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Abstract
In this paper, we propose and analyze a nonsmoothly two-dimensional map arising in
a seasonal influenza model. Such map consists of both linear and nonlinear dynamics
depending on where the map acts on its domain. The map exhibits a complicated
and unpredictable dynamics such as fixed points, period points, chaotic attractors, or
multistability depending on the ranges of a certain parameters. Surprisingly, bistable
states include not only the coexistence of a stable fixed point and stable period three
points but also that of stable period three points and a chaotic attractor. Among other
things, we are able to prove rigorously the coexistence of the stable equilibrium and
stable period three points for a certain range of the parameters. Our results also indicate
that heterogeneity of the population drives the complication and unpredictability of the
dynamics. Specifically, the most complex dynamics occur when the underlying basic
reproduction number with respect to our model is an intermediate value and the large
portion of the population in the same compartment changes in states the following
season.
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1 Introduction

The theory of dynamical systems is a major mathematical discipline closely inter-
twined with most of the main areas of mathematics. Furthermore, its concepts and
methods can be applied to a wide variety of topics such as epidemiology, biology,
medicine, physics, chemistry, finance, and more (Strogatz 2001; Jackson and Radun-
skaya 2015; Agarwal 1995; Swishchuk and Islam 2013). The investigation of the
dynamical systems has also revealed an interesting phenomenon, namely multistabil-
ity behaviors or coexisting attractors (Natiq et al. 2018, 2019; Rahim et al. 2019;
Martins and Gallas 2008; Casas and Rech 2012; Zhang and Luo 2018; Bao et al.
2021; Li et al. 2020a; Gilardi-Velázquez et al. 2017; Anzo-Hernández et al. 2018;
Escalante-González and Campos 2020). Multistability is the characteristic of a sys-
tem presenting two or more mutually exclusive stable states. Bistable systems, for
example, enable the implementation of logic gates (Santos-Moreno et al. 2020) and
therefore computation. The applications of multistability can also be found in the field
of image processing (Morfu et al. 2007) and morphing aircraft (Weisshaar 2013;
Mattioni et al. 2008).

In this paper, we investigate a two-dimensional map that consists of both linear
and nonlinear dynamics depending on where the map acts on its domain. It can be
used to describe the dynamics of the season-to-season epidemic for an influenza.
The derivation of the map is given in appendix. The two-dimensional map is also
capable of generating very rich dynamics. For instance, such map displays a variety of
qualitatively different dynamics: fixed points, period solutions, chaotic attractors, or
bistable states. Surprisingly, bistable states include not only the coexistence of a stable
fixed point and stable period three points but also that of stable period three points and
a chaotic attractor. The goal of the paper is to classify the effect of the parameters on
the dynamics of the model and to provide their theoretical analysis.

Our theoretical main results contain the following. First, the existence, uniqueness,
and stability of the fixed point are established. Moreover, we also show that if the
adjusted basic reproduction r̄0 is small, say r̄0 ≤ 1, then the disease dies out. On the
other hand, if r̄0 is sufficiently large, then the epidemic returns every year. Second,
the existence and nonexistence of a special type of period n points, epidemic returns
once every n years, are obtained. Note that such special type, denoted by 3(0,0,+)
type, of stable period three points may coexist with the nontrivial stable fixed point as
well as with a chaotic attractor at certain range of parameters, respectively. We shall
term, respectively, the above-mentioned phenomena as (1,3(0,0,+))- and (3(0,0,+),C)-
stability. Third, we prove the existence of (1,3(0,0,+))-stability over a wide range
of parameters and also provide the possible range of parameters for producing the
(3(0,0,+),C)-stability. It should be remarked that the verification of chaotic attractors
is done by computing their Lyapunov exponents numerically. In summary, our theo-
retical and numerical results seem to suggest that great heterogeneity of the population
contributes to the occurrence of the complication and unpredictability of the dynamics.
Otherwise, the dynamics is much less complicated.

We conclude the introductory section by mentioning the organization of the paper.
Our main results are contained in Sect. 2. We also provide the bifurcation diagram of
one of the state variables versus r̄0. Some interesting and complicated dynamics could
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be identified including but not limited to, other type of multistability, at the end of
Sect. 2. The derivation of the model map is placed on the appendix. Some concluding
remarks concerning the physical discussions and interpretations of the dynamics of
the model as well as some related open problems are stated in Sect. 3.

2 Dynamics of the Two-Dimensional Map

Of concern is a discrete iterative map defined in the following.

[
xn+1
yn+1

]
= C

[
xn
yn

]
+

[
c2 pn
c3 pn

]
:= F

[
xn
yn

]
, (1a)

where

C =
[

c0 0
1 − c0 c1

]
(1b)

and

pn =

⎧⎪⎨
⎪⎩

2

r̄0

(
1 − 1

r̄0(1 − xn − yn)

)
, if xn + yn ≤ 1 − 1

r̄0
, xn, yn ≥ 0,

0, if 1 − 1

r̄0
≤ xn + yn ≤ 1, xn, yn ≥ 0.

(1c)

Here pn , xn , and yn are, respectively, the proportion of the infected population, the
proportion of the quickly and slowly recovered populations at time n. For pn = 0
(resp., > 0), it is said that the epidemic dies out (resp., occurs) at time n. r̄0, a positive
number, denotes the adjusted basic reproduction numbers. If 0 < r̄0 ≤ 1, then we see,
via (1c), pn = 0 for all n, meaning that the epidemic will never occur. The parameters
ci , 0 ≤ ci < 1, i = 0, 1, 2, 3, and c2+c3 ≤ 1, gives themeasurement of themovements
from pn , xn and yn to xn+1 and yn+1. The detailed derivation of the equation in (1c)
can be found in appendix. The dynamics of model (1a,1b) is to be investigated in this
section.We beginwith deriving conditions that T := {(x, y) : x, y ≥ 0 and x+y ≤ 1}
is invariant under the map F defined in (1a).

Proposition 2.1 Let 0 ≤ c0, c1 < 1, c2, c3 ≥ 0 and c2 + c3 ≤ 1. The region T is
invariant under the map F.

Proof We first consider the case that r̄0 ≥ 1. Suppose (x0, y0) ∈ T . Then,

x1 + y1 = x0 + c1y0 + 2(c2 + c3)

r̄0
− 2(c2 + c3)

r̄20 (1 − x0 − y0)
.

Let

f1(x) = x + a − b

1 − x
,
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where a = 2(c2+c3)
r̄0

and b = 2(c2+c3)
r̄20

. Then, f1(x), 0 < x < 1, has a maximum

at 1 − √
b or 0 depending on whether b ≤ 1 or b > 1. Clearly, if b ≤ 1, then

f1(1 − √
b) = 1 − 2

√
b + a ≤ 1. Now, if b > 1, then

f1(0) = a − b = 2(c2 + c3)

(
1

r̄0
− 1

r̄20

)
≤ 1

2
(c2 + c3) ≤ 1.

Hence, x1 + y1 ≤ 1. Obviously, x1, y1 ≥ 0. For r̄0 ≤ 1, then the map F reduces to
the linear map C. The assertion of the proposition can then easily verified. The proof
of the proposition is now completed. ��

We next address the question of the existence for the fixed point of the map F in
the region S. To simplify the calculation, we shall, from here on, assume that c0 = c1.
It should also be noted that many interesting and complicated dynamics can still be
captured with such simplified assumption. For r̄0 > 1, let

Tr̄0 =
{
(x, y) : x + y ≤ 1 − 1

r̄0
, x, y ≥ 0

}
. (2)

Proposition 2.2 ThemapFdefined in (1a) exists only onefixedpoint in T . In particular,
if r̄0 > 1, then such fixed point exists in Tr̄0 .

Proof If r̄0 ≤ 1, then the map F reduces to the linear map C, which has a unique fixed
point in the origin. We next consider the case that r̄0 > 1. For such case, the only
possible candidate for the fixed point of F lies in Tr̄0 . Let (x, y, p) = (x∗, y∗, p∗),
where (x∗, y∗) is a fixed point of the map F. Then, x∗ = c2

1−c1
p∗ and y∗ = c2+c3

1−c1
p∗.

Let

c = 2c2 + c3
1 − c1

. (3a)

Upon using (1c), we have that p∗ satisfies the equation 1 = (1 − cp∗)(r̄0 − r̄20
2 p∗).

Solving the above equation, we get, for c 	= 0,

p∗ = 1

2cr̄0

[
2c + r̄0 ±

√
8c + (2c − r̄0)2

]
=: p±. (3b)

Clearly, x∗ + y∗(= cp∗) should be less than one for any feasible fixed point (x∗, y∗) ∈
Tr̄0 . However, cp+ > 1 for any c ∈ [0,∞). To see this, we compute ∂(cp+)

∂c . The
resulting calculation yields that cp+ is strictly increasing in c. Since cp+|c=0 = 1, we
have that cp+ > 1. Thus, (x+, y+) is not a feasible fixed point for the map defined
in (1), where x+ = c2

1−c1
p+ and y+ = c2+c3

1−c1
p+. Likewise, we define x− and y−

similarly. To complete the proof, it remains to show that (x−, y−) is a feasible fixed

point. Some direct calculation would yield that cp− < 1− 1

r̄0
. Now, if c ≥ r̄0

2(r̄0 − 1)
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or equivalently 2cr̄0 ≥ 2c + r̄0, then p− < 1 as desired. If 0 ≤ c <
r̄0

2(r̄0 − 1)
, then

p− < 1 provided that

(1 − c)(r̄20 − 2r̄0) + 2 > 0. (4)

The inequality above is clearly satisfied whenever 0 ≤ c ≤ 1 for any r̄0 > 1. For

c > 1, we must have that r̄0 ≤ 2. Otherwise, c <
r̄0

2(r̄0 − 1)
≤ 1, a contradiction.

However, if 1 < r̄0 ≤ 2 and c > 1, then the inequality in (4) holds true as well. We
just completed the proof of the proposition. ��
Remark 2.1 (a) The fixed point mentioned in Proposition 2.2 has the following form

x∗ = c2
1−c1

p−, and y∗ = c2+c3
1−c1

p−, where p− is defined in (3b).
(b) For r̄0 ≤ 1, the map F reduces to the linear map C. Consequently, the epidemic

dies out each season.

We next seek to find the conditions for the existence of a special form of period n
point. Specifically, a period n solution when there is an epidemic once in every n years
is to be sought, i.e., the infected population sizes are all zero at all n seasons except
one. For necessity, we set xk,m,n and yk,m,n to be the size of Rφ(= x) and R1(= y),
respectively, at the k-th season with the nonzero infected population size occurring
at the m-th season, where 0 ≤ k,m ≤ n − 1. We further assume that its infected
population size pm at the m-th season is equal to p̄m,n . Should no ambiguity arise, we
shall write p̄m,n = p̄n , xk,m,n = xk,m and yk,m,n = yk,m . Then,

(
x0,m
y0,m

)
= Cn

(
x0,m
y0,m

)
+ p̄nCn−m−1

(
c2
c3

)
,

and so
(
x0,m
y0,m

)
= p̄n(I − Cn)−1Cn−m−1

(
c2
c3

)
. (5a)

Now,

(I − Cn)−1Cn−m−1 =
∞∑
k=1

Ckn−m−1

=
∞∑
k=1

[
c1I +

(
0 0

1 − c1 0

)]kn−m−1

= cn−m−1
1

1 − cn1
I + sn,m

(
0 0

1 − c1 0

)

=
⎛
⎝

cn−m−1
1
1−cn1

0

(1 − c1)sn,m
cn−m−1
1
1−cn1

⎞
⎠ .
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Here

sn,m =
∞∑
k=1

(kn − m − 1)ckn−m−2
1

=
∞∑
k=1

(n − m − 1)ckn−m−2
1 +

∞∑
k=1

(k − 1)nckn−m−2
1

= (n − m − 1)cn−m−2
1

1 − cn1
+ nc2n−m−2

1

(1 − cn1)
2

= 1

(1 − cn1)
2

[
(n − m − 1)cn−m−2

1 + (m + 1)c2n−m−2
1

]
.

(5b)

Consequently, it follows from (5a) that

x0,m = c2c
n−m−1
1

1 − cn1
p̄n and

y0,m =
(
sn,mc2(1 − c1) + c3c

n−m−1
1

1 − cn1

)
p̄n .

(5c)

Let

tn,m : =
∥∥∥∥(I − Cn)−1Cn−m−1

(
c2
c3

)∥∥∥∥
1

= 1

p̄n
(x0,m + y0,m)

= (c2 + c3)c
n−m−1
1

1 − cn1
+ sn,mc2(1 − c1).

(5d)

Set m = 0. Then, p̄n satisfies the following equation

p̄n = 2

r̄0

(
1 − 1

r̄0(1 − p̄ntn,0)

)
. (5e)

Consequently,

p̄n =

(
1 + 2

r̄0
tn,0

)
−

√(
1 − 2

r̄0
tn,0

)2

+ 8

r̄20
tn,0

2tn,0
(6a)

Note that another root of equation (5e) is not feasible. Using (5a), we have that

xi,0 = x0,n−i and yi,0 = y0,n−i i = 1, 2, . . . n − 1. (6b)
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Now, to verify the existence of the period n solution with p0 = p̄n, p1 = p2 =
· · · pn−1 = 0, it remains to show that

x0,0 + y0,0 ≤ 1 − 1

r̄0
, (6c)

and

xi,0 + yi,0 = x0,n−i + y0,n−i

= p̄ntn,n−i ≥ 1 − 1

r̄0
. i = 1, 2, . . . n − 1.

(6d)

We have used (6b) to justify the first equality in (6d). The following proposition is to
show that for fixed n, tn,n−i is decreasing in i . Hence, if (6d) is satisfied for i = n− 1,
then (6d) holds true for all i = 1, 2, . . . , n − 1.

Proposition 2.3 For fixed n and 0 < c1 < 1, the inequality tn,m > tn,m−1 holds true
for m = 1, 2, . . . , n − 1.

Proof Using (5d), we have that

tn,m − tn,m−1 = (c2 + c3)c
n−m−1
1 (1 − c1)

1 − cn1
+

cn−m−2
1 c2(1 − c1)

(1 − cn1)
2 ×

[
(n − m − 1) + (m + 1)cn1 − mcn+1

1 − (n − m)c1

]
.

The above term is positive provided that c1(1−cn1)+n−m−1+(m+1)cn1 −mcn+1
1 −

(n − m)c1 > 0. Rearranging the right hand side of the above inequality, we get that
(n−m)(1− c1)+mcn1(1− c1)− (1− cn1)(1− c1) = (1− c1)(n−m+mcn1 −1+ cn1),
which is, indeed, greater than zero whenever 0 < c1 < 1. The proof of the proposition
is complete. ��

Clearly, (6c) is equivalent to

(
1 + 2

r̄0
tn,0

)
−

((
1 − 2

r̄0
tn,0

)2

+ 8

r̄20
tn,0

) 1
2

≤ 2

(
1 − 1

r̄0

)
.

Some direct calculation from the above inequality would yield that (6c) is always
satisfied for any n as long as r̄0 ≥ 1. For i = n − 1, we have, via Proposition 2.3, (5c)
and (5d) that (6d) becomes

tn,1

(
1 + 2

r̄0
tn,0

)
− 2tn,0

(
1 − 1

r̄0

)

≥ tn,1

((
1 − 2

r̄0
tn,0

)2

+ 8

r̄20
tn,0

) 1
2

.

(7a)
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For (7a) to be satisfied, its left-hand side has to be positive, which is equivalent to

1

r̄0
>

2tn,0 − tn,1

2tn,0(tn,1 + 1)
.

In particular, the above inequality is satisfied provided that

2tn,0 − tn,1 < 0 or 2tn,0 − tn,1 ≥ 0 and

r̄0 <
2tn,0(tn,1 + 1)

2tn,0 − tn,1
=: kn (7b)

Suppose (7b) is satisfied. Then, (7a) can be further simplified to the following form.

(r̄0 − 1)

[
(tn,1 − tn,0)r̄0 − (2tn,1(tn,1 − tn,0) − tn,0)

]
< 0.

Consequently, the inequality in (7a) holds true provided that (7b) and

1 < r̄0 < r̄+,n, where r̄+,n := 2tn,1 − tn,0

tn,1 − tn,0
, (7c)

is satisfied. In fact, only (7c) is needed to imply that (7a) holds true. To see this, it
suffices to show that r̄+,n ≤ kn whenever tn,0 < tn,1 < 2tn,0, which can be verified
by direct calculation. For (7c) to be feasible, it requires that

r̄+,n > 1, or, equivalently, 2(tn,1 − tn,0) > 1. (7d)

We are now in a position to state the conditions for the existence/nonexistence of such
special type of period n points.

Proposition 2.4 Consider the existence of a period n solution of the map F for which
the epidemic occurs once every n years.

(i) For n = 2, suppose

(
4c1

(1 + c1)2

)
c2 +

(
2

1 + c1

)
c3 > 1. (8a)

Then, the corresponding (7d) is satisfied and the above-mentioned period two
points exist whenever 1 < r̄0 < r̄+,2. Moreover, for each 0 < c1 < 1, there exist
feasible c2 and c3 such that (8a) is satisfied.

(ii) For n = 3, suppose

(
2(1 + 2c31)

(1 + c1 + c21)
2

)
c2 +

(
2c1

1 + c1 + c21

)
c3 > 1. (8b)
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Then, the associated (7d) is satisfied and the above-mentioned period three points
exist whenever 1 < r̄0 < r̄+,3. In particular, there exists a ce,3 < 1 such that for
0 < c1 < ce,3 (resp., c1 ≥ ce,3) the set of parameters (c2, c3) satisfying (8b) is
nonempty (resp., empty).

(iii) For n ≥ 4, no period n points of this special type exist.

Proof To complete the proof of the proposition, it suffices to find the conditions for
which (7d) holds true. To this end, using (5b) and (5d), we write 2(tn,1 − tn,0) as
anc2 + bnc3. Then,

an = 2

(
cn−2
1 (1 − c1)

1 − cn1
+ (sn,1 − sn,0)(1 − c1)

)
,

and

bn = 2cn−2
1 (1 − c1)

1 − cn1
= 2cn−2

1

(
n−1∑
k=0

ck1

)−1

. (9a)

Note that

sn,1 − sn,0 = 1

(1 − cn1)
2

{
(n − 2)cn−3

1 + 2c2n−3
1 − (n − 1)cn−2

1 − c2n−2
1

}

= 1

(1 − cn1)
2

{
(n − 2)cn−3

1 (1 − c1) − cn−2
1 (1 − cn−1

1 ) + c2n−3
1 (1 − c1)

}

= (1 − c1)

(1 − cn1)
2

{
(n − 2)cn−3

1 + c2n−3
1 − cn−2

1

n−2∑
k=0

ck1

}
.

Using the above equality, an can be further simplified. Specifically,

an = 2

(1 − cn1)
2 ×

{
cn−2
1 (1 − c1)(1 − cn1)+

(1 − c1)
2
(

(n − 2)cn−3
1 + c2n−3

1 − cn−2
1

n−2∑
k=0

ck1

)}

=
[
2(n − 2)cn−3

1 + 4c2n−3
1

] (
n−1∑
k=0

ck1

)−2

.

(9b)

Moreover, we have, via (9a) and (9b), that (7d) becomes (8a) and (8b), for n = 2 and
3, respectively. Since b2 > 1 for all 0 < c1 < 1 and a3 > 1 for 0 < c1 < ce,3,
see Remark 2.2(i) for more details, we conclude that there are parameter regions for
which these special types of period two or three points exist. We have just completed
the proof of the assertions in (ii) and (iii). We next show that the assertion in (iii) holds
true.

123



15 Page 10 of 28 Journal of Nonlinear Science (2022) 32 :15

Suppose

an < 1 for all n ≥ 4 and 0 ≤ c1 ≤ 1. (10)

Note that bn < 1 for all n ≥ 3. Then, the equality in (7d) means that anc2 +bnc3 > 1,
which, in turn, implies that c2 + c3 > 1, for all n ≥ 4 and 0 ≤ c1 ≤ 1, a contradiction
to the assumption that c2 + c3 ≤ 1. Hence, to complete the third assertion of the
theorem, it remains to show that (10) holds true. For n ≥ 5, it is easy to see that, by

expanding

(
n−1∑
k=0

ck1

)2

, there are no less than or equal to 2(n − 2) terms containing ck1,

0 ≤ k ≤ n − 3. Moreover, the total number of the terms containing ck1, n − 3 < k ≤
2n − 3, is greater than 4. Hence, for n ≥ 5, (10) holds as claimed. For n = 4, it is
obvious that

4c1 + 4c51 < (1 + c1)
2 + 2(1 + c1)

(
c21 + c31

) + (
c21 + c31

)2

=
(

3∑
k=0

ck1

)2

.

We just proved the third assertion of the theorem. Now, (8a) and (8b) can be directly
obtained from (9a) and (9b). For n = 2, clearly b2 > 1 and a2 < 1. Hence, for each
0 < c1 < 1, there exist feasible c2 and c3 such that (8a) is satisfied. For n = 3, b3 < 1,

a3 = 2(1+2c31)

1+c1+c21
. Some elementary calculations would yield that there exists a ce,3 such

that a3 > 1 (resp. < 1) whenever c ∈ (0, ce,3) (resp. (ce,3, 1)). Hence, we have just
completed the proof the theorem. ��
Remark 2.2 (i) Numerically, ce,3 ≈ 0.3509168319. The notation ce,3 is so set up

that its subscripts e and 3 represent the existence of period three points. Similar
notations will be employed throughout the paper. The equations in (8a) and (8b)
are to be denoted by �e,2 and �e,3, respectively. For fixed c1, we illustrate the
parameter region in the c2 − c3 plane for which the existence of period 2 or 3
points exists in Fig. 1.

(ii) The intersection point I2,3 of �e,2 and �e,3 lies above the line � (c2 + c3 = 1).

Here I2,3 =
(

(c1+1)(c21+c1+1)
2(1−c1)(1+2c1)

,
1−3c21−4c31

2(1−c1)(1+2c1)

)
. The verification of the above is

cumbersome but elementary. This implies that the coexistence of such period two
and three points is impossible.

(iii) The lines � and �e,2 intersect at (
1+c1
2 , 1−c1

2 ).
(iv) Using (ii) and (iii), we also arrive at the conclusion that c2 > c3 is a necessary

condition for the existence of such period three points.
(v) Clearly, there are three types of period three points, depending on the number of

the infected population being zero at the year end in a three-year span. We shall
use the notations 3(+,+,+), 3(0,+,+), 3(0,0,+) to distinguish one from the other.
In particular, the special type of period three points described in Proposition 2.4
is of 3(0,0,+) type. Similar notations are to be used for period n points if needed.
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Fig. 1 � : c2 + c3 = 1,
�e,2 : 4c1

(1+c1)2
c2+ 2

(1+c1)
c3 = 1

and �e,3 : 2(1+2c31)

(1+c1+c21)2
c2

+ 2c1
1+c1+c21

c3 = 1 with

c1 = 0.1. The green (resp., blue)
region represents the parameter
region for the existence of
period two (resp., three) points
mentioned in Proposition 2.4.
These two regions do not
intersect with each other (colour
figure online)

Our first main result deals with the stability of the fixed point. For r̄0 > 1, let
(x∗, y∗, p∗), be defined as in Remark 2.1. The Jacobian matrix of F at (x∗, y∗) has the
following form.

F′(x∗, y∗) = C + b∗,1

(
c2 c2
c3 c3

)

Here C is defined in (1b) and

b∗,1 = ∂ pn
∂xn

∣∣∣∣
(xn ,yn)=(x∗,y∗)

= ∂ pn
∂ yn

∣∣∣∣
(xn ,yn)=(x∗,y∗)

= −2

(
1 − r̄0

2
p∗

)2

.

(11a)

We have used the fact, via (1c), that p∗ = 2

r̄0

(
1 − 1

r̄0(1 − x∗ − y∗)

)
to justify the

last equality in (11a). Consequently,

− 2 < b∗,1 < 0. (11b)

Some direct calculations would yield that the characteristic polynomial of F
′
(x∗, y∗)

is λ2 − α1λ + β1 = 0, where

α1 = 2c1 + (
c2 + c3

)
b∗,1 and β1 = c21 − b∗,1

(
c2(1 − c1) − c1c3

)
.
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Define

b�,1 = −4c2(1 − c1)(
c2 + c3

)2 . (11c)

Then, λ± are complex (resp., real) roots whenever b�,1 < b∗,1 < 0 (resp., b∗,1 ≤
b�,1). We next compute the equivalent conditions for the following three inequalities
λ+ < 1, λ− > −1 and (λ+)(λ−) < 1. Those equivalent conditions are, respectively,
b∗,1 < 1−c1

2c2+c3

b∗,1 <
−(1 + c1)2

2c1c2 + (1 + c1)c3
=: br ,1 (11d)

and

c21 − b∗,1
(
c2 − (2c2 + c3)c1

)
< 1. (11e)

Since b∗,1 < 0 < 1−c1
2c2+c3

, the inequality λ+ < 1 is satisfied for all feasible parameters.
Hence, if b∗,1 ≤ b�,1, then λ± are real roots and so λ− ≤ λ+. Consequently, if
br ,1 < b∗,1 ≤ b�,1, we have that −1 < λ− ≤ λ+ < 1, a sufficient condition for the
fixed point (x∗, y∗) to be locally stable. Suppose c1 < c2

2c2+c3
. Define bc,1 as

bc,1 := −(
1 − c21

)
c2 − (

2c2 + c3
)
c1

. (11f)

Then, (11e) is equivalent to b∗,1 > bc,1. On the other hand, if c1 ≥ c2
2c2+c3

, then (11e)
is also satisfied and so is the inequality (λ+)(λ−) < 1. We are now in a position to
summarize the stability of the fixed point.

Theorem 2.1 (I) If one of the following conditions holds true, then the fixed point
(x∗, y∗) of the map F is locally stable for all r̄0.

(I-a) br ,1 < b∗,1 ≤ b�,1.
(I-b) c1 ≥ c2

2c2+c3
and b∗,1 > br ,1.

(I-c) c1 < c2
2c2+c3

and b∗,1 > max{b�,1, bc,1}.
(I-d) max{br ,1, bc,1} < −2.

(II) For 0 < c1 < 1, we denote by Ar ,c1 (resp., Ac,c1) the interception point of the
lines br ,1 = −2 (resp., bc,1 = −2) and c2 + c3 = 1. Moreover, let Ir ,c1 (resp,
Ic,c1) be the c3 (resp., c2) intercept of the line br ,1 = −2 (resp., bc,1 = −2).
Then, the (x∗, y∗) is locally stable provided that the parameter point (c2, c3) is
in the interior of one of the following two regions.

(II-a) The quadrilateral O Ic,2−√
3 Ar ,c1 Ir ,c1 , seeFig. 2a.Here 2−

√
3 ≤ c1 < 1.

(II-b) The pentagon O Ic,c1 Ac,c1 Ar ,c1 Ir ,c1 , see Fig. 2b. Here 0 < c1 < 2−√
3.

(III) For r̄0 sufficiently large, the corresponding fixed point is locally stable.
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point in the c2-c3 plane. Here 2 − √
3 ≤

c1 ≤ 1. Its boundaries are the c2 and c3
axes, the lines and br,1 = −2. Here br,1 =
−2 and e,2 represent the same line

(a) The stable (green) region of the fixed

(b) The stable (green) region of the fixed
point in the c2-c3 plane. Here 0 < c1 <
2 − √

3. Its boundaries are the c2 and c3
axes, the lines bc,1 = −2, and br,1 = −2.

Fig. 2 Typically stable regions, described in Theorem 2.1-(II), in the c2–c3 plane
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Proof For condition (I-a) to be valid, we first show that

b�,1 > br ,1 for all feasible ci , i = 1, 2, 3. (11g)

To see this, we get that b�,1 > br ,1 if and only if g1(c1) > 0. Indeed,

g1(c1) :=(3c2 + c3)
2c21 − 2(c2 − c3)(3c2 + c3)c1 + (c2 − c3)

2

=
(

(3c2 + c3)c1 + c2 − c3

)2

> 0.

The proof that condition (I-a) implies the stability of (x∗, y∗) was provided on
the paragraph in between (11e) and (11f). If c1 ≥ c2

2c2+c3
, then b�,1 > 0, and so,

b∗,1 < b�,1 due to the fact that b∗,1 < 0 as indicated in (11b). As a result, λ± are real
roots. It then follows from (I-a) that (x∗, y∗) is stable as asserted. On the other hand, if
c1 < c2

2c2+c3
, then (x∗, y∗) is stable as long as b∗,1 > bc,1 holds. Hence, if condition (I-

c) holds, then (x∗, y∗) is stable as claimed. We next show that if (I-d) is satisfied, then
(x∗, y∗) is stable. To see this, we break b�,1 into the following cases. Let b�,1 ≥ −2.
It follows from (11a) that b∗,1 > max{br ,1, bc,1}. Now, suppose b∗,1 > b�,1. Then,
(x∗, y∗) is stable by (I-b) and (I-c). On the other hand, if b∗,1 ≤ b�,1, then the
stability of (x∗, y∗) is guaranteed by (I-a). For the case that b�,1 < −2, we see that
b∗,1 > max{b�,1, br ,1, bc,1}. Hence, (x∗, y∗) is also stable by (I-b) and (I-c). We just
completed the proof concerning (I-d).

We now move to prove the second part of the theorem. In fact, if the algebraic
condition (I-d) is converted into the geometric region in the (c2, c3) plane, then the
shape of corresponding region has two types, which are described in (II-a) and (II-b).
To see this, we first note that br ,1 ≤ −2 and bc,1 ≤ −2 are, respectively, equivalent
to the following inequalities.

(
4c1

(1 + c1)2

)
c2 +

(
2

1 + c1

)
c3 ≤ 1

and
(

1 − c21
2(1 − 2c1)

)
c2 −

(
2c1

1 − c21

)
c3 ≤ 1. (11h)

It should be mentioned that the c2 intercept of the line bc,1 = −2 is equal to one
provided that c1 = 2 − √

3. It is then easy to see that the c2−intercept is greater
than or equal to one (resp., smaller than one) provided that c1 < 2 − √

3 (resp.,
2− √

3 < c1 < 1
2 ). For c1 ≥ 1

2 , bc,1 is always less than or equal to −2 since both the
c2 and c3 intercepts are negative. We just completed the proof of the second part of
the theorem.

To prove the last part of the theorem, we see that lim
r̄0→∞ b∗,1 = 0. It then follows

from (11c) that λ± are complex roots provided that r̄0 is sufficiently large. Upon using
(11e), we get that |λ±| < 1 whenever r̄0 is sufficiently large. ��
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Remark 2.3 (a) Using Remark 2.1, we have that

b∗,1 = −8
(√

(2c − r̄0)2 + 8c − (2c − r̄0)
)−2

,

where c is given in (3a). Some direct calculations would yield that ∂
∂r̄0

(b∗,1) =

−(2c − r̄0)

(
(2c − r̄0)2 + 8c

)−1
2

+ 1 > 0, for all c > 0 and ∂
∂c (b∗,1) = 2

(
(2c −

r̄0)2+8c

)−1
2

(
(2c−r̄0)+2−√

(2c − r̄0)2 + 8c

)
< 0 for all r̄0 > 1.Consequently,

b∗,1 is increasing in r̄0 and decreasing in c1. Moreover, it is easy to see that
lim

r̄0→1+ b∗,1 = lim
c1→1− b∗,1 = −2 ≤ b∗,1 for all feasible c1 and r̄0. This amounts to

saying that one may chose suitable parameters so that b∗,1 can be arbitrarily close
to −2 from the right.

(b) The assumptions on the (II-a) and (II-a) of Theorem 2.1 are only sufficient condi-
tions for (x∗, y∗) to be stable. To see this, let c1 = c2 = 0, r̄0 = 2 and c3 > 1

2 , the
corresponding b∗,1, b�,1 and br ,1 are, respectively, −2(√

1+c23+1−c3

)2 , 0, and − 1
c3
.

Hence, b�,1 > b∗,1 > br ,1 > −2. By choosing c1 and c2 sufficiently small and
r̄0 sufficiently close to 2, we have, via Theorem 2.1-(I-b), that the corresponding
fixed point is locally stable.

In the following, we state a sufficient condition for the stability of the special type of
period two point described in Proposition 2.4.

Theorem 2.2 Suppose (8a) is satisfied and so r̄+,2 > 1. For 0 < c1 < 1, if in addition,
c2 and c3 satisfy the following inequality

2(1 − c21 + 2c31)c2 + 2(c1 + c31)c3 ≤ (1 + c21)
2, (12a)

then the period two points of 2(0,+) type is locally stable for all r̄0 ∈ (1, r̄+,2).
Pictorially, the green (stable) region as shown in Fig.3 is where (c2, c3) satisfies both
(8a) and (12a).

Proof For n = 2, let (x0,0,2, y0,0,2, p̄2) and (x1,0,2, y1,0,2, 0) be the period two points
of 2(0,+) type. Then, the local stability of such period two points is determined by the
size of the spectral radius of the product of two Jacobian matrices F′(x0,0,2, y0,0,2)
and F′(x1,0,2, y1,0,2), which has the following form

(
c21 + c2b∗,2 c1c2b∗,2

2c1(1 − c1) + c3b∗,2 c21 + c1c3b∗,2

)
:= F2,

where b∗,2 = −2
r̄20 (1−x0,0,2−y0,0,2)2

. Note that −2 ≤ b∗,2 ≤ −2
r̄20
. The subscript 2 of

b∗,2 indicates the quantity is associated with this special type of period two points.

123



15 Page 16 of 28 Journal of Nonlinear Science (2022) 32 :15

Fig. 3 Stable (green) region for the period two points. Here 1 < r̄0 < r̄+,2. Its boundaries are �e,2, equality
in (8a), br ,2 = −2, equality in (12a), � and the c3-axis. For r̄0 > r̄+,2, the period two points do not exist
(colour figure online)

The corresponding characteristic polynomial of the matrix F2 has the following form
λ2 − α2λ + β2 = 0, where

α2 = 2c21 + (c2 + c1c3)b∗,2, (12b)

and

β2 = c41 − c21

(
(1 − 2c1)c2 − c1c3

)
b∗,2 =: c41 − c21d1b∗,2. (12c)

Let �2 = α2
2 − 4β2. If �2 < 0 and β2 < 1 or �2 ≥ 0 and 1 + β2 > |α2|,

then such special type of period two points is locally stable. Since (8a) is satisfied,
(c2, c3) lies in the triangular region for which its three vertices are (0, 1), (0, 1+c1

2 )

and ( 1+c1
2 , 1−c1

2 ). It is clear that the maximum of d1 as defined in (12c) occurs at
( 1+c1

2 , 1−c1
2 ). Consequently, d1 < 1

2 (1 − 2c1 − c21) for all c1 ∈ (0, 1). Hence, β2 <

c41 +c21(1−2c1−c21) = c21(1−2c1) < 1 regardless of the sign of�2. The verification
of the sign of 1+β2−α2 is obvious since 1+β2−α2 = (1−c21)

2−((1+c21−2c31)c2+
(c1 − c31)c3)b∗,2, which is clearly positive for all 0 < c1 < 1 regardless of the sign of
�2. To complete the proof of the theorem, it remains to show that 1 + β2 + α2 > 0
whenever (8a) and (12a) are satisfied. Let d2 := (1− c21 +2c31)c2 + (c1 + c31)c3. Then,
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1 + β2 + α2 = (1 + c21)
2 + d2b∗,2, which is greater than zero whenever

b∗,2 > − (1 + c21)
2

d2
=: br ,2.

The above inequality is satisfied provided that br ,2 ≤ −2, or equivalently, (12a) holds
true. Clearly, the c3 (resp., c2) intercept of the line br ,2 = −2 is greater (resp., less)
than one. Moreover, the point Ir ,c1 = ( 1+c1

2 , 1−c1
2 ), which is the intersection of the

line c2 + c3 = 1 and the line defined by the equality presented in (8a), and the origin
are on the opposite side of the half planes, determined by br ,2 = −2. Hence, the green
region in Fig. 3 is a stable region. We have completed the proof of the theorem. ��

Note that Ir ,c1 and the origin are on the opposite side of the half planes, divided
by br ,2 = −2. However, it should be pointed out that for the parameters chosen from
the blue region, see Fig. 3, the corresponding period two points are still possibly be
stable depending on the range of r̄0. We next investigate the stability of the period
three points described in Proposition 2.4 and the possibility of bistable states. The
numerical simulations suggest the that the existence of bistable states can be observed
for certain ranges of the parameters. We then aim to provide inside as to what range
of parameters would generate those bistable states.

Theorem 2.3 (I) Let ce,3 be defined as described in Remark 2.2(i). Let br ,3 be defined
as follows.

br ,3 := −(1 + 2c31 + c61)

(2c1 − c21 − c41 + 2c51)c2 + (c21 + c51)c3
. (13a)

Consequently, the inequality br ,3 ≤ −2 has the following form.

2(2c1 − c21 − c41 + 2c51)c2 + 2(c21 + c51)c3 ≤ (1 + 2c31 + c61). (13b)

The stability region of the period three points of 3(0,0,+) type is addressed in the
following.

(I-a) There exists a cs1,3(< ce,3) such that if 0 < c1 ≤ cs1,3, then the existence of
such period three points implies its stability for any r̄0 ∈ (1, r̄+,3). Here cs1,3
is the number so obtained that the c2-intercept of the line br ,3 = −2 is equal
to 1 when c1 = cs1,3. Numerically, cs1,3 ≈ 0.31949. A stable region in the
c2-c3 plane for such range of c1 is depicted in the blue region in Fig.1.

(I-b) There exists a cs2,3 such that, for cs1,3 < c1 < cs2,3 and r̄0 ∈ (1, r̄+,3),
its corresponding stability region, determined by (8b) and (13b), is nonempty.
Here cs2,3 is the number so obtained that the three lines �, seeFig.1, br ,3 = −2,
and �e,3 have a common intersection when c1 = cs2,3. Numerically, cs2,3 ≈
0.33747. A stability region placed on the c2-c3 plane is illustrated as the green
region in Fig.6.

II The map F exhibits (1,3(0,0,+)) stability for any r̄0 ∈ (1, r̄+,3) if one of the
following three conditions is fulfilled.
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(II-a) 0 < c1 < 2 − √
3, c2 and c3 satisfy (8b) and bc,1 ≤ −2, see the green region

in Fig.4.
(II-b) 2 − √

3 ≤ c1 ≤ cs1,3, c2 and c3 satisfy (8b), see the green region in Fig.5.
(II-c) cs1,3 < c1 < cs2,3, c2 and c3 satisfy (8b) and (13b), see the green region in

Fig.6.

In particular, for parameters chosen from the region described in (II-b), the existence
of such period three points implies (1,3(0,0,+))-stability.

Proof For n = 3, let (x0,0,3, y0,0,3, p̄3), (x1,0,3, y1,0,3, 0) and (x2,0,3, y2,0,3, 0) be the
period three points of 3(0,0,+) type. Then, the product of Jacobian matrices F

′
at those

three period three points, respectively, has the following form

(
c31 + c1c2(2 − c1)b∗,3 c21c2b∗,3

3c21(1 − c1) + c1c3(2 − c1)b∗,3 c31 + c21c3b∗,3

)
=: F3,

where −2 ≤ b∗,3 = −2
r̄20 (1−x0,0,3−y0,0,3)2

≤ − 2
r̄20
. Some direct calculation would yield

that the characteristic polynomial of F3 has the following form λ2 − α3λ + β3 = 0,
where

α3 = 2c31 +
(
c1(2 − c1)c2 + c21c3

)
b∗,3 =: 2c31 + d3b∗,3

and

β3 = c61 + c41

(
(2c1 − 1)c2 + c1c3

)
b∗,3 =: c61 + c41d4b∗,3

We then follow the similar argument as those in proving the last theorem. To this end,
we first show that |β3| < 1. Using Remark 2.2(i) and (iv), we have that −c2 ≤ d3 ≤
1
2c2. Hence, |β3| < c61 + 2c41 < 1 for c < 1

2 . Now,

1 + β3 − α3 = 1 − 2c31 + c61 −
(
c2(2c1 − c21 + c41 − 2c51) + (c21 − c51)c3

)
b∗,3,

which is positive for any 0 < c1 < 1. Next, we have that 1+β3+α3 > 0 provided that
b∗,3 > br ,3. The above inequality is satisfied as long as −2 ≥ br ,3 or, equivalently,
(13b) holds true. It is easy to check that the c3−intercept of the line br ,3 = −2 is
greater than 1 for 0 < c1 ≤ ce,3(<

1
2 ). The c2−intercept of the line br ,3 = −2 is

greater than or equal to 1 if and only if

1 − 4c1 + 2c21 + 2c31 + 2c41 − 4c51 + c61 =: g(c1) > 0.

It is easy to set that g is decreasing on (0, 1
3 ). Since g(0) > 0 , and g( 13 ) < 0, there

exists a cs1,3 such that g(cs1,3) = 0 and the corresponding c2 intercept is greater than
or equal to one (resp., smaller than one) for c1 ∈ (0, cs1,3] (resp., (cs1,3, ce,3)). In
fact, cs1,3 ≈ 0.31949. Hence, for such range of c1, condition (13b) is automatically
satisfied for all feasible c2 and c3. Consequently, the existence of the period three
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points implies its stability. To complete the assertion in (I-b), we need to show that the
inequalities (8b), (13b) and 0 < c2 + c3 ≤ 1 have a nonempty (stability) region in the
c2-c3 plane. To this end, we first show that the slope me of �e,3 is larger than that mr

of br ,3 = −2 whenever c1 < 0.4. Some direct calculation would yield that

me = −(
1 + 2c31

)
c1

(
1 + c1 + c21

) > mr = −(
2 − c1 − c31 + 2c41

)
c1 + c41

if and only if 1+ c1 + c21 − 5c31 + c41 + c51 > 0, which clearly holds for all feasible c1.
We next compute the intersection (c̄2, c̄3) of the lines �3 and br ,3 = −2. After some
tedious calculation, we have that

c̄2 = −c71 − 2c61 − c51 − c41 − c31 − c21 + 1

2c61 + 2c51 − 10c41 + 2c31 + 2c21 + 2c1
and

c̄3 = 3c81 + 4c71 − 5c61 + 3c21 + 2c1 − 1

2c71 + 2c61 − 10c51 + 2c41 + 2c31 + 2c21

and that c̄2 + c̄3 ≤ 1 if and only if (c21 − c1 +1)(2c51 +4c41 −4c31 −5c21 − c1 +1) ≥ 0.
Solving c̄2 + c̄3 = 1 numerically, we have that c1 ≈ 0.33747 =: cs2,3 or −2.44783 or
1.25025. Clearly, cs2,3 is the only feasible solution. Using all the above information,
we arrive at the conclusion that c̄2 + c̄3 < 1 (resp., ≥ 1) whenever c1 ∈ (0, cs2,3)
(resp., [cs2,3, 1]). Upon using the fact that 0 > me > mr , we further conclude that the
stability region is nonempty (resp., empty) for c1 ∈ (cs1,3, cs2,3) (resp., [cs2,3, ce,3)).

For 0 < c1 < 2 − √
3, see Fig. 2b, we have, via Theorem 2.1-(II-b) and Theorem

2.3-(I), that the map F exhibits (1,3(0,0,+))-stability provided that assumptions in (II-
a) hold true. Such region, see Fig. 4, is nonempty provided that the c2−intercept of
bc,1 = −2 is greater than that of �3.We omit the elementary verification of such claims.
Suppose 2 − √

3 ≤ c1 ≤ cs1,3. Then, the c2−coordinate of Ar ,c1 = 1+c1
2 and that of

the interception point A3,c1 of �3 and c2 + c3 = 1 is
1+c21+c41

2(1−c1)2(1+c1)
(> 1+c1

2 ). Hence,
Ar ,c1 is to the left of A3,c1 . It then follows from Theorem 2.1-(II-a) and Theorem
2.3-(I) that the map F exhibits the (1,3(0,0,+))-stability as long as such period three
points exist. For cs1,3 < c1 < cs2,3, it is clear that the stability of period three points
of 3(0,0,+) type implies (1,3(0,0,+))-stability of the map. We just completed the proof
of the theorem. ��

We conclude the section by mentioning that, for a certain range of the parameters,
other type of multistability such as (3(0,0,+),C)-stability and (3(0,0,+),8)-stability can
be observed numerically. Specifically, the parameters chosen from the blue region in
Fig. 4 may exhibit interesting and complicated dynamics as r̄0 varies. To see this, we
first fix c1 = 0.1, c2 = 0.8 and c3 = 0.2 and pick two sets of initial conditions.
Their eventual states, see Fig. 7, are then colored by red and blue, respectively. For
1 < r̄0 < 1.132, the epidemic occurs once every three years regardless of the initial
conditions. As r̄0 races pass 1.132, (3(0,0,+),C)-stability can be observed. For 1.317 <

r̄0 < r̄+,3 ≈ 1.4151, (3(0,0,+),8)-stability can be noticed. For r̄+,3 < r̄0 < 1.546,
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Fig. 4 Green region represents the (1,3(0,0,+)) stability where its boundaries are the lines �e,3, bc,1 = −2
and �. In blue region, the period three points are stable. Moreover, it is where (3(0,0,+),C) stability may
occur. Here 0 < c1 < 2 − √

3 (colour figure online)

as predicted, such period three points no longer exist. However, the chaotic dynamics
seems to reappear with some windows occurring in between. As r̄0 races pass 1.546,
the epidemic occurs every year with the size of infected population increasing as r̄0
becomes larger. Figure8 provides the diagram of the maximum Lyapunov exponent of
themapF versus r̄0 for the same set of parameters ci , i = 1, 2, 3 chosen in Fig. 7. It then
easy to see, via Figs. 7 and 8, that (3(0,0,+),C)-stability occurs for 1.132 < r̄0 < 1.317
with ci , i = 1, 2, 3, fixed as above. Their correspondingly eventual states (xn, yn),
1.95 × 104 ≤ n ≤ 2 × 104, with two sets of initial states are displayed in Fig. 9. We
next fix c1 = 0.1 and (c2, c3) = (0.99, 0.01), which is also from the blue region in
Fig. 4. As a matter of fact, we see, via Fig. 10, that the chaotic dynamics appears only
when period three points of 3(0,0,+) type no longer exist, i.e., r̄0 > r̄+,3. Hence, as
compared to Fig. 7, the existence of the (3(0,0,+),C) stability is no longer there. In
fact, chaotic dynamics can only be observed whenever r̄+,3 < r̄0 < 1.843. A period
three points of 3(0,+,+) type, epidemic occurring twice every three years, emerges as
1.843 < r̄0 < 2.185. Whenever 2.185 < r̄0 < 2.579, the coexistence of the stable
fixed point and this new type of period three points, i.e., (1,3(0,+,+))-stability, can be
seen. Finally, as r̄0 becomes sufficiently large, the epidemic returns every year. In fact,
Figs. 7 and 10 display qualitatively different bifurcation diagrams even though the
parameters chosen are from the same region.
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Fig. 5 Green region represents the (1,3(0,0,+)) stability where its boundaries are the lines �e,3, � and the
c2-axis. Here 2−√

3 ≤ c1 ≤ cs1,3 ≈ 3.19499. In this range of parameters, existence of period three points
implies (1,3(0,0,+)) stability (colour figure online)

3 Conclusions

In this paper, we analyze how the effect of parameters r̄0 and ci , i = 1, 2, 3, of the
seasonal influenza map F has on its dynamics. If the adjusted basic reproduction num-
ber r̄0 is small (r̄0 ≤ 1), the epidemic dies out every season. On the other hand, if
the adjusted basic reproduction number r̄0 is sufficiently large, the epidemic returns
every season. The most complicated and surprising dynamics occur when r̄0 is an
intermediate value and the large portion of the populations in the same compartment
changes in states the following season. Specifically, if more population in P compart-
ment move to the quickly recovered population Rφ(x) the following season than to
these in the slowly recovered population R1(y), or equivalently c2 � c3 and if the
small portion of population in Rφ and R1 compartments remain in the same com-
partments the following season, or equivalently c1, c2 � 1, then the occurrence of
the complicated dynamics can be observed whenever r̄0 is an intermediate value (see
Fig. 8). In summary, our theoretical results and numerical simulations seem to suggest
that heterogeneity of the population drives the complication and unpredictability of
the dynamics.

We conclude this paper by mentioning some possible future work.

1. It is worthwhile to provide the bistability analysis of the following types: the exis-
tence of (3(0,0,+),C)-stability and (1,3(0,+,+))-stability.
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Fig. 6 Green region represents the (1,3(0,0,+)) stability where its boundaries are the lines �e,3, �, br ,3 = −2
and the c2-axis. Here cs1,3 < c1 < ce,3 ≈ 0.35092. In blue region, the fixed point is also stable (colour
figure online)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
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Fig. 7 Bifurcation diagram of the state of x variable versus r̄0. Here the parameters c1 = 0.1, c2 = 0.8 and
c3 = 0.2, which are chosen from the blue region as given in Fig.4 (colour figure online)
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Fig. 8 Diagram of the maximum Lyapunov exponent (LE) of the map F versus r̄0. Here the parameters are
chosen to be as those in Fig. 7

Fig. 9 Let (x0, y0) = (0, 0) and
(x0, y0) = (0.05, 0.05),
respectively. The eventual states
of (xn , yn), 1.95 × 104 ≤ n ≤
2 × 104 and colored by red and
blue, respectively, are displayed
in the x-y plane for the
parameters with c1 = 0.1,
c2 = 0.8, c3 = 0.2, and
r̄0 = 1.2 (colour figure online)

2. It is also interesting to investigate the global dynamics of the map F. The first step
toward this direction is to find the conditions for which the fixed point is globally
stable.

3. The study of the maps defined in (17a)–(17d) or those obtained in (Roberts et al.
2019), which are algebraic-difference equations, is also valuable to the field of
dynamics systems.

4. The undocumented infected individuals (Li et al. 2020b) play a crucial role to
facilitate the rapid dissemination of covid-19. Moreover, in real life or in the case
of covid-19, some people infect many others and others do not spread the disease
at all. That is why in addition to the basic reproduction number, a concept, named
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Fig. 10 Bifurcation diagram of the state of x variable versus r̄0. Here the parameters c1 = 0.1, c2 = 0.99
and c3 = 0.01 are also chosen from the blue region as given in Fig. 4. However, its dynamic is quite different
from those in Fig. 7

dispersion number (Lloyd-Smith et al. 2005), of howmuch a disease clusters has to
be factored in. In fact, the lower the dispersion number is, themore the transmission
comes from a small number of people. It is of great interest to incorporate those
ideas into the seasonal influenza models.

Funding Funding was provided by Ministry of Science and Technology, Taiwan (Grant No. MOST 110-
2115-M-A49-013).

Appendix

The following derivation of the map follows closely to the work done in Roberts et al.
(2019). To obtain our seasonal model, we begin with the derivation of the relationship
between the concerned population groups within a season. Let the proportion of the
population that is susceptible to infection at time t be S(t) and the infected proportion
be I (t), to explore the effect of recovering from symptoms at different rates on an
influenza epidemic as well as the effect of waning immunity. Such different rates of
recoveringmay be due to the facts that people just recover from the flu differently or use
non-drug approaches or even take wrong drug unintentionally or get two cooperative
diseases, such as HIV virus and flu, in an overlapping period. We then further divide
the proportion of the recovered population into two compartments, Rφ(t) and R1(t)
with the implication that the people in the Rφ(t) compartment recover from the disease
relatively quicker than those in R1(t) compartment. The population size is assumed to
remain a constant, and so, S(t) + I (t) + Rφ(t) + R1(t) = 1 for all t > 0. The motion
of the dynamics then reads as follows.
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dS

dt
= −βSI ,

dI

dt
= βSI − γ I − kγ I ,

dRφ

dt
= γ I ,

dR1

dt
= kγ I .

(14)

Here k < 1 is the relative recovering factor for those in the R1 compartment compared
to those in the Rφ . Note that if k = 0, (14) reduces to the standard SIR model
(see, e.g., Diekmann et al. 2013). The parameters β and γ are the transmission
and recovering rates, respectively, for the disease. The basic reproduction number
with respect to the standard SIR model is defined by r0 = β

γ
. The outbreak of the

epidemic takes off provided that r0S(0) > 1 + k. Let lim
t→∞(S(t), Rφ(t), R1(t)) =

(S(∞), Rφ(∞), R1(∞)). Note that it is easy to prove that lim
t→∞ I (t) = 0 and the

limits of S(t), Rφ(t), and R1(t) exist as t goes to infinity. Then, it follows from the
first and third equations in (14) that S(t) = S(0)e−r0(Rφ(t)−Rφ(0)) and so

Rφ(∞) = −1

r0
ln

(
S(∞)

S(0)

)
+ Rφ(0). (15a)

Similarly, we get

R1(∞) = −k

r0
ln

(
S(∞)

S(0)

)
+ R1(0). (15b)

To obtain our seasonal model, the final states of R1 and Rφ the current season are
to be used as the initial conditions for the following season. Let P be the infected
population at the end of the season. Then,

P = S(0) − S(∞) = (Rφ(∞) + R1(∞)) − (Rφ(0) + R1(0))

= −(1 + k)

r0
ln

(
S(∞)

S(0)

)
= −(1 + k)

r0
ln

(
1 − P

S(0)

)
.

Hence,

P = S(0)(1 − e−r0
P

1+k ) =
(
1 − Rφ(0) − R1(0)

)(
1 − e−r0

P
1+k

)
. (16)

Note that P = 0 is a trivial solution to Eq. (16). Moreover, if (1 − Rφ(0) −
R1(0))( r0

1+k ) > 1 (resp., < 1), then Eq. (16) has a unique positive (resp., negative)
solution.
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The season-to-season map is to be constructed in terms of two recovered classes
Rφ and R1 with the assumption that those in Rφ compartment have the stronger
immunity than those in R1 compartment. Specifically, we assume that c0 and 1 − c0
portions of those in Rφ compartment at the beginning of the previous season remain in
Rφ compartment and move to R1 compartment, respectively, at the beginning of the
following season. Here 0 ≤ c0 < 1. Furthermore, c1 and 1−c1 portions of those in R1

compartment at the beginning of the previous season remain in R1 compartment and
move to S compartment, respectively, at the beginning of the following season. Here
0 ≤ c1 < 1. Finally, c2, c3, and 1− c2 − c3 portions of those in P compartment at the
end of the previous season move to Rφ , R1, and S at the beginning of the following
year, respectively. Here 0 ≤ c2, c3 < 1 and c2 + c3 ≤ 1. Moreover, denote by Rφ

n+1
and R1

n+1 the size of Rφ and R1, respectively, at time n + 1. We then arrive at the
following equations.

Rφ
n+1 = c0R

φ
n + c2Pn, (17a)

R1
n+1 = (1 − c0)R

φ
n + c1R

1
n + c3Pn, (17b)

Pn =
{

(1 − Rφ
n − R1

n)(1 − e−r̄0Pn ), if (1 − Rφ
n − R1

n)r̄0 > 1,
0, otherwise.

(17c)

Here

r̄0 = r0
1 + k

. (17d)

The newly defined term r̄0 is to be called the adjusted basic reproduction number.
Clearly, (17a), (17b) and (17c) define an algebraic-difference equation modeling

the dynamics of a between-season influenza.
We next seek to find an approximate solution P̃n to equation (17c). To this end, we

replace e−r̄0Pn in (17c) by its Taylor polynomial 1− r̄0Pn + r̄20
2 P2

n of degree 2. Then,

the approximate equation to equation (17c) reduces to (1− Rφ
n − R1

n)(r̄0− r̄20
2 Pn) = 1.

Denote the solution to the above approximate equation by P̃n .We thenget the following
approximate model.

Rφ
n+1 = c0R

φ
n + c2 P̃n, (18a)

R1
n+1 = (1 − c0)R

φ
n + c1R

1
n + c3 P̃n, (18b)

P̃n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

r̄0

(
1 − 1

r̄0(1−Rφ
n −R1

n)

)
, if Rφ

n + R1
n ≤ 1 − 1

r̄0
,

Rφ
n , R1

n ≥ 0,

0, if 1 − 1

r̄0
≤ Rφ

n + R1
n ≤ 1,

Rφ
n , R1

n ≥ 0.

(18c)
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To save notations, we shall denote Rφ, R1, and P̃ by x, y, and p, respectively. Writing
(18) into a compact form with the new notations, we then arrive at the iterative map
defined in (1a)–(1c).

The reasons to use such approximation are twofold. First, each flu season lasts only
finite time. However, (17c) or (16) is derived from within-season model (14) as time
approaches to infinity. It should also be noted that the size of the infected population
is increasing in time. Therefore, in real situation, the size of the infected population at
the end of each season should be smaller than the one produced from (16). It can be
easily verified that P̃n , as defined in (18c), is smaller than those obtained from (17c).
Hence, it is more feasible to consider approximate model (1). Second, it is obvious
that the map defined in (1) is easier to analyze analytically than that of defined in
(17). Nevertheless, to analyze map F is still a nontrivial matter, because that the map
F consists of both linear and nonlinear dynamics and which one of the types is to
be acted on at time n + 1 depends upon the position of the previous iterate (xn, yn).

Specifically, if xn + yn ≤ 1 − 1

r̄0
, then its corresponding the dynamics is nonlinear.

Otherwise, the map F reduces to the linear map C, as given in (1b).
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