Sect. 6.
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Fig. 2 Stability and instability
regions in the (a, q)-plane for
Mathieu’s equation (27)
alternate. In the regions
indicated with ’unstable’,
Floquet exponents with positive
real part occur, cf. McLachlan
(1964)

Fig. 3 For ω̂2(k, t) = 1+ k2 +0.25 cos(2t)+0.25 cos(4t) the curves of the imaginary parts of the Floquet
exponents k �→ ±Imω̂b(k) are plotted in blue and the curves of ten times the real parts of the Floquet
exponents k �→ ±10Reω̂b(k) are plotted in red (Color figure online)
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5 Approximation Results

In Sect. 5.1 we derive an NLS equation for (21) which is justified in Sect. 5.4 by
proving error estimates for the associated NLS approximation. In order to do so we
construct a higher-order approximation in Sect. 5.3 for decreasing the formal error
made by this approximation. In Sect. 5.2 we pose a number of assumptions on (21)
which allow us to prove the approximation result. Moreover, we check whether these
assumptions can be satisfied for (1). In Sect. 5.5 we consider the case ω̂′′

b(k0) = 0
and derive a modulation equation similar to (14). We explain how the approximation
proof from Sects. 5.1, 5.2, 5.3 and 5.4 has to be modified for this case.

5.1 Derivation of the NLS Equation

For the derivation of an effective equation in Fourier space we use the NLS ansatz
for autonomous systems, although only the linear part of (21) is autonomous. We
approximate Ŵ±1 by εψ̂NLS,±1 where

εψ̂NLS,1(k, t) = εε−1 Â1

(
k − k0

ε
, ε2t

)
eiω̂b(k0)t eiω̂

′
b(k0)(k−k0)t , (28)

εψ̂NLS,−1(k, t) = εε−1 Â−1

(
k + k0

ε
, ε2t

)
e−iω̂b(k0)t eiω̂

′
b(k0)(k+k0)t , (29)

for a k0 > 0, cf. Schneider and Uecker (2017, §11.3). Since Ŵ1 is then strongly
concentrated at the wave number k0 and Ŵ−1 at the wave number −k0 we introduce

k = k0 + εK ,

such that

ω̂b(k) = ω̂b(k0) + εω̂′
b(k0)K + 1

2
ε2ω̂′′

b(k0)K
2 + O(ε3)

and

ĝ11,1,−1(k, k − l, l − m,m, t) = ĝ11,1,−1(k0, k0, k0,−k0, t) + O(ε),

where we used the expansion l = εL and m = −k0 + εM for some L, M > 0.
These point-wise expansionswill be transferred into rigorous estimates for the residual
terms below. Using this expansion at the wave number k0, in Fourier space we find
a cancelation of all terms of order O(1) and of order O(ε). At O(ε2)eiω̂b(k0)t and k
close to k0 we finally obtain

∂T Â1 = 1

2
iω̂′′

b(k0)K
2 Â1 + iγ Â1 ∗ Â1 ∗ Â−1, (30)
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where γ = 3ĝ11,1,−1(k0, k0, k0,−k0)[0] is defined through the Fourier expansion

ĝ j
j1, j2, j3

(k, k − l, l − m,m, t) =
∑
n∈Z

ĝ j
j1, j2, j3

(k, k − l, l − m,m)[n]eint .

We used

3
∫ ∫

i ĝ11,1,−1(k0, k0, k0,−k0)[0]

× Â1

(
k − l − k0

ε
, ε2t

)
Â1

(
l − m − k0

ε
, ε2t

)
Â−1

(
m + k0

ε
, ε2t

)
dmdl

= 3ε2
∫ ∫

ĝ11,1,−1(k0, k0, k0,−k0)[0]
× Â1(K − L, T ) Â1(L − M, T ) Â−1(M, T )dMdL

= ε2γ Â1 ∗ Â1 ∗ Â−1.

In physical space (30) is given by

∂T A1 = −1

2
iω̂′′

b(k0)∂
2
X A1 + iγ |A1|2A1. (31)

Remark 5.1 In case k0 = 0 additional non-resonance conditions have to be imposed,
cf. Example 4.1. Since our original system is real-valued and two-dimensional for fixed
k ∈ R we necessarily have ω̂′

b(0) = 0. We approximate Ŵ±1 by ψ̂NLS,±1 where

ψ̂NLS,±1(k, t) = εε−1 Â±1

(
k

ε
, ε2t

)
e±iω̂b(k0)t . (32)

We find an NLS equation

∂T A1 = −1

2
iω̂′′

b(0)∂
2
X A1 + iγ |A1|2A1, (33)

with γ = 3ĝ11,1,−1(0, 0, 0, 0)[0], if the non-resonance conditions

ĝ11,1,−1(0, 0, 0, 0)[m] /∈ {2iωb(0),−2iωb(0)}

are satisfied for all m ∈ Z.

5.2 The Linear Assumptions

In order to prove that (30) makes correct predictions about the dynamics of (21), we
need a number of estimates for the original system (21). According to our preliminary
considerations in Sect. 4.2 we assume
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(ASS1) There exists a C > 0 such that

sup
t∈R

sup
k∈R

‖e
̂(k)t‖C2→C2 ≤ C .

(ASS2) There exists a C > 0 such that

sup
t∈[0,2π ]

sup
k∈R

(‖P̂(k, t)‖C2→C2 + ‖P̂(k, t)−1‖C2→C2) ≤ C .

(ASS3) There exists a C > 0 such that

sup
k∈R

(‖Ŝ(k)‖C2→C2 + ‖Ŝ(k)−1‖C2→C2) ≤ C .

A direct consequence of the Assumptions (ASS1)–(ASS3) are the following lemmas.

Lemma 5.2 Suppose, (ASS1) holds. Then the operator
 generates a strongly contin-
uous uniformly bounded group (e
t )t∈R in every Sobolev space Hs for every s ≥ 0,
given by e
t = F−1e
̂tF . For all s ≥ 0 there exists a C
 > 0 such that

sup
t∈R

‖e
t‖Hs→Hs ≤ C
.

Lemma 5.3 Let P = F−1 P̂F and suppose, (ASS2) holds. Then for all s ≥ 0 there
exists a C > 0 such that

sup
t∈[0,2π ]

(‖P(t)‖Hs→Hs + ‖P(t)−1‖Hs→Hs ) ≤ C .

Lemma 5.4 Let S = F−1 ŜF and suppose, (ASS3) holds. Then for all s ≥ 0 there
exists a C > 0 such that

‖S‖Hs→Hs + ‖S−1‖Hs→Hs ≤ C .

The assumptions (ASS1)–(ASS3) can easily be satisfied in case of time-independent
coefficients α1 > 0, α2 > 0, and α3 > 0. There we have

ω̂2
b(k) = α3 + α1k2

1 + α2k2
, Ŝ(k) = 1

2

(
1 1

−1 1

)
, P̂(k, t) =

(
1 0
0 1

)
.

However, even for small periodic perturbations

α j (t) = α j,0 + δα j,per (t),

with δ > 0 small, one has to make sure to avoid the instability regions plotted for
instance in Fig. 2 centered at n2 for n ∈ N0. Hence, for δ > 0 a uniformly bounded
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semigroup only occurs, if the spectrum ∪k∈Rω̂2
b(k) is disjoint from the resonant wave

numbers n2 for n ∈ N0 at δ = 0. For (1) this can be achieved by classical perturbation
theory by a suitable choice of α1,0, α2,0, and α3,0 since lim|k|→∞ ω̂2

b(k) exists for
α2,0 > 0. What happens, if this assumption is not satisfied, will be discussed in Sect.
6.

5.3 Estimates for the Residual

In order to prove an approximation result for (30) we need that the residual

̂ResW (W )(k, t) = −∂t Ŵ (k, t) + 
̂(k)Ŵ (k, t) + Ĝ(Ŵ , Ŵ , Ŵ )(k, t),

i.e., the terms which do not cancel after inserting the approximation in (21), are for-
mally of orderO(ε3) in Fourier space. By nonlinear interaction of ψ̂NLS,±1 through Ĝ
terms of formal orderO(ε2) in Fourier space are created which remain in the residual
although A1 is chosen to satisfy the NLS equation, cf. the subsequent terms s1,1 and
s−1,−1. In the Ŵ1-equation, multiplied by e−iω̂b(k0)t e−iω̂′

b(k0)(k−k0)t , these are

s1,3 = e−iω̂b(k0)t
∫ ∫ ∑

n∈Z
i ĝ11,1,1 (k, k − l, l − m,m) [n]eint

× Â1

(
k − l − k0

ε
, ε2t

)
Â1

(
l − m − k0

ε
, ε2t

)

Â1

(
m − k0

ε
, ε2t

)
dmdle3iω̂b(k0)t ,

s1,1 = 3e−iω̂b(k0)t
∫ ∫ ∑

n∈Z\{0}
i ĝ11,1,−1 (k, k − l, l − m,m) [n]eint

× Â1

(
k − l − k0

ε
, ε2t

)
Â1

(
l − m − k0

ε
, ε2t

)

Â−1

(
m + k0

ε
, ε2t

)
dmdleiω̂b(k0)t ,

s1,−1 = 3e−iω̂b(k0)t
∫ ∫ ∑

n∈Z
i ĝ11,−1,−1 (k, k − l, l − m,m) [n]eint

× Â1

(
k − l − k0

ε
, ε2t

)
Â−1

(
l − m + k0

ε
, ε2t

)

Â−1

(
m + k0

ε
, ε2t

)
dmdle−iω̂b(k0)t ,

s1,−3 = e−iω̂b(k0)t
∫ ∫ ∑

n∈Z
i ĝ1−1,−1,−1 (k, k − l, l − m,m) [n]eint

× Â−1

(
k − l + k0

ε
, ε2t

)
Â−1

(
l − m + k0

ε
, ε2t

)
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Â−1

(
m + k0

ε
, ε2t

)
dmdle−3iω̂b(k0)t .

In the Ŵ−1-equation, multiplied by eiω̂b(k0)t e−iω̂′
b(k0)(k−k0)t , these are

s−1,3 = eiω̂b(k0)t
∫ ∫ ∑

n∈Z
i ĝ−1

1,1,1 (k, k − l, l − m,m) [n]eint

× Â1

(
k − l − k0

ε
, ε2t

)
Â1

(
l − m − k0

ε
, ε2t

)

Â1

(
m − k0

ε
, ε2t

)
dmdle3iω̂b(k0)t ,

s−1,1 = 3eiω̂b(k0)t
∫ ∫ ∑

n∈Z
i ĝ−1

1,1,−1 (k, k − l, l − m,m) [n]eint

× Â1

(
k − l − k0

ε
, ε2t

)
Â1

(
l − m − k0

ε
, ε2t

)

Â−1

(
m + k0

ε
, ε2t

)
dmdleiω̂b(k0)t ,

s−1,−1 = 3eiω̂b(k0)t
∫ ∫ ∑

n∈Z\{0}
i ĝ−1

1,−1,−1 (k, k − l, l − m,m) [n]eint

× Â1

(
k − l − k0

ε
, ε2t

)
Â−1

(
l − m + k0

ε
, ε2t

)

Â−1

(
m + k0

ε
, ε2t

)
dmdle−iω̂b(k0)t ,

s−1,−3 = eiω̂b(k0)t
∫ ∫ ∑

n∈Z
i ĝ−1

−1,−1,−1 (k, k − l, l − m,m) [n]eint

× Â−1

(
k − l + k0

ε
, ε2t

)
Â−1

(
l − m + k0

ε
, ε2t

)

Â−1

(
m + k0

ε
, ε2t

)
dmdle−3iω̂b(k0)t .

In order to get rid of these terms we could add higher-order terms to the NLS approx-
imation ψ̂NLS,±1 or, what we will do here, eliminate them by a near identity change
of variables. Before we do so we modify ψ̂NLS,±1 by some cut-off function in Fourier
space. We set

ψ̂χ,1 (k, t) = ψ̂NLS,1 (k, t) χδ (k − k0) ,

ψ̂χ,−1 (k, t) = ψ̂NLS,−1 (k, t) χδ (k + k0) ,
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with δ > 0 small, but independent of 0 < ε � 1 and where χδ ∈ C∞
0 satisfies

χδ (k) =
⎧⎨
⎩
1, for |k| ≤ δ,

∈ [0, 1], for δ < |k| < 2δ,
0, for |k| ≥ 2δ.

For Â1 ∈ L2
s we have

‖ψχ,±1 (·, t) − ψNLS,±1 (·, t) ‖C0
b

≤ Cεs+1/2,

cf. Schneider and Uecker (2017, Lemma 11.5.1). Hence, ψ̂χ,±1 is close to ψ̂NLS,±1,
and has the advantage that in the subsequent calculations only a small set of wave
numbers has to be considered.

By nonlinear interaction of ψ̂χ,±1 through Ĝ, which is mainly a two-times convo-
lution of ψ̂χ,±1, terms of formal order O(ε2) are created in Fourier space which are
located in four neighborhoods of length 6δ centered in k ∈ {−3k0,−k0, k0, 3k0}.3 In
order to eliminate the oscillatory parts of these terms we make, as already said, a near
identity change of variables in

∂t Ŵ (k, t) = 
̂(k)Ŵ (k, t) + Ĝ(Ŵ , Ŵ , Ŵ )(k, t). (34)

We set

Ẑ(k, t) = Ŵ (k, t) + B̂(Ŵ , Ŵ , Ŵ )(k, t), (35)

with B̂ a symmetric trilinear mapping. We find

∂t Ẑ = ∂t Ŵ + (∂t B̂)(Ŵ , Ŵ , Ŵ , t)

+ B̂(∂t Ŵ , Ŵ , Ŵ , t) + B̂(Ŵ , ∂t Ŵ , Ŵ , t) + B̂(Ŵ , Ŵ , ∂t Ŵ , t)

= 
̂Ŵ + Ĝ(Ŵ , Ŵ , Ŵ , t) + (∂t B̂)(Ŵ , Ŵ , Ŵ , t)

+ B̂(∂t Ŵ , Ŵ , Ŵ , t) + B̂(Ŵ , ∂t Ŵ , Ŵ , t) + B̂(Ŵ , Ŵ , ∂t Ŵ , t)

= 
̂Ŵ + Ĝ(Ŵ , Ŵ , Ŵ , t) + (∂t B̂)(Ŵ , Ŵ , Ŵ , t)

+ B̂(
̂Ŵ , Ŵ , Ŵ , t) + B̂(Ŵ , 
̂Ŵ , Ŵ , t) + B̂(Ŵ , Ŵ , 
̂Ŵ , t) + O(‖Ŵ‖5),
= 
̂Ẑ − 
̂B̂(Ẑ , Ẑ , Ẑ , t) + Ĝ(Ẑ , Ẑ , Ẑ , t) + (∂t B̂)(Ẑ , Ẑ , Ẑ , t)

+ B̂(
̂Ẑ , Ẑ , Ẑ , t) + B̂(Ẑ , 
̂Ẑ , Ẑ , t) + B̂(Ẑ , Ẑ , 
̂Ẑ , t) + O(‖Ẑ‖5),

where we used (34) to replace ∂t Ŵ and (35), respectively

Ŵ (k, t) = Ẑ(k, t) − B̂(Ŵ , Ŵ , Ŵ )(k, t)

= Ẑ(k, t) − B̂(Ẑ , Ẑ , Ẑ)(k, t) + O(‖Ẑ‖5),
3 ψ̂χ,±1 has support in [±k0 − δ, ±k0 + δ]. The nonlinearity is mainly û ∗ û ∗ û.
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to replace Ŵ . We split the nonlinear terms

Ĝ = Ĝ0 + Ĝr ,

where in Gr stands for the terms which can be eliminated and G0 for the terms which
cannot be eliminated via B. In order to do so we have to find a B such that

0 = −
̂B̂(Ẑ , Ẑ , Ẑ , t) + Ĝr (Ẑ , Ẑ , Ẑ , t) + (∂t B̂)(Ẑ , Ẑ , Ẑ , t)

+ B̂(
̂Ẑ , Ẑ , Ẑ , t) + B̂(Ẑ , 
̂Ẑ , Ẑ , t) + B̂(Ẑ , Ẑ , 
̂Ẑ , t). (36)

Since

(Ĝ(Ẑ , Ẑ , Ẑ)(k, t)) j =
∑

j1, j2, j3=−1,1

∫ ∞

−∞

∫ ∞

−∞
i ĝ j

j1, j2, j3
(k, k − l, l − m,m, t)

×Ẑ j1(k − l, t)Ẑ j2(l − m, t)Ẑ j3(m, t)dmdl,

for j = −1, 1, with

ĝ j
j1, j2, j3

(k, k − l, l − m,m, t) =
∑
n∈Z

ĝ j
j1, j2, j3

(k, k − l, l − m,m)[n]eint ,

we choose

(B̂(Ẑ , Ẑ , Ẑ)(k, t)) j =
∑

j1, j2, j3=−1,1

∫ ∞

−∞

∫ ∞

−∞
i b̂ j

j1, j2, j3
(k, k − l, l − m,m, t)

×Ẑ j1(k − l, t)Ẑ j2(l − m, t)Ẑ j3(m, t)dmdl,

with

b̂ j
j1, j2, j3

(k, k − l, l − m,m, t) =
∑
n∈Z

b̂ j
j1, j2, j3

(k, k − l, l − m,m)[n]eint .

Inserting this in (36) yields

r̂ j
j1, j2, j3

(k, k − l, l − m,m)[n] b̂ j
j1, j2, j3

(k, k − l, l − m,m)[n]
= ĝ j

j1, j2, j3
(k, k − l, l − m,m)[n],

with

r̂ j
j1, j2, j3

(k, k − l, l − m,m)[n] = − jωb(k) + in + j1ωb(k − l) + j2ωb(l − m)

+ j3ωb(m).
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Hence, in order to eliminate the terms collected in Gr we need that for the associated
indices and wave numbers

r̂ j
j1, j2, j3

(k, k − l, l − m,m)[n] �= 0. (37)

Due to our definition of ψ̂χ,±1 and the purposes of the transformation, namely the

elimination of the terms si j , the factors r̂
j
j1 j2 j3

(k, k − l, l − m,m)[n] have to be non-
zero for wave numbers

|m ± k0| ≤ 2δ, |l − m ± k0| ≤ 2δ, |k − l ± k0| ≤ 2δ.

For continuity reasons (37) follows for δ > 0 sufficiently small, but independent of
0 < ε � 1, if the following non-resonance conditions are satisfied, see again the
terms si j above.

(NON)We assume that 3iω̂b(k0)− iω̂b(3k0),−iω̂b(k0)− iω̂b(−k0),−3iω̂b(k0)−
iω̂b(−3k0), 3iω̂b(k0) + iω̂b(3k0), iω̂b(k0) + iω̂b(k0), and −3iω̂b(k0) + iω̂b(3k0) are
not elements of Z.

Thus, only finitelymany conditions have to be checked. For the transformed system

∂t Ẑ = 
̂Ẑ + Ĝ0(Ẑ , Ẑ , Ẑ , t) + O(‖Ẑ‖5). (38)

and the associated residual ̂ResZ (Z)(k, t) we have

Lemma 5.5 Assume the validity of the non-resonance condition (NON). Then there
exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) for the approximation εψχ we
have

sup
t∈[0,T0/ε2]

‖εψχ − εψNLS‖H1 ≤ Cε5/2

and

sup
t∈[0,T0/ε2]

‖ResZ (εψχ)‖L2 ≤ Cε7/2

Next we define ψW through the solution of

ψ̂χ (k, t) = ψ̂W (k, t) + B̂(ψ̂W , ψ̂W , ψ̂W )(k, t).

Then we have

Corollary 5.6 Assume the validity of the non-resonance condition (NON). Then there
exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) the approximation εψW satisfies

sup
t∈[0,T0/ε2]

‖εψW − εψNLS‖H1 ≤ Cε5/2
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and

sup
t∈[0,T0/ε2]

‖Res(εψW )‖L2 ≤ Cε7/2

The proof of Lemma 5.5 is standard and can be found at various places, cf. Schneider
and Uecker (2017). Therefore, we refrain from giving a complete proof, i.e., from
showing all estimates. However, for clarity we make a few remarks. We first remark
that the scaling properties of the L2-normw.r.t. k = εK leads to a gain of a factor ε1/2 in
Fourier space. Therefore, the formal errorO(ε3) of the residual corresponds toO(ε7/2)

in L2 and the formal differenceO(ε2) of εψ − εψNLS corresponds toO(ε5/2) in L2.
Secondly we remark that the near identity change of variables is arbitrarily smooth
since only compact sets of wave numbers are involved. For the same reason it can be
inverted for ε > 0 sufficiently small. As a consequence ψ̂W is well-defined.

5.4 The Error Estimates for the NLS Approximation

We have the following approximation result

Theorem 5.7 Under the validity of (ASS1)–(ASS3) and (NON) the following holds.
Fix T0 > 0 and let A1 ∈ C([0, T0], H6) be a solution of (31). Then there exist ε0 > 0,
C > 0 such that for all ε ∈ (0, ε0) there are solutions W ∈ C([0, T0/ε2], H1) of (21)
with

sup
t∈[0,T0/ε2]

sup
x∈R

|W (x, t) − εψNLS(x, t)| ≤ Cε3/2,

where εψNLS(x, t) is defined in (28) and (29).

Proof. Since there is local existence and uniqueness for (21) in H1 the subsequent
estimates for the error in H1 guarantee existence and uniqueness of solutions on the
long [0, T0/ε2]-time interval. Hence, it is sufficient to establish an error bound in H1.
Sobolev’s embedding theorem then will yield the statement of Theorem 5.7.

We introduce the error εβ R = W−εψW , withβ = 3/2 and εψW the approximation
from Corollary 5.6. We find

∂t R̂ = 
̂R̂ + 3ε2Ĝ(ψ̂W , ψ̂W , R̂) + 3ε1+β Ĝ(ψ̂W , R̂, R̂)

+ 3ε2β Ĝ(R̂, R̂, R̂) + ε−β R̂esW (εψW ). (39)

We define the energy E(t) = (R(t), R(t))H1 = (R̂(t), R̂(t))L2
1
. From (39) we find

for any t ∈ [0, T0/ε2] that
d

dt
E ≤ C1ε

2E + C2ε
β+1E3/2 + C3ε

2βE2 + C4ε
2(1 + E) (40)

due to the skew symmetry of 
̂, with constantsC j which can be chosen independently
of 0 < ε � 1. For the residual terms we used E1/2 ≤ 1 + E . We integrate (40) with
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E(0) = 0 and find

E (̃t) ≤
∫ t̃

0
C1ε

2E(s) + C2ε
β+1E(s)3/2 + C3ε

2βE(s)2 + C4ε
2(1 + E(s))ds.

We take sup̃t∈[0,t] on both sides and find

sup
t̃∈[0,t]

E (̃t) ≤ sup
t̃∈[0,t]

∫ t̃

0
C1ε

2E(s) + C2ε
β+1E(s)3/2 + C3ε

2βE(s)2

+C4ε
2(1 + E(s))ds.

We introduce S(t) = sup̃t∈[0,t] E (̃t) and use that E(s) ≤ S(s) such that

S(t) ≤ sup
t̃∈[0,t]

∫ t̃

0
C1ε

2S(s) + C2ε
β+1S(s)3/2 + C3ε

2β S(s)2 + C4ε
2(1 + S(s))ds.

Since the integrand increases monotonically we have

S(t) ≤
∫ t

0
C1ε

2S(s) + C2ε
β+1S(s)3/2 + C3ε

2β S(s)2 + C4ε
2(1 + S(s))ds.

Now set

M = e(C1+C4+1)T0C4T0

and choose ε0 > 0 so small that for any ε ≤ ε0

C2ε
β−1M1/2 + C3ε

2β−2M ≤ 1. (41)

We here define

t∗ = sup{t ∈ [0, T0/ε2] : S(t) ≤ M}.

Note that by this definition S(t∗) = M since S(t) is monotonically increasing, and
continuous in t . It remains to prove that in fact t∗ = T0/ε2 for any ε ≤ ε0. Suppose
now that there would exist ε∗ ≤ ε0 such that t∗ < T0/ε2∗, then we may take a δ > 0
such that

T0
ε2∗

− δ

ε2∗
> t∗.

We then have for any t ≤ t∗,

S(t) ≤
∫ t

0
(C1 + C4 + 1)ε2∗S(s)ds + C4ε

2∗t .
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Gronwall’s inequality yields

S(t) ≤ e(C1+C4+1)ε2∗tC4ε
2∗t

for any t ∈ [0, t∗], thus in particular at t = t∗, we have

S(t∗) ≤ e(C1+C4+1)ε2∗t∗C4ε
2∗t∗ < e(C1+C4+1)(T0−δ)C4(T0 − δ) = M − C ′

with C ′ = e(C1+C4+1)T0C4δ > 0, which contradicts the fact S(t∗) = M . Hence we
have t∗ = T0/ε2, for any ε ≤ ε0. Therefore, we have anO(1)-bound for the H1-norm
of R through the bound on S(t) = sups∈[0,t] E(s). The sup-estimate stated in the
Theorem follows from this H1-estimate by Sobolev’s inequality. ��

5.5 The Case of a Vanishing Dispersion Coefficient

As already said the case ω̂′′
b(k0) = 0 is of particular interest since this is the physi-

cally desired situation. We follow the calculations in Sect. 2 and in accordance with
Assumption (16) we set ω̂′′

b(k0) = ε2/3μ∗
0, with μ∗

0 ∈ R arbitrary, but fixed. By this
special choice the second-order spatial derivatives term is included in the limit equa-
tions which gives a richer dynamics in the limit equations. In Fourier space the ansatz,
corresponding to (12) with θ = 2/3, is given by

Ŵ1(k, t) = εε−2/3 Â1

(
k − k0
ε2/3

, ε2t

)
eiω̂b(k0)t eiω̂

′
b(k0)(k−k0)t , (42)

Ŵ−1(k, t) = εε−2/3 Â−1

(
k + k0
ε2/3

, ε2t

)
e−iω̂b(k0)t eiω̂

′
b(k0)(k+k0)t . (43)

We find a cancelation atO(1) and atO(ε2/3). AtO(ε4/3) no terms occur and atO(ε2)

close to k0 we find

∂T Â1 = 1

2
iμ∗

0K
2 Â1 + 1

6
iω̂′′′

b (k0)K
3 Â1 + iγ Â1 ∗ Â1 ∗ Â−1, (44)

or equivalently in physical space

∂T A1 = −1

2
iμ∗

0∂
2
X A1 − 1

6
iω̂′′′

b (k0)∂
3
X A1 + iγ |A1|2A1. (45)

We have the following approximation result

Theorem 5.8 Under the validity of (ASS1)–(ASS3) and (NON) the following holds.
Fix T0 > 0 and let A1 ∈ C([0, T0], H6) be a solution of (45). Then there exist ε0 > 0,
C > 0 such that for all ε ∈ (0, ε0) there are solutions W ∈ C([0, T0/ε2], H1) of (21)
with

sup
t∈[0,T0/ε2]

sup
x∈R

|W (x, t) − εψε(x, t)| ≤ Cε5/3,
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where εψε(x, t) is defined by the right hand sides of (42) and (43).

Proof. As before we introduce the error εβ R = W − εψ , but now with β = 5/3. The
error function R satisfies

∂t R̂ = 
̂R̂ + 3ε2Ĝ(ψ̂, ψ̂, R̂) + 3ε1+β Ĝ(ψ̂, R̂, R̂)

+ 3ε2β Ĝ(R̂, R̂, R̂) + ε−β R̂es(εψ). (46)

As before we can achieve

sup
t∈[0,T0/ε2]

‖ε−β ResW (εψ)‖L2 ≤ Cε2.

We define the energy E = (R, R)H1 . Due to the skew symmetry of 
̂ we find

d

dt
E ≤ C1ε

2E + C2ε
β+1E3/2 + C3ε

2βE2 + C4ε
2(1 + E),

with constants C j which can be chosen independently of 0 < ε � 1. The rest of the
proof follows line for line the proof of Theorem 5.7. ��
Remark 5.9 At a first view it seems that the approach of Sect. 3 is a short-cut to
come directly to the averaged modulation equations (11) and (17) without the detour
via (10) and (14) with its highly oscillating coefficients. However, this is not true.
A closer look at the non-resonance conditions which occur in both sections shows
that these are different. Moreover, the possibility of additional resonant terms in the
modulation equations as shown in Example 4.1 is excluded by the approach made in
Sect. 2.. These are a number of hints that something must be wrong with the approach
presented in Sect. 2. This will be explained in Sect. 7.

6 Failure of the Approximation

It has been rigorously proved in a number of papers thatmodulation equations canmake
wrong predictions about the dynamical behavior of the original system. The first result
has been shown for the amplitude system describing roll solutions in a rotational sym-
metric pattern forming system by using a center manifold reduction (Schneider 1995).
The failure of the NLS approximation has been established in Schneider et al. (2015)
for the water wave problem with small surface tension using the unstable quadratic
resonances of the system. See also Bauer et al. (2019). The only existing failure result
without imposing periodic boundary conditions on the original system can be found
in Haas and Schneider (2020) again using the unstable quadratic resonances of the
system.

The present situation is simpler since the failure comes from a linear instability.
Statements that a linear instability leads to a failure of modulation equations can be
found in a number of papers, cf. Schneider (2016). However, to our knowledge a rig-
orous proof for failure in such a situation has never been given. This will be done in
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this section. We construct a simple counter-example in case of periodic boundary con-
ditions which shows that the NLS approximation can fail to make correct predictions
if the linear stability assumption (ASS1) is not satisfied. In a number of subsequent
remarkswe discuss the ingredients for failure inmore general situations andwe explain
how the finite speed of propagation in the original system can be used to prove fail-
ure of the NLS approximation without imposing periodic boundary conditions on the
original system. The proof of failure of the NLS approximation in case of periodic
boundary conditions follows the lines of the instability proof for a spectrally unstable
fixed point.

As a counter-example for which the NLS approximation can fail to make correct
predictions we consider

∂2t û = −ω̂2û + û∗3, (47)

with

ω̂2(k) = 1 + k2 + 1

4
cos(2t)χ(k)

where χ ∈ C∞
0 with

χ(k) =
⎧⎨
⎩

1, for |k| ≤ 2/5,
0, for |k| ≥ 3/5,

∈ [0, 1], else.

By this choice an instability in the sense of Sect. 4.2 can only occur for wave numbers
|k| < 3/5. The counter part to (47) in physical space is given by

∂2t u = −ω̂2(−i∂x )u + u3. (48)

In the first step we consider (48) with 2π -spatially periodic boundary conditions and
write u(x, t) = ∑

k∈Z ûk(t)eikx or restrict (47) to wave numbers k ∈ Z. Before we
start to derive an NLS equation we remark that by our choice only û0 will grow with
an exponential rate. All other ûk behave oscillatory.

For the NLS approximation we choose the basic wave number k0 = 1. Since we
have a cubic nonlinearity by nonlinear interaction only modes ûk with odd k will be
created. Since k0 > 3/5 the derivation of the NLS equation is not affected by the
time-periodic amplification for |k| < 3/5. Therefore, the ansatz for the derivation of
the NLS equation is the one used for an autonomous system. It is similar to (3) and
for the pure derivation of the NLS equation given by

u(x, t) ≈ εψNLS(x, t) = εA1(T )E(x, t) + c.c., (49)

where we recall E(x, t) = ei(k0x+ω0(t)t). Plugging εψNLS(x, t) into (48) and equating
the coefficient in front ε3E to zero yields the ODE version

2i∂T A1 = 3A1|A1|2, (50)
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of the NLS equation (4). As above for the justification of the NLS approximation by
error estimates also for the proof of failure we need an approximation εψε(x, t) nearby
εψNLS(x, t) which is constructed in such a way that the residual is at least of order
O(ε4). For our purposes it is sufficient to choose

εψε(x, t) = εA1(T )E(x, t) + ε3A3(T )E3(x, t) + c.c..

The equation for A3 is determined by equating the coefficient in front ε3E3 to zero.
We obtain

−9ω2
0A3 = −9k20 A3 − A3 + A3

1.

Since −9ω2
0 + 9k20 + 1 = −18 + 9 + 1 = −8 �= 0 the function A3 is well-defined

and all terms of order O(ε3) have been eliminated from the residual.
In order to show below that (50) makes wrong predictions about the dynamics of

(48) we need a small amount of û0(0) initially. Hence we choose for instance

u(x, 0) = εψε(x, 0) + û0(0) and ∂t u(x, 0) = ε∂tψε(x, 0)

as initial condition for (48), with 0 �= û0(0) = O(ε3). Then, we have

|u(x, 0) − εψε(x, 0)| = O(ε3)

initially. A typical approximation result, cf. Kirrmann et al. (1992), then would show
that the NLS approximation makes correct predictions on the NLS time scale of order
O(1/ε2), i.e., that the difference between the NLS approximation and true solutions
of the original system can be estimated by

|u(x, t) − εψε(x, t)| = O(εβ)

for a β > 1 and all t on an O(1/ε2)-time scale. Hence if we can prove that the
difference between the NLS approximation and true solutions of the original system
is of the same order as the NLS approximation before the end of the O(1/ε2)-time
scale we say that NLS approximation fails to make correct predictions. Since in the
following we prove

|u(x, t∗) − εψε(x, t∗)| = O(ε)

for a t∗ ≤ O(1/ε1/2), we have the failure of the approximation property. See Fig. 4.
In more detail, we prove

Theorem 6.1 Consider (48)with periodic boundary conditions u(x, t) = u(x+2π, t)
for all x ∈ R. Let A1 ∈ C([0, T0], C) be a solution of the NLS equation (50). Then
there exist ε0 > 0, C1 > 0, and C2 > 0 such that for all ε ∈ (0, ε0) there is an open
set of initial conditions in H1

per × L2
per for (48) with

‖u(·, 0) − εψε(ε, ·, 0)‖H1
per

+ ‖∂t u(·, 0) − ε∂tψε(ε, ·, 0)‖L2
per

≤ C1ε
3,
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Fig. 4 The mode distribution for
t = 0 and the mode distribution
for t = O(| ln ε|) � O(1/ε2).
The NLS approximation is no
longer valid in the right picture,
since the mode at 0 is of the
same order w.r.t. powers of ε as
the NLS modes at k = ±1

for which the associated solutions satisfy

sup
t∈[0,1/ε1/2]

sup
x∈R

|u(x, t) − εψε(ε, x, t)| ≥ C2ε.

Proof. We split u(x, t) = u0(t) + uh(x, t), with
∫
uh(x, t)dx = 0, i.e. uh(x, t) =∑

k∈Z\{0} ûk(t)eikx . Then we write (48) as

∂2t u0 = −ω̂2
0u0 + 1

2π

∫ 2π

0
u3dx, (51)

∂2t uh = −ω̂2uh + u3 − 1

2π

∫ 2π

0
u3dx, (52)

with ω2
0(t) = 1 + 1

4 cos(2t). Thus, for u0 we are in the instability region plotted in
Fig. 2, and so one positive Floquet exponent λu and one negative Floquet exponent
λs , occurs. Since the linear part of the uh-equation is autonomous, purely imaginary
Floquet exponents occur for the uh-part. We follow the calculations in Sect. 3 and
using the notation of Sect. 3 finally write (51) as

∂t Ru = λu Ru + PuG(W ,W ,W ), ∂t Rs = λs Rs + PsG(W ,W ,W ),

where Pu and Ps are the projection on the unstable, respectively stable subspace. We
introduce the deviation from the NLS approximation for all other modes by uh =
εψh + Rh , where ψh is the extension of the NLS approximation to the W -variable.
We find the system

∂t Ru = λu Ru + gu(ψ, R),

∂t Rs = λs Rs + gs(ψ, R),

∂t Rh = 
h Rh + gh(ψ, R),

with gu , gs , and gh satisfying

|gu | = Cε2‖R‖H1 + Cε‖R‖2H1
+ C‖R‖3H1

,

|gs | = Cε2‖R‖H1 + Cε‖R‖2H1
+ C‖R‖3H1

,

‖gh‖H1 = Cε2‖R‖H1 + Cε‖R‖2H1
+ C‖R‖3H1

+ Cε3,
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where the Cε3 in the estimate for gh comes from the residual which by construction
vanishes in the Ru- and Rs-equation.

We introduce the quantities

Eu = |Ru |2 and Es = |Rs |2 + ‖Rh‖2H1 .

For E = Eu − Es we find with

‖R‖2H1 = ‖Rh‖2H1 + |Ru |2 + |Rs |2 = Eu + Es

and

Cε3‖R‖H1 ≤ Cε2ε‖R‖H1 ≤ C(ε4 + (ε‖R‖H1)
2) ≤ Cε4 + Cε2(Eu + Es)

that

d

dt
E = 2λu Eu + 2Rugu − 2λs |Rs |2 − 2Rsgs − 2(Rh, gh)H1

≥ 2λu Eu − 2|Ru ||gu | − 2|Rs ||gs | − 2‖Rh‖H1‖gh‖H1

≥ 2λu Eu − 2Cε2‖R‖2H1
− Cε‖R‖3H1

− C‖R‖4H1
− Cε3‖R‖H1

≥ 2λu Eu − 2Cε2(Eu + Es) − Cε(Eu + Es)
3/2

−C(Eu + Es)
2 − Cε4 − Cε2(Eu + Es)

≥ λu Eu − λu Es − Cε4

= λu E − Cε4 ≥ 1

2
λu E,

under the assumptions

2Cε2 + Cε(Eu + Es)
1/2 + C(Eu + Es) + Cε2 ≤ λu, (53)

Cε4 ≤ 1

2
λu E . (54)

The assumption (53) follows from the assumptions

3Cε2 + Cε(Eu + Es)
1/2 ≤ 1

2
λu, (55)

C(Eu + Es) ≤ 1

2
λu . (56)

Define then

t∗ = inf{t : E(t) ≥ 1

2
λu}.

We are done if we prove for instance t∗ ≤ 1/ε1/2. If the assumption (56) is not
satisfied for a t ∈ [0, 1/ε1/2] we are done. Hence, we assume in the following that
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Fig. 5 The solutions leave the
sector in the direction of the
Ru -axis

(56) is satisfied. Then choose ε > 0 so small that

3Cε2 + Cε

(
1

2
λu/C

)1/2

≤ 1

2
λu .

Under this assumption also (55) is satisfied.
In order to satisfy (54) we use that for the autonomous case it is well known that

we can extend the NLS approximation by higher-order terms such that

‖Res‖H1 = O(εn).

Due to the inequality on E Assumption (54) will follow from

Cε4 ≤ 1

2
λu E(0). (57)

Assumption (57) holds for ε0 > 0 sufficiently small since if we have chosen Eu(0) =
O(ε3). Thus

E(t) ≥ E(0)eλu t/2.

for all t ∈ [0, t∗]. Since O(ε) = O(ε3)eλu t/2 for t = O(ln(1/ε2)) � 1/ε1/2, we are
done. See Fig. 5. ��
Remark 6.2 The above idea works whenever (ASS1) is not satisfied, in detail, if there
exists at least one interval [k−, k+] for which positive growth rates occur. If an integer
multiple of k0 does not fall into this interval, then choose anm ∈ N such that nk0/m ∈
[k−, k+] for an n ∈ Z. Then choose 2πm-spatially periodic boundary conditions for
(48). The proof for this situation works exactly as before.

Remark 6.3 In order to prove that the NLS approximation εψε also fails for (48)
without imposing periodic boundary conditions, we could follow the ideas of Haas and
Schneider (2020, Section 5), i.e., we could use the failure of the NLS approximation
for (48) with 2π -spatially periodic boundary conditions and the fact that (48) has a
finite speed of propagation of orderO(1). Due to the finiteO(1)-speed of propagation
the following holds. If we have initially a spatial domain of sizeO(1/ε1/4) filled with
2π -spatially periodic solutions which are O(ε3)-close to ψε, then we know that after
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Fig. 6 Left panel: A spatial domain of size O(1/ε1/4) is not influenced from outside if information is
started outside a slightly bigger domain of size O(1/ε1/4) and if information is transported with velocity
O(1) on anO(| ln(ε)|)-time scale. Right panel: The NLS scaling

a time scale of order O(ln(ε)) we still have a domain of size O(1/ε1/4) filled with
2π -spatially periodic solutions but which areO(ε) away fromψε. Thus, on this spatial
domain this local NLS approximation makes wrong predictions. Due to the scaling of
the NLS approximation, cf. (3), this small domain in space and time corresponds in
the NLS equation to a spatial domain of sizeO(ε3/4) and to a temporal domain of size
O(ε2 ln(ε)). Using the variation of constant formula we can guarantee that solutions
of the NLS equation, cf. (4), change on this spatial domain only byO(ε2 ln(ε)) which
corresponds in (48) to a change ofO(ε3 ln(ε)). By the triangle inequality the solution
of (48) is stillO(ε) away from the NLS approximation, cf. (3). As a consequence, the
NLS approximation, cf. (3), fails to make correct predictions about the dynamics of
(48) even without imposing periodic boundary conditions (Fig. 6).

7 Discussion

In this last section we begin with a subsection discussing possible generalizations,
such as the transfer to original systems with quadratic nonlinearities or replacing
the NLS scaling by the N -wave interaction scaling. In the second subsection we
discuss time periodicities L � 1, in particular the case of step functions α j with
period L = O(ε−2θ ) for 2

3 < θ < 1, which was the situation where the dispersion
management equation (5) occurs, cf. Remark 2.1. The subsequent discussion will
make clear that in the modeling used in Nonlinear Optics as described in Fig. 1, the
dispersion management equation is at most a phenomenological model which cannot
rigorously be derived and justifiedwith some approximation theorem for our toymodel
(1). We strongly expect that the same holds for the full Maxwell equations.
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7.1 Generalizations

We start with the remark that there is a second consistent ansatz for the description
of oscillatory wave packets, namely the so called N -wave interaction (NWI) approx-
imation, cf. Craik (1988). For (1) with time-independent coefficients and N = 1 it is
given by

u(x, t) = εA(ε2x, ε2t)E(x, t) + c.c. + O(ε3),

leading to

iν0∂T A = c∂X A + 3ν2A|A|2

The justification analysis of the NWI approximation goes very similarly to the NLS
approximation (Schneider and Zink 2005). Only in very special situations differences
occur (Haas and Schneider 2020). Hence the previous analysis not only applies to
NLS scaled wave packets but also to NWI scaled wave packets.

In our considerationswe restricted ourselves to an original systemwith no quadratic
terms.With respect to our application to fiber optics this ismotivated by the symmetries
of the problem which only allow for odd nonlinearities. A simple generalization of
our previous toy problem (19) is the consideration of coupled systems

∂2t û j = −ω̂2
j û j + f̂ j (u1, . . . , uN ),

for j = 1, . . . , N , with f j = O(|u1|3, . . . , |uN |3) smooth functions from R
N to

R. The non-resonance conditions (NON) transfer in an obvious way. The Maxwell-
Lorentz system falls into this class, cf. Schneider and Uecker (2017, §11.7).

The case of quadratic nonlinearities is more challenging from a mathematical point
of view. In the autonomous case already in the derivation of the modulation equa-
tions additional non-resonance conditions are necessary. In the justification analysis
the quadratic terms have to be eliminated by near identity changes of variables, cf.
Kalyakin (1988) and Schneider (1998). In order to do so even more non-resonance
conditions have to be satisfied. The case so-called stable resonances has been han-
dled in Schneider (2005). The handling of nonlinear wave equations with quasilinear
quadratic termswas an open problem for a long time and has only been solved recently,
cf. Duell (2017) and Hess (2019). We expect that all these existing justification results
can be transferred from the autonomous case to the time-periodic case under the valid-
ity of assumptions similar to (ASS1)–(ASS3). However, such assumptions would be
very restrictive and the related approximations not very helpful.

7.2 Remarks About the Case L � 1.

For the subsequent discussion we ignore the possibility of linear instabilities in time-
periodic systems and explain that, even in the stable case, in the scaling which is
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necessary for the derivation of the dispersion management equation a behavior occurs
which in general cannot be described by a dispersion management equation.

If the time-periodicity 2L is large compared to the wave-length of the underlying
carrier wave, i.e., if for instance L = O(ε−2θ ) for 2

3 < θ < 1, then the previous
Floquet analysis is no longer of any help, because then the amplitude of the periodic
matrices P(t) in Floquet’s theorem also depends singularly on ε and can be very large.
As already said, L = O(ε−2θ ) for 2

3 < θ < 1 is of particular interest due to the formal
occurrence of the dispersion management equation (5) for such L , cf. Remark 2.1.

Hence, we come back to the discussion made in Sect. 2 and consider again the
situation of 2L-periodic step functions α j for (1). The main purpose of the subsequent
discussion is to explain the influence of the jumps at t = nL on the dynamics. As
in Sect. 2 on each of the intervals (nL, (n + 1)L) and ((n + 1)L, (n + 2)L) we can
derive a NLS equation with constant coefficients. For the description of the effective
dynamics we make the ansatz

u(x, t) ≈ εψε(x, t) = εA(ξ, T )E(x, t) + c.c. + O(ε3), (58)

with the slow time variable T = ε2t and the slow spatial variable ξ = εθ (x + c(t)t)
with 2

3 < θ < 1. As explained in Sect. 2 we obtain the NLS equation

i∂T A = ε2θ−2μ̃0

(
T

ε2−2θ

)
∂2ξ A + μ̃1

(
T

ε2−2θ

)
A|A|2 (59)

with highly oscillatory coefficients. The 2π -periodic coefficient step functions μ̃ j (τ )

are related to the original step functions through μ j (t) = μ̃ j (ε
2θ t).

Remark 7.1 Before we go on, we recall why (58) is exactly the scaling which has to
be chosen for a possible derivation of the dispersion management equation (5).

1. In order to have the time derivative ∂T A and the nonlinear terms A|A|2 of the same
order, we need that the ratio, coming from T = ε2t and the scaling εA, of these
two terms is O(1). This is used for the definition of ε.

2. The choice ξ = εθ (x + c(t)t) with 2
3 < θ < 1 is made to include the term ∂2ξ A

into (59). For θ ≤ 2
3 higher-order terms such as ∂3ξ A have to be included in (59),

too, since they are larger than or equal to ∂T A and A|A|2. For θ > 1 the term ∂2ξ A
is of higher-order and can be ignored. For θ = 1 it is of the same order as ∂T A
and A|A|2 and a scaling as in (5) cannot be obtained. Thus, we have to choose
2
3 < θ < 1.

3. In order to get a scaling as in (5) we have to set ε̃−1 = ε2θ−2 and to choose
L = O(ε−2θ ).

As already discussed in Remark 5.9 this formal derivation of (59)must have ignored
a very relevant aspect. What is considered wrong so far is the continuation of the
solutions of (1) at the jump points t = nL with n ∈ N. For the dispersion management
models (10) and (14) the value A|t=nL of the solution at the end of the n-th interval is
taken as initial condition for the (n + 1)-th interval. However, for the original system
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(1) the two functions u|t=nL and ∂t u|t=nL at the endpoint of the n-th interval have to
be passed as initial conditions to the n + 1-th interval.

In detail, at the end of the time interval [0, L) we have that

u(x, L−) = εA(εθ (x + c;1L−), ε2L−)eik0x+iω0;1L− + c.c. + O(ε3),

∂t u(x, L−) = iω0;1εA(εθ (x + c;1L−), ε2L−)eik0x+iω0;1L− + c.c. + O(ε1+θ ),

where L− stands for the left limit t → L . However, at the beginning of the next
interval we have

u(x, L+) = εA(εθ (x + c;2L+ + x̃0), ε
2L+)eik0x+iω0;2L++i φ̃0 + c.c. + O(ε3),

∂t u(x, L+) = iω0;2εA(εθ (x + c;2L+ + x̃0), ε
2L+)eik0x+iω0;2L++i φ̃0

+c.c. + O(ε1+θ ),

where L+ stands for the right limit t → L . Moreover, we introduced the extra phase
φ̃0 ∈ R and the extra shift x̃0 which are chosen in such a way that

eik0x+iω0;1L− = eik0x+iω0;2L++i φ̃0

and

x + c;1L− = x + c;2L+ + x̃0.

It is obvious that the continuity of ∂t u at t = L cannot be satisfied if ω0;1 �= ω0:2 and
in fact, although the initial conditions at t = L for (1) are concentrated at k = ±k0
they are no longer of the form which is necessary for the associated solutions to be
approximated by a single NLS scaled wave packet on the next interval. A second wave
packet propagating in the opposite direction is created. See Figs. 7 and 8.

For t ∈ (L, 2L) the left and right traveling wave packets can be described by the
extended ansatz

u(x, t) = εA1,1(ε
θ (x + c;2t + x1,1), T )eik0x+iω0;2t eiφ1,1

+ εA1,0(ε
θ (x − c;2t + x1,0), T )eik0x−iω0;2t eiφ1,0 + c.c. + O(ε3), (60)

with the envelopes A1, j (X , T ) ∈ C for j ∈ {0, 1}. The extra phases φ1, j and extra
shifts x1, j for j ∈ {0, 1} are again used to adjust the positions and phases at the jump
point t = L . They are determined by

eik0x+iω0;1L− = eik0x+iω0;2L+eiφ1,1 = eik0x−iω0;2L+eiφ10

and

x + c;1L− = x + c;2L+ + x1,1 = x − c;2L+ + x1,0.
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The continuity condition for u at t = L leads to

u(x, L−) = εA(εθ (x + c;1L−), ε2L−)eik0x+iω0;1L− + c.c. + O(ε3)

= εA1,1(ε
θ (x + c;2L+ + x1,1), ε

2L+)eik0x+iω0;2L+eiφ1,1

+ εA1,0(ε
θ (x − c;2L+ + x1,0), ε

2L+)eik0x−iω0;2L+eiφ1,0 + c.c. + O(ε3)

= u(x, L+),

respectively to

A(X , ε2L−) = A1,1(X , ε2L+) + A1,0(X , ε2L+). (61)

The continuity condition for ∂t u at t = L leads to

∂t u(x, L−) = iω0;1εA(εθ (x + c;1L−), ε2L−)eik0x+iω0,1L− + c.c. + O(ε1+θ )

= iω0,2εA1,1(ε
θ (x + c;2L+ + x1,1), ε

2L+)eik0x+iω0;2L+eiφ1,1

− iω0;2εA1,0(ε
θ (x − c;2L+ + x1,0), ε

2L+)eik0x−iω0;2L+eiφ1,0

+ c.c. + O(ε1+θ )

= ∂t u(x, L+),

respectively to

iω0;1A(X , ε2L−) = iω0;2A1,1(X , ε2L+) − iω0;2A1,0(X , ε2L+). (62)

The two conditions (61) and (62) form a linear system for A1,1(X , ε2L+) and
A1,0(X , ε2L+) which can be solved in terms of A(X , ε2L−).

In order to understand the global behavior we have to recall a few facts.

1. The modulated wave packets described by (60) move with a velocity c(t) = O(1).
Hence on a time interval of length L = O(ε−2θ ) the wave packets have moved a
distance of order O(ε−2θ ). Since the wave packets have a width of order O(ε−θ )

they are well separated at the end of the time interval, see Fig. 8, if the extended
ansatz is a good description of reality, see below.

2. Plugging in the ansatz (60) into (1) shows that the amplitudes A+ and A− satisfy
in lowest order

iν0∂T A1,1 = ε2θ−2ν1∂
2
X A1,1 + 3ν2A1,1|A1,1|2 + 6ν2A1,1|A1,0|2,

iν0∂T A1,0 = −ε2θ−2ν1∂
2
X A1,0 + 3ν2A1,0|A1,0|2 + 6ν2A1,0|A1,1|2. (63)

3. For t ∈ [0, ε−2θ ], respectively T ∈ [0, ε2−2θ ], the influence of the dispersion is of
orderO(1) because for the Fourier multiplier we find eiε

2θ−2ν1K 2T0/ν0 = eiν1K
2/ν0

for T0 = ε2L = ε2−2θ . Therefore, on this time interval the width of the wave
packet remains of order O(ε−θ ). The influence of the nonlinear terms is of order
O(ε2−2θ ) and therefore of lower order. Hence in lowest order the twowave packets
split and separate as predicted by (60). Since the same behavior occurs at the next
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Fig. 7 The Fourier mode distribution of the solutions changes at the first jump point. The left panel sketches
the distribution for t → L−. There are modes associated to the curve ω0;1 concentrated at k = k0 and
modes associated to the curve −ω0;1 concentrated at k = −k0. The right panel sketches the distribution
for t → L+. There are modes associated to the curves ω0;1 and −ω0;1 concentrated at k = k0 and at
k = −k0. The modes corresponding to (ω0;1, k0) and (−ω0;1, −k0) correspond to left moving waves. The
modes corresponding to (−ω0;1, k0) and (ω0;1, −k0) correspond to right moving waves

interval a cascade of wave packets is created. See Fig. 9. For example the ansatz
for the four wave packets created at t = 2L is given by

u(x, t) = εA1,1,1(ε
θ (x + c;1t + x1,1,1), T )eik0x+iω0;1t eiφ1,1,1

+ εA1,1,0(ε
θ (x − c;1t + x1,1,0), T )eik0x−iω0;1t eiφ1,1,0

+ εA1,0,1(ε
θ (x + c;1t + x1,0,1), T )eik0x+iω0;1t eiφ1,0,1

+ εA1,0,0(ε
θ (x − c;1t + x1,0,0), T )eik0x−iω0;1t eiφ1,0,0 + c.c. + O(ε3),

with the envelopes A1, j1, j2(X , T ) ∈ C for j1, j2 ∈ {0, 1}. The extra phases φ1, j1, j2
and extra shifts x1, j1, j2 for j1, j2 ∈ {0, 1} are used to adjust the positions and phases
at the jump point t = 2L . The wave packet A1,1 is split into A1,1,1 and A1,1,0 and
the wave packet A1,0 is split into A1,0,1 and A1,0,0.

4. There are various interactions of counter-propagatingwave packets in this cascade,
cf. Fig. 9. Since A1,...,1 and A1,...,0 depend on the different space variables X+ =
εθ (x + c(t)t) and X− = εθ (x − c(t)t), and since

X+ = εθ (x + c(t)t) = X− + 2c; jεθ−2T

the interaction time of the two wave packets is T = O(ε2−θ ). Therefore, for
localized solutions the interaction terms are of lower order, i.e., in lowest order
and localized solutions the two equations decouple, i.e., the dynamics of the wave
packets on each interval (nL, (n + 1)L) is described by a system of decoupled
NLS equations. For instance instead of (63) we can consider

iν0∂T A1,1 = ε2θ−2ν1∂
2
X A1,1 + 3ν2A1,1|A1,1|2,
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Fig. 8 The solutions to initial conditions with the scaling necessary for the derivation of the dispersion
management equation split in two wave packets, one moving to the left and one moving to the right. At the
end of the time interval of length L = O(ε−2θ ) they are well separated in space

Fig. 9 The cascade of wave packets created at the jump points t = nL

iν0∂T A1,0 = −ε2θ−2ν1∂
2
X A1,0 + 3ν2A1,0|A1,0|2.

See also Fig. 8. This has been established rigorously in a number of papers (Pierce
andWayne 1995; Babin and Figotin 2006; Chirilus-Bruckner et al. 2008; Chirilus-
Bruckner and Schneider 2012). The analysis also applies in our situation, may be
not for the long O(1/ε2)-time scale but at least for an ε-independent number of
interactions which is sufficient for our purposes. Hence, in lowest order the wave
packets do not interact.

We hope that this discussion convinces the potential reader that for the modeling
described in Fig. 1 and in the scaling which is necessary for the derivation of the
dispersion management equation a behavior occurs which cannot be described by a
single dispersion management equation.

As already said at the beginning of this section in the previous arguments we
considered only the best possible situation, i.e., we considered a situation without the
possibility of linear instabilities as discussed in Sect. 4.2. Hence, in most cases the
situation is even worse.

We finally remark that the dynamics shown in Fig. 9which reminds us of a sequence
of Laplace experiments finally leads to a Gaussian envelope of the wave packets.
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