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Abstract
We establish a local theory, i.e., existence, uniqueness and blow-up criterion, for a
general family of singular SDEs in Hilbert spaces. The key requirement relies on
an approximation property that allows us to embed the singular drift and diffusion
mappings into a hierarchy of regular mappings that are invariant with respect to the
Hilbert space and enjoy a cancellation property. Various nonlinear models in fluid
dynamics with transport noise belong to this type of singular SDEs. By establishing
a cancellation estimate for certain differential operators of order one with suitable
coefficients, we give the detailed constructions of such regular approximations for
certain examples. In particular, we show novel local-in-time results for the stochastic
two-component Camassa–Holm system and for the stochastic Córdoba–Córdoba–
Fontelos model.
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1 Introduction

Consider the initial value problem for a stochastic differential equation (SDE) with
unknown process X = X(t), t ≥ 0, given by

dX = (b(t, X) + g(t, X)
)
dt + h(t, X) dW, X(0) = X0 ∈ X (1.1)

and let X , Y andZ be three separable Hilbert spaces such that X ⊂ Y ⊂ Z . Here,W
denotes a cylindrical Wiener process defined on some separable Hilbert space U; the
drift is given by the sum of the mappings b : [0,∞)×X → X and g : [0,∞)×X →
Z . The operator h : [0,∞)×X → L2(U;Y) stands for the diffusion coefficient with
L2(U;Y) being the space of Hilbert-Schmidt operators from U to Y . We call (1.1) a
singular initial value problem because g and h map X to the larger spaces Z and Y ,
i.e., they are not invariant in X . We refer to Sects. 2.1 and 2.2 for the precise setting.

In the fully regular case X = Y = Z , it is well known that (local) Lipschitz
conditions onb(t, ·)+g(t, ·) andh(t, ·) ensure that (1.1) admits unique (local) pathwise
solution in X . If additional monotonicity properties on the coefficients are imposed,
then the Itô formula for Gelfand-triple Hilbert spaces can be exploited to assure global
existence and continuity of solutions, cf. Kallianpur et al. (1995), Leha and Ritter
(1985), Krylov and Rozovskiı̆ (1979), Prévôt and Röckner (2007) and the references
therein. Notably this covers also the case when the Hilbert spaces form a Gelfand
triple.

In this work, we are interested in the singular scenario which appears in particular
in the study of ideal fluid models. Indeed, when considering particular examples in
Sobolev spaces X = Hs , if g(t, X) and h(t, X) involve ∇ X or some derivatives of X
(see our examples (3.7) and (3.11)), then g(t, X) and h(t, X) can not be expected to
be in X = Hs , either. Moreover, working with the abstract framework in (1.1) entails
another difficulty compared to the regular or the Gelfand-triple case: the Itô formula
is no longer available. To highlight the latter difficulty, let us recall the classical Itô
formula for a Gelfand triplet V ↪→ H ↪→ V ∗, where H is a separable Hilbert space
with inner product (·, ·) and H∗ is its dual; V is aBanach space such that the embedding
V ↪→ H is dense; L2(U; H) is the space of Hilbert-Schmidt operators mapping U to
H . Then, the following result is classical, see Krylov and Rozovskiı̆ (1979, Theorem
I.3.1) or Prévôt and Röckner (2007, Theorem 4.2.5).

Assume that U is a continuous V ∗-valued stochastic process given by

U(t) = U(0) +
∫ t

0
g(s) ds +

∫ t

0
G(s) dW(s), t ∈ [0, T ],

where G ∈ L2 (Ω × [0, T ];L2(U; H)) and g ∈ L2 (Ω × [0, T ]; V ∗) are both
progressively measurable and U(0) ∈ L2(Ω; H) is F0-measurable. If U ∈
L2 (Ω × [0, T ]; V ), then U is an H -valued continuous stochastic process and the
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Itô formula

‖U(t)‖2H = ‖U(0)‖2H + 2
∫ t

0
V ∗〈g(s),U(s)〉V ds

+ 2
∫ t

0
(G(s) dW,U(s))H +

∫ t

0
‖G(s)‖2L2(U;H) ds. (1.2)

holds true P − a.s. for all t ∈ [0, T ].
We notice that (1.2) is applicable for U(0) ∈ H , U ∈ L2 (Ω × [0, T ]; V ), g ∈

L2 (Ω × [0, T ]; V ∗) and G ∈ L2 (Ω × [0, T ];L2(U; H)). However, if G is singular
(not invariant in H ), then G ∈ L2(U; H) is ambiguous. Besides, even though g is
allowed to be less regular, (1.2) requires U(t) to be more regular than U(0), i.e.,
U ∈ V ↪→ H � U(0). In many cases (for example, stochastic ideal fluid models),
we do not know that this holds true. Hence, (1.2) is not applicable in singular cases.
Likewise, the concept of monotonicity cannot be applied, and the time continuity of
the solution cannot be obtained directly, either.
The first major goal of this paper is to establish a local-in-time theory for (1.1) gener-
alizing classical results for, e.g., the completely regular caseX = Y = Z . The second
goal of this work is to show that the abstract theory for (1.1) can be used to establish
new results for ideal fluid systems with transport noise.

1. To achieve the first goal, we fix in Sect. 2.2 the precise assumptions on the regular
drift b and in particular on the singular drift g and diffusion h (see Assumptions (A)
and (B)). Then, we provide our main results for (1.1), including the existence,
uniqueness, time regularity and a result characterizing the possible blow-up of
pathwise solutions (see Theorem 2.1). The key requirements for the proof are the
assumption on the existence of appropriate Lipschitz-continuous and monotone
regularizations for the singularmappings. This allows us to exploit Itô-like formulas
as above.

2. With the abstract framework at hand, we are able to construct such regular approx-
imation schemes by using mollifying operators and establishing a cancellation
property for certain differential operators (cf. Lemma A.5). The latter property has
already been used in Crisan et al. (2019) in a somewhat different formulation to
establish local-in-time results for the three dimensional Euler equations with trans-
port noise. To set the stage, in Sect. 3, we consider two models governing ideal
flows with particularly interesting stochastic perturbation, namely

– the two-component Camassa–Holm (CH) system with transport noise (Holm
and Luesink 2021), see (3.4),

– a nonlinear transport equation with non-local velocity, referred as the Córdoba–
Córdoba–Fontelos (CCF) model (Córdoba et al. 2005), with transport noise,
see (3.10).

In both cases, we obtain a local-in-time theory in the sense of the abstract-
framework Theorem 2.1. The statements of our results are found in Sect. 3.2.
To the best of our knowledge, they are the first results on well-posedness for these
models. Finally, we explain in Sect. 3.5 how our abstract framework and the reg-
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ular approximation schemes can be applied to a broader class of fluid dynamics
equations including the surface quasi-geostrophic (SQG) equation with transport
noise.

2 An Abstract Framework for a Class of Singular SDEs

2.1 Notations and Definitions

To begin with, we introduce some notations. We consider a probability space
(Ω,F , P), where P is a probability measure on Ω and F is a σ -algebra. We endow
the probability space (Ω,F , P) with an increasing filtration {Ft }t≥0, which is a right-
continuous filtration on (Ω,F) such that {F0} contains all the P-negligible subsets.
For some separable Hilbert space U with a complete orthonormal basis {ei }i∈N the
noiseW in (1.1) is a cylindrical Wiener process, i.e., it is defined by

W =
∞∑

k=1

Wkek P − a.s, (2.1)

where {Wk}k≥1 is a sequence ofmutually independent standard 1-DBrownianmotions.
To guarantee the convergence of the above formal summation, we consider a larger
separable Hilbert space U0 such that the canonical injection U ↪→ U0 is Hilbert–
Schmidt. Therefore, for any T > 0, we have, cf. Da Prato and Zabczyk (2014),
Gawarecki and Mandrekar (2011) and Karczewska (1998),

W ∈ C([0, T ], U0) P − a.s.

Note that the choice of the auxiliary Hilbert spaces U and U0 is not crucial for our
analysis. Thus, we let U and U0 be arbitrary but fixed in the sequel.
For some time t > 0, the family σ {x1(τ ), . . . , xn(τ )}τ∈[0,t] stands for the completion
of the union σ -algebra generated by (x1(τ ), . . . , xn(τ )) for τ ∈ [0, t]. EY stands for
the mathematical expectation of a random variable Y with respect to P. From now on
S = (Ω,F , P, {Ft }t≥0,W) is called a stochastic basis.
For any Hilbert space H the inner product is denoted by (·, ·)H. Furthermore,
the space L2(U; H) contains all Hilbert-Schmidt operators Z :U → H with finite
norm ‖Z‖2L2(U;H)

= ∑∞
k=1 ‖Zek‖2H. As in Breit et al. (2018, Theorem 2.3.1),

we see that for an H-valued progressively measurable stochastic process Z with
Z ∈ L2

(
Ω; L2

loc ([0,∞);L2(U; H))
)
, one can define the Itô stochastic integral

∫ t

0
Z dW =

∞∑

k=1

∫ t

0
Zek dWk .
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Most notably for the analysis here, if Z ∈ L2(U; H) andW is given as above, we have
the Burkholder–Davis–Gundy (BDG) inequality

E

(

sup
t∈[0,T ]

∥
∥∥∥

∫ t

0
Z dW
∥
∥∥∥

p

H

)

≤ CE

(∫ T

0
‖Z‖2L2(U;H) dt

) p
2

, p ≥ 1,

or in terms of the coefficients,

E

(

sup
t∈[0,T ]

∥∥∥∥
∥

∞∑

k=1

∫ t

0
Zek dWk

∥∥∥∥
∥

p

H

)

≤ CE

(∫ T

0

∞∑

k=1

‖Zek‖2H dt

) p
2

, p ≥ 1.

Let X be a separable Banach space. B(X) denotes the Borel sets of X and P(X)

stands for the collection of Borel probability measures on (X,B(X)). We denote
Pr (X) the family of probability measures in P(X) with finite moment of order
r ∈ [1,∞), i.e.,Pr (X) = {μ : ∫

X
‖x‖r

X
μ(dx) < ∞} . For two Banach spacesX and

Y, X ↪→ Y means that X is embedded continuously into Y, and X ↪→↪→ Y means
that the embedding is compact. For a set E , 1E denotes the indicator function on E .

Next, let us make precise two different notions of solutions in the Hilbert space X
for the Cauchy problem (1.1).

Definition 2.1 (Martingale solutions) Let μ0 ∈ P(X ). A triple (S, X , τ ) is said to
be a martingale solution to (1.1) if

1. S = (Ω,F , P, {Ft }t≥0,W
)
is a stochastic basis and τ is a stopping time with

respect to {Ft }t≥0;
2. X(· ∧ τ) : Ω × [0,∞) → X is an Ft -progressively measurable process such that

it is continuous in Z , μ0(·) = P{X0 ∈ ·} for all · ∈ B(X ) and for every t > 0,

X(t ∧ τ)−X0 =
∫ t∧τ

0

(
b(t ′, X(t ′)) + g(t ′, X(t ′))

)
dt ′ +
∫ t∧τ

0
h(t ′, X(t ′)) dW P − a.s.

(2.2)

In (2.2),
∫ ·
0

{
b(t ′, X(t ′)) + g(t ′, X(t ′))

}
dt ′ is the Bochner integral on Z and∫ ·

0 h(t ′, X(t ′)) dW is a continuous local martingale on Y .
3. If τ = ∞ P − a.s., then we say that the martingale solution is global.

The stronger concept of pathwise solutions is provided in

Definition 2.2 (Pathwise solutions) Let S = (Ω,F , P, {Ft }t≥0,W) be a fixed
stochastic basis. Let X0 be an X -valued F0-measurable random variable. A local
pathwise solution to (1.1) is a pair (X , τ ), where τ is a stopping time satisfying
P{τ > 0} = 1 and X : Ω × [0, τ ] → X is an Ft -progressively measurable process
satisfying (2.2) and X(· ∧ τ) ∈ C ([0,∞);X ) almost surely.

It follows fromDefinition 2.1 that, if a martingale solution exists, then (2.2) implies
that

∫ t∧τ

0

(
b(t ′, X(t ′)) + g(t ′, X(t ′))

)
dt ′ +
∫ t∧τ

0
h(t ′, X(t ′)) dW (2.3)
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takes values inX , even though g and h are not invariant inX . Moreover, Definition 2.2
implies that if a pathwise solution exists, then (2.3) is continuous in time in X .

To study the possible blow-up of the solutions, we need the following concept of
maximal solutions.

Definition 2.3 (Maximal solutions) Let S = (Ω,F , P, {Ft }t≥0,W) be a fixed
stochastic basis. Let X0 be an X -valued F0-measurable random variable. (X , τ ∗) is
called a maximal pathwise solution to (1.1) if there is an increasing sequence τn → τ ∗
such that for any n ∈ N, (X , τn) is a pathwise solution satisfying

sup
t∈[0,τn ]

‖X‖X ≥ n a.e. on {τ ∗ < ∞}.

Particularly, if τ ∗ = ∞ almost surely, then such a solution is called global.

2.2 Assumptions andMain Results

To study the existence of martingale and pathwise solutions, we need the following
assumptions on the three separable Hilbert spaces X , Y , Z and on the coefficients b,
g and h in (1.1). Recall that {ei }i∈N is a complete orthonormal basis of U.

We first impose some conditions guaranteeing the existence ofmartingale solutions.

Assumption (A) The Hilbert spaces satisfy the embedding relation X ↪→ Y ↪→↪→ Z
and the coefficients b : [0,∞)×X → X , g : [0,∞)×X → Z and h : [0,∞)×X →
L2(U;Y) are continuous in both variables. LetV be aBanach space satisfyingZ ↪→ V .
There are non-decreasing locally bounded functions f (·), k(·), q(·) ∈ C
([0,+∞); [0,+∞)) such that the following conditions hold true.

(A1) For all (t, X) ∈ [0,∞) × X , we have

‖b(t, X)‖X ≤ k(t) f
(‖X‖V

)‖X‖X , (2.4)

and for all N ∈ N,

sup
‖X‖X ,‖Y‖X≤N

{
1{X �=Y }

‖b(t, X) − b(t, Y )‖X
‖X − Y‖X

}
≤ q(N )k(t). (2.5)

Besides, for any bounded sequence {Xε} ⊂ X such that Xε → X in Z ,

lim
n→∞ ‖b(t, Xε) − b(t, X)‖Z = 0, t ≥ 0. (2.6)

(A2) For ε ∈ (0, 1) and N ≥ 1 there exist regular maps

gε : [0,∞) × X → X , hε : [0,∞) × X → L2(U;X )
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and constants Cε,N > 0 such that for all t ≥ 0 the bounds

sup
ε∈(0,1),‖X‖X ≤N

{‖gε(t, X)‖Z + ‖g(t, X)‖Z + ‖hε(t, X)‖L2(U;Y)

+‖h(t, X)‖L2(U;Y)

} ≤ q(N )k(t), (2.7)

sup
‖X‖X≤N

{‖gε(t, X)‖X + ‖hε(t, X)‖L2(U;X )

} ≤ Cε,N k(t), (2.8)

and

sup
‖X‖X ,‖Y‖X ≤N

{
1{X �=Y }

(‖gε(t, X)−gε(t, Y )‖X
‖X −Y‖X + ‖hε(t, X)−hε(t, Y )‖L2(U;X )

‖X −Y‖X
)}

≤Cε,N k(t)

(2.9)

hold. Moreover, for any T > 0 and any bounded sequence {Xε(t)} ⊂
C([0, T ];X ) such that Xε → X in C([0, T ];Z), we suppose

lim
ε→0

∫ t

0

∣∣Z
〈
gε(t, Xε(t

′)) − g(t, X(t ′)), φ
〉
Z∗
∣∣ dt ′ = 0 ∀φ ∈ Z∗ (2.10)

and

lim
n→∞ ‖hε(t, Xε) − h(t, X)‖L2(U;Z) = 0. (2.11)

Here Z 〈·, ·〉Z∗ denotes the dual pairing in Z .
(A3) Let gε and hε be given in (A2). For all n ≥ 1 and (t, X) ∈ [0,∞) ×X , we have

∞∑

i=1

|(hε(t, X)ei , X)X |2 ≤ k(t) f
(‖X‖V

)‖X‖4X (2.12)

and

2 (gε(t, X), X)X + ‖hε(t, X)‖2L2(U;X ) ≤ k(t) f (‖X‖V
)‖X‖2X . (2.13)

Remark 2.1 It is important to notice that Assumption (A) can be satisfied for singular
mappings b and g, since the constantsCε,N in Assumption (A) may be non-decreasing
in N for fixed ε and may explode for ε → 0 with N fixed.

For pathwise solution, we will need more assumptions.

Assumption (B) To consider the existence, uniqueness and time continuity of a path-
wise solution, we need the following assumptions:

(B1) For any t ≥ 0 and N ≥ 1, we have

sup
‖X‖X ,‖Y‖X≤N

{
1{X �=Y }

‖b(t, X) − b(t, Y )‖Z
‖X − Y‖Z

}
≤ q(N )k(t) (2.14)
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and

sup
‖X‖X ,‖Y‖X ≤N

{

1{X �=Y }
2 (g(t, X) − g(t, Y ), X − Y )Z + ‖h(t, X) − h(t, Y )‖2L2(U;Z)

‖X − Y‖2Z

}

≤ q(N )k(t).

(2.15)

(B2) The embedding X ↪→ Z is dense, and there is a family of continuous linear
operators {Tε : Z → X }ε∈(0,1) such that

‖Tε X‖X ≤ ‖X‖X , lim
n→∞ ‖Tε X − X‖X = 0, X ∈ X (2.16)

and for all t ≥ 0, N ≥ 1

sup
ε∈(0,1),‖X‖X≤N

2 (Tεg(t, X), Tε X)X + ‖Tεh(t, X)‖2L2(U;X ) ≤ q(N )k(t),

(2.17)

sup
ε∈(0,1),‖X‖X≤N

∞∑

i=1

|(Tεh(t, X)ei , Tε X)X |2 ≤ q(N )k(t) (2.18)

hold.

Finally, we introduce the following assumption, which will be used to derive a
blow-up criterion.

Assumption (C) There is a family of continuous linear operators {Qε : Z → X }ε∈(0,1)
such that (2.16) with Qε replacing Tε and

sup
ε∈(0,1)

∞∑

i=1

|(Qεh(t, X)ei , Qε X)X |2 ≤ k(t) f
(‖X‖V

)‖X‖2X ‖Qε X‖2X , (2.19)

sup
ε∈(0,1)

2 (Qεg(t, X), Qε X)X + ‖Qεh(t, X)‖2L2(U;X ) ≤ k(t) f
(‖X‖V

)‖X‖2X
(2.20)

hold true for t ≥ 0.

Then, we can state our main results for the initial value problem (1.1):

Theorem 2.1 Let us consider the initial value problem (1.1). Then, we have that:

(i) Let Assumption (A)hold. Then, for anyμ0 ∈ P2(X ), (1.1)has a local martingale
solution (S, X , τ ) in the sense of Definition 2.1.

(ii) Let S = (Ω,F , P, {Ft }t≥0,W) be a fixed stochastic basis. If Assumptions (A)
and (B) hold, then for any F0-measurable random variable X0 ∈ L2(Ω;X ),
(1.1) has a local unique pathwise solution (X , τ ), in the sense of Definition 2.2
such that

X(· ∧ τ) ∈ L2 (Ω; C ([0,∞);X )) . (2.21)
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(iii) Let (X , τ ∗) be the maximal solution to (1.1), in the sense of Definition 2.3, under
Assumptions (A) and (B). If additionally Assumption (C) holds true, then X
blows up in X if only and only if it blows up in V , i.e.,

1{lim supt→τ∗ ‖X‖X=∞} = 1{lim supt→τ∗ ‖X‖V=∞} P − a.s. (2.22)

Remark 2.2 Wefirst remark that the singular terms g and h are in general notmonotone
in the sense of Pardoux (1972) and Prévôt and Röckner (2007). So, the well-known
approximation scheme under a Gelfand triple developed for quasi-linear SPDEs does
not work for the present model. Motivated by Tang (2018), Li et al. (2021) and Ren
et al. (2020), we will employ a regularization argument to overcome this difficulty.
Let us give some explanations on Assumptions (A), (B) and (C) that makes precise
the required regularization procedure.

– Assumption (A1) provides the local Lipschitz continuity for the regular drift
coefficient b(t, X) and bounds its growth. Assumption (A2) requires the local
Lipschitz continuity on the approximations gε and hε of the singular terms g and
h, which together with (A1) will ensure local-in-time existence for some approx-
imate problem. In Sect. 3.1 we will show how to construct such approximations
using mollifiers.

– Condition (2.13) in Assumption (A3) is a cancellation property. Even though g
and h are not invariant in X (hence, (g(t, X), X)X and ‖h(t, X)‖L2(U;X ) may be
infinite), we can formally require that (g(t, X), X)X + ‖h(t, X)‖L2(U;X ) can be
controlled. Hence, (2.13) can be viewed as a renormalization type condition in the
sense that it specifies this relationship for gε and hε such that (gε(t, X), X)X and
‖hε(t, X)‖L2(U;X ) make sense.

– Since g and h are singular, we need (B1) on the joint spaceZ to guarantee pathwise
uniqueness.

– As explained in the introduction, we can not use the Itô formula (1.2) to obtain the
time continuity of the solution directly. This is why we need to Assumptions (B2)

and (C) to establish time continuity and blow-up criterion, respectively. Assump-
tion (C) is stronger than (B2) because we need both, the validity of the Itô formula
and the growth condition. However, the dense embedding X ↪→ Z is not neces-
sary for deriving the blow-up criterion. Moreover, in applications, usually one can
take Tε = Qε.

– In view of Assumption (A), it is worthwhile noticing that the regular drift b will
not be used to control the singular terms, i.e., our result covers the case b ≡ 0,
where both the drift and diffusion in (1.1) are singular. However, we assume that
the problem (1.1) has a regular part to cover more ideal fluid models.

Remark 2.3 In Debussche et al. (2011), an abstract fluid model involving a Stokes
operator (viscous term) and a regular noise coefficient is studied. The existence of
martingale solution is shown under the condition that the initial measure has finite
moment of order r > 8 (see Debussche et al. 2011, Theorem 6.1). In the present
work, we are able to treat inviscid fluid models with singular transport type noises
and improve the initial measure requirement to r = 2, i.e., μ0 ∈ P2(X ) in (i) in
Theorem 2.1.
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Remark 2.4 We also remark that when the noise coefficient h(t, X) is as regular as the
solution X and the singularity of (1.1) only arises in g, namely b : [0,∞) ×X → X ,
h : [0,∞) × X → L2(U;X ) and g : [0,∞) × X → Z , one can also obtain a local
theory as in Theorem 2.1 even under weaker conditions as in Assumption (A).

2.3 Proof of (i) in Theorem 2.1

For the sake of clarity, we split the proof into the following subsections.

2.3.1 Approximation Scheme and Uniform Estimates

For μ0 ∈ P2(X ), we first fix a stochastic basis S and a random variable X0 such that
the distribution law of X0 is μ0. For any R > 1, we let χR(x) : [0,∞) → [0, 1] be a
C∞-function such that χR(x) = 1 for x ∈ [0, R] and χR(x) = 0 for x > 2R. Then,
we consider a cut-off version of (1.1) given by

{
dX = χ2

R

(‖X‖V
)
[b(t, X) + g(t, X)] dt + χR

(‖X‖V
)
h(t, X) dW,

X(0) = X0.
(2.23)

We have not posed any structural properties like monotonicity on the singular map-
pings g, h that ensure the existence of solutions for (2.23). Therefore, we employ the
regular approximations gε and hε from Assumption (A) which leads us to the regular
approximate version

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dX = H1,ε(t, X) dt + H2,ε(t, X) dW,

H1,ε(t, X) = χ2
R

(‖X‖V
)
(b(t, X) + gε(t, X)) ,

H2,ε(t, X) = χR
(‖X‖V

)
hε(t, X),

X(0) = X0.

(2.24)

For (2.24) we can obtain the following global existence result.

Lemma 2.1 For μ0 ∈ P2(X ), we fix a stochastic basis S and a F0-measurable
random variable X0 such that the distribution of X0 is μ0. Let R > 1 be fixed.
For each ε ∈ (0, 1), the problem (2.24) has a global solution Xε. Moreover, for any
sequence {εn}n∈N and for any T > 0, we have that

νεn (·) = P
{
(Xεn ,W) ∈ ·} (2.25)

defines a tight sequence in P (C([0, T ];Z) × C([0, T ]; U0)).

Proof From (A1), (A2), it is easy to see that for each n ≥ 1, H1,ε(t, X) and
H2,ε(t, X) are locally Lipschitz in X ∈ X . Moreover, the growth of ‖H1,ε(·, X)‖X
and ‖H2,ε(·, X)‖L2(U;X ) is controlled by the continuous function k(t). Therefore, for
each ε ∈ (0, 1), there is a stopping time τ ∗

ε > 0 almost surely such that the problem
(2.24) has a unique solution Xε ∈ L2

(
Ω; C([0, τ ∗

ε );X )
)
, see Leha and Ritter (1985)
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or Kallianpur et al. (1995, Theorem 5.1.1). Next, we prove that the solution is actually
a global solution. To see this, we use the Itô formula in X for the regular mappings
gε, hε to find

d‖Xε‖2X = 2
∞∑

k=1

χR
(‖Xε‖V

)
(hε(t, Xε)ek , Xε)X dWk + 2χ2

R

(‖Xε‖V
)
(b(t, Xε), Xε)X dt

+ 2χ2
R

(‖Xε‖V
)
(gε(t, Xε), Xε)X dt + χ2

R

(‖Xε‖V
)‖hε(t, Xε)‖2L2(U;X ) dt

:=
∞∑

k=1

J1,k dWk +
4∑

i=2

Ji dt . (2.26)

For any T > 0, we integrate (2.26), take a supremum for t ∈ [0, T ] and then use
the BDG inequality, (A1) and (A3) to find a constant C = CR > 0 depending on R
such that

E sup
t∈[0,T ]

‖Xε‖2X − E‖X0‖2X

� E

(∫ T

0

∞∑

k=1

J 2
1,k dt

) 1
2

+
∫ T

0
|J2| dt +

∫ T

0
|J3 + J4| dt

� E

(∫ T

0
k(t)χ2

R(‖Xε‖V ) f (‖Xε‖V )‖Xε‖4X dt

) 1
2

+
∫ T

0
k(t)χ2

R(‖Xε‖V ) f (‖Xε‖V )‖Xε‖2X dt

≤ CRE

(

sup
t∈[0,T ]

‖Xε‖2X
∫ T

0
k(t)‖Xε‖2X dt

) 1
2

+ CR

∫ T

0
k(t)‖Xε‖2X dt

≤ 1

2
E sup

t∈[0,T ]
‖Xε‖2X + CR

∫ T

0
k(t)E sup

t ′∈[0,t]
‖Xε‖2X dt .

Via Grönwall’s inequality, we arrive at the ε-independent bound

sup
ε∈(0,1)

E sup
t∈[0,T ]

‖Xε(t)‖2X ≤ C(R, X0, T ). (2.27)

Since T > 0 can be chosen arbitrarily, we see in particular that Xε is a global solution
for each ε ∈ (0, 1).
Moreover, the bound (2.27) implies that the stopping times

τ ε
N := inf{t ≥ 0 : sup

t ′∈[0,t]
‖Xε‖X ≥ N }, N ≥ 1, ε ∈ (0, 1) (2.28)
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satisfy

P(τ ε
N < T ) ≤ P

(

sup
t∈[0,T ]

‖Xε‖X ≥ N

)

≤ C(R, X0, T )

N 2 . (2.29)

Now we turn to prove the tightness result on the Borel measure in (2.25). For any
given δ ∈ (0, 1), we get that

E sup
[t1,t2]⊂[0,T ],t2−t1<δ

(1 ∧ ‖Xε(t2) − Xε(t1)‖Z )

≤ E

(

sup
[t1,t2]⊂[0,T ],t2−t1<δ

(1 ∧ ‖Xε(t2) − Xε(t1)‖Z ) 1{τ ε
N <T }

)

+ E

(

sup
[t1,t2]⊂[0,T ],t2−t1<δ

(1 ∧ ‖Xε(t2) − Xε(t1)‖Z ) 1{τ ε
N ≥T }

)

≤ P{τ ε
N < T } + E

(

sup
[t1,t2]⊂[0,T ∧τ ε

N ],t2−t1<δ

(1 ∧ ‖Xε(t2) − Xε(t1)‖Z ) 1{τ ε
N ≥T }

)

≤ C(R, X0, T )

N 2 + E

(

sup
[t1,t2]⊂[0,T ∧τ ε

N ],t2−t1<δ

(
1 ∧ ‖1{τ ε

N ≥T } Xε(t2) − 1{τ ε
N ≥T } Xε(t1)‖Z

))

(2.30)

holds. Note that we used the ε-independent bound (2.29) for the last inequality. To
estimate the expectation term in (2.30) we utilize the approximative problem (2.24)
directly. We start with the drift term H1,ε. On account of (2.28), (A1) and (A2) and
the BDG inequality, there are a non-decreasing, locally bounded function a(·) ∈
C ([0,+∞); [0,+∞)) and a constant C > 0 independent of ε such that we have

E

∥∥
∥∥

∫ t2

t1
1{τ ε

N ≥T } H1,ε(t
′, Xε(t

′) dt ′
∥∥
∥∥
Z

≤ |t2 − t1|E sup
t∈[0,T ∧τ ε

N ]
‖H1,ε(t, Xε(t)‖Z

≤ C |t2 − t1|E sup
t∈[0,T ∧τ ε

N ]

(
χ2

R

(‖Xε‖V
)
k(t) f (‖Xε‖V )‖Xε‖X + χ2

R

(‖Xε‖V
)‖gε(Xε)‖Z

)

≤ Ck(T )|t2 − t1|E sup
t∈[0,T ]

( f (C N )N + q(N )) ≤ Ca(N )k(T )|t2 − t1|. (2.31)

For the diffusion operator H2,ε and the stochastic integral, the bound (2.28), (A2) and
the BDG inequality imply

E

(∥∥∥
∥

∫ t2

t1
1{τ ε

N ≥T }H2,ε(t
′, Xε(t

′)dW
∥∥∥
∥
Z

)
(2.32)

≤ E

(

sup
t∗∈[t1,t2]

∥∥
∥∥

∫ t∗

t1
1{τ ε

N ≥T }H2,ε(t
′, Xε(t

′))dW
∥∥
∥∥
Z

)

≤ CE

(∫ t2

t1
‖1{τ ε

N ≥T } H2,ε(t
′, Xε(t

′)‖2L2(U;Z)dτ

) 1
2
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≤ C |t2 − t1| 12 E sup
t∈[0,T ]

(q(N )k(t))

≤ Ca(N )k(T )|t2 − t1| 12 . (2.33)

Combining the estimates (2.31), (2.32), for any δ ∈ (0, 1), one has

E sup
[t1,t2]⊂[0,T ∧τ ε

N ],t2−t1<δ

‖1{τ ε
N ≥T } Xε(t2) − 1{τ ε

N ≥T } Xε(t1)‖Z

≤ CE sup
[t1,t2]⊂[0,T ∧τ ε

N ],t2−t1<δ

∥∥
∥∥

∫ t2

t1
1{τ ε

N ≥T } H1,ε(t
′, Xε(t

′)) dt ′
∥∥
∥∥
Z

+ CE sup
[t1,t2]⊂[0,T ∧τ ε

N ],t2−t1<δ

∥∥
∥∥

∫ t2

t1
1{τ ε

N ≥T } H2,ε(t
′, Xε(t

′)) dW
∥∥
∥∥
Z

≤ Ca(N )k(T )δ
1
2 .

Therefore, returning to (2.30), the last estimate implies that for all δ ∈ (0, 1),

E sup
[t1,t2]⊂[0,T ],t2−t1<δ

(1 ∧ ‖Xε(t2) − Xε(t1)‖Z ) ≤ inf
N≥1

{
C(R, X0, T )

N 2 + Ca(N )k(T )δ
1
2

}
.

Because a(·) is non-decreasing, we have

lim
δ→0

sup
ε∈(0,1)

E sup
[t1,t2]⊂[0,T ],t2−t1<δ

‖Xε(t2) − Xε(t1)‖Z = 0.

Thus, we obtain that, for any δ > 0, the limit

lim
δ→0

sup
ε∈(0,1)

P

(

sup
[t1,t2]⊂[0,T ],t2−t1<δ

‖Xε(t2) − Xε(t1)‖Z > δ

)

= 0 (2.34)

holds. Since X ↪→↪→ Z , for each t ≥ 0, P(Xε(t) ∈ ·) is tight in P(Z). This
together with (2.34) means for any vanishing sequence {εn}n∈N that (cf. Gawarecki
and Mandrekar 2011, Theorem 3.17)

μεn (·) = P
{

Xεn ∈ ·}

is a tight sequence inP (C([0, T ];Z)). On the other hand, sinceW stays unchanged,
νεn defined in (2.25) is also tight. ��

2.3.2 Stochastic Compactness

On the basis of Lemma 2.1 and the weak stochastic compactness theory, we can now
characterize the convergence of the sequence {Xε} obtaining global-in-time results.
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Lemma 2.2 Let R > 1, T > 0. The sequence {νεn } defined in Lemma 2.1 has a
weakly convergent subsequence, still denoted by {νε}, with limit measure ν. There
is a probability space

(
Ω̃, F̃ , P̃

)
on which there is a sequence of random variables(

X̃ε, W̃ε

)
and a pair

(
X̃ , W̃
)

such that we have

P̃
{(

X̃ε, W̃ε

) ∈ ·} = νn(·), P̃
{(

X̃ , W̃
) ∈ ·} = ν(·), (2.35)

and

X̃ε → X̃ in C ([0, T ];Z) and W̃ε → W̃ in C ([0, T ]; U0) P̃ − a.s. (2.36)

Moreover, for t ∈ [0, T ], the following results hold.

(i) W̃ε is a cylindrical Wiener process with respect to F̃ε
t = σ
{

X̃ε(τ ), W̃ε(τ )
}
τ∈[0,t].

(ii) W̃ is a cylindrical Wiener process with respect to F̃t = σ
{

X̃(τ ), W̃(τ )
}
τ∈[0,t].

(iii) On

(
Ω̃, F̃ , P̃,

{
F̃ε

t
}

t≥0

)
, we have that P̃ − a.s.

X̃ε(t) − X̃ε(0) =
∫ t

0
χ2

R(‖X̃ε‖V )
[
b(t ′, X̃ε) + gε(t

′, X̃ε)
]
dt ′

+
∫ t

0
χR(‖X̃ε‖V )hε(t

′, X̃ε) dW̃ε. (2.37)

Proof The existence of the sequence
(
X̃ε, W̃ε

)
satisfying (2.36) is a consequence of

Lemma 2.1 and Theorems A.6 and A.7 . Besides, Breit et al. (2018, Theorem 2.1.35
and Corollary 2.1.36) imply that W̃ε and W̃ are cylindrical Wiener processes relative
to F̃ε

t = σ
{

X̃ε(τ ), W̃ε(τ )
}
τ∈[0,t] and F̃t = σ

{
X̃(τ ), W̃(τ )

}
τ∈[0,t], respectively. As

in Bensoussan (1995, (4.17) & page 282) or Breit et al. (2018, Theorem 2.9.1), one
can find that

(
X̃ε, W̃ε

)
relative to

{
F̃ε

t
}

t≥0 satisfies (2.37) P̃ − a.s. ��

2.3.3 Concluding the Proof of (i) in Theorem 2.1

To begin with, we notice that the embedding X ↪→ Z is continuous, which means
there exist continuous maps πm : Z → X , m ≥ 1 such that

‖πm x‖X ≤ ‖x‖X , lim
m→∞ ‖πm x‖X = ‖x‖X , x ∈ Z,

where ‖x‖X := ∞ if x /∈ X . This, together with (2.27), (2.35) and Fatou’s lemma,
yields

Ẽ sup
t∈[0,T ]

‖X̃‖2X ≤ lim inf
m→∞ Ẽ sup

t∈[0,T ]
‖πm X̃‖2X

≤ lim inf
m→∞ lim inf

ε→0
Ẽ sup

t∈[0,T ]
‖πm X̃ε‖2X

≤ lim inf
m→∞ lim inf

ε→0
E sup

t∈[0,T ]
‖Xε‖2X < C(R, X0, T ). (2.38)
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Using (2.36), (2.38), X ↪→ V , (A2) and Lemma A.8 (up to further subsequence) in
(2.37), we obtain that

∫ t

0
χR
(‖X̃ε‖V

)
hε(t, X̃ε) dW̃ε

ε→0−−→
∫ t

0
χR
(‖X̃‖V

)
h(t, X̃) dW̃ in L2(0, T ;Z) P − a.s.

As before, it follows from (2.36), (2.38), X ↪→ V and (A2) that for any t ∈ [0, T ]
and φ ∈ Z∗,

∫ t

0
χ2

R

(‖X̃‖V
)
Z
〈
b(s, X̃ε(s)) − b(s, X̃(s))

+ gε(s, X̃ε(s)) − g(s, X̃(s)), φ
〉
Z∗ ds

ε→0−−→ 0 P − a.s.

Therefore, we derive that for all φ ∈ Z∗ and dt ⊗ P̃ − a.s.,

Z
〈
X̃(t), φ

〉
Z∗ −Z

〈
X̃(0), φ

〉
Z∗

=
∫ t

0
χ2

R

(‖X̃‖V
)
Z
〈
b(s, X̃(s)) + g(s, X̃ε(s)), φ

〉
Z∗ ds

+ Z
〈∫ t

0
χR
(‖X̃‖V

)
h(t, X̃) dW̃, φ

〉

Z∗ .

Due to (2.38), (A1) and (A2) , we see that t �→ ∫ t
0 χR
(‖X̃‖V

)
h(t ′, X̃(t ′)) dW̃

is a local continuous martingale on Y ⊂ Z , and that t �→ ∫ t
0 χ2

R

(‖X̃‖V
)[

b(t ′,

X̃(t ′)) + g(t ′, X̃(t ′))
]
dt ′ is a continuous process on Z as well. Hence, we obtain

that X̃ is a global martingale solution to (2.23). Moreover, (2.36) and (2.38) imply that
X̃ ∈ L2

(
Ω̃; L∞(0, T ;X ) ∩ C([0, T ];Z)

)
holds. Define

τ̃ = inf
{
t ≥ 0 : ‖X̃(t)‖V > R

}
,

then we see that
(
S̃, X̃ , τ̃

)
is a local martingale solution to (1.1), where S̃ =(

Ω̃, F̃ , P̃, {F̃t }t≥0, W̃
)
with
{
F̃t
}

t≥0 = σ
{

X̃(τ ), W̃(τ )
}
τ∈[0,t]. We have finished

the proof.

2.4 Proof of (ii) in Theorem 2.1

To obtain a pathwise solution to (1.1), we will use (i) in Theorem 2.1 and the Gyöngy–
Krylov Lemma, cf. Lemma A.9. The proof can naturally be broken down into several
subsections.

2.4.1 Pathwise Uniqueness

We first state the following result which indicates that for L∞(Ω)-initial values, the
solution map is time locally Lipschitz in the less regular space Z .

123



98 Page 16 of 55 Journal of Nonlinear Science (2021) 31 :98

Lemma 2.3 Let S = (Ω,F , P, {Ft }t≥0,W
)

be a fixed stochastic basis and let (B1)

hold. Let M > 0 be a constant. Assume that X0 and Y0 are two X -valued F0-
measurable random variables satisfying ‖X0‖X , ‖Y0‖X < M almost surely.
Let (S, X , τ1) and (S, Y , τ2) be two local pathwise solutions to (1.1) such that X(0) =
X0, Y (0) = Y0 almost surely, and X(· ∧ τ1), Y (· ∧ τ2) ∈ L2 (Ω; C([0,∞);X )) for
i = 1, 2.
Then, for any T > 0, there exists a constant C(M, T ) > 0 such that

E sup
t∈[0,τ T

X ,Y ]
‖X(t) − Y (t)‖2Z ≤ C(M, T )E‖X0 − Y0‖2Z . (2.39)

In (2.39) we used

τ T
X := inf {t ≥ 0 : ‖X(t)‖X > M + 2} ∧ T , τ T

Y := inf {t ≥ 0 : ‖Y (t)‖X > M + 2} ∧ T ,

(2.40)

and τ T
X ,Y := τ T

X ∧ τ T
Y .

Proof Let Z = X − Y . Then, Z satisfies the following equation

d‖Z‖2Z = 2 ([h(t, X) − h(t, Y )] dW, Z)Z + 2 (b(t, X) − b(t, Y ), Z)Z dt

+ 2 (g(t, X) − g(t, Y ), Z)Z dt + ‖h(t, X) − h(t, X)‖2L2(U;Z) dt .

By (A1), (B1), Itô’s formula (which holds true on the entire space Z), and the BDG
inequality, we find for some C > 0 depending on b, g, h the estimate

E sup
t∈[0,τ T

X ,Y ]
‖Z(t)‖2Z − E‖Z(0)‖2Z

≤ CE

(∫ τ T
X ,Y

0
‖h(t, X) − h(t, Y )‖2L2(U,Z)‖Z‖2Z dt

) 1
2

+ E

∫ τ T
X ,Y

0
q(M + 2)k(t)‖Z(t)‖2Z dt

≤ Cq(M + 2)E

⎛

⎝ sup
t∈[0,τ T

X ,Y ]
‖Z‖2Z ·

∫ τ T
X ,Y

0
k2(t)‖Z‖2Zdt

⎞

⎠

1
2

+ Cq(M + 2)
∫ T

0
k(t)E sup

t ′∈[0,τ t
X ,Y ]

‖Z(t ′)‖2Z dt

≤ 1

2
E sup

t∈[0,τ T
X ,Y ]

‖Z‖2Z + C(M, T )

∫ T

0
E sup

t ′∈[0,τ t
X ,Y ]

‖Z(t ′)‖2Z dt .

If we apply Grönwall’s inequality to the estimate above, we get (2.39). ��
Lemma 2.4 Let S = (Ω,F , P, {Ft }t≥0,W

)
be a fixed stochastic basis and let (B1)

hold. Let X0 be an X -valued F0-measurable random variable satisfying E‖X0‖2X <

∞. If (S, X1, τ1) and (S, X2, τ2) are two local pathwise solutions to (1.1) satisfying
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Xi (· ∧ τi ) ∈ L2 (Ω; C([0,∞);X )) for i = 1, 2 and P{X1(0) = X2(0) = X0} = 1,
then

P {X1 = X2, ∀ t ∈ [0, τ1 ∧ τ2]} = 1.

Proof We first assume that ‖X0‖X < M P − a.s. for some deterministic M > 0. For
any K > 2M and T > 0, we define

τ T
K := inf {t ≥ 0 : ‖X1(t)‖X + ‖X2(t)‖X > K } ∧ T .

Then, one can repeat all steps in the proof of (2.39) by using τ T
K instead of τ T

X ,Y to
find

E sup
t∈[0,τ T

K ]
‖X1(t) − X2(t)‖2Z ≤ C(K , T )E‖X1(0) − X2(0)‖2Z = 0.

It is easy to see that

P{lim inf
K→∞ τ T

K ≥ τ1 ∧ τ2 ∧ T } = 1. (2.41)

Sending K → ∞, using the monotone convergence theorem and (2.41) with noticing
T > 0 is arbitrary, we obtain the desired result for X0 being almost surely bounded.

It remains to remove this restriction. Motivated by Glatt-Holtz and Ziane (2009)
and Glatt-Holtz and Vicol (2014), for general X -valued F0-measurable initial data
such that E‖X0‖2X < ∞ holds, we define Ωk = {k − 1 ≤ ‖X0‖X < k}, k ≥ 1. Then,
we see that Ωk

⋂
Ωk′ = ∅ for k �= k′, and

⋃
k≥1 Ωk is a set of full measure. Consider

X0(ω) =
∑

k≥1

X0(ω, x)1Ωk :=
∑

k≥1

X0,k(ω) P − a.s. (2.42)

Notice that

1Ωk X1(t ∧ τ1) − 1Ωk X(0)

= 1Ωk

∫ t∧τ1

0
b(t ′, X1) dt ′ + 1Ωk

∫ t∧τ1

0
g(t ′, X1) dt ′ + 1Ωk

∫ t∧τ1

0
h(t, X1) dW

=
∫ t∧1Ωk τ1

0
1Ωk b(t ′, X1) dt ′ +

∫ t∧1Ωk τ1

0
1Ωk g(t ′, X1) dt ′ +

∫ t∧1Ωk τ1

0
1Ωk h(t ′, X1) dW.

Notice that 1Ωk F(t, X1) = F(t, 1Ωk X1) − 1ΩC
k

F(t, 0) for F ∈ {b, g, h}, and
(A1), (A2) implies ‖b(t, 0)‖X , ‖g(t, 0)‖Z , ‖h(t, 0)‖L2(U;Y) < ∞. Then, we can
proceed with
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1Ωk X1(t ∧ 1Ωk τ1) − X0,k

=
∫ t∧1Ωk τ1

0
b(t ′, 1Ωk X1) dt ′

+
∫ t∧1Ωk τ1

0
g(t ′, 1Ωk X1) dt ′ +

∫ t∧1Ωk τ1

0
h(t ′, 1Ωk X1) dW P − a.s.,

which means that (1Ωk X1, 1Ωk τ1) is a solution to (1.1) with initial data X0,k .
Similarly, (1Ωk X2, 1Ωk τ2) is also a solution to (1.1) with initial data X0,k . Alto-

gether we obtain 1Ωk X1 = 1Ωk X2 on [0, 1Ωk τ1 ∧ 1Ωk τ2] almost surely. Because
Xi =∑k≥1 Xi1Ωk and τi =∑k≥1 τi1Ωk almost surely for i = 1, 2, Ωk

⋂
Ωk′ = ∅

for k �= k′ and
⋃

k≥1 Ωk is a set of full measure, we have

P
{

X1 = X2 ∀ t ∈ [0, τ1 ∧ τ2]
} ≥ P
{ ∪k≥1 Ωk

} = 1,

which completes the proof. ��
For the cut-off problem (2.23), we also have pathwise uniqueness. Indeed, sinceZ ↪→
V , the additional terms coming from the cut-off function χR(·) can be handled by the
mean value theorem as

∣∣χR
(‖X1‖V

)− χR
(‖X2‖V

)∣∣ ≤ C‖X1 − X2‖V ≤ C‖X1 − X2‖Z .

Then, one can modify the proof of Lemma 2.4 in a straightforward way to get

Lemma 2.5 Let T > 0 and S = (Ω,F , P, {Ft }t≥0,W
)

be a fixed stochastic basis.
Let (B1) hold and let X0 be an X -valued F0-measurable random variable satisfying
E‖X0‖2X < ∞.
If (S, X1, T ) and (S, X2, T ) are two solutions, on the same basis S, of (2.23) such
that P{X1(0) = X2(0) = X0} = 1 and Xi ∈ L2 (Ω; C([0, T );X )) for i = 1, 2, then

P {X1 = X2 ∀ t ∈ [0, T ]} = 1.

2.4.2 Pathwise Solution to the Cut-Off Problem

Now we prove the existence and uniqueness of a pathwise solution to (2.23). To be
more precise, we are going to show the following result.

Lemma 2.6 Let S = (Ω,F , P, {Ft }t≥0,W) be a fixed stochastic basis. Let X0 ∈
L2(Ω;X ) be an F0-measurable random variable.
If Assumptions (A)–(B) hold, then (2.23) has a unique global pathwise solution X
which satisfies for any T > 0

X ∈ L2 (Ω; C([0, T ];X )) . (2.43)
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Proof Uniqueness is a direct consequence of Lemma 2.5. The proof of the other
assertions is divided into two steps.

Step 1: Existence Let S = (Ω,F , P, {Ft }t≥0,W) be given and let Xε be the global
pathwise solution to (2.24). We define sequences of measures νε(1),ε(2) and με(1),ε(2) as

νε(1),ε(2) (·) = P
{
(Xε(1) , Xε(2) ) ∈ ·} on C([0, T ];Z) × C([0, T ];Z),

and

με(1),ε(2) (·) = P
{
(Xε(1) , Xε(2) ,W) ∈ ·} on C([0, T ];Z) × C([0, T ];Z)

× C([0, T ]; U0).

Let
{
ν
ε
(1)
k ,ε

(2)
k

}

k∈N
be an arbitrary subsequence of

{
νε(1),ε(2)

}
n∈N such that ε(1)

k , ε
(2)
k →

0 as k → ∞. With minor modifications in the proof of Lemma 2.1, the tightness of{
ν
ε
(1)
k ,ε

(2)
k

}

k∈N
can be obtained. Similar to Lemma 2.2, one can find a probability space

(
Ω̃, F̃ , P̃

)
on which there is a sequence of random variables

(
X

ε
(1)
k

, X
ε
(2)
k

, W̃k

)
and

a random variable
(
X , X , W̃

)
such that

(
X

ε
(1)
k

, X
ε
(2)
k

, W̃k

)
−−−→
k→∞
(
X , X , W̃

)
in C([0, T ];Z)

× C([0, T ];Z) × C([0, T ]; U0) P̃ − a.s.

Then, νε(1),ε(2) converges weakly to a measure ν on C([0, T ];Z) × C([0, T ];Z)

defined by

ν(·) = P̃
{(

X , X
) ∈ ·} .

Going along the lines as in Sect. 2.3.3, we see that both
(
S̃, X , T

)
and
(
S̃, X , T

)
are

martingale solutions to (2.23) such that X , X ∈ L2
(
Ω̃; L∞(0, T ;X ) ∩ C([0, T ];Z)

)
.

Moreover, since Xε(0) ≡ X0 for all n, we have that X(0) = X(0) almost surely in
Ω̃ . Then, we use Lemma 2.5 to see

ν
({(

X , X
) ∈ C([0, T ];Z) × C([0, T ];Z), X = X

}) = 1.

Lemma A.9 implies that the original sequence {Xε} defined on the initial probability
space (Ω,F , P) has a subsequence (still labeled in the same way) satisfying

Xε → X in C ([0, T ];Z) (2.44)

for some X in C([0, T ];Z). Similar to (2.38), we have
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E sup
t∈[0,T ]

‖X‖2X ≤ lim inf
m→∞ E sup

t∈[0,T ]
‖πm X‖2X

≤ lim inf
m→∞ lim inf

ε→0
E sup

t∈[0,T ]
‖πm Xε‖2X

≤ lim inf
m→∞ lim inf

ε→0
E sup

t∈[0,T ]
‖Xε‖2X < C(R, X0, T ). (2.45)

Therefore, X ∈ L2 (Ω; L∞(0, T ;X ) ∩ C([0, T ];Z)). Since for each n, Xε is {Ft }t≥0
progressive measurable, so is X . Using (2.44) and the embedding Z ↪→ V , we obtain
a global pathwise solution to (2.23).

Step 2: Time continuity As X ∈ L2 (Ω; L∞(0, T ;X ) ∩ C([0, T ];Z)), now we
only need to prove that X(t) is continuous in X . Since X ↪→ Z is dense, we see that
X is weakly continuous in X (cf. Temam 1977, page 263, Lemma 1.4). It suffices
to prove the continuity of [0, T ] � t �→ ‖X(t)‖X . The difficulty here is that the
problem (1.1) is singular, i.e., g(t, X) is only a Z-valued process and h(t, X) is only
an L2(U;Y)-valued process; hence, the products (g(t, X), X)X and (h(t, X)ei , X)X
might not exist and the classical Itô formula in the Hilbert space X (see Da Prato
and Zabczyk 2014, Theorem 4.32 or Gawarecki and Mandrekar 2011, Theorem 2.10)
cannot be used directly here. At this point the regularization operator Tε from (B2) is
invoked to consider the Itô formula for ‖Tε X‖2X instead. Then, we have

d‖Tε X‖2X = 2χR
(‖X‖V

)
(Tεh(t, X) dW, Tε X)X + 2χ2

R

(‖X‖V
)
(Tεb(t, X), Tε X)X dt

+ 2χ2
R

(‖X‖V
)
(Tεg(t, X), Tε X)X dt + χ2

R

(‖X‖V
)‖Tεh(t, X)‖2L2(U;X ) dt . (2.46)

By (2.45),

τN = inf{t ≥ 0 : ‖X‖X > N } → ∞ as N → ∞ P − a.s. (2.47)

Thus, we only need to prove the continuity up to time τN ∧ T for each N ≥ 1.
Using (B2), (A1) and the bound χR

(‖X‖V
) ≤ 1, we have for [t2, t1] ⊂ [0, T ] with

t1 − t2 < 1 the estimate

E

[(
‖Tε X(t1 ∧ τN )‖2X − ‖Tε X(t2 ∧ τN )‖2X

)4] ≤ C(N , T )|t1 − t2|2.

Using Fatou’s lemma, we arrive at

E

[(
‖X(t1 ∧ τN )‖2X − ‖X(t2 ∧ τN )‖2X

)4] ≤ C(N , T )|t1 − t2|2,

which together with Kolmogorov’s continuity theorem ensures the continuity of t �→
‖X(t ∧ τN )‖X .

With Lemma 2.6 at hand, we are in the position to finish the proof of (ii) in Theo-
rem 2.1.
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2.4.3 Concluding the Proof of (ii) in Theorem 2.1

Similar to Lemma 2.4, for X0(ω, x) ∈ L2(Ω;X ), we let

Ωk = {k − 1 ≤ ‖X0‖X < k}, k ≥ 1,

and recall (2.42).On account ofLemma2.6,we let Xk,R be the global pathwise solution
to the cut-off problem (2.23) with initial value X0,k and cut-off function χR(·). Define

τk,R = inf

{

t > 0 : sup
t ′∈[0,t]

‖Xk,R(t ′)‖2X > ‖X0,k‖2X + 2

}

. (2.48)

Since Xk,R is continuous in time (cf. Lemma 2.6), for any R > 0, we have P{τk,R >

0, ∀k ≥ 1} = 1. Now we let R = Rk be discrete and then denote (Xk, τk) =
(Xk,Rk , τk,Rk ). If R2

k > k2 + 2, then P{τk > 0, ∀k ≥ 1} = 1 and

P

{
‖Xk‖2V ≤ ‖Xk‖2X ≤ ‖X0,k‖2X + 2 < R2

k , ∀t ∈ [0, τk], ∀k ≥ 1
}

= 1,

which means

P
{
χRk (‖Xk‖V ) = 1, ∀t ∈ [0, τk], ∀k ≥ 1

} = 1.

Therefore, (Xk, τk) is the pathwise solution to (1.1) with initial value X0,k . As shown
in Lemma 2.4, 1Ωk Xk also solves (1.1) with initial value X0,k on [0, 1Ωk τk]. Then,
uniqueness means Xk = 1Ωk Xk on [0, 1Ωk τk] P − a.s. Therefore, we infer from
P{⋃k≥1 Ωk} = 1 that the pair

(
X =
∑

k≥1

1Ωk Xk, τ =
∑

k≥1

1Ωk τk

)

is a pathwise solution to (1.1) corresponding to the initial condition X0. Since for each
k, Xk is continuous in time (cf. Lemma 2.6), so is X . Then, we have

sup
t∈[0,τ ]

‖X‖2Hs =
∑

k≥1

1Ωk sup
t∈[0,τk ]

‖Xk‖2Hs ≤
∑

k≥1

1Ωk

(
‖X0,k‖2Hs + 2

)
≤ 2‖X0‖2Hs + 4.

Taking expectation gives rise to (2.21) and we have finished the proof of (ii) in Theo-
rem 2.1.

2.5 Proof of (iii) in Theorem 2.1

To complete the proof of Theorem 2.1, it suffices to prove the blow-up criterion (2.22)
when Assumption (C) holds true additionally. To show it, we define

τ1,m := inf {t ≥ 0 : ‖X(t)‖X ≥ m} , τ2,l := inf {t ≥ 0 : ‖X(t)‖V ≥ l} , m, l ∈ N,
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where inf ∅ = ∞. Denote τ1 = lim
m→∞ τ1,m and τ2 = lim

l→∞ τ2,l . Then, (2.22) is just a

direct consequence of the statement

τ1 = τ2 P − a.s. (2.49)

Hence, it suffices to prove (2.49). BecauseX ↪→ V , it is obvious that τ1 ≤ τ2 P−a.s.
Therefore, the proof reduces further to checking only τ1 ≥ τ2 P − a.s. We first notice
that for all M, l ∈ N,

{

sup
t∈[0,τ2,l ∧M]

‖X(t)‖X < ∞
}

=
⋃

m∈N

{

sup
t∈[0,τ2,l ∧M]

‖X(t)‖X < m

}

⊂
⋃

m∈N

{
τ2,l ∧ M ≤ τ1,m

}
.

Because

⋃

m∈N

{
τ2,l ∧ M ≤ τ1,m

} ⊂ {τ2,l ∧ M ≤ τ1
}
,

as long as

P

(

sup
t∈[0,τ2,l∧M]

‖X(t)‖X < ∞
)

= 1 ∀ M, l ∈ N, (2.50)

we have P
(
τ2,l ∧ M ≤ τ1

) = 1 for all M, l ∈ N, and

P (τ2 ≤ τ1) = P

(
⋂

l∈N

{
τ2,l ≤ τ1

}
)

= P

⎛

⎝
⋂

M,l∈N

{
τ2,l ∧ M ≤ τ1

}
⎞

⎠ = 1.

As a result, it remains to prove (2.50). However, as mentioned before, we cannot
directly apply the Itô formula to ‖X‖2X to get control of E‖X(t)‖2X . As in (2.46), but
now with Qε, we use Itô formula for ‖Qε X‖2X , apply the BDG inequality, (A1) and
Assumption (C) to find constants C1 > 0 and C2 = C2(l) > 0 such that

E sup
t∈[0,τ2,l∧M]

‖Qε X‖2X − E‖Qε X0‖2X

≤ C1E

(∫ τ2,l∧M

0
k(t) f
(‖X‖V

)‖X‖2X ‖Qε X‖2X dt

) 1
2

+ C1E

∫ τ2,l∧M

0
k(t) f
(‖X‖V

)‖X‖2X dt

≤ C2E

(

sup
t∈[0,τ2,l∧M]

‖Qε X‖2X
∫ τ2,l∧M

0
k(t)‖X‖2X dt

) 1
2
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+ C2E

∫ τ2,l∧M

0
k(t)‖X‖2X dt

≤ 1

2
E sup

t∈[0,τ2,l∧M]
‖Qε X‖2X + C2

∫ M

0
k(t)E sup

t ′∈[0,t∧τ2,l ]
‖X(t ′)‖2X dt .

This yields

E sup
t∈[0,τ2,l∧M]

‖Qε X‖2X ≤ 2E‖X0‖2X + C2

∫ M

0
k(t)E sup

t ′∈[0,t∧τ2,l ]
‖X(t ′)‖2X dt .

Since the right hand side of the inequality above does not depend on ε, and since
Qε satisfies (2.16), we can send ε → 0 to find

E sup
t∈[0,τ2,l∧M]

‖X‖2X ≤ 2E‖X0‖2X + C2

∫ M

0
k(t)E sup

t ′∈[0,t∧τ2,l ]
‖X(t ′)‖2X dt .

Then, Grönwall’s inequality shows that for each l, M ∈ N,

E sup
t∈[0,τ2,l∧M]

‖X(t)‖2X ≤ 2E‖X0‖2X exp

{
C2

∫ M

0
k(t) dt

}
< ∞,

which gives (2.50). We conclude the proof of (iii) in Theorem 2.1.

3 Applications to Nonlinear Ideal Fluid Models with Transport Noise

3.1 Stochastic Advection by Lie Transport in Fluid Dynamics

Starting with the pioneering works (Fedrizzi and Flandoli 2013; Flandoli et al. 2010)
for linear scalar transport equations, many achievements have been made in recent
years for stochastic fluid equations with noise of transport type. Transport-type noise
refers to noise depending linearly on the gradient of the solution. In Holm (2015),
stochastic equations governing the dynamics of some ideal fluid regimes have been
derived by employing a novel variational principle for stochastic Lagrangian particle
dynamics. Later, the same stochastic evolution equations were rediscovered in Cotter
et al. (2017) using a multi-scale decomposition of the deterministic Lagrangian flow
map into a slow large-scale mean, and a rapidly fluctuating small-scale map. In Holm
(2015), the extension of geometricmechanics to include stochasticity in nonlinear fluid
theories was accomplished by using Hamilton’s variational principle. This extension
motivates us to study stochastic Lagrangian fluid trajectories, denoted as Xt (x, t),
arising from the stochastic Eulerian vector field with a noise in the Stratonovich sense,
i.e.,
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dXt (x, t) := u(x, t)dt +
M∑

k=1

ξk(x) ◦ dWk . (3.1)

In (3.1) u(x, t)means the drift velocity, {Wk = Wk(t)}k=1,2,...,M is a family of standard
1-D independent Brownian motions, and M can be determined via the amount of
variance required from a principal component analysis, or via empirical orthogonal
function analysis.

Deriving continuum-scale equations taking into account noise as in (3.1) is known
as the Stochastic Advection by Lie Transport (SALT) approach, see Cotter et al. (2019)
and the references therein. The SALT approach combines stochasticity in the velocity
of the fluid material loop in Kelvin’s circulation theorem with ensemble forecasting
and meets the important challenge of incorporating stochastic parameterization at the
fundamental level, see for example Berner et al. (2012), Leslie and Quarini (1979)
and Zidikheri and Frederiksen (2010).

Many subsequent investigations of the properties of the equations of fluid dynamics
with the SALTmodification have appeared in the literature recently. For example, local
existence in Sobolev spaces and a Beale–Kato–Majda type blow-up criterion were
derived in Crisan et al. (2019) and Flandoli and Luo (2019) for the incompressible
3-D SALT Euler equations. For the 2-D version, global existence of solutions has
been shown in Crisan and Lang (2019). In Alonso-Orán and Bethencourt de León
(2020), the authors provide a local existence result for the incompressible 2-D SALT
Boussinesq equations. For a simpler but still nonlinear equation as the SALT Burgers
equation, we refer to Alonso-Orán et al. (2019) and Flandoli (2011).

3.1.1 The Two-Component CH Systemwith Transport Noise

The Camassa–Holm (CH) equation

ut − uxxt + 3uux = 2ux uxx + uuxxx (3.2)

was proposed independently by Fuchssteiner and Fokas (1981) and by Camassa and
Holm (1993). In Fuchssteiner and Fokas (1981), it was proposed to consider some
completely integrable generalizations of the Korteweg–De Vries equation with bi-
Hamiltonian structures, and in Camassa and Holm (1993), it was derived to describe
the unidirectional propagation of shallow water waves over a flat bottom. Solutions
to equation (3.2) exhibit the wave-breaking phenomenon, i.e., smooth global exis-
tence may fail (Constantin and Escher 1998a, b). Global conservative solutions to the
CH equation (3.2) were obtained in Bressan and Constantin (2007) and Holden and
Raynaud (2007). Different stochastic versions of the CH equation have been studied
including additive noise (Chen et al. 2012) and multiplicative noise (Albeverio et al.
2021; Rohde and Tang 2020, 2021; Tang 2018, 2020). Following the approach in
Holm (2015), the corresponding stochastic version of the CH equation with transport
noise was introduced in Bendall et al. (2019) and Crisan and Holm (2018). Trans-
forming the equation into a partial differential equation with random coefficients, the
well-posedness of the stochastic CH equation with some special transport noise has
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been studied in Albeverio et al. (2021).We can extend this result to a far more complex
system: the stochastic two-component CH system (see Holm and Luesink (2021) for
the related models), i.e.,

⎧
⎪⎨

⎪⎩

dm + (m∂x + ∂x m) dχt + η∂xη dt = 0,

dη + (η dχt )x = 0,

m = u − uxx .

(3.3)

In (3.3), u is the fluid velocity and η denotes the depth of the flow. As in (3.1), the
noise structure in (3.3) is

dχt = u(t, x) dt +
M∑

k=1

ξk(x) ◦ dWk .

The functions ξ1, . . . , ξM represent spatial velocity-velocity correlations up to order
M .
Note that the system (3.3) reduces to the scalar CH equation from Albeverio et al.
(2021) if we put η to be zero. Here we consider M = ∞ and rewrite (3.3) as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dm + [(mu)x + ηηx ] dt +
∞∑

k=1

Lξk m ◦ dWk = 0,

dη + (ηu)x dt +
∞∑

k=1

Lξk η ◦ dWk = 0.

(3.4)

The differential operator Lξk is given by

Lξk = ∂xξk + ξk∂x . (3.5)

Calculating the cross-variation term in the general transformation formula

∫ t

0
f ◦ dW =

∫ t

0
f dW + 1

2
〈 f , W 〉t ,

we obtain the corresponding Itô formulation of (3.4), given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dm + [(mu)x + ηηx ] dt − 1

2

∞∑

k=1

L2
ξk

m dt = −
∞∑

k=1

Lξk m dWk,

dη + (ηu)x dt − 1

2

∞∑

k=1

L2
ξk

η dt = −
∞∑

k=1

Lξk η dWk .

(3.6)

Note that the operator L2
ξk
in (3.6) is the second-order operator

L2
ξk

f = Lξk (Lξk f ) = ξ2k ∂2xx f + 3ξk∂xξk∂x f + (ξk∂
2
xxξk + (∂xξk)

2) f .
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In this paper, we will consider (3.6) on the periodic torus T = R/2πZ in terms of
the unknowns (u, η). Therefore, for any real number s, we define Ds = (I − ∂2xx )

s/2

as D̂s f (k) = (1 + |k|2)s/2 f̂ (k). Then, we apply (I − ∂2xx )
−1 = D−2 to (3.6) and

consider for (u, η) the nonlocal Cauchy problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du +
[

uux + ∂x D−2
(
1

2
u2 + u2

x + 1

2
η2
)

− 1

2
D−2

∞∑

k=1

L2
ξk

D2u

]

dt

= −D−2
∞∑

k=1

Lξk D2u dWk,

dη + (uηx + ηux ) dt − 1

2

∞∑

k=1

L2
ξk

η dt = −
∞∑

k=1

Lξk η dWk,

(u(0), η(0)) = (u0, η0).

(3.7)

Here we remark that in (3.7), f = D−2g = (I − ∂2xx )
−1g means f = G�g, where

G is the Green function of the Helmholtz operator (I − ∂2xx ) and � stands for the
convolution. The local theory for (3.7) is stated in Theorem 3.1.

3.1.2 The CCF Model with Transport Noise

As the second application of the abstract framework, we will consider a stochastic
transport equation with non-local velocity on the periodic torusT. In the deterministic
case, it reads

θt + (Hθ)θx = 0, (3.8)

where H is the periodic Hilbert transform defined by

(H f )(x) = 1

2π
p.v.
∫ 2π

0
f (t) cot

(
x − t

2

)
dt . (3.9)

Equation (3.8) was proposed by Córdoba et al. (2005) to consider advective transport
with non-local velocity. It is deeply connected to the 2-D SQG equation and hence
with the 3-D Euler equations (cf. Bae and Granero-Belinchón 2015 and the references
therein). Notice that, if we replace the non-local Hilbert transform by the identity
operator we recover the classical Burgers equation. In Córdoba et al. (2005), the
breakdown of classical solutions to (3.8) for a generic class of smooth initial data was
discovered.
To the best of our knowledge, the stochastic counterpart of the CCF model (3.8) has
not been studied yet. In this paper, we will consider the stochastic CCF model with
transport noise, i.e.,

dθ + (Hθ) ∂xθ dt +
∞∑

k=1

Lξk θ ◦ dWk = 0, (3.10)
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where {Wk = Wk(t)}k∈N is a sequence of standard 1-D independent Brownianmotions
and Lξk is given as in (3.5). Using the corresponding Itô formulation, we are led to
the Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

dθ + (Hθ)∂xθ dt − 1

2

∞∑

k=1

L2
ξk

θ dt = −
∞∑

k=1

Lξk θ dWk,

θ(0) = θ0.

(3.11)

A local theory for (3.11) is stated in Theorem 3.2.

3.2 Notations, Assumptions andMain Results

To state the main results for (3.7) and (3.11), we introduce some function spaces.
For d ∈ N and 1 ≤ p < ∞ we denote by L p(Td; R) the standard Lebesgue space
of measurable p-integrable R-valued functions with domain T

d = (R/2πZ)d and
by L∞(Td; R) the space of essentially bounded functions. Particularly, L2(Td; R)

is equipped with the inner product ( f , g)L2 = ∫
Td f · g dx, where g denotes

the complex conjugate of g. The Fourier transform and inverse Fourier transform
of f (x) ∈ L2(Td; R) are defined by f̂ (ξ) = ∫

Td f (x)e−ix ·ξ dx and f (x) =
1

(2π)d

∑
k∈Zd f̂ (k)eix ·k , respectively. Recalling that for any s ∈ R, D̂s f (k) =

(1 + |k|2)s/2 f̂ (k), we define the Sobolev space Hs on T
d with values in R as

Hs(Td; R) :=
⎧
⎨

⎩
f ∈ L2(Td; R) : ‖ f ‖2Hs (Td ;R)

=
∑

k∈Zd

|D̂s f (k)|2 < +∞
⎫
⎬

⎭
.

For u = (u j )1≤ j≤n : T
d �→ R

n , we define ‖u‖2
Hs (Td ;Rn)

:= ∑n
j=1 ‖u j‖2Hs (Td ;R)

.

For the sake of simplicity, we omit the parentheses in the above notations from now
on if there is no ambiguity. Similarly, for two spaces Hs1 and Hs2 (s1, s2 > 0)
and ( f , g) ∈ Hs1 × Hs2 , we define ‖( f , g)‖2Hs1×Hs2 := ‖ f ‖2Hs1 + ‖g‖2Hs2 . The
commutator for two operators P, Q is denoted by [P, Q] := P Q − Q P. The space
of bounded linear operators from U to some separable Hilbert space X is denoted by
L(U; X).

To obtain a local theory for (3.7) and (3.11), we have to impose natural regularity
assumptions on {ξk(x)}k∈N to give a reasonable meaning to the stochastic integral and
to show certain estimates. For this reason, we make the following assumption:

Assumption (D)
∑

k∈N ‖ξk‖Hs < ∞ for any s ≥ 0.

Remark 3.1 It follows from Assumption (D) that there is a C > 0 such that for all
f ∈ Hs+2 with s > 1

2 , we have

∞∑

k=1

∥∥Lξk f
∥∥

Hs ≤ C ‖ f ‖Hs+1 and
∞∑

k=1

∥∥∥L2
ξk

f
∥∥∥

Hs
≤ C ‖ f ‖Hs+2 .
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Besides, we do not require that {ξk}k∈N is an orthogonal system.

The main results for (3.7) and (3.11) are the following:

Theorem 3.1 Let s > 11
2 and S = (Ω,F , P, {Ft }t≥0,W) be a stochastic basis

fixed in advance. Let Assumption (D) hold. If (u0, η0) ∈ L2(Ω; Hs × Hs−1) is an
F0-measurable random variable, then (3.7) has a local unique pathwise solution
((u, η), τ ) such that

(u, η)(· ∧ τ) ∈ L2
(
Ω; C
(
[0,∞); Hs × Hs−1

))
. (3.12)

Moreover, the maximal solution ((u, η), τ ∗) to (3.7) satisfies

1{
lim supt→τ∗ ‖(u,η)(t)‖Hs×Hs−1=∞

} = 1{
lim supt→τ∗ ‖(u,η)(t)‖W1,∞×W1,∞=∞

} P − a.s.

Theorem 3.2 Let s > 7
2 and S = (Ω,F , P, {Ft }t≥0,W) be a stochastic basis fixed in

advance. Let Assumption (D) hold. If θ0 ∈ L2(Ω; Hs) is an F0-measurable random
variable, then (3.11) has a local unique pathwise solution (θ, τ ) such that

θ(· ∧ τ) ∈ L2 (Ω; C
([0,∞); Hs)) . (3.13)

Moreover, the maximal solution (θ, τ ∗) to (3.11) satisfies

1{lim supt→τ∗ ‖θ(t)‖Hs =∞} = 1{lim supt→τ∗ ‖θx (t)‖L∞+‖(Hθx )(t)‖L∞=∞} P − a.s.

(3.14)

Remark 3.2 We require s > 11/2 in Theorem 3.1. This is because, if (u, η) ∈ Hs ×
Hs−1, then

(
− 1

2 D−2∑∞
k=1 L2

ξk
D2u,− 1

2

∑∞
k=1 L2

ξk
η
)

∈ Hs−2 × Hs−3. To apply

Theorem 2.1 to (3.7) with X = Hs × Hs−1, we have to verify (2.15) with using
Lemma A.5. Therefore, s − 4 > 3

2 , which means s > 11/2. Similarly, s > 7/2 is
needed in Theorem 3.2.

Remark 3.3 The scalar stochastic CH equation with transport noise has been analyzed
very recently in Albeverio et al. (2021) with a completely different approach. The
authors obtain the local existence of pathwise solutions in less regular spaces but
without a blow-up criterion. Note that the abstract framework developed in this article
can be applied to cover this equation to show local existence, uniqueness and derive a
blow-up criterion.

Remark 3.4 Notice that in the deterministic case, one can use the estimate

‖Hθx‖L∞ �
(
1 + ‖θx‖L∞ log

(
e + ‖θx‖H1

)+ ‖θx‖L2
)

(3.15)

to improve the blow-up criterion (3.14) into (cf. Dong 2008)

lim sup
t→τ∗

‖θ(t)‖Hs = ∞ ⇐⇒ lim sup
t→τ∗

‖θx (t)‖L∞ = ∞.
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To achieve this in the stochastic setting, we have an essential difficulty in closing the
Hs-estimate. That is, one has to split the expectation E‖Hθx‖L∞‖θ‖2Hs . By invok-
ing (3.15), so far we have not been able to close the estimate for E‖θ‖2Hs because
E
[(
1 + ‖θx‖L∞ log

(
e + ‖θx‖H1

)+ ‖θx‖L2
) ‖θ‖Hs

]
is involved.

3.3 The Stochastic Two-Component CH System: Proof of Theorem 3.1

Now we consider (3.7) on the periodic torus T, and we will apply the abstract frame-
work developed in Sect. 2 to obtain Theorem 3.1. To put (3.7) into the abstract
framework, we define

X = (u, η), G(u, η) = ∂x D−2
(
1

2
u2 + u2

x + 1

2
η2
)

,

and we set

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b(t, X) = b(X) = (−G(u, η),−ηux ) ,

g(t, X) = g(X) =
(

−uux + 1

2
D−2

∞∑

k=1

L2
ξk

D2u,−uηx + 1

2

∞∑

k=1

L2
ξk

η

)

,

hk(t, X) = hk(X) =
(
−D−2Lξk D2u,−Lξk η

)
, k ∈ N.

(3.16)

Now we recall that U is a fixed separable Hilbert space and {ei }i∈N is a complete
orthonormal basis of U such that the cylindrical Wiener process W is defined as in
(2.1). Then, we define h(X) ∈ L(U; Hs × Hs−1) such that

h(X)(ek) = hk(X) =
(
−D−2Lξk D2u,−Lξk η

)
, k ∈ N. (3.17)

Altogether we can rewrite the problem (3.7) as

{
dX = (b(X) + g(X)) dt + h(X) dW,

X(0) = X0 = (u0, η0).
(3.18)

In order to prove Theorem 3.1 by applying Theorem 2.1, we need to check that
Assumptions (A), (B) and (C) are satisfied. To ease notation, we define

X s = Hs × Hs−1 (3.19)

and make the following choice for the spaces X ⊂ Y ⊂ Z and Z ⊂ V ,

X = X s, Y = X s−1, Z = X s−2, V = W 1,∞ × W 1,∞. (3.20)
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3.3.1 Estimates on Nonlinear Terms

In this preparatory part, some basic Sobolev estimates to deal with b, g, h from (3.16),
(3.17) are introduced.

Lemma 3.1 Let s > 5/2. Then, b is regular in X s and for X = (u, η) ∈ X s , Y =
(v, ρ) ∈ X s , we have

‖b(X)‖X s � ‖X‖V‖X‖X s .

‖b(X) − b(Y )‖X s � (‖X‖X s + ‖Y‖X s ) ‖X − Y‖X s .

Proof Since ∂x (1 − ∂2xx )
−1 is a bounded map from Hs to Hs+1, the first estimate

follows from

‖b(X)‖2X s = ‖G(u, η)‖2Hs + ‖uxη‖2Hs−1

� ‖u2 + u2
x + η‖2Hs−1 + ‖ux‖2L∞‖η‖2Hs−1 + ‖ux‖2Hs−1‖η‖2L∞

� ‖u‖2W 1,∞‖u‖2Hs + ‖η‖2L∞‖η‖2Hs−1 + ‖u‖2W 1,∞‖η‖2Hs−1 + ‖u‖2Hs ‖η‖2L∞

� ‖(u, η)‖2W 1,∞×L∞‖(u, η)‖2Hs×Hs−1 .

Using the fact that Hs−1 is an algebra, we can infer that

‖b(X) − b(Y )‖2X s

� ‖G(u, η) − G(v, ρ)‖2Hs + ‖uxη − vxρ‖2Hs−1

� ‖u2 − v2 + u2
x − v2x + η2 − ρ2‖2Hs−1 + ‖ux (η − ρ) + ρ(ux − vx )‖2Hs−1

� ‖u + v‖2Hs ‖u − v‖2Hs + ‖η + ρ‖2Hs−1‖η − ρ‖2Hs−1

+ ‖u‖2Hs ‖η − ρ‖2Hs−1 + ‖ρ‖2Hs−1‖u − v‖2Hs

�
(
‖(u, η)‖2Hs×Hs−1 + ‖(v, ρ)‖2Hs×Hs−1

)
‖(u − v, η − ρ)‖2Hs×Hs−1 ,

which gives the second estimate. ��

Lemma 3.2 Let Assumption (D) hold true and s > 7/2. If X = (u, η) ∈ X s , then
g : X s → X s−2 and h : X s → L2(U;X s−1) obey

‖g(X)‖X s−2 � 1 + ‖X‖2X s

and

‖h(X)‖L2(U;X s−1) � ‖X‖X s .

Proof Using Hs−3 ↪→ L∞, we derive
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‖g(X)‖2X s−2 =
∥
∥∥∥∥
−uux + 1

2
D−2

∞∑

k=1

L2
ξk

D2u

∥
∥∥∥∥

2

Hs−2

+
∥∥∥∥∥
−uηx + 1

2

∞∑

k=1

L2
ξk

η

∥∥∥∥∥

2

Hs−3

� ‖u‖4Hs +
∥∥∥D2u
∥∥∥
2

Hs−2
+ ‖η‖2Hs−1 ‖u‖2Hs + ‖η‖2Hs−1

�
(
1 + ‖u‖2Hs + ‖η‖2Hs−1

)2
,

which implies the first estimate. Similarly, from the definition of h in (3.17), and the
definition of Lξ in (3.5), one has

∞∑

k=1

‖h(X)ek‖2X s−1 =
∞∑

k=1

(∥∥
∥D−2Lξk D2u

∥∥
∥
2

Hs−1
+ ∥∥Lξk η

∥
∥2

Hs−2

)

�
∞∑

k=1

(∥∥∥Lξk D2u
∥∥∥
2

Hs−3
+ ∥∥Lξk η

∥∥2
Hs−2

)
� ‖u‖2Hs + ‖η‖2Hs−1 ,

which gives the second estimate. ��

Lemma 3.3 Let s > 11
2 , X = (u, η) ∈ X s and Y = (v, ρ) ∈ X s . Then, we have

2 (g(t, X) − g(t, Y ), X − Y )X s−2 + ‖h(t, X) − h(t, Y )‖2L2(U;X s−2)

�
(
1 + ‖X‖2X s + ‖Y‖2X s

)
‖X − Y‖2X s−2 .

Proof Recalling (3.16) and (3.17), we have

2 (g(X) − g(Y ), X − Y )X s−2 + ‖h(t, X) − h(t, Y )‖2L2(U;X s−2)

= 2(vvx − uux , u − v)Hs−2 + 2(vρx − uηx , η − ρ)Hs−3

+
(

D−2
∞∑

k=1

L2
ξk

D2(u − v), u − v

)

Hs−2

+
∞∑

k=1

(
D−2Lξk D2(u − v), D−2Lξk D2(u − v)

)

Hs−2

+
( ∞∑

k=1

L2
ξk

(η − ρ), η − ρ

)

Hs−3

123



98 Page 32 of 55 Journal of Nonlinear Science (2021) 31 :98

+
∞∑

k=1

(
Lξk (η − ρ),Lξk (η − ρ)

)
Hs−3

:=
6∑

i=1

Ii .

Because Hs−2 ↪→ W 1,∞, we can use Lemma A.4 and integration by parts to arrive at

|I1| �
∣∣∣
(

Ds−2v(u − v)x , Ds−2(u − v)
)

L2

∣∣∣+
∣∣∣
(

Ds−2(u − v)ux , Ds−2(u − v)
)

L2

∣∣∣

�
∥
∥∥[Ds−2, v](u − v)x

∥
∥∥

L2
‖u − v‖Hs−2 + ‖ux‖L∞ ‖u − v‖2Hs−2

� (‖v‖Hs + ‖u‖Hs ) ‖u − v‖2Hs−2 .

Similarly, we have

|I2| �
∣
∣∣
(

Ds−3v(η − ρ)x , Ds−3(η − ρ)
)

L2

∣
∣∣+
∣
∣∣
(

Ds−3(u − v)ηx , Ds−3(η − ρ)
)

L2

∣
∣∣

�
∥∥∥[Ds−3, v](η − ρ)x

∥∥∥
L2

‖η − ρ‖Hs−3 + ‖ηx‖Hs−3 ‖u − v‖Hs−3 ‖η − ρ‖Hs−3

� ‖v‖Hs ‖η − ρ‖2Hs−3 + ‖η‖2Hs−1 ‖u − v‖2Hs−3 + ‖η − ρ‖2Hs−3 .

Therefore,

|I1| + |I2| �
(
‖η‖2Hs−1 + ‖v‖Hs + ‖u‖Hs

)
‖u − v‖2Hs−2 + (1 + ‖v‖Hs ) ‖η − ρ‖2Hs−3

�
(
1 + ‖X‖2X s + ‖Y‖2X s

)
‖X − Y‖2X s−2 .

Observe that Ds−2D−2 = Ds−4. Since s − 4 > 3/2, we can invoke Lemma A.5
to obtain

I3 + I4

=
(

Ds−4
∞∑

k=1

L2
ξk

D2(u − v), Ds−4D2(u − v)

)

L2

+
∞∑

k=1

(
Ds−4Lξk D2(u − v), Ds−4Lξk D2(u − v)

)

L2

� ‖D2(u − v)‖2Hs−4 � ‖u − v‖2Hs−2 .

In the same way, we have
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I5 + I6

=
(

Ds−3
∞∑

k=1

L2
ξk

(η − ρ), Ds−3(η − ρ)

)

L2

+
∞∑

k=1

(
Ds−2Lξk (η − ρ), Ds−2Lξk (η − ρ)

)

L2

� ‖η − ρ‖2Hs−3 .

Collecting the above estimates, we obtain the desired result. ��

3.3.2 Proof of Theorem 3.1

Now we will prove that all the requirements in Assumptions (A), (B) and (C) hold
true. We first fix regular mappings gε and hε using the mollification operators from
(A.1) and (A.2) in Appendix A by

gε(X) =
(

−Jε[Jεu Jεux ] + 1

2
J 3
ε D−2

∞∑

k=1

L2
ξk

D2 Jεu,

−Jε[Jεu Jεηx ] + 1

2
J 3
ε

∞∑

k=1

L2
ξk

Jεη

)

. (3.21)

Let

hk
ε(X) =

(
−Jε D−2Lξk D2 Jεu,−JεLξk Jεη

)
. (3.22)

Similar to (3.17), here we define hε(X) ∈ L(U;X s) such that

hε(X)(ek) = hk
ε(X), k ∈ N. (3.23)

In the following, we will show that all the requirements in Assumptions (A), (B)
and (C) hold true for the following choice:

– X := X s , Y := X s−1 and Z := X s−2, where X s is given in (3.19), and V =
W 1,∞ × W 1,∞;

– b, g, h, gε and hε are given in (3.16), (3.17), (3.21) and (3.23), respectively;
– k(·) ≡ 1, f (·) = C(1 + ·), q(·) = C(1 + ·5) for some C > 1 large enough
depending only on b, g, h;

– Tε = Qε = J̃ε, where J̃ε is given in (A.2).

Let s > 11/2. Obviously, X ↪→ Y ↪→↪→ Z ↪→ V . Then, Lemma 3.1 shows
b : X s → X s , and Lemma 3.2 implies g : X s → X s−2 and h : X s → L2(U;X s−1).
Hence, the stochastic integral in (3.18) is a well definedX s−1-valued local martingale.
It is straightforward to verify that all of them are continuous in X ∈ X s .

Checking (A1) in Assumption (A): Lemma 3.1 implies (A1).
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Checking (A2) in Assumption (A): By the construction of gε(·) and hε(·), (A.4),
Lemma 3.2 and Assumption (D), it is easy to check that (A2) is satisfied.

Checking (A3) in Assumption (A): We first verify (2.12). By (3.22) and (A.6), we
have
(

hk
ε(X), X

)

X s
=
(
−Jε D−2Lξk D2 Jεu, u

)

Hs
+ (−JεLξk Jεη, η

)
Hs−1

= −
(

D−2Lξk D2 Jεu, Jεu
)

Hs
− (Lξk Jεη, Jεη

)
Hs−1

= −
(

Ds−2Lξk D2 Jεu, Ds−2D2 Jεu
)

L2
−
(

Ds−1Lξk Jεη, Ds−1 Jεη
)

L2
.

Let v = D2 Jεu. From the definition of the operator Lξ in (3.5), we have

(
Ds−2Lξk v, Ds−2v

)

L2
=
(

Ds−2 (v∂xξk) , Ds−2v
)

L2
+
(

Ds−2 (∂xvξk) , Ds−2v
)

L2

=
(
[Ds−2, v]∂xξk, Ds−2v

)

L2
+
(
vDs−2∂xξk, Ds−2v

)

L2

+
(
[Ds−2, ξk]∂xv, Ds−2v

)

L2
+
(
ξk Ds−2∂xv, Ds−2v

)

L2
.

By Lemma A.4, Hs−2 ↪→ W 1,∞ and integration by parts, we arrive at

(
[Ds−2, v]∂xξk, Ds−2v

)

L2
+
(
vDs−2∂xξk, Ds−2v

)

L2
� ‖v‖2Hs−2‖ξk‖Hs−1

and
(
[Ds−2, ξk]∂xv, Ds−2v

)

L2
+
(
ξk Ds−2∂xv, Ds−2v

)

L2
� ‖v‖2Hs−2‖ξk‖Hs−2 .

Combining the above estimates and using (A.7), we have that

(
Ds−2Lξk D2 Jεu, Ds−2D2 Jεu

)

L2
� ‖v‖2Hs−2‖ξk‖Hs ≤ ‖u‖2Hs ‖ξk‖Hs .

Similarly,

(
Ds−1Lξk Jεη, Ds−1 Jεη

)

L2
� ‖Jεη‖2Hs−1‖ξk‖Hs ≤ ‖η‖2Hs−1‖ξk‖Hs .

Therefore, by using (3.22), (3.23), Assumption (D) and (A.7), we conclude that

∞∑

k=1

|(hε(X)ek, X)X s |2 =
∞∑

k=1

∣∣∣
(

hk
ε(X), X

)

X s

∣∣∣
2

�
∞∑

k=1

‖ξk‖2Hs

(
‖u‖2Hs + ‖η‖2Hs−1

)2 ≤ C‖X‖4X s ,

which yields (2.12).
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Now we prove (2.13). This is the cancellation property. For all X = (u, η) ∈ X s ,
we have

2 (gε(X), X)X s + ‖hε(X)‖2L2(U;X s )

= −2(Jε[Jεu Jεux ], u)Hs − 2 (Jε[Jεu Jεηx ], η)Hs−1

+
(

Ds J 3
ε D−2

∞∑

k=1

L2
ξk

D2 Jεu, Dsu

)

L2

+
∞∑

k=1

(
Ds Jε D−2Lξk D2 Jεu, Ds Jε D−2Lξk D2 Jεu

)

L2

+
(

Ds−1 J 3
ε

∞∑

k=1

L2
ξk

Jεη, Ds−1η

)

L2

+
∞∑

k=1

(
Ds−1 JεLξk Jεη, Ds−1 JεLξk Jεη

)

L2

:=
6∑

i=1

Ei .

It follows from (A.5), (A.7), Lemma A.4 and integration by parts that

|E1| = 2
∣∣([Ds, Jεu]Jεux , Ds Jεu

)
L2 + (Jεu Ds Jεux , Ds Jεu

)
L2

∣∣ � ‖ux‖L∞‖u‖2Hs

and

|E2| = 2
∣
∣∣
(
[Ds−1, Jεu]Jεηx , Ds−1 Jεη

)

L2
+
(

Jεu Ds−1 Jεηx , Ds−1 Jεη
)

L2

∣
∣∣

� (‖ux‖L∞ + ‖ηx‖L∞)
(
‖u‖2Hs + ‖η‖2Hs−1

)
.

By (A.5), (A.6) and the fact that Ds−2 = Ds D−2, we obtain

E3 + E4

=
(

Ds−2 Jε

∞∑

k=1

L2
ξk

D2 Jεu, Ds−2 Jε D2 Jεu

)

L2

+
∞∑

k=1

(
Ds−2 JεLξk D2 Jεu, Ds−2 JεLξk D2 Jεu

)

L2
.

Since Ds−2 Jε ∈ OPSs−2
1,0 (cf. Lemma A.1), we apply Lemma A.5 with P = Ds−2 Jε

to arrive at

E3 + E4 �
∥∥∥D2 Jεu

∥∥∥
2

Hs−2
≤ C ‖u‖2Hs ,
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where we have used (A.7) in the last inequality. Similarly,

E5 + E6

=
(

Ds−1 Jε

∞∑

k=1

L2
ξk

Jεη, Ds−1 Jε Jεη

)

L2

+
∞∑

k=1

(
Ds−1 JεLξk Jεη, Ds−1 JεLξk Jεη

)

L2

≤ C‖Jεη‖2Hs−1 ≤ C‖η‖2Hs−1 .

Combining the above estimates, we arrive at

2 (gε(X), X)X s + ‖hε(X)‖2L2(U;X s ) � (1 + ‖ux‖L∞ + ‖ηx‖L∞)
(
‖u‖2Hs + ‖η‖2Hs−1

)

≤ f
(‖X‖V

)‖X‖2X s ,

which implies (2.13) with k(t) ≡ 1.
Checking (B1) in Assumption (B): It is clear that X = X s is dense in Z =

X s−2. Since s − 2 > 5
2 , inequality (2.14) follows directly from Lemma 3.1. Applying

Lemma 3.3 yields (2.15).
Checking (B2) in Assumption (B): Recall that J̃ε = (1−ε2Δ)−1 is given in (A.2).

Due to (A.7) and Tε = Qε = J̃ε, (B2) is a direct consequence of Assumption (C),
which will be checked below.

Checking Assumption (C): It is easy to prove (2.16) and we omit the details here.
Then, we notice that

2 (Tεg(X), Tε X)X s + ‖Tεh(X)‖2L2(U;X s )

= −2(Tε[uux ], Tεu)Hs − 2 (Tε[uηx ], Tεη)Hs−1

+
(

Ds Tε D−2
∞∑

k=1

L2
ξk

D2u, Ds Tεu

)

L2

+
∞∑

k=1

(
Ds Tε D−2Lξk D2u, Ds Tε D−2Lξk D2u

)

L2

+
(

Ds−1Tε

∞∑

k=1

L2
ξk

η, Ds−1Tεη

)

L2

+
∞∑

k=1

(
Ds−1TεLξk η, Ds−1TεLξk η

)

L2
=

6∑

i=1

Ri .

For the first term, we have that
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|R1| = 2
∣
∣(Ds Tε [uux ] , Ds Tεu

)
L2

∣
∣

≤ 2
∣∣
∣
([

Ds , u
]

ux , Ds T 2
ε u
)

L2
+ ([Tε, u]Dsux , Ds Tεu

)
L2 + (u Ds Tεux , Ds Tεu

)
L2

∣∣
∣

≤ C‖ux‖L∞‖u‖Hs ‖Tεu‖Hs + C‖ux‖L∞‖Tεu‖2Hs ,

where we have used Lemmas A.3 and A.4 , integration by parts, embedding Hs−1 ↪→
W 1,∞, (A.6) and (A.7). Similarly, we can show that

|R2| = 2
∣
∣
∣
(

Ds−1Tε [uηx ] , Ds−1Tεη
)

L2

∣
∣
∣

= 2
∣∣
∣
([

Ds−1, u
]
ηx , Ds−1T 2

ε η
)

L2

+
(
[Tε, u]Ds−1ηx , Ds−1Tεη

)

L2
+
(

u Ds−1Tεηx , Ds−1Tεη
)

L2

∣∣
∣

≤ C
(‖ux‖L∞‖η‖Hs−1‖Tεη‖Hs−1 + ‖ηx‖L∞‖u‖Hs ‖Tεη‖Hs−1

)+ C‖ux‖L∞‖Tεη‖2Hs

� ‖ux‖L∞‖η‖Hs−1‖Tεη‖Hs−1 + ‖ηx‖L∞‖u‖Hs ‖Tεη‖Hs−1 .

Using Lemma A.5 yields

R3 + R4 =
(

Ds−2Tε

∞∑

k=1

L2
ξk

D2u, Ds−2Tε D2u

)

L2

+
∞∑

k=1

(
−Ds−2TεLξk D2u,−Ds−2TεLξk D2u

)

L2

� ‖D2u‖2Hs−2 ≤ ‖u‖2Hs .

and analogously

R5 + R6 =
(

Ds−1Tε

∞∑

k=1

L2
ξk

η, Ds−1Tεη

)

L2

+
∞∑

k=1

(
Ds−1TεLξk η, Ds−1TεLξk η

)

L2
� ‖η‖2Hs−1 .

Gathering together the above estimates and noticing (A.7), we get

2 (Tεg(X), Tε X)X s + ‖Tεh(X)‖2L2(U;X s )

� (1 + ‖ux‖L∞ + ‖ηx‖L∞)
(
‖u‖2Hs + ‖η‖2Hs−1

)
≤ f
(‖X‖V

)‖X‖2X s ,

which gives (2.20).We are just left to show (2.19) to conclude the proof ofTheorem3.1.
To this end, we recall (3.16) and consider
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− (Tεhk(X), Tε X)X s =
(

Tε Ds−2Lξk D2u, Tε Dsu
)

L2

+
(

Tε Ds−1Lξk η, Tε Ds−1η
)

L2

=
(
P1Lξk D2u,P1D2u

)

L2
+ (P2Lξk η,P2η

)
L2

=
(
T1D2u,P1D2u

)

L2
+
(
LξkP1D2u,P1D2u

)

L2

+ (T2η,P2η)L2 + (LξkP2η,P2η
)

L2

:=
4∑

i=1

Ji ,

where P1 := Tε Ds−2 ∈ OPSs−2
1,0 , P2 := Tε Ds−1 ∈ OPSs−1

1,0 (cf. Lemma A.1), and
T1 = [P1,Lξk

]
, T2 = [P2,Lξk

]
. Using integration by parts, (3.5) and (A.5), we have

that

|J2| + |J4| � ‖∂xξk‖L∞

(∥∥∥P1D2u
∥∥∥
2

L2
+ ‖P2η‖2L2

)
� ‖∂xξk‖L∞ ‖Tε X‖2X s .

Using (A.6) and (A.5), we have

J3 = (T2η,P2η)L2

=
(

Ds−1Lξk η, Ds−1T 2
ε η
)

L2
−
(
Lξk Ds−1Tεη, Ds−1Tεη

)

L2

=
(

Ds−1ξk∂xη, Ds−1T 2
ε η
)

L2
+
(

Ds−1η∂xξk, Ds−1T 2
ε η
)

L2

−
(
Lξk Ds−1Tεη, Ds−1Tεη

)

L2

=
([

Ds−1, ξk

]
∂xη, Ds−1T 2

ε η
)

L2
+
(

Tεξk Ds−1∂xη, Ds−1Tεη
)

L2

+
(

Ds−1η∂xξk, Ds−1T 2
ε η
)

L2
−
(
Lξk Ds−1Tεη, Ds−1Tεη

)

L2

:=
4∑

i=1

Ki .

On account of Hs−1 ↪→ W 1,∞ and integration by parts, it holds that

|K3| � ‖η∂xξk‖Hs−1‖Tεη‖Hs−1 ≤ ‖ξk‖Hs ‖η‖Hs−1‖Tεη‖Hs−1 ,

and

|K4| � ‖∂xξk‖L∞ ‖Tεη‖2Hs−1 � ‖∂xξk‖L∞ ‖η‖Hs−1‖Tεη‖Hs−1 .
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Then, we apply Lemma A.4 to K1 to find

|K1| � ‖ξk‖Hs ‖η‖Hs−1‖Tεη‖Hs−1 .

For K2, we use Lemma A.3 and integration by parts to derive

|K2| �
∣∣
∣
(
[Tε, ξk] ∂x Ds−1η, Ds−1Tεη

)∣∣
∣+
∣∣
∣
(
ξk∂x Ds−1Tεη, Ds−1Tεη

)∣∣
∣

� ‖∂xξk‖L∞ ‖η‖Hs−1‖Tεη‖Hs−1 .

Therefore,

|J3| = ∣∣(T2η,P2η)L2

∣∣ � ‖ξk‖Hs ‖η‖Hs−1‖Tεη‖Hs−1 .

The form J4 = (T1D2u,P1D2u
)

L2 can be handled in the sameway using Hs−2 ↪→
W 1,∞. Hence, we have

|J3| = ∣∣(T1 f ,P1 f )L2

∣
∣ � ‖ξk‖Hs ‖ f ‖Hs−2‖Tε f ‖Hs−2 � ‖ξk‖Hs ‖u‖Hs ‖Tεu‖Hs .

Now we summarize the above estimates, and use (3.17) and Assumption (D) to arrive
at

∞∑

k=1

|(Tεh(X)ek, Tε X)X s |2 �
∞∑

k=1

‖ξk‖2Hs ‖X‖2X s ‖Tε X‖2X s ≤ C‖X‖2X s ‖Tε X‖2X s .

(3.24)

Hence, we obtain inequality (2.19) and complete the proof.

3.4 The Stochastic CCFModel: Proof of Theorem 3.2

In this section we will apply Theorem 2.1 to (3.11) with x ∈ T to obtain Theorem 3.2.
To that purpose, we set X = θ and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b(t, X) = b(X) = 0,

g(t, X) = g(X) = −(Hθ)∂xθ + 1

2

∞∑

k=1

L2
ξk

θ,

hk(t, X) = hk(X) = −Lξk θ, k ∈ N.

(3.25)

As in (3.17), for a fixed separable Hilbert space U with a complete orthonormal basis
{ei }i∈N, we define h(X) ∈ L(U; Hs) such that

h(X)(ek) = hk(X), k ∈ N. (3.26)
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With the above notations, we reformulate (3.11) in the abstract form, i.e.,

{
dX = (b(X) + g(X)) dt + h(X) dW,

X(0) = θ0.
(3.27)

To prove Theorem 3.2, we would like to invoke Theorem 2.1 to this setting. To
do that, we just need to check the Assumptions (A), (B) and (C) . Now we let r ∈
(3/2, s − 2), and then, let

X s = Hs and V = Hr . (3.28)

3.4.1 Estimates on Nonlinear Terms

Analogously to Sect. 3.3.1 we will need the following auxiliary lemmas.

Lemma 3.4 Let Assumption (D) hold true and s > 5/2. If X = θ ∈ X s , then g :
X s → X s−2 and h : X s → L2(U;X s−1) such that

‖g(X)‖X s−2 � 1 + ‖X‖2X s ,

and

‖h(X)‖L2(U;X s−1) � ‖X‖X s .

Proof Using Hs−2 ↪→ W 1,∞, the continuity of the Hilbert transform for s ≥ 0
and Remark 3.1, one can prove the above estimates directly. We omit the details for
exposition clearness. ��

Lemma 3.5 Let X = θ ∈ X s and Y = ρ ∈ X s . Then, we have that for s > 7/2,

2 (g(t, X) − g(t, Y ), X − Y )X s−2 + ‖h(t, X) − h(t, Y )‖2L2(U;X s−2)

�
(
1 + ‖X‖2X s + ‖Y‖2X s

)
‖X − Y‖2X s−2 .

Proof Recalling (3.25) and (3.26), we have

2 (g(X) − g(Y ), X − Y )X s−2 + ‖h(t, X) − h(t, Y )‖2L2(U;X s−2)

= 2((Hρ)ρx − (Hθ)θx , θ − ρ)Hs−2 +
( ∞∑

k=1

L2
ξk

(θ − ρ), θ − ρ

)

Hs−2

+
∞∑

k=1

(
Lξk (θ − ρ),Lξk (θ − ρ)

)
Hs−2 .
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Because Hs−2 ↪→ W 1,∞, we use Remark 3.1, Lemma A.4, the continuity of the
Hilbert transform and integration by parts to bound the first term as

((Hρ)ρx − (Hθ)θx , θ − ρ)Hs−2

�
∣
∣∣
(

Ds−2(Hρ)(θ − ρ)x , Ds−2(θ − ρ)
)

L2

∣
∣∣+
∣
∣∣
(

Ds−2(H(θ − ρ))θx , Ds−2(θ − ρ)
)

L2

∣
∣∣

�
∥∥
∥[Ds−2,Hρ](θ − ρ)x

∥∥
∥

L2
‖θ − ρ‖Hs−2 + ‖∂xHρ‖L∞ ‖θ − ρ‖2Hs−2

+
∥∥
∥[Ds−2,H(θ − ρ)]θx

∥∥
∥

L2
‖θ − ρ‖Hs−2 + ‖∂xH(θ − ρ)‖L∞ ‖θ − ρ‖2Hs−2

� (‖ρ‖Hs + ‖θ‖Hs ) ‖θ − ρ‖2Hs−2 .

The last two terms can be bounded by invoking Lemma A.5
to obtain

(

Ds−2
∞∑

k=1

L2
ξk

(θ − ρ), Ds−2(θ − ρ)

)

L2

+
∞∑

k=1

(
Ds−2Lξk (θ − ρ), Ds−2Lξk (θ − ρ)

)

L2
� ‖θ − ρ‖2Hs−2 .

Collecting the above estimates, we obtain the desired result. ��

3.4.2 Proof of Theorem 3.2

To avoid unnecessary repetition, we just sketch the main points of the proof since it is
similar to the proof of Theorem 3.1. Recalling (A.1), we define

gε(X) = −Jε[(HJεθ) ∂x Jεθ ] + 1

2
J 3
ε

∞∑

k=1

L2
ξk

Jεθ. (3.29)

Let

hk
ε(X) = −JεLξk Jεθ. (3.30)

Similar to (3.17), we define hε(X) ∈ L(U;X s) such that

hε(X)(ek) = hk
ε(X), k ∈ N. (3.31)

We now prove that all the requirements in Assumptions (A), (B) and (C) hold true for
the following choice:

– X := X s , Y := X s−1 and Z := X s−2, where X s is given in (3.28), and V := Hr

with r ∈ (3/2, s − 2);
– b, g, h, gε and hε are given in (3.25), (3.29), (3.30) and (3.31), respectively;
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– k(·) ≡ 1, f (·) = C(1 + ·), q(·) = C(1 + ·5) for some C > 1 large enough;
– Tε = Qε = J̃ε, where J̃ε is given in (A.2).

Let s > 7/2. Obviously, X ↪→ Y ↪→↪→ Z ↪→ V . Moreover, Lemma 3.4 implies
g : X s → X s−2 and h : X s → L2(U;X s−1). Hence, the stochastic integral in (3.27)
is a well defined X s−1-valued local martingale. It is easy to check that g and h are
continuous in X ∈ X s .

Checking (A1) in Assumption (A): Trivial, since b(t, X) ≡ 0.
Checking (A2) inAssumption (A): By the construction of gε(X) and hε(X), (A.4),

Lemma 3.4 and Assumption (D), (A2) is verified.
Checking (A3) in Assumption (A): Since (3.30) enjoys similar estimates as we

established for (3.22), the first part (2.12) can be proved as before. Therefore, we just
need to show (2.13). For all X = θ ∈ X s , we have

2 (gε(X), X)X s + ‖hε(X)‖2L2(U;X s ) = −2(Ds Jε[HJεθ∂x Jεθ ], Dsθ)L2

+
(

Ds J 3
ε

∞∑

k=1

L2
ξk

Jεθ, Dsθ

)

L2

+
∞∑

k=1

(
Ds JεLξk Jεθ, Ds JεLξk Jεθ

)
L2

:=
3∑

i=1

Ei .

Invoking Lemma A.5 with P = Ds Jε ∈ OPSs
1,0 (cf. Lemma A.1), we have that

E2 + E3 =
(

Ds Jε

∞∑

k=1

L2
ξk

Jεθ, Ds Jε Jεθ

)

L2

+
∞∑

k=1

(
Ds JεLξk Jεθ, Ds JεLξk Jεθ

)
L2

≤ C‖Jεθ‖2Hs ≤ C‖θ‖2Hs .

To bound the first term, we notice that Hr ↪→ W 1,∞; then, we use Lemma A.4,
integration by parts, (A.7) and (A.8) to find

|E1| = 2
∣
∣(HJεθ∂x Jε Dsθ, Ds Jεθ

)
L2 + 2
([

Ds,HJεθ
]
∂x Jεθ, Ds Jεθ

)
L2

∣
∣

� ‖H∂xθ‖L∞
∥∥Ds Jεθ

∥∥2
L2 + ∥∥[Ds,HJεθ

]
∂x Jεθ
∥∥

L2

∥∥Ds Jεθ
∥∥

L2

� ‖H∂x Jεθ‖L∞
∥∥Ds Jεθ

∥∥2
L2

+ (‖∂xHJεθ‖L∞
∥
∥∥Ds−1∂x Jεθ

∥
∥∥

L2

+ ∥∥DsHJεθ
∥∥

L2 ‖∂x Jεθ‖L∞)
∥∥Ds Jεθ

∥∥
L2

� ‖H∂x Jεθ‖L∞ ‖θ‖2Hs
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+ ‖∂xHJεθ‖L∞ ‖θ‖2Hs + ‖∂x Jεθ‖L∞ ‖θ‖2Hs

� ‖H∂xθ‖L∞ ‖θ‖2Hs + ‖∂xθ‖L∞ ‖θ‖2Hs

Combining the above estimates, we arrive at

2 (gε(X), X)X s + ‖hε(t, X)‖2L2(U;X s ) � (‖H∂xθ‖L∞ + ‖∂xθ‖L∞) ‖θ‖2Hs

≤ f
(‖X‖V

)‖X‖2X s ,

which implies (2.13).
Checking (B1) inAssumption (B): The dense embeddingX = X s ↪→ Z = X s−2

and (2.14) is clear. Applying Lemma 3.5, we infer (2.15).
Checking (B2) in Assumption (B): As before, this is a direct consequence of

Assumption (C), which will be shown next.
Checking Assumption (C): Following the same way as we proved (3.24), we have

that for some C > 1,

∞∑

k=1

|(Tεh(θ)ek, Tεθ)Hs |2 ≤ C‖θ‖2Hs ‖Tεθ‖2Hs . (3.32)

Hence, (2.19) holds. Now we just need to prove (2.20). Indeed,

2 (Tεg(X), Tε X)X s + ‖Tεh(X)‖2L2(U;X s )

= −2(Tε[Hθθx ], Tεθ)Hs +
(

Ds Tε

∞∑

k=1

L2
ξk

θ, Ds Tεθ

)

L2

+
∞∑

k=1

(
Ds TεLξk θ, Ds TεLξk θ

)
L2

:=
3∑

i=1

Ri .

Using Lemma A.4, (A.8), (A.9), integration by parts, Lemma A.3 and (A.7), we
have

|R1| ≤ 2
∣
∣∣
([

Ds,Hθ
]
θx , Ds T 2

ε θ
)

L2
+ ([Tε,Hθ ]Dsθx , Ds Tεθ

)
L2

+ (Hθ Ds Tεθx , Ds Tεθ
)

L2

∣∣

≤ C‖θx‖L∞‖θ‖2Hs + C‖Hθx‖L∞‖θ‖2Hs � (‖θx‖L∞ + ‖Hθx‖L∞)‖θ‖2Hs .

Using Lemma (A.5) with P = Ds Tε ∈ OPSs
1,0 (cf. Lemma A.1), we have that

R2 + R3 =
(

Ds Tε

∞∑

k=1

L2
ξk

θ, Ds Tεθ

)

L2

+
∞∑

k=1

(
Ds TεLξk θ, Ds TεLξk θ

)
L2 � ‖θ‖2Hs .
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Combining the above estimates, we find some C > 1 such that,

2 (Tεg(X), Tε X)X s + ‖Tεh(X)‖2L2(U;X s ) ≤ C(1 + ‖θx‖L∞ + ‖Hθx‖L∞)‖θ‖2Hs .

(3.33)

Due to V = Hr ↪→ W 1,∞ and (A.9), (2.20) holds true. Therefore, we can apply
Theorem 2.1 to obtain the existence, uniqueness of pathwise solutions, together with
the blow-up criterion

1{lim supt→τ∗ ‖θ(t)‖Hs =∞} = 1{lim supt→τ∗ ‖θ(t)‖Hr =∞} P − a.s.,

where r ∈ (3/2, s − 2) is arbitrary. Now we only need to improve the above blow-up
criterion to (3.14). To this end, we proceed as in the proof of (2.22) (cf. (2.49)). For
m, l ∈ N, we define

σ1,m = inf {t ≥ 0 : ‖θ(t)‖Hs ≥ m} , σ2,l = inf {t ≥ 0 : ‖θx (t)‖L∞ + ‖Hθx‖L∞ ≥ l} ,

where inf ∅ = ∞. Denote σ1 = limm→∞ σ1,m and σ2 = liml→∞ σ2,l . Now we fix a
r ∈ (3/2, s − 2). Then,

‖θx (t)‖L∞ + ‖Hθx‖L∞ � ‖θ(t)‖Hr � ‖θ(t)‖Hs .

From this, it is obvious that σ1 ≤ σ2 P − a.s. To prove σ1 = σ2 P − a.s., we need to
prove σ1 ≥ σ2 P − a.s. In the same way as we prove (2.49), we only need to prove

P

{

sup
t∈[0,σ2,l∧N ]

‖θ(t)‖Hs < ∞
}

= 1 ∀ N , l ∈ N. (3.34)

It follows from (3.32) and (3.33) that

E sup
t∈[0,σ2,l∧N ]

‖Tεθ‖2Hs − E‖Tεθ0‖2Hs

≤ CE

(∫ σ2,l∧N

0
‖θ‖2Hs ‖Tεθ‖2Hs dt

) 1
2

+ CE

∫ σ2,l∧N

0
(1 + ‖θx‖L∞ + ‖Hθx‖L∞)‖θ‖2Hs dt

≤ CE

(

sup
t∈[0,σ2,l∧N ]

‖Tεθ‖2Hs

∫ σ2,l∧N

0
‖θ‖2Hs dt

) 1
2

+ ClE

∫ σ2,l∧N

0
‖θ‖2Hs dt

≤ 1

2
E sup

t∈[0,σ2,l∧N ]
‖Tεθ‖2Hs + Cl

∫ M

0
E sup

t ′∈[0,t∧σ2,l ]
‖θ(t ′)‖2Hs dt,
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where Cl = C(1 + l) for some C > 1 large enough. Therefore, we arrive at

E sup
t∈[0,σ2,l∧N ]

‖Tεθ‖2Hs − 2E‖Tεθ0‖2Hs ≤ Cl

∫ M

0
E sup

t ′∈[0,t∧σ2,l ]
‖θ(t ′)‖2Hs dt .

Hence, one can send ε → 0 and then use Grönwall’s inequality to derive that for each
l, N ∈ N,

E sup
t∈[0,σ2,l∧N ]

‖θ(t)‖2Hs ≤ CE‖θ0‖2Hs exp (Cl N ) < ∞,

which is (3.34). Hence, we obtain (3.14) and finish the proof.

3.5 Further Examples

Actually, the abstract framework for (1.1) can be applied to show the local existence
theory to a broader class of fluid dynamics equations. For instance, consider the SALT
surface quasi-geostrophic (SQG) equation:

⎧
⎪⎪⎨

⎪⎪⎩

dθ + u · ∇θ dt +
∞∑

k=1

(ξk · ∇θ) ◦ dWk = 0, x ∈ T
2,

u = R⊥θ,

(3.35)

where R is the Riesz transform in T
2, and {W k

t }k∈N is a sequence of standard 1-D
independent Brownian motions. The deterministic version of (3.35) reduces to the
SQG equation describing the dynamics of sharp fronts between masses of hot and
cold air (cf. Constantin et al. 1994). The SQG equations have been studied intensively,
and we cannot survey the vast research literature here. However, the stochastic version
with transport noise as in (3.35) has not been studied yet as far as we know.

To apply Theorem 2.1 to (3.35) to get a local theory, we introduce some notations.
For any real number s, Λs = (−Δ)s/2 are defined by Λ̂s f (k) = |k|s f̂ (k). Then, we
let

X s = Hs ∩
{

f :
∫

T2
f dx = 0

}
. (3.36)

We notice that with the mean-zero condition, X s is Hilbert space for s > 0 with
inner product ( f , g)X s = (Λs f ,Λs g)L2 and homogeneous Sobolev norm ‖ f ‖X s =
‖Λs f ‖L2 . However, it can be shown that if f ∈ X s for s > 0, then, cf. Bahouri et al.
(2011),

‖ f ‖Hs � ‖ f ‖X s � ‖ f ‖Hs . (3.37)
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Assumption (E) For all s > 1, {ξk(x) : T
2 → R

2}k∈N ⊂ Hs ∩ { f ∈ H1 : ∇ · f = 0
}

and
∑

k∈N ‖ξk‖Hs < ∞.

Then, we have the following local results for (3.35):

Theorem 3.3 Let s > 4, S = (Ω,F , P, {Ft }t≥0,W) be a stochastic basis fixed in
advance andX s be given in (3.36). Let Assumption (E) hold true. If θ0 ∈ L2(Ω;X s) is
an F0-measurable random variable, then (3.35) has a local unique pathwise solution
θ starting from θ0 such that

θ(· ∧ τ) ∈ L2 (Ω; C
([0,∞);X s)) .

Moreover, the maximal solution (θ, τ ∗) to (3.35) satisfies

1{lim supt→τ∗ ‖θ(t)‖X s =∞} = 1{lim supt→τ∗ ‖θx (t)‖L∞+‖(Rθx )(t)‖L∞=∞} P − a.s.

Proof We only give a very quick sketch. The approximation of (3.35) can be con-
structed as in the proof of Theorem 3.2. We only notice that if Assumption (E) is
verified and θ0 has mean-zero, then the approximate solution θε has also mean-zero.
Recalling that U is fixed in advance to define (2.1), we take X = X s , Y = X s−1,
Z = X s−2, V = X r with 2 < r < s − 2 and Tε = Qε = J̃ε, where J̃ε is given in
(A.2). One can basically go along the lines as in the proof of Theorem 3.2 with using
the Λs-version of Lemma A.4 (see also in Kato and Ponce 1988; Kenig et al. 1991) to
estimate the nonlinear term. For the noise term, after writing it into the Itô form, one
can use Lemma A.5 and (3.37) to estimate the corresponding two terms. For the sake
of brevity, we omit the details. ��
Remark 3.5 If the relation u = R⊥θ in (3.35) is replaced by u = R⊥Λαu with
α ∈ [−1, 0], (3.35) becomes a SALT 2-D Euler-α model in vorticity form, which
interpolates with the SALT 2-D Euler equations (Crisan and Lang 2019) (α = −1)
and the SALT SQG equations (α = 0). If u = R⊥R1θ in (3.35), then (3.35) is
the SALT incompressible porous medium equation, where θ is now explained as the
density of the incompressible fluid moving through a homogeneous porous domain.
For the deterministic incompressible porousmedium equation, we refer to Castro et al.
(2009). Both of them with SALT noise

∑∞
k=1(ξk · ∇θ) ◦ dWk have not been studied.

Similar to Theorem 3.1, our general framework (ii) is also applicable to them.

Remark 3.6 It is worthwhile remarking that a new framework called Lagrangian-
Averaged Stochastic Advection by Lie Transport (LA SALT) has been developed for a
class of stochastic partial differential equations inAlonso-Orán et al. (2020) andDrivas
et al. (2020). For LA SALT, the velocity field is randomly transported by white-noise
vector fields as well as by its own average over realizations of this noise. For the even
more general distribution-path dependent case of transport type equations, we refer to
Ren et al. (2020). Generally speaking, the distribution of the solution is a global object
on the path space, and it does not exist for explosive stochastic processes whose paths
are killed at the life time. For a local theory of distribution dependent SDEs/SPDEs,
we have to either consider the non-explosive setting or modify the “distribution” by
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a local notion (for example, conditional distribution given by solution does not blow
up at present time). Here, we focus our attention to the abstract framework for SPDEs
with SALT noise. The general case with LA SALT is left as future work.
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A Auxiliary Results

In this appendix, we formulate and prove some estimates employed in the proofs
above. We start from mollifiers which can preserve periodicity. Let j = j(x) be a
Schwartz function such that 0 ≤ ĵ(ξ) ≤ 1 for all ξ ∈ R

d and ĵ(ξ) = 1 for any
|ξ | ≤ 1. Define for ε ∈ (0, 1) the mollifier

Jεg(x) := ( jε�g)(x), (A.1)

where jε(x) = 1
ε

j( x
ε
). The following operator J̃ε is also fundamental for the approx-

imation and defined by

J̃εg(x) := (1 − ε2Δ)−1g(x) =
∑

k∈Zd

(
1 + ε2|k|2

)−1
ĝ(k) eix ·k . (A.2)

For any u, v ∈ Hs , Jε and J̃ε satisfy, cf. Tang (2018, 2020),

‖u − Jεu‖Hr ∼ o(εs−r ), r ≤ s, (A.3)

‖Jεu‖Hr � εs−r‖u‖Hs , r > s, (A.4)

[Ds, Jε] = [Ds, J̃ε] = 0, (A.5)

(Jεu, v)L2 = (u, Jεv)L2 , ( J̃εu, v)L2 = (u, J̃εv)L2 , (A.6)

and

‖Jεu‖Hs , ‖ J̃εu‖Hs ≤ ‖u‖Hs , ‖Jεu‖L∞ � ‖u‖L∞ (A.7)
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From the definition of the Hilbert transformH in (3.9), we have

[Ds,H] = [∂x ,H] = [Jε,H] = 0, (A.8)

and for any s ≥ 0,

‖Hu‖Hs � ‖u‖Hs . (A.9)

A pseudo-differential operator P(x, D) on the periodic torus T
d is an operator

given by

P(x, D) f (x) = 1

(2π)d

∑

k∈Zd

a(x, k)ei x ·k f̂ (k), (A.10)

where P(x, D) belongs to a certain class and a(x, k) is called the symbol of P(x, D).
For ρ, δ ∈ [0, 1], s ∈ R, we define the Hörmander class of symbols Sm

ρ,δ to be the set

of all symbols a : T
d × Z

d → C such that a(·, k) ∈ C∞(Td) for all k ∈ Z
d and for

all α, β ∈ N
d , there exists a constant C = C(α, β) > 0 such that

∣
∣Δα

k ∂β
x a(x, k)

∣
∣ ≤ C〈k〉s−ρ|α|+δ|β|,

where 〈k〉 = (1 + k2)1/2 and for g : Z
d → C,

Δα
k g(k) :=

∑

γ∈Nd ,γ≤α

(−1)|α−γ |
(

α

γ

)
g(k + γ )

is the finite difference operator of order α with step size one in each of the coordinates
of the frequency variable k. In such a case we say the associated operator P(x, D)

defined by (A.10) belongs to the class OPSs
ρ,δ (cf. Taylor 1991, page 8). Then, it is

easy to check (see for example Taylor 1991, pages 13 & 22) that Jε and J̃ε also satisfy

Lemma A.1 Let Jε, J̃ε be defined as in (A.1) and (A.2), then the following properties
hold true:

1. Jε ∈ OPS−∞
1,0 , J̃ε ∈ OPS−2

1,0 for every ε ∈ (0, 1);

2. {Jε}0<ε<1 and
{

J̃ε

}

0<ε<1
are bounded subsets of OPS01,0;

3. If p(x, D) ∈ OPSs
1,0, then p(x, D)Jε ∈ OPS−∞

1,0 , p(x, D) J̃ε ∈ OPS−∞
1,0 for all

ε ∈ (0, 1);

4. If p(x, D) ∈ OPSs
1,0, then {p(x, D)Jε}0<ε<1 ⊂ OPSs

1,0 and
{

p(x, D) J̃ε

}

0<ε<1
⊂

OPSs
1,0 are bounded.

We also recall the following commutator estimates for two pseudo-differential oper-
ators.
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Lemma A.2 (Hörmander 1985; Taylor 1991) Let P ∈ OPSp
ρ,δ and T ∈ OPSq

ρ,δ with
p, q ∈ R, 0 ≤ δ < ρ,≤ 1 then

[P, T ] ∈ OPSp+q−(ρ−δ)
ρ,δ .

Lemma A.3 (Tang 2020; Ren et al. 2020) Let d ≥ 1 and f , g : T
d → R

d such that
g ∈ W 1,∞ and f ∈ L2. Then, for some C > 0,

∥∥∥
[

J̃ε, (g · ∇)
]

f
∥∥∥

L2
≤ C‖∇g‖L∞‖ f ‖L2 .

Now we recall some useful estimates.

Lemma A.4 (Kato and Ponce 1988; Kenig et al. 1991) If f , g ∈ Hs⋂W 1,∞ with
s > 0, then for p, pi ∈ (1,∞) with i = 2, 3 and 1

p = 1
p1

+ 1
p2

= 1
p3

+ 1
p4

, we have

‖ [Ds, f
]

g‖L p ≤ C(‖∇ f ‖L p1 ‖Ds−1g‖L p2 + ‖Ds f ‖L p3 ‖g‖L p4 ),

and

‖Ds( f g)‖L p ≤ C(‖ f ‖L p1 ‖Ds g‖L p2 + ‖Ds f ‖L p3 ‖g‖L p4 ).

Lemma A.5 Let s > d
2 + 1, f ∈ Hs+2 be a scalar function, ξk be a d-D vector and

P ∈ OPSs
1,0. Define

Lξk f = ξk · ∇ f + (divξk) f .

If Assumption (D) holds, then we have

(

P
∞∑

k=1

L2
ξk

f ,P f

)

L2

+
∞∑

k=1

(
PLξk f ,PLξk f

)
L2 � ‖ f ‖2Hs . (A.11)

Proof The essential part of the desired estimate lies in the following result in Alonso-
Orán and Bethencourt de León (2020): Let Q be a first-order linear operator with
smooth coefficients and P ∈ OPSs

1,0. Then, f ∈ Hs with s > d
2 + 1 we have that

(
PQ2 f ,P f

)

L2
+ (PQ f ,PQ f )L2 � ‖ f ‖2Hs .

In particular, if we choose Q = Lξk we have that:

(
PL2

ξk
f ,P f
)

L2
+ (PLξk f ,PLξk f

)
L2 � ‖ f ‖2Hs . (A.12)

Since we want to calculate this estimate for
∑∞

k=1 L2
ξk
, we need to precise the constant

of the right hand side of (A.12). To this end, mimicking the proof of Alonso-Orán and
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Bethencourt de León (2020) we can rewrite the left hand side of (A.12) as

(
PL2

ξk
f ,P f
)

L2
+ (PLξk f ,PLξk f

)
L2

= (R2 f ,P f )L2 + (R1 f , R1 f )L2 + (P f , E R1 f )L2

− 1

2
(P f , R0P f )L2 + 1

2

(
P f , E2P f

)

L2
+ (R1 f , EP f )L2

:=
6∑

i=1

Ii ,

where E = divξk ∈ OPS01,0, R0 = [Lξk , E] ∈ OPS11,0, R1 = [P,Lξk ] and R2 =
[R1,Lξk ]. By Lemma A.2, we have

R1, R2, [R1,∇] ∈ OPSs
1,0.

To derive (A.11) we will invoke the following commutator estimates (see Taylor
1991, (3.6.1) and (3.6.2)):

– If P ∈ OPSs
1,0, s > 0, then there is a C > 0 such that

‖P(gu) − g Pu‖L2 ≤ C
(‖g‖W 1,∞ ‖u‖Hs−1 + ‖g‖Hs ‖u‖L∞

)
. (A.13)

– If P ∈ OPS11,0, then there is a C > 0 such that

‖P(gu) − g Pu‖L2 ≤ C ‖g‖W 1,∞ ‖u‖L2 . (A.14)

For I1, we have that

|I1| ≤ ‖R2 f ‖L2 ‖P f ‖L2

≤ ∥∥[R1,Lξk ] f
∥∥

L2 ‖ f ‖Hs

= (‖[R1, ξk · ∇] f ‖L2 + ‖[R1, divξk] f ‖L2
) ‖ f ‖Hs

= (‖[R1, ξk ·]∇ f ‖L2 + ‖ξk · [R1,∇] f ‖L2 + ‖[R1, divξk] f ‖L2
) ‖ f ‖Hs

= (I1,1 + I1,2 + I1,3
) ‖ f ‖Hs

Applying (A.13) with P = R1, g = ξk , u = ∇ f , and using Hs ↪→ W 1,∞, we arrive
at

|I1,1| ≤ ‖ξk‖W 1,∞ ‖∇ f ‖Hs−1 + ‖ξk‖Hs ‖∇ f ‖L∞ ≤ ‖ξk‖Hs ‖ f ‖Hs .

For the second term, we have

|I1,2| = ‖ξk · [R1,∇] f ‖L2 ≤ ‖ξk‖L∞ ‖[R1,∇] f ‖L2 ≤ ‖ξk‖Hs ‖ f ‖Hs .
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Applying (A.13) with P = R1, g = divξk and u = f yields

|I1,3| ≤ ‖divξk‖W 1,∞ ‖ f ‖Hs−1 + ‖divξk‖Hs ‖ f ‖L∞ ≤ ‖ξk‖Hs+1 ‖ f ‖Hs .

Hence, we have show that

|I1| ≤ C ‖ξk‖Hs+1 ‖ f ‖2Hs .

Repeat the above procedure as we estimate ‖R2 f ‖L2 = ∥∥[R1,Lξk ] f
∥∥

L2 with replac-
ing R1 by P , we have

|I2| ≤ ‖R1 f ‖2L2 ≤ ∥∥[P,Lξk ] f
∥∥2

L2

= (‖[P, ξk · ∇] f ‖L2 + ‖[P, divξk] f ‖L2
)2

= (‖[P, ξk ·]∇ f ‖L2 + ‖ξk · [P,∇] f ‖L2 + ‖[P, divξk] f ‖L2
)2

≤ ‖ξk‖2Hs+1 ‖ f ‖2Hs ,

For the third term, using the Cauchy–Schwarz inequality and the fact that E = divξk ∈
OPS11,0 gives rise to

|I3| = (P f , E R1 f )L2 ≤ ‖P f ‖L2 ‖divξk R1 f ‖L2 ≤ ‖divξk‖L∞ ‖ f ‖2Hs .

Similarly,

|I5 + I6| =
∣
∣∣∣
1

2

(
P f , E2P f

)

L2
+ (R1 f , EP f )L2

∣
∣∣∣

≤ C
(
‖divξk‖2L∞ ‖P f ‖2L2 + ‖R1 f ‖L2 ‖divξk‖L∞ ‖P f ‖L2

)

≤ C
(
‖divξk‖L∞ + ‖divξk‖2L∞

)
‖ f ‖2H2 .

For I4, we notice that Lξk ∈ OPS11,0. Hence, it follows from (A.14) with P = Lξk ,
g = divξk and u = P f that

|I4| ≤ C ‖P f ‖L2

∥
∥[Lξk , divξk]P f

∥
∥

L2 ≤ C ‖P f ‖L2 ‖divξk‖W 1,∞ ‖P f ‖L2

≤ C ‖ξk‖Hs+1 ‖ f ‖2Hs .

Gathering all the above estimates implies that for some C > 0,

(
PL2

ξk
f ,P f
)

L2
+ (PLξk f ,PLξk f

)
L2 ≤ C

(
‖ξk‖2Hs+1 + ‖ξk‖Hs+1

)
‖ f ‖2Hs .

Using Assumption (D) to the above estimates, we obtain (A.11). ��
We conclude this appendix with some useful tools in stochastic analysis.
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Lemma A.6 (Prokhorov Theorem, Da Prato and Zabczyk (2014)) Let X be a complete
and separable metric space. A sequence of measures {μn} ⊂ P(X) is tight if and only
if it is relatively compact, i.e., there is a subsequence {μnk } converging to a probability
measure μ weakly.

Lemma A.7 (Skorokhod Theorem, Da Prato and Zabczyk (2014)) Let X be a complete
and separable metric space. For an arbitrary sequence {μn} ⊂ P(X) such that
{μn} is tight on (X,B(X)), there exists a subsequence {μnk } converging weakly to
a probability measure μ, and a probability space (Ω,F , P) with X-valued Borel
measurable random variables xn and x, such that μn is the distribution of xn, μ is the

distribution of x, and xn
n→∞−−−→ x P − a.s.

Lemma A.8 (Breit et al. 2018; Debussche et al. 2011) Let (Ω,F , P) be a com-
plete probability space and X be a separable Hilbert space and let Sn =(
Ω,F ,
{
Fn

t

}
t≥0 , P,Wn

)
be a sequence of stochastic bases such that for each

n ≥ 1, Wn is cylindrical Brownian motion (over U with the canonical embedding
U ↪→ U0 being Hilbert–Schmidt) with respect to

{
Fn

t

}
t≥0. Let Gn be an Fn

t pre-

dictable process ranging in L2(U; X). Finally consider S = (Ω,F , P, {Ft }t≥0,W
)

and G ∈ L2 (0, T ;L2(U; X)), which is Ft predictable. Suppose that we have the
following convergence in probability:

Wn → W in C ([0, T ]; U0) and Gn → G in L2 (0, T ;L2(U; X)) .

Then,

∫ ·

0
GndWn →

∫ ·

0
GdW in L2(0, T ; X) in probability.

Lemma A.9 (Gyöngy–Krylov Lemma, Gyöngy and Krylov (1996)) Let X be a Polish
space equipped with the Borel sigma-algebra B(X). Let {Y j } j≥0 be a sequence of
X-valued random variables. Let

μ j,l(·) := P
(
(Y j , Yl) ∈ ·) ∀· ∈ B(X × X).

Then, {Y j } j≥0 converges in probability if and only if for every subsequence of
{μ jk ,lk }k≥0, there exists a further subsequence which weakly converges to some
μ ∈ P(X × X) satisfying

μ ({(u, v) ∈ X × X, u = v}) = 1.
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