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Abstract
We study the dynamic behaviour of two viscous fluid films confined between two
concentric cylinders rotating at a small relative velocity. It is assumed that the flu-
ids are immiscible and that the volume of the outer fluid film is large compared to
the volume of the inner one. Moreover, while the outer fluid is considered to have
constant viscosity, the rheological behaviour of the inner thin film is determined by
a strain-dependent power-law. Starting from a Navier–Stokes system, we formally
derive evolution equations for the interface separating the two fluids. Two competing
effects drive the dynamics of the interface, namely the surface tension and the shear
stresses induced by the rotation of the cylinders. When the two effects are comparable,
the solutions behave, for large times, as in the Newtonian regime. We also study the
regime in which the surface tension effects dominate the stresses induced by the rota-
tion of the cylinders. In this case, we prove local existence of positive weak solutions
both for shear-thinning and shear-thickening fluids. In the latter case, we show that
interfaces which are initially close to a circle converge to a circle in finite time and
keep that shape for later times.
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Degenerate parabolic equation · Weak solution · Long-time asymptotics · Thin-film
equation

Mathematics Subject Classification 76A05 · 76A20 · 35B40 · 35Q35 · 35K35 · 35K65

Communicated by Rustum Choksi.

B Tania Pernas-Castaño
pernas@iam.uni-bonn.de

Christina Lienstromberg
lienstromberg@iam.uni-bonn.de

Juan J. L. Velázquez
velazquez@iam.uni-bonn.de

1 Institute of Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-021-09750-0&domain=pdf


24 Page 2 of 55 Journal of Nonlinear Science (2022) 32 :24

1 Introduction

Taylor–Couette flows describe the dynamics of viscous fluids confined between two
concentric cylinders. By the end of the nineteenth century, Couette experimentally
observed that the fluid flow is steadywhen the relative velocity of the rotating cylinders
is small and the gap between the cylinders is small compared to their radii. This is
the so-called Couette flow. In 1923, Taylor proved mathematically that the Couette
flow becomes unstable as soon as the relative angular velocity of the cylinders exceeds
a certain critical value (Taylor 1923). The more the relative angular velocity of the
cylinders is increased, the more turbulent becomes the behaviour of the flow.

There is a rich literature dealing with the dynamics of one single Newtonian fluid
between two concentric rotating cylinders, both in the mathematical and the physical
literature, c.f. (Baumert and Muller 1997; Chandrasekhar 1961; Chossat and Iooss
1994; Drazin and Reid 2004; Schlichting and Gersten 2000; Renardy and Joseph
1985), to mention only a few contributions. Much less has been done for the two-fluid
Taylor–Couette flow. The dynamics of two immiscible Newtonian fluids in a Taylor–
Couette geometry has been studied in Renardy and Joseph (1985) with a combination
of analytical and numericalmethods. In particular, the stability of the flows for different
ranges of viscosities, densities and surface tensions of the fluids in the absence of
gravity is considered. The particular setting in which one of the fluids is localised in a
thin layer is considered in Pernas-Castaño and Velázquez (2020) for the case in which
both fluids are Newtonian.

In the present work, we formally derive a model for the dynamics of the interface
separating two immiscible viscous fluids between two concentric cylinders, where
one of the fluids occupies a rather thin layer and is characterised by a non-Newtonian
rheology. We also study rigorously the well-posedness of the resulting model and the
long-time asymptotics of its solutions.

Two physical assumptions are crucial for the derivation of the model. First, as in
Pernas-Castaño and Velázquez (2020), we assume that the dynamics of the two-fluid
system is described by a small perturbation of the Taylor–Couette flow for one single
fluid confined between two cylinders. Second, while the outer fluid is assumed to
be Newtonian, the inner fluid is assumed to be a non-Newtonian fluid with a strain-
dependent viscosity μ. We consider the setting in which the inner cylinder is at rest,
while the outer cylinder rotates at a fixed angular velocity.

Originally, the dynamics of both immiscible fluids are described by aNavier–Stokes
system inwhich gravitational effects are neglected. For different regimes of the surface
tension and under the assumption that the Reynolds number is small enough to avoid
the aforementioned Taylor instabilities, we study the formal asymptotic limit of a van-
ishing thickness of the inner fluid film. To this end, we apply the so-called lubrication
approximation which has been used extensively in the literature on fluid mechanics,
c.f., for instance, (Ockendon and Ockendon 1995). We also refer the reader to the
papers (Giacomelli et al. 2008; Günther and Prokert 2008) for rigorous mathematical
results concerning the derivation of the classical Newtonian thin-film equation, taking
as a starting point the Navier–Stokes equations.
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The evolution equation that we derive and study in this paper has the general form

∂t h + ∂θ

(
h2
∫ 1

0
zψ
(
β + z h

(
∂θh + ∂3θ h

))
dz

)
= 0, t > 0, θ ∈ S1 = [0, 2π ],

(1.1)
for the thickness h = h(t, θ) of the thin strain-dependent fluid filmwhich separates the
thicker Newtonian fluid from the internal cylinder.We assume that the non-Newtonian
fluidhas a general strain-dependent viscosityμ = μ

(
τchar ‖Du‖),whereu is the veloc-

ity field of the inner non-Newtonian fluid,Du = 1
2

(∇u+∇(u)T
)
is the corresponding

symmetric gradient and ‖Du‖ = √
tr(|Du|2). Moreover, τchar is the characteristic

time of the non-Newtonian fluid, i.e. it can be thought of as a characteristic value of
the strains for which the nonlinear effects in the viscosity become relevant. The key
assumption in the derivation of (1.1) is that the function s �→ μ(|s|)s, s ∈ R, is strictly
increasing. Then, the function ψ in (1.1) is defined by means of ψ

(
μ(|s|)s) = s for

s ∈ R. It can be seen in the derivation of (1.1) that the evolution of the interface sepa-
rating the two fluids is driven by the combined action of surface tension, of the shear
stress induced by the rotation of the outer cylinder, and of the characteristic stress of
the non-Newtonian rheology. We are interested in the interaction of these forces and
on their influence on the structure of the evolutionary equation for the thickness h of
the non-Newtonian fluid. Different scaling limits for these three effects are encoded
in the function ψ and the parameter β, respectively.

We first comment on the choice of the function ψ . If the effect of surface tension
is comparable with the characteristic stress of the non-Newtonian fluid, we can derive
and study (1.1) for general smooth functionsψ . If either surface tension dominates the
characteristic stress of the non-Newtonian fluid or vice versa, we chose the function
ψ such that

ψ(s) = |s| 1−p
p s, s ∈ R, p > 0, (1.2)

in order to allow for an appropriate time scaling. We mention that the definition of ψ

in (1.2) does also correspond to the case in which the function μ characterising the
strain-dependent viscosity of the non-Newtonian fluid is given by

μ(|s|) = |s|p−1 , s ∈ R. (1.3)

Fluids whose rheology is defined by (1.3) are called Ostwald–de Waele fluids. The
parameter p denotes theflowbehaviour exponent. Thesefluids areNewtonian if p = 1.
For p > 1 the corresponding fluids are called shear-thickening as their viscosity
increases with increasing shear rate. Conversely, if p < 1, the viscosity decreases
with increasing shear rate and the fluids are called shear-thinning fluids.

The parameter β in (1.1) measures the ratio of surface tension and shear forces
induced by the rotation of the cylinders and plays a crucial role in our analysis.

In the regime in which the surface tension, the shear stress induced by the rotation
of the outer cylinder, and the characteristic stress of the non-Newtonian fluid are of
the same order, we have that β > 0 is a positive constant that depends on the radii of
the two cylinders, their relative velocity and the characteristic viscosities of the two
fluids. In these cases the derivation of (1.1) is valid for general smooth functions μ
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and ψ , respectively, under the sole assumption that the map s �→ μ(|s|)s, s ∈ R, is
strictly increasing. Using centre manifold theory, as developed, for instance, inMielke
(1988); Haragus and Iooss (2011), we prove in this paper that solutions to (1.1) behave,
for long times, after a suitable rescaling of the variables, in a manner analogous to
the solutions in the Newtonian case (μ ≡ 1 and ψ(s) ≡ s or p = 1) in which (1.1)
reduces to the equation

∂t h + ∂θ

(
h2

2

)
+ ∂θ

(
h3(∂θh + ∂3θ h)

) = 0, t > 0, θ ∈ S1. (1.4)

Equation (1.4) is studied in Pernas-Castaño and Velázquez (2020), where the authors
observe the same asymptotic behaviour for initial interfaces close to a circle. In par-
ticular, it is shown that in the Newtonian case the solution is globally defined and the
interface approaches quickly a circle which is initially not concentric with the rotating
cylinders. For larger times, the centre of this circle spirals towards the common centre
of the cylinders as time tends to infinity. Equation (1.4) has also been obtained in
Kerchman (1995) describing the motion of a single thin fluid layer evolving on the
exterior of a solid cylinder.

By a straightforward adaptation of the methods used in Pernas-Castaño and
Velázquez (2020), we prove in this paper that solutions to (1.1) feature the same
asymptotic behaviour as solutions to (1.4). More precisely, we prove that if the inter-
face is initially close to a circle in H1(S1), it is globally defined and converges in
H1(S1) to a circle at rate 1/t which is not concentric with the rotating cylinders.
However, the centre of this circle spirals at rate 1/

√
t to the common centre of the

cylinders as time t tends to infinity.
If either surface tension effects dominate the effects of the characteristic stresses

of the non-Newtonian rheology or vice versa, we have that ψ is given by (1.2). For
both settings we study the case when the effects of surface tension dominate the shear
effects due to the rotation of the cylinders. This corresponds to the asymptotic limit
β → 0, and we obtain the evolution equation

∂t h+∂θ

(
h(θ)

1+2p
p

∣∣∣∂θh(θ) + ∂3θ h(θ)

∣∣∣
1−p
p (

∂θh(θ) + ∂3θ h(θ)
)) = 0, t > 0, θ ∈ S1.

(1.5)
In this regime, the effect of the shear forces induced by the rotation of the cylinders
is negligible and the whole dynamics of the interface is driven by the combination of
surface tension and the non-Newtonian rheology of the thin fluid film.

We prove local existence of positive weak solutions to (1.5) for general positive
initial data for both shear-thinning and shear-thickening fluids. Moreover, in the shear-
thickening regime (p > 1), we show that if the initial interface is close to a circle,
there exists a global weak solution of (1.5) with the property that it converges to a
circle in finite time t∗ < ∞. The proof is based on the derivation of a differential
inequality for a certain energy functional which implies that the energy drops down to
zero as t → t∗. The main obstruction in the proof of the global existence result is the
possibility of the interface touching the interior cylinder, i.e. to have min h (t, ·) = 0
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at some positive time t . In this paper, we consider only solutions of positive thickness
h since we are interested in the analysis of the stability of circular interfaces. In the
shear-thinning case p < 1, we expect the solutions to (1.5) to approach asymptotically

a circle as t → ∞with a correction given by the power-lawO(t−
p

1−p ). However, since
the techniques required to obtain this result differ much from the ones used in this
paper, we do not consider this case here.

Thin-film equations the solutions of which allow for film rupture have been exten-
sively studied in the literature, c.f. (Bernis and Friedman 1990; Beretta et al. 1995;
Knüpfer 2015; Giacomelli 1999), to mention only a selection. Global well-posedness
for non-negative initial data has first been proved in the seminal paper (Bernis and
Friedman 1990). This topic has additionally been pursued in Bertozzi et al. (1994),
where the authors also study numerically the existence of singularities in finite and
infinite time. The existence of global in time weak solutions to (1.4) which allow for
film rupture has been studied in Marzuola et al. (2019) for a cylindrical geometry.

We remark that the surface tension forces tend to drive the interface towards a
circular shape. On the contrary, the shear induced by the rotation of the cylinders
has the tendency to generate ’fingering’ and to form interfaces which differ much
from a circular interface. In this paper, we consider only situations in which, for large
times, the contribution due to the surface tension dominates the contribution due to the
shear induced by the rotation of the cylinders. Therefore, for large times the interfaces
behave asymptotically as a circle.

Note that when the shape of the interface becomes close to a circle, then the surface
tension forces, reflected in the term (∂θh+∂3θ h), do no longer yield a considerable effect
on the dynamics. Therefore, for sufficiently long times, the parameter β reflecting
the shear stress induced by the rotating cylinders gives the main contribution to the
deformation of the interface. Consequently, for large times the solution behaves always
as in the Newtonian case, with a viscosity coefficient depending on β. This indicates
in particular that, when the shape of the interface becomes close to a circle, then
the model with β = 0 is not a good approximation anymore. Moreover, even if the
interface is not close to a circle, the term (∂θh + ∂3θ h) induced by the surface tension
vanishes at some points. Near those points, the effect of the term β, reflecting the shear
forces, becomes the dominant one. Consequently, this might lead to small localised
effects in the solution and to the creation of boundary layer regions in which the shear
stress is dominant. However, these questions are addressed in future works.

The evolution Eq. (1.1), respectively (1.5), belongs to a class of non-Newtonian
thin-film equations with strain-dependent viscosity. Similar equations have been stud-
ied in different settings, for instance, in Ansini and Giacomelli (2002, 2004); King
(2001a, b); Lienstromberg and Müller (2020). In Ansini and Giacomelli (2004), the
authors consider a single thin film occupied by a power-law fluid. The governing
equation is

∂t h + ∂x

(
h

2p+1
p

∣∣∣∂3x h
∣∣∣
1−p
p

)
= 0, t > 0, x ∈ � ⊂ R. (1.6)
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Note that this equation is very similar to the equation (1.5) with β = 0, except that in
(1.6) the nonlinearity depends only on the third-order derivative, instead of (∂θh+∂3θ h).
The authors use a two-step regularisation scheme to prove global existence of non-
negative weak solutions to (1.6) for general non-negative initial data. The papers
Ansini and Giacomelli (2002) and Lienstromberg and Müller (2020) deal with an
Ellis thin-film equation instead of a power-law thin-film equation. This is a constitutive
rheological law for shear-thinning fluids which combines a power-law behaviour with
a Newtonian plateau, cf. (Matsuhisa and Bird 1965; Weidner and Schwartz 1994).
In Ansini and Giacomelli (2002), the authors analyse a class of quasi-self-similar
solutions describing the spreading of a droplet, whose thickness h is determined by
the equation

∂t h + ∂x

(
h3
(
1 + ∣∣h∂3x h

∣∣ 1−p
p

)
∂3x h

)
= 0, t > 0, x ∈ � ⊂ R. (1.7)

For these solutions the presence of the non-Newtonian rheology plays a fundamental
role removing the well-known no-slip paradox which arises for Newtonian fluids in
the presence of contact lines. However, the non-Newtonian terms become negligible
except in a small region close to the contact lines. In Lienstromberg andMüller (2020),
the authors prove local existence of strong solutions to (1.7) in the case p ∈ (1/2, 1),
in which the coefficients of the highest-order terms depend only Hölder continuously
on the solution.

For two-phase thin-film equations, we refer the reader to the works (Bruell and
Granero-Belinchón 2019; Escher et al. 2013; Laurençot and Matioc 2017) dealing
with the Newtonian case. Moreover, a wide variety of two-fluid viscous flows in many
different geometrical settings is described in Joseph and Renardy (1993).

The introduction is closed by a brief outline of our work. In Sect. 2, we use lubrica-
tion approximation to formally derive the evolution Eq. (1.1) and (1.5), respectively,
for the interface separating the strain-dependent thin fluid film from the Newtonian
fluid film.At the end of the section, we discuss the different asymptotic limits, reflected
in the choice of the function ψ and the parameter β. The resulting evolution equa-
tions are analysed in Sects. 3 and 4. More precisely, the asymptotic limit β = 0 is
treated in Sect. 3. In Sect. 3.1 we prove local existence of positive weak solutions in
the shear-thinning as well as in the shear-thickening regime. In Sect. 3.2 we prove,
for initial interfaces close to a circle, the existence of a global weak solution of (1.5)
with the property that it converges to a circle in finite time. Finally, in Sect. 4 we study
the equation for β > 0 of order one. We use centre manifold theory, to prove the
aforementioned convergence to a circular interface for long times.

2 Physical Model and Derivation of the Equations

In this section we describe the physical setting of our problem and derive the evolu-
tion Eqs. (1.1) and (1.5) for the interface separating the two fluids. These evolution
equations, which contain a parameter β that can take the value β > 0 and β = 0 in
different asymptotic limits, are analysed rigorously in the subsequent sections.
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2.1 Navier–Stokes System for One Newtonian and One Non-Newtonian Fluid

We consider two immiscible fluid films confined between two concentric cylinders
rotating at different angular velocities. More precisely, we denote by R−, R+ > 0 the
radius of the internal and external cylinder, respectively, both cylinders being centred
at the origin. The hydrodynamic behaviour of the two fluids can be described by the
Navier–Stokes equations

⎧⎪⎪⎨
⎪⎪⎩

ρ−
(
ũ−
t̃

+ (ũ− · ∇)ũ−) = −∇ p̃− + 2∇ · (μ̃−
(∥∥D̃−

ũ−∥∥)D̃−
ũ−) in �̃−(t̃)

ρ+
(
ũ+
t̃

+ (ũ+ · ∇)ũ+) = −∇ p̃+ + μ+
ũ+ in �̃+(t̃)

∇ · ũ± = 0 in �̃±(t̃),
(2.1)

where ũ±(t̃, x̃) = (ũ±(t̃, x̃), ṽ±(t̃, x̃)) denotes the velocity field at time t̃ > 0 and
position x̃ ∈ R

2, p̃± is the pressure and ρ± ≥ 0 is the density of the inner (-),
respectively outer (+) fluid. The fluid next to the internal cylinder is assumed to be

non-Newtonian with a shear-dependent viscosity μ̃−
(∥∥D̃−

ũ−∥∥) > 0. Here D̃
−
ũ− =

1
2

(∇ũ−+(∇ũ−)T
)
denotes the symmetric gradient of the velocity field ũ− of the inner

fluid and
∥∥D̃−

ũ−∥∥ =
√
tr(|D̃−

ũ−|2). We assume that the shear stress is monotonically
increasing in the shear rate, i.e. the function s �→ μ(s)s is monotonically increasing
onR. The fluid next to the external cylinder is assumed to be Newtonian with constant
viscosity μ+ > 0. In order to describe the spatial position between the two cylinders
we use polar coordinates x̃ = (x̃, z̃) = (r cos θ, r sin θ) ∈ R

2. Thus, denoting by
d > 0 the average height of the inner fluid film and by h(t̃, θ) > 0 the function
defining the interface, the regions filled by the respective fluid may be described by

{
�̃−(t̃) = {x̃ ∈ R

2; R− < r < R− + dh(t̃, θ)
}

�̃+(t̃) = {x̃ ∈ R
2; R− + dh(t̃, θ) < r < R+

}
.

Note that we assume the function h(t̃, θ) being strictly positive, i.e. the interface of
the two fluid films cannot touch the inner cylinder. A sketch of the problem setting
may be found in Fig. 1.

The Navier–Stokes system (2.1) is complemented by the following boundary con-
ditions. We suppose that the internal cylinder is at rest, while the external cylinder
rotates counterclockwise at angular velocity ω > 0. Moreover, we assume that the
fluid velocities ũ± of the two fluids coincide at the respective cylinders with the angu-
lar velocities at which the respective cylinder rotates. That is, we have the boundary
conditions {

ũ− = 0, x̃ ∈ ∂BR−(0)

ũ+ = ω(−x̃2, x̃1), x̃ ∈ ∂BR+(0).

Moreover, we assume that at the interface ∂�̃ the normal velocities of the fluids
coincide with the normal velocity Vn of the interface and the tangential velocities of
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Fig. 1 Taylor–Couette flow for
two fluids

R+ R-

d

Ω+

Ω−

ω

the fluids coincide, i.e.

{
ũ− · ñ = ũ+ · ñ = Vn, x̃ ∈ ∂�̃

ũ− · t̃ = ũ+ · t̃, x̃ ∈ ∂�̃.

Finally, denoting by �̃±(ũ, p̃) the stress tensor of the respective fluid, we require
the tangential stress balance condition and the normal stress balance condition to be
satisfied at the interface ∂�̃. These conditions read

⎧⎨
⎩
t̃
(
�̃2 − �̃1

)
· ñ = 0, x̃ ∈ ∂�̃

ñ
(
�̃2 − �̃1

)
· ñ = γ̃ κ̃, x̃ ∈ ∂�̃.

Here, we use the notation ñ and t̃ for the normal vector pointing from the region
�̃− occupied by the inner fluid to the region �̃+ occupied by the outer fluid and
the tangential vector at the interface, respectively. Furthermore, κ̃ denotes the mean
curvature of the interface and γ̃ is the constant surface tension.

The dimensionless Navier–Stokes system. In this paper we assume that the rhe-
ology of the non-Newtonian fluid is given by a viscous coefficient μ−

(
τ
∥∥D−u−∥∥) =

μ0μ̃−
(
τchar

∥∥D̃−
ũ−∥∥). The function s �→ μ−(s) is a function that can describe very

complicated nonlinear behaviours. The parameter μ0 is the characteristic viscosity

of the fluid when τchar
∥∥D̃−

ũ−∥∥ is of order one. Moreover, the parameter τchar is the
characteristic time of the non-Newtonian fluid that must have unit of time for dimen-
sional reasons. Under this assumption on μ̃−, we have that the viscous stresses are

given by μ0μ̃−
(
τchar

∥∥D̃−
ũ−∥∥) = μ0

τchar
�(τcharD̃

−
ũ−), where �(A) = μ−(‖A‖)A
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Fig. 2 Taylor–Couette flow with
a thin-film layer near the internal
cylinder (in non-dimensional
units)

η 1

ε

Ω−

Ω+

ω=1

with A ∈ M3×3(R). Note that the order of magnitude of these viscous stresses is μ0
τchar

if τchar
∥∥D̃−

ũ−∥∥ is of order one.
We now rescale the original variables in order to obtain the above Navier–Stokes

system in dimensionless form. To this end, we set

x = x̃
R−

, t = ωt̃, u± = ũ±

ωR−
, p± = p̃±

ρ+ω2R2−
,

γ = γ̃

ρ+R3−ω2
, ε = d

R−
, η = R+

R−

ρ = ρ−
ρ+

, Re = ρ+ωR2−
μ+

, μ−
(
τ
∥∥D−u−∥∥) = 1

μ0
μ̃−
(
τchar

∥∥D̃−
ũ−∥∥),

τ = τcharω, μ = μ0

μ+
.

(2.2)

Consequently, ε > 0 is the dimensionless thickness of the inner fluid film. By Re ≥ 0
we denote the Reynolds number which defines the ratio of inertial to viscous forces.

The external characteristic time τ is induced by the relative angular velocity of the
rotating cylinders. Observe that the system is now scaled such that the internal cylinder
has radius 1, while the external cylinder has radius η and rotates with angular velocity
1, c.f. Fig. 2. Note that the non-dimensional quantities ρ,Re, τ, η and μ do not have
indices.
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With this change of variables, the original Navier–Stokes system (2.1) becomes

⎧⎪⎨
⎪⎩

ρ
(
u−
t + (u− · ∇)u−) = −∇ p− + 2μ

Re∇ · (μ−
(
τ
∥∥D−u−∥∥)D−u−) in �−(t)(

u+
t + (u+ · ∇)u+) = −∇ p+ + 1

Re
u+ in �+(t)

∇ · u± = 0 in �±(t),

where the regions �−(t) and �+(t), filled by the inner, respectively the outer fluid,
are now given by

{
�−(t) = {x ∈ R

2; 1 < r < 1 + εh(t, θ)
}

�+(t) = {x ∈ R
2; 1 + εh(t, θ) < r < η

}
.

(2.3)

The dimensionless boundary conditions read

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u− = 0, x ∈ ∂B1(0)

u+ = (−x2, x1), x ∈ ∂Bη(0)

u− · t = u+ · t, x ∈ ∂�

u− · n = u+ · n = Vn, x ∈ ∂�

t
(
�+ − �−) · n = 0, x ∈ ∂�

n
(
�+ − �−) · n = γ κ, x ∈ ∂�.

2.2 Taylor–Couette Flow and Thin-Film Approximation

As already mentioned in the introduction we are interested in the case in which the
volume of the liquid film �−(t) next to the internal cylinder is rather small compared
to the volume of the film �+(t) next to the external cylinder. Mathematically, this
corresponds to the asymptotic limit ε = d

R− → 0.1 In order to obtain a nontrivial
dynamic behaviour for the interfaces, we require the surface tension to scale with the
non-dimensional thickness ε like

γ ≈ b

ε2
as ε → 0, (2.4)

where b > 0 is a constant of order one. It is worthwhile to mention that this specific
rescaling strongly effects the character of the resulting evolution equation. Taking the
limit ε → 0 and using formal matched asymptotic expansions, we are able to derive
explicit expressions for the pressure as well as for the velocity field of each of the
fluids. Consequently, we are left with a single equation for the for the interface h
separating the two fluids.

1 In Pernas-Castaño andVelázquez (2020), the case in which the layer of fluid closer to the external cylinder
is much thinner than the inner one, has also been considered in the Newtonian case. However, since the
analysis is similar we restrict ourselves in this paper to the case in which the thin layer is close to the internal
cylinder.
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Since the numerical results in Renardy and Joseph (1985), as well as the analytic
results in Pernas-Castaño and Velázquez (2020), show that the laminar flow solution,
i.e. the concentric circle centred at the origin, is stable for small Reynolds number, we

require Re = ρ+ωR2−
μ+ to be of order one, but small enough to avoid the appearance of

the Taylor instabilities. In addition, we require the parameters μ = μ0
μ+ , η = R+

R− and

ρ = ρ−
ρ+ to be of order one.

The dimensionless Navier–Stokes system in polar coordinates. In order
to perform the formal asymptotic analysis, we first introduce polar coordinates x =
(r cos θ, r sin θ) and write the velocity fields u± as

u± = u±
r (r , θ)er+u±

θ (r , θ)eθ with er = (cos θ, sin θ) and eθ = (− sin θ, cos θ).

Componentwise, the conservation of momentum equations for the fluid next to the
inner cylinder, i.e. in �−(t) in these variables, read

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(
∂t u−

r + u−
r ∂r u−

r + 1
r u

−
θ ∂θu−

r − 1
r (u−

θ )2
) =

−∂r p− + μ
Re

(
2∂rμ−∂r u−

r + μ−
(
∂r
[ 1
r ∂r (ru−

r )
]+ 1

r2
∂2θ u

−
r − 2

r2
∂θu

−
θ

)
+∂θμ−

[
∂r
( 1
r u

−
θ

)+ 1
r2

∂θu−
r

])
in �−(t)

ρ
(
∂t u

−
θ + u−

r ∂r u
−
θ + 1

r u
−
θ ∂θu1θ + 1

r u
−
r u

−
θ

) =
− 1

r ∂θ p− + μ
Re

(
2∂θμ−

(
1
r2

∂θu
−
θ + 1

r2
u−
r

)
+μ−

(
∂r
[ 1
r ∂r (ru

−
θ )
]+ 1

r2
∂2θ u

−
θ + 2

r2
∂θu−

r

)
+ ∂rμ−

(
r∂r
( 1
r u

−
θ

)+ 1
r ∂θu−

r

))
in �−(t).

(2.5)
The conservation of momentum equation for the outer fluid in �+(t) becomes, also
componentwise,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ
(
∂t u+

r + u+
r ∂r u+

r + 1
r u

+
θ ∂θu+

r − 1
r (u

+
θ )2
) =

−∂r p+ + 1
Re

(
∂r
[ 1
r ∂r (ru

+
r )
]+ 1

r2
∂2θ u

+
r − 2

r2
∂θu

+
θ

)
in �+(t)

ρ
(
∂t u

+
θ + u2r ∂r u

+
θ + 1

r u
+
θ ∂θu

+
θ + 1

r u
+
r u

+
θ

) =
− 1

r ∂θ p+ + 1
Re

(
∂r
[ 1
r ∂r (ru

+
θ )
]+ 1

r2
∂2θ u

+
θ + 2

r2
∂θu+

r

)
in �+(t),

(2.6)

and the continuity equation transforms into

∂r (ru
±
r ) + ∂θu

±
θ = 0 in �±(t). (2.7)

Finally, the boundary conditions in polar coordinates are given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u−
r (1, θ) = 0, u−

θ (1, θ) = 0

u−
r ε∂θh + u−

θ (1 + εh) = u+
r ε∂θh + u+

θ (1 + εh)

u−
r (1 + εh) − u−

θ ε∂θh = u+
r (1 + εh) − u+

θ ε∂θh = ε(1 + εh)∂t h(
σrr ]+− − σθθ ]+−

)
ε∂θh(1 + εh) + σrθ ]+−

(
(1 + εh)2 − ε2∂θh

) = 0

σrr ]+−(1 + εh)2 + σθθ ]+−ε2(∂θh)2 − 2σrθ ]+−(1 + εh)ε∂θh = γ κ.

(2.8)
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For convenience, we perform another change of variables and set

u±
r = ε2w±

ξ , u±
θ = εw±

θ , p± = 1

ε
P±, and ξ = r − 1

ε
. (2.9)

Therewith, the system (2.5)–(2.8) transforms as follows: The conservation of momen-
tum equation for the inner fluid in �−(t) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(
ε4∂tw

−
ξ + ε5w−

ξ ∂ξw
−
ξ + ε5

1+εξ
w−

θ ∂θw
−
ξ − ε4

1+εξ
(w−

θ )2
)

=
−∂ξ P− + μ

Re

(
2ε2∂ξμ−∂ξw

−
ξ + μ−

[
ε2∂ξ

(
1

1+εξ
∂ξ

(
(1 + εξ)w−

ξ

))
+ ε4

(1+εξ)2
∂2θ w−

ξ − 2ε3

(1+εξ)2
∂θw

−
θ

]
+∂θμ−

[
ε2∂ξ

(
1

1+εξ
w−

θ

)
+ ε4

(1+εξ)2
∂θw

−
ξ

])
in �1(t)

ρ
(
ε2∂tw

−
θ + ε3w−

ξ ∂ξw
−
θ + ε3

1+εξ
w−

θ ∂θw
−
θ + ε4

1+εξ
w−

ξ w−
θ

)
=

− 1
1+εξ

∂θ P− + μ
Re

(
2∂θμ−

[
ε2

(1+εξ)2
∂θw

−
θ + ε3

(1+εξ)2
w−

ξ

]
+μ−

[
∂ξ

(
1

1+εξ
∂ξ

(
(1 + εξ)w−

θ

))+ ε2

(1+εξ)2
∂2θ w−

θ + 2ε3

(1+εξ)2
∂θw

−
ξ

]
+∂ξμ−

[
(1 + εξ)∂ξ

(
1

1+εξ
w−

θ

)
+ ε3

1+εξ
∂θw

−
ξ

])
in �−(t).

Similarly, for the outer fluid, we obtain the conservation of momentum equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε4∂tw
−
ξ + ε5w+

ξ ∂ξw
+
ξ + ε5

1+εξ
w+

θ ∂θw
+
ξ − ε4

1+εξ
(w+

θ )2 =
−∂ξ P+ + 1

Re

(
ε2∂ξ

[
1

1+εξ
∂ξ

(
(1 + εξ)w+

ξ

)]
+ ε4

(1+εξ)2
∂2θ w+

ξ − 2ε3

(1+εξ)2
∂θw

+
θ

)
in �+(t)

ε2∂tw
+
ϑ + ε3w+

ξ ∂ξw
+
θ + ε3

1+εξ
w+

θ ∂θw
+
θ + ε4

1+εξ
w+

ξ w+
θ =

− 1
1+εξ

∂θ P+ + 1
Re

(
∂ξ

[
1

1+εξ
∂ξ

(
(1 + εξ)w+

θ

)]
+ ε2

(1+εξ)2
∂2θ w+

θ + 2ε3

(1+εξ)2
∂θw

+
ξ

)
in �+(t).

The continuity equation in the new variables reads

∂ξw
±
ξ + ε∂ξ (ξw±

ξ ) + ∂θw
±
θ = 0 in �±(t),

and the boundary conditions transform into

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w−
ξ (0, θ) = 0, w−

θ (0, θ) = 0

ε2w−
ξ ∂θh + w−

θ (1 + εh) = ε2w+
ξ ∂θh + w+

θ (1 + εh)

εw−
ξ (1 + εh) − εw−

θ ∂θh = εw+
ξ (1 + εh) − εw+

θ ∂θh = (1 + εh)∂t h(
σξξ ]+− − σθθ ]+−

)
ε∂θh(1 + εh) + σξθ ]+−

(
(1 + εh)2 − ε2(∂θh)2

) = 0

σξξ ]+−(1 + εh)2 + σθθ ]+−ε2(∂θh)2 − 2σξθ ]+−(1 + εh)ε∂θh = ((1 + εh)2 − ε2(∂θh)2
)
γ κ.

(2.10)
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For the elements of the stress tensors, we obtain

⎧⎪⎪⎨
⎪⎪⎩

σ±
ξξ = − 1

ε
P± + 2ε

Rec
±∂ξw

±
ξ

σ±
ξθ = 1

Rec
±
(
∂ξw

±
θ − ε

1+εξ
w±

θ + ε2

1+εξ
∂θw

±
ξ

)
σ±

θθ = − 1
ε
P± + 2

Re(1+εξ)
c±
(
ε∂θw

±
θ + ε2w±

ξ

)
,

with c− = μμ−(τ |∂ξw
−
θ |) and c+ = 1. Note that κ is the rescaled mean curvature of

the interface r = 1 + εh(t, θ), given by

κ = 2ε2(∂θh)2 − ε(1 + εh)∂2θ h + (1 + εh)2(
(1 + εh)2 − ε2(∂θh)2

) 3
2

. (2.11)

In order to determine the equation for the evolution of the interface h, separating the
two fluids, we keep only the terms of order one in ε in the system derived above.

The leading-order system. In this paragraph we consider the formal asymptotic
limit ε → 0. In the literature this limiting process is also referred to as lubrication
approximation. For a rigorous justification of the lubrication approximation in the
Newtonian case, we refer the reader to the work (Giacomelli and Otto 2003). Taking
the formal asymptotic limit ε → 0,weobtain the following system.TheNavier–Stokes
equations reduce to

⎧⎪⎨
⎪⎩

∂ξ P± = 0 in �±(t)

−∂θ P± + 1
Re∂ξ (c±∂ξw

−
θ ) = 0 in �±(t)

∂ξw
±
ξ + ∂θw

±
θ = 0 in �±(t).

(2.12)

Moreover, for the boundary conditions we obtain

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w−
ξ (0, θ) = 0, w−

θ (0, θ) = 0 for θ ∈ S1

w−
θ = w+

θ on �

w−
ξ = w+

ξ on �
1
Rec

±∂ξw
±
θ ]+− = 0 on �

−P±]+− = εγ κ on �,

(2.13)

where we used the coefficients of the stress tensors in the leading order. Note that we
keep the ε in the last boundary condition in (2.13) since γ depends on ε as specified
in (2.4). Recalling that the mean curvature κ is of order one, this results in a jump of
the pressures P− − P+ of order 1/ε. Since we assume the interface being close to a
circle, cf. (2.3), to the leading order the pressure jump does not depend on θ and hence
does not have any effect on the dynamics of the interface. Nevertheless, the next-order
correction of the mean curvature leads to a contribution of order γ ε2 which influences
the dynamics of the interface.
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Determination of the pressure and the velocity field by matched

asymptotic expansions.With this reduced systemwe are able to determine explicit
expressions for the pressure P± and the velocity field (w±

ξ , w±
θ ). Indeed, from (2.12)1

we deduce P+ = P+(θ). Thus, integrating (2.12)2 twice with respect to ξ yields

w+
θ (ξ, θ) = Re

2
∂θ P

+(θ)ξ2 + A+(θ)ξ + B+(θ)

for functions A+ = A+(θ) and B+ = B+(θ) that are to be determined. In view of
the conservation of mass equation (2.12)3 we are finally able to derive an equation
for w+

ξ (ξ, θ). Summarising, for the Newtonian fluid next to the external boundary we
obtain

{
w+

θ (ξ, θ) = Re
2 ∂θ P+(θ)ξ2 + A+(θ)ξ + B+(θ)

w+
ξ (ξ, θ) = −Re

6 ∂2θ P
+(θ)ξ3 − ∂θ A+(θ)

ξ2

2 − ∂θ B+(θ)ξ + C+(θ).
(2.14)

For the fluid film next to the internal cylinder, we proceed similarly. Recall that the
fluid filling �−(t) is assumed to be non-Newtonian. To leading order its viscosity is a
function μ− = μ−(τ |∂ξw

−
θ |). In order to derive a well-posed parabolic equation for

the interface separating the two fluids, we assume the shear stress μ−(τ |∂ξw
−
θ |)∂ξw

−
θ

to be a monotonically increasing function of the shear rate ∂ξw
−
θ . In the leading-order

approximation of the Navier–Stokes system, this yields

⎧⎪⎨
⎪⎩

∂ξ P− = 0 in �−(t)

−∂θ P− + μ
Re∂ξ

(
μ−(τ |∂ξw

−
θ |)∂ξw

−
θ

) = 0 in �−(t)

∂ξw
−
ξ + ∂θw

−
θ = 0 in �−(t).

(2.15)

As for the outer fluid, the first equation implies that P− = P−(θ). Thus, by integration
of (2.15)2 with respect to ξ we obtain

μ−(τ |∂ξw
−
θ |)∂ξw

−
θ = Re

μ
∂θ P

−(θ)ξ + A−(θ), (ξ, θ) ∈ �−(t).

Since s �→ μ−(|s|)s is monotonically increasing on R, we can define a function ψ

such that ψ(μ−(|s|)s) = s. Hence, for all ξ < h we have

∂ξw
−
θ = 1

τ
ψ

(
τRe

μ
∂θ P

−(θ)ξ + τ A−(θ)

)
.

By integration of this equation with respect to ξ and exploiting the boundary condition
(2.13)1, we obtain

w−
θ (ξ, θ) = 1

τ

∫ ξ

0
ψ

(
τRe

μ
∂θ P

−(θ)s + τ A−(θ)

)
ds. (2.16)
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We can now use the boundary conditions in order to determine A±(θ), B+(θ)

and C+(θ) by matched asymptotics. Since the non-Newtonian liquid film next to the
internal cylinder is very thin compared the Newtonian fluid film, we may assume the
velocity of the outer fluid being a small perturbation of the Taylor–Couette flow for
one single fluid confined between the two cylinders. This means we assume that the
angular velocity, before the change of variables, is given by

u+
θ (r) = D1r + D2

r
with D1 = η2

η2 − 1
and D2 = −D1.

Here we used that the radius of the internal cylinder is 1, the radius of the external
cylinder is η and the external cylinder is rotating at angular velocity ω = 1, while the
internal cylinder is at rest. The second-order Taylor series expansion of the Taylor–
Couette flow u+

θ (r) around r = 1 is given by

u+
θ (r) = (D1 − D2)(r − 1) + D2(r − 1)2 + O((r − 1)3

)
.

With the change of variables introduced in (2.9), this becomes

w+
θ (ξ) = (D1 − D2)ξ + D2εξ

2 + O(ε2ξ3).
Thus, matching (2.14) with w+

θ , we get

Re

2
∂θ P

+(θ)ξ2 + A+(θ)ξ + B+(θ) = w+
θ (ξ, θ) = (D1 − D2)ξ + D2εξ

2 +O(ε2ξ3),
and consequently, A+(θ) = D1 − D2 = 2η2/(η2 − 1). Moreover, since the pressure
in the Taylor–Couette flow is constant, that is ∂θ P+(θ) = 0, we have

w+
θ (ξ, θ) = (D1 − D2)ξ + B+(θ) = 2η2

η2 − 1
ξ + B+(θ).

Next, we determine A−(θ). To this end, observe that

∂ξw
+
θ (ξ, θ) = (D1 − D2) = 2η2

η2 − 1
,

thanks to the fact that the pressure P+ is constant. Therefore, the tangential-stress
balance condition (2.13)4, given by

1

Re

(
∂ξw

+
θ − μμ−

(
τ |∂ξw

−
θ |)∂ξw

−
θ

) = 0 on �,

yields, to leading order,

A−(θ) = D

μ
− Re

μ
∂θ P

−(θ)h(θ), (2.17)
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where we set D = D1 − D2 = 2D1 = 2η2/(η2 − 1) > 0. Using this expression in
(2.16) yields

w−
θ (ξ, θ) = 1

τ

∫ ξ

0
ψ

(
τD

μ
− τRe

μ
∂θ P

−(h(θ) − s
))

ds. (2.18)

Proceeding similarly as above, we may further determine the functions B+(θ) and
C+(θ) by exploiting the different boundary conditions.

However, we do not compute the explicit expressions since they are not needed in
order to determine the equation for the evolution of the interface.

Derivation of the evolution equation for h. We first recall from (2.13)5
that to leading order the normal-stress balance condition is σξξ ]+− = γ κ . This yields
−P+ + P− = εγ κ . Using the first-order Taylor approximation κ = 1−ε(h+∂2θ h)+
O(ε2) of the mean curvature (2.11) of the interface around ε = 0 and the fact that
∂θ P+(θ) = 0, we obtain

∂θ P
−(θ) = −ε2γ (∂θh + ∂3θ h). (2.19)

Moreover, up to order ε the boundary condition (2.10) for the normal velocity of the
interface may be written as

∂t h − ε
(
w−

ξ (h(θ), θ) − w−
θ (h(θ), θ)∂θh

) = 0.

Inserting into this equation the identity

∂θ

(∫ h(θ)

0
w−

θ (ξ, θ) dξ

)
= w−

θ (h(θ), θ)∂θh(θ) − w−
ξ (h(θ), θ),

which follows from the conservation of mass, we obtain that the interface evolves
according to the evolution equation

∂t h + ε∂θ

(∫ h(θ)

0
w−

θ (ξ, θ) dξ

)
= 0, t > 0, θ ∈ S1. (2.20)

Using the representation of w−
θ (ξ, θ), derived in (2.18), and the representation of

∂θ P−(θ), derived in (2.19), this equation may further be rewritten as

∂t h + ε

τ
∂θ

(∫ h(θ)

0

∫ ξ

0
ψ

(
τD

μ
+ ε2γ τRe

μ

(
∂θh + ∂3θ h

)(
h(θ) − s

))
ds dξ

)
= 0,

(2.21)

for t > 0, θ ∈ S1.
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In view of Fubini’s theorem, we find that

∫ h(θ)

0

∫ ξ

0
ψ

(
τD

μ
+ τε2γRe

μ

(
∂θh(θ) + ∂3θ h(θ)

)(
h(θ) − s

))
ds dξ

=
∫ h(θ)

0

∫ h(θ)

s
ψ

(
τD

μ
+ τε2γRe

μ

(
∂θh(θ) + ∂3θ h(θ)

)(
h(θ) − s

))
dξ ds

=
∫ h(θ)

0

(
h(θ) − s

)
ψ

(
τD

μ
+ τε2γRe

μ

(
∂θh(θ) + ∂3θ h(θ)

)(
h(θ) − s

))
ds

=
∫ h(θ)

0
s̃ψ

(
τD

μ
+ τε2γRe

μ

(
∂θh(θ) + ∂3θ h(θ)

)
s̃

)
ds̃

= h(θ)2
∫ 1

0
z ψ

(
τD

μ
+ z

τε2γRe

μ
h(θ)

(
∂θh(θ) + ∂3θ h(θ)

))
dz.

Consequently, the evolution Eq. (2.21) reads

∂t h + ε

τ
∂θ

(
h2
∫ 1

0
z ψ

(
τD

μ
+ z

τε2γRe

μ
h
(
∂θh + ∂3θ h

))
dz

)
= 0,

(2.22)

for t > 0 and θ ∈ S1.

The evolution equation for different scaling limits. We now determine
the evolution equation for different scaling limits of the surface tension forces and
the shear forces induced by the rotation of the cylinder. To this end, we define the
parameters

A = τD

μ
, B = τε2γRe

μ
and β = A

B
= D

γ ε2Re
,

and rewrite the evolution Eq. (2.21) in terms of B and β as

∂t h + ε

τ
∂θ

(
h2
∫ 1

0
z ψ
(
B
[
β + z h

(
∂θh + ∂3θ h

)])
dz

)
= 0,

(2.23)

for t > 0 and θ ∈ S1.
We recall that, in this paper, we consider only the regime in which the radii of the

cylinders are of the same order but such that the two cylinders are not too close to
each other. Therefore, D > 0 is just a non-dimensional geometrical constant. We now
discuss the structure of the equation for different ranges of the parameters B and β.
To this end, note first that, in physical variables, B and β are given by

B = γ̃ ε2τchar

μ0R−
and β = DR−ωμ+

ε2γ̃
,

respectively, where we used the scaling for γ̃ , τ,Re and μ introduced in (2.2). Thus,
the parameter B reflects the ratio of the shear forces induced by the surface tension
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over the characteristic shear μ0
τchar

associated to the non-Newtonian fluid and β reflects
the ratio of the shear forces induced by the rotating cylinder over the surface tension
forces.

We first distinguish the asymptotic limits B > 0 of order one, B → 0 and B → ∞,
respectively.
(I) The case B > 0 of order one. In this case the effects of the surface tension
are comparable with those of the characteristic stresses of the non-Newtonian fluid.
Changing the variables via

h̃ = √
B h and t̃ = ε

τ

1√
B
t, (2.24)

and then dropping the tildes for convenience, we have that the evolution Eq. (2.23) for
the interface is given by

∂t h + ∂θ

(
h(θ)2

∫ 1

0
zψ
(
β̃ + z h(θ)

(
∂θh(θ) + ∂3θ h(θ)

))
dz

)
= 0, t > 0, θ ∈ S1

(2.25)

with β̃ = Bβ = DR−ω2μ+τchar
μ0

.
(II) The cases B → 0 and B → ∞, respectively. The asymptotic limit B → 0
corresponds to the situation in which the surface tension effects are dominated by
the effects of the characteristic stresses of the non-Newtonian fluid. Conversely, the
limit B → ∞ represents the regime in which the surface tension forces dominate the
characteristic stresses of the non-Newtonian rheology. Suppose that the function ψ is
given such that

ψ(s) =
⎧⎨
⎩

|s| 1−p
p s, s → 0, if B ↘ 0

|s| 1−p
p s, s → ∞, if B ↗ ∞,

(2.26)

where p > 0. Then, changing the times scale via

t̃ = ε

τ
B

1
p t

and dropping again the tilde for convenience, the evolution equation (2.23) becomes

∂t h + ∂θ

(
h(θ)2

∫ 1

0
z
∣∣∣β + zh(θ)

(
∂θh(θ) + ∂3θ h(θ)

)∣∣∣
1−p
p

(
β + zh(θ)

(
∂θh(θ) + ∂3θ h(θ)

))
dz

)
= 0 (2.27)

for all t > 0, θ ∈ S1.
For both equations (2.25) and (2.27), we now distinguish different asymptotic limits

of the parameter β = DR−ωμ+
ε2γ̃

.
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(I) The case DR−ωμ+
γ̃

≈ ε2. In this asymptotic limit the surface tension forces and
the shear forces induced by the rotating cylinder are comparable. Thus, we obtain the
evolution equations

∂t h + ∂θ

(
h(θ)2

∫ 1

0
zψ
(
β̃ + z h(θ)

(
∂θh(θ) + ∂3θ h(θ)

))
dz

)
= 0 (2.28)

and

∂t h + ∂θ

(
h(θ)2

∫ 1

0
z
∣∣∣β + zh(θ)

(
∂θh(θ) + ∂3θ h(θ)

)∣∣∣
1−p
p

(
β + zh(θ)

(
∂θh(θ) + ∂3θ h(θ)

))
dz

)
= 0 (2.29)

for t > 0, θ ∈ S1, with β̃, β > 0 being positive constants. These two equations
are studied in Sect. 4, where we prove that if the initial interface is close to a circle,
then the solution is globally defined and converges to a circle which is not necessarily
concentric with the two cylinders. However, as time tends to infinity, the centre of the
circle spirals towards the common centre of the cylinders.
(II) The case DR−ωμ+

γ̃
� ε2. This corresponds to the asymptotic limit β → 0 in which

the effects of surface tension on the flow are dominating the shear effects induced by
the rotation of the cylinders are negligible. The evolution equations for this setting
read

∂t h + ∂θ

(
h(θ)2

∫ 1

0
zψ
(
z h(θ)

(
∂θh(θ) + ∂3θ h(θ)

))
dz

)
= 0, t > 0, θ ∈ S1

(2.30)
and

∂t h+∂θ

(
h(θ)

2p−1
p

∣∣∣∂θh(θ) + ∂3θ h(θ)

∣∣∣
1−p
p (

∂θh(θ) + ∂3θ h(θ)
)) = 0, t > 0, θ ∈ S1,

(2.31)
respectively. Equation (2.31), corresponding to the function ψ defined in (2.26), is
studied in Sect. 3. We prove existence of positive weak solutions for short times. For
p > 1, we show that solutions that are originally close to a circle, converge to a circle
in finite time. We recall that, as discussed in the introduction, in the regions where
∂θh + ∂3θ h is small, boundary layer effects can arise.

(III) The case DR−ωμ+
γ̃

� ε2. This reflects the situation in which the shear stress
induced by the rotation of the cylinders dominates the surface tension such that β →
∞. We remark that this asymptotic limit is not studied in the present paper.

Power-law fluids. In this paper we are particularly interested in the case in which
the viscous behaviour of the thin non-Newtonian fluid film is governed by a power-law.
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That is, for the effective viscosity μ− we use the constitutive law

μ−(τ |∂ξw
−
θ |) = τ p−1|∂ξw

−
θ |p−1 (2.32)

with p > 0. Fluids with such a viscosity are usually called power-law fluids or
Ostwald–de Waele fluids. Recall that a flow-behaviour exponent p = 1 corresponds
to a Newtonian fluid. Moreover, for p < 1 the fluid is shear-thinning, while it is
shear-thickening for p > 1.

3 The Caseˇ → 0: Existence Result and Asymptotic Behaviour

In this section we deal with the asymptotic limit β → 0 in which we have derived the
approximation (2.31). We first prove local in time existence of weak solutions in the
shear-thickening, as well as in the shear-thinning regime. For the latter case, we then
study the asymptotic behaviour of solutions that are initially not too far from a circle.
We observe that they converge to a circle in finite time and then continue to exist as
a circle forever. The centre of the circle is not necessarily the origin, differently from
the case in which β is of order one, which is discussed in Sect. 4.

We recall that, as discussed in the introduction, Eq. (2.31) cannot be expected to be
a good approximation of (2.27) if |(∂θh+∂3θ h)| � β. Since for a circular interface we
have that (∂θh + ∂3θ h) = 0, and the model (2.31) predicts that the interface becomes
a circle in finite time, it follows that (2.31) cannot describe the solutions of (2.27)
for long times. Therefore, (2.31) describes only the intermediate asymptotics of the
interfaces when they are not yet very close to circles.

Before proving local existence of positive weak solutions, we briefly introduce the
notation used throughout the paper.We identify S1 with the interval [0, 2π ].Moreover,
we identity functions φ ∈ L p(S1) with functions φ ∈ L p,loc(R) which are periodic
with period 2π . Here, L p(R) denotes the usual Lebesgue space. Finally, by Wk

p(S
1)

and Hk(S1)we denote the usual Sobolev spaces. They are defined as the closure of the
restriction of 2π -periodic functions in C∞(R) to the interval [0, 2π ] with respect to
the norm in Wk

p((0, 2π)), respectively Hk((0, 2π)). In order to simplify notation, we
considerWk

p(S
1) and Hk(S1) as a closed subspaces of the complex spacesWk

p(S
1;C)

and Hk(S1;C), respectively. In particular, we can represent any f ∈ Hk(S1) by its
Fourier series

f (θ) =
∑
n∈Z

ane
inθ , θ ∈ S1, with an = an . (3.1)

3.1 Local Existence of PositiveWeak Solutions

In this section we prove local existence of weak solutions to the problem

{
∂t h + ∂θ

(
hα+2

∣∣∂θh + ∂3θ h
∣∣α−1 (

∂θh + ∂3θ h
)) = 0, t > 0, θ ∈ S1

h(0, ·) = h0(·), θ ∈ S1,
(P)
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with periodic boundary conditions and for all flow behaviour exponents α > 0. We
use the notation

ψ(s) = |s|α−1 s, s ∈ R,

such that the evolution Eq. (P) can be written as

∂t h + ∂θ

(
hα+2ψ

(
∂θh + ∂3θ h

)) = 0, t > 0, θ ∈ S1.

Note that this equation is a quasilinear equation of fourth order that may degenerate in
h and ∂θh + ∂3θ h. In the non-degenerate case of a positive film height the equation is
parabolic. Moreover, the coefficients of the highest-order terms depend only (α − 1)-
Hölder-continuously on the lower-order terms. In order to prove the existence of local
positive weak solutions, we follow the usual ansatz of regularising the equation and
showing that the sequence of solutions to the regularised problem has an accumulation
point h which is a weak solution to the original problem. The compactness arguments
mainly rely on a-priori estimates that are derived from the functional

E[v] = 1

2

∫
S1

(
(∂θv)2 − v2

)
dθ.

Even if E[v](t) is not necessarily non-negative, we refer to it as an energy functional.
To be able to pass to the limit in the nonlinear terms, we use lower semicontinuity of
the norm and apply Minty’s trick.

Themain result of this subsection is the following theorem on the existence of weak
solutions to (P).

Theorem 3.1 Given an initial film height h0 ∈ H1(S1) with 0 < C0 ≤ h0(θ) for all
θ ∈ S1, there exist a positive time T > 0 and a positive weak solution h of (P) on
[0, T ] in the sense that 0 < C1 ≤ h(t, θ) ≤ C2 for all t ∈ [0, T ], θ ∈ S1,

(i) h has the regularity
h ∈ Lα+1

(
(0, T );W 3

α+1(S
1)
)∩C

([0, T ]; H1(S1)
)
, ∂t h ∈ L α+1

α

(
(0, T ); (W 1

α+1

(S1))′
);

(ii) h satisfies the integral equation

∫ T

0
〈∂t h(t), ϕ(t)〉W 1

α+1(S
1) dt =

∫ T

0

∫
S1
hα+2ψ(∂θh + ∂3θ h)∂θϕ dθ dt

for all test functions ϕ ∈ Lα+1
(
(0, T );W 1

α+1(S
1)
)
;

(iii) h satisfies the initial condition h(0, θ) = h0(θ) for all θ ∈ S1.

In addition, this solution has the following properties:

(iv) (Conservation of mass) The mass of the fluid is conserved in the sense that

‖h(t)‖L1(S1) = ‖h0‖L1(S1)

for all t ∈ [0, T ].
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(v) (Energy dissipation) The solution dissipates energy in the sense that

E[h](t) +
∫ T

0

∫
S1

|h|α+2
∣∣∣∂θh + ∂3θ h

∣∣∣α+1
dθ dt = E[h0].

The mollified problem. To overcome the problems caused by the degeneracy and
the lack of regularity of (P), we introduce a mollified version of (P) as follows. Let

ρ ∈ C∞
c (R) with

∫
R

ρ(θ) dθ = 1

be the usual mollifier such that, for ε ∈ (0, 1),

ρε(θ) = 1

ε
ρ

(
θ

ε

)
and ηε(v)(θ) = (ρε ∗ v)(θ),

where∗denotes convolution.Note that the parameter ε in this section is a regularisation
parameter that is not related to the average dimensionless height ε of the film, defined
in (2.2).

Moreover, we use the notation

v̄ = 1

2π

∫
S1

v(θ) dθ

for the average of a function v ∈ L2(S1). Since our proofs strongly rely on Fourier
analysis, we use this notation frequently for the zeroth Fourier mode. Therewith, for
a fixed ε ∈ (0, 1), we replace the mobility hα+2 by a function

mε ∈ C∞(
R;R≥0

)
with mε(s) = |s|α+2 for

h̄0
2

≤ |s| and mε(s) ≤ |s|α+2, s ∈ R.

(3.2)
and the nonlinear term ψ(∂θh + ∂3θ h) = |∂θh + ∂3θ h|α−1(∂θh + ∂3θ h) by

ψε(s) = (s2 + ε2
) α−1

2 s.

Then, we also have ψε ∈ C∞(
R≥0;R≥0

)
. Finally, we introduce the regularised /

mollified problem

{
∂t hε + ∂θ

(
ηε

[
mε(hε) ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))]) = 0, t > 0, θ ∈ S1

hε(0, ·) = h0(·), θ ∈ S1,
(Pε)

with periodic boundary conditions. We are interested in solving (Pε) for initial values
h0 that are close to their constant average h̄0 > 0.

In order to solve (P), different regularisation techniques are certainly possible. In
Bernis and Friedman (1990) the authors propose two different regularisation tech-
niques for the Newtonian thin-film equation. In both approaches the regularisation is
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restricted to themobility coefficient.Moreover inAnsini andGiacomelli (2004),where
the authors prove global existence for a doubly nonlinear equation the nonlinearity
of which contains only the third-order derivative, a two-step regularisation is chosen.
The authors regularise the mobility coefficient and introduce an artificial lower-order
term, to guarantee positivity of the regularised solution on the one hand and to obtain
sufficient regularity of the limit problem with the non-regularised mobility.

It follows from a standard fixed-point argument (see, for instance, Majda and
Bertozzi (2002)) that the regularised problem (Pε) possesses a local solution as stated
in the following theorem.

Theorem 3.2 Let ε ∈ (0, 1). Given an initial value hε
0 = h0 ∈ H1(S1), there exists a

positive time Tε > 0, possibly depending on ε, and a unique solution hε of (Pε) on
[0, Tε] such that

hε ∈ C
([0, Tε); H1(S1)

) ∩ C
(
(0, Tε); H4(S1)

) ∩ C1([0, Tε); L2(S
1)
)

and hε satisfies the integral equation

∫ Tε

0
〈∂t hε(t), ϕ(t)〉W 1

α+1(S
1) dt =

∫ Tε

0

∫
S1

ηε

(
mε(h

ε) ψε

(
ηε

(
∂θh

ε+∂3θ h
ε
)))

∂θφ dθ dt

(3.3)
for all test functions φ ∈ Lα+1

(
(0, Tε);W 1

α+1(S
1)
)
.

Note that, if in Theorem 3.2 the initial value h0 ∈ H1(S1) satisfies 0 < h̄0
2 ≤ h0 ∈

H1(S1), the continuity of the solution hε ∈ C
([0, Tε]× S1

)
implies its positivity of hε

for very small times t > 0. However, in general the solution hε does not necessarily
remain positive on the whole time interval [0, Tε] on existence, even if we require
h0 > 0 initially.

We now prove that the sequence (hε)ε has an accumulation point h which is in turn
a weak solution to the original problem (P). To this end, note first that (3.3) may be
rewritten equivalently as

∫ Tε

0
〈∂t hε(t), ϕ(t)〉W 1

α+1(S
1) dt =

∫ Tε

0

∫
S1
mε(h

ε) ψε

(
ηε

(
∂θh

ε+∂3θ h
ε
))

∂θ (ηεφ) dθ dt

for allφ ∈ Lα+1
(
(0, T );W 1

α+1(S
1)
)
.We start by collecting some important properties

of the solution hε to the regularised problem (Pε). To this end, we denote by Tε be the
maximal time of existence of the solution hε to (Pε). In general, Tε depends on the
parameter ε.

Remark 3.3 It is worthwhile to mention that if hε is defined in some space
C
([0, τ ]; H1(S1)

)
for some τ > 0, then the solution can be extended to a larger

time interval. In particular, this implies that τ < Tε. We will use this result frequently
in order to prove that the solutions hε obtained in Theorem 3.2 can be defined in some
small time interval [0, T ], where T > 0 is independent of ε.

In the next lemma, we observe that solutions hε to (Pε) conserve their mass.
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Lemma 3.4 Let hε be the solution to themollified problem (Pε) on [0, Tε), correspond-
ing to the initial value h0. Then hε conserves its mass in the sense that

∥∥hε(t)
∥∥
L1(S1)

= ‖h0‖L1(S1), t ∈ [0, Tε).

Proof This follows by testing the regularised evolution equation with φ = 1 and using
the periodic boundary conditions. ��

In addition to the conservation of mass property, solutions hε to the mollified prob-
lem dissipate energy, in the sense that the functional E introduced above is decreasing
along solutions.

Lemma 3.5 (Energy dissipation) Let hε be a solution to (Pε) on [0, Tε), emanating
from an initial value h0 ∈ H1(S1). Then hε complies with the functional equation

E[hε](T ) + 2Dε
T [hε] = E[hε](0), T ∈ [0, Tε), (3.4)

where the non-negative dissipation DT [hε] is given by

Dε
T [hε] =

∫ T

0

∫
S1
mε(h

ε)
((

ηε(∂θh
ε + ∂3θ h

ε
)2 + ε2

) α−1
2

ηε(∂θh
ε + ∂3θ h

ε
)2 dθ dt .

This, in particular, implies the a-priori estimate

Dε
T [hε] ≤ ‖h0‖H1(S1) + π

∣∣h̄0∣∣2 ≤ C‖h0‖H1(S1). (3.5)

Proof

(i) That hε satisfies the functional equation (3.4) follows by testing the equation with
(hε + ∂2θ h

ε).
(ii) In order to prove the a-priori estimate (3.5), we use Fourier analysis and write

hε(t, θ) =
∑
n∈Z

an(t)e
inθ = h̄ε +

∑
n∈Z,n �=0

an(t)e
inθ , t ∈ [0, Tε),

where the Fourier coefficients an(t), n ∈ Z, are, for t ∈ [0, Tε), given by

an(t) = 1

2π

∫
S1
hε(t, θ)e−inθ dθ and a0(t) = 1

2π

∫
S1
hε(t, θ) dθ = h̄ε.

Using Plancherel’s theorem, i.e. the identity

∑
n∈Z

|an(t)|2 = 1

2π

∥∥∥∥∥
∑
n∈Z

an(t)e
inθ

∥∥∥∥∥
2

L2(S1)

, t ∈ [0, Tε),
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we obtain

2E[hε](t) =
∫
S1

(∣∣∂θh
ε(t)
∣∣2 − ∣∣hε(t)

∣∣2) dθ

= ∥∥∂θh
ε(t)
∥∥2
L2(S1)

− ∥∥hε(t)
∥∥2
L2(S1)

= 2π

⎛
⎝ ∑

n∈Z,n �=0

(n2 − 1)|an(t)|2 − ∣∣h̄0∣∣2
⎞
⎠ , t ∈ [0, Tε),

and consequently, we end up with

E[hε](t) + π |h̄0|2 = π
∑

n∈Z,n �=0

(n2 − 1)|an(t)|2 ≥ 0, t ∈ [0, Tε).

This yields the desired estimate and the proof is complete. ��
By means of the energy balance (3.4) we can now derive a uniform (in ε)

L∞
([0, T ]; H1(S1)

)
estimate for hε. It is worthwhile to mention that, although the

energy estimate (3.4) is the natural estimate for Eq. (P), it does not provide any infor-
mation on the Fourier modes a±1.

Throughout the paper we frequently use the following elementary inequality. Given
ε > 0 and α ∈ (0, 1) it holds that

(|x |2 + ε2
) α−1

2 |x | = (|x |2 + ε2
) α(α−1)
2(α+1) |x | 2α

α+1
|x | 1−α

α+1

(|x |2 + ε2
) 1−α
2(α+1)

≤ (|x |2 + ε2
) α(α−1)
2(α+1) |x | 2α

α+1 , x ∈ R. (3.6)

Lemma 3.6 Let ε ∈ (0, 1) be fixed and let hε be the solution to (Pε) on [0, Tε),
emanating from the initial value hε

0 ∈ H1(S1). Then there exist a positive time T > 0
and a positive constant C > 0, both independent of ε, such that

∥∥hε
∥∥
L∞((0,T );H1(S1)) ≤ C .

The main issue in the proof of this lemma is to observe that the H1(S1)-norm of hε

is equivalent to the sum of E[hε] and the low Fourier modes. In virtue of Lemma 3.4
and Lemma 3.5, we thus need to derive estimates for the Fourier modes n = 0,±1.

Proof As in the proof of Lemma 3.5, we use the Fourier series representation of hε to
obtain the equation

E[hε](t) = 1

2

(∥∥∂θh
ε(t)
∥∥2
L2(S1)

− ∥∥hε(t)
∥∥2
L2(S1)

)

= i − π
∣∣h̄0(t)∣∣2 + π

∑
n∈Z,n �=0

(n2 − 1)|an(t)|2
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for every t ∈ [0, Tε).
Writing ‖hε(t)‖H1(S1) in terms of the Fourier series of hε(t) yields

∥∥hε(t)
∥∥2
H1(S1) = ∥∥hε(t)

∥∥2
L2(S1)

+ ∥∥∂θh
ε(t)
∥∥2
L2(S1)

= 2π
∑
n∈Z

(n2 + 1)|an(t)|2

≤ C1
∣∣h̄0∣∣2 + C2

(
|a1(t)|2 + |a−1(t)|2

)
+ C3E[hε](t)

(3.7)

for all t ∈ (0, Tε). Thus, to get an estimate for ‖hε(t)‖H1(S1), we need estimates for
the first Fourier modes a−1(t) and a1(t). Since hε is a real-valued function, we have
a−1(t) = a1(t), where the bar indicates complex conjugation. Hence, it is enough to
estimate a1(t). To this end, recall that a1 is given by

a1(t) = 1

2π

∫
S1
hε(t, θ) e−iθ dθ.

This immediately implies the estimate |a1(t)| ≤ C ‖hε(t)‖L∞(S1) ≤ C ‖hε(t)‖H1(S1) ,

t ∈ (0, Tε). Moreover,

d

dt
a1(t) = 1

2π

∫
S1

∂t h
ε(t, θ) e−iθ dθ

= 1

2π

∫
S1
mε(h

ε) ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))

∂θ

(
ηεe

−iθ ) dθ
= − i

2π

∫
S1
mε(h

ε) ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
)) (

ηεe
−iθ ) dθ.

With the elementary inequality (3.6) and in view of Hölder’s inequality with exponents
p = (α + 1)/α and q = α + 1, we deduce the estimate

∣∣∣∣ ddt a1(t)
∣∣∣∣ ≤ C

∫
S1
mε(h

ε)

∣∣∣(ηε

(
∂θh

ε + ∂3θ h
ε
))2 + ε2

∣∣∣
α(α−1)
2(α+1)

∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣ 2α

α+1
∣∣∣ηεe

−iθ
∣∣∣ dθ

≤ C

(∫
S1
mε(h

ε)

∣∣∣(ηε

(
∂θh

ε + ∂3θ h
ε
))2 + ε2

∣∣∣
α−1
2 ∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣2 dθ

) α
α+1

(∫
S1
mε(h

ε)

∣∣∣ηεe
−iθ
∣∣∣α+1

) 1
α+1

≤ C
∥∥hε
∥∥ α+2

α+1

L∞(S1)

(∫
S1
mε(h

ε)

∣∣∣(ηε

(
∂θh

ε + ∂3θ h
ε
))2 + ε2

∣∣∣
α−1
2

∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣2 dθ) α

α+1
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for all t ∈ (0, Tε). Consequently, for the derivative with respect to time of |a1(t)|2 we
find that

∣∣∣∣ ddt |a1(t)|2
∣∣∣∣ ≤ 2 |a1(t)| ·

∣∣∣∣ ddt a1(t)
∣∣∣∣

≤ C
∥∥hε(t)

∥∥β+1
H1(S1)

(∫
S1
mε(h

ε)

∣∣∣(ηε

(
∂θh

ε + ∂3θ h
ε
))2 + ε2

∣∣∣
α−1
2

∣∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣∣2 dθ

) α
α+1

for all t ∈ (0, Tε), with β = α+2
α+1 > 1. Due to Young’s inequality with exponents

p = α+1
α

and q = α + 1 we find that, for all t ∈ (0, Tε),

∣∣∣∣ ddt |a1(t)|2
∣∣∣∣ ≤ δ

∫
S1
mε(h

ε)

∣∣∣(ηε

(
∂θh

ε + ∂3θ h
ε
))2 + ε2

∣∣∣
α−1
2

∣∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣∣2 dθ + Cδ,α

∥∥hε(t)
∥∥γ

H1(S1)

for arbitrarily small δ > 0, a constant Cδ,α > 0 that depends on δ and α and with
γ = (α + 2) + (α + 1) > 1. Integration with respect to time yields

|a1(t)|2 ≤ δ Dε
t [hε] + Cδ,α

∫ t

0

∥∥hε(s)
∥∥γ

H1(S1) ds + |a1(0)|2, t ∈ (0, Tε).

The estimate for |a−1(t)|2 = |a1(t)|2 is the same. In addition, Lemma 3.4 implies
|h̄ε(t)| = |h̄ε

0|. Inserting this into (3.7) yields for all t ∈ (0, Tε)

∥∥hε(t)
∥∥2
H1(S1) ≤ C1

∣∣h̄0∣∣2 + C2

(
|a1(t)|2 + |a−1(t)|2

)
+ C3E[hε](t)

≤ C
(∣∣h̄0∣∣2 + |a1(0)|2 + |a−1(0)|2

)+ δ̃Dε
t [hε]

+ C̃δ,α

∫ t

0

∥∥hε(s)
∥∥γ

H1(S1) ds + C3E[hε](t)

≤ C
(∣∣h̄0∣∣2 + |a1(0)|2 + |a−1(0)|2

)+ δ̃Dε
t [hε]

+ C̃δ,α

∫ t

0

∥∥hε(s)
∥∥γ

H1(S1) ds + C3
(
E[hε](0) − Dε

t [hε])

≤ C
(∣∣h̄0∣∣2 + |a1(0)|2 + |a−1(0)|2 + E[hε](0))

+ C̃δ,α

∫ t

0

∥∥hε(s)
∥∥γ

H1(S1) ds − (C3 − δ̃)Dε
t [hε]

≤ C ‖hε
0‖2H1(S1) − (C3 − δ̃)Dε

t [hε] + C̃δ,α

∫ t

0

∥∥hε(s)
∥∥γ

H1(S1) ds.

123



24 Page 28 of 55 Journal of Nonlinear Science (2022) 32 :24

Choosing δ̃ small enough, such that C3 − δ̃ = 1
2 , we obtain

∥∥hε(t)
∥∥2
H1(S1)+

1

2
Dε
t [hε] ≤ C1 ‖h0‖2H1(S1)+C2

∫ t

0

∥∥hε(s)
∥∥γ

H1(S1) ds, t ∈ (0, Tε),

with γ = (α + 2) + (α + 1) > 2. Thus, in view of Lemma 3.5, we have derived the
estimate ∥∥hε(t)

∥∥2
H1(S1) ≤ C1 ‖h0‖2H1(S1) + C2

∫ t

0

∥∥hε(s)
∥∥γ

H1(S1) ds,

for t ∈ (0, Tε). Finally, using a Gronwall-type argument, we find that there exists a
time T > 0, independent of ε, such that

∥∥hε(t)
∥∥2
H1(S1) ≤ CT ,h0 , t ∈ (0, T ).

In addition, we have hε ∈ C
([0, T ]; H1(S1)

)
due to the regularity of the divergence-

term in the regularised equation (Pε). Thus, it follows that T ≤ Tε (cf. Remark 3.3).
This completes the proof. ��

Our next goal is to prove that solutions hε of (Pε) that emerge from a positive initial
film height do not immediately drop to zero. For this purpose we need the following
auxiliary result.

Lemma 3.7 Let p > 1 and ψ ∈ W 2
p(S

1). Then for all δ > 0 there exists a constant
Cδ > 0, such that the estimate

‖∂θψ‖L p(S1) ≤ δ‖∂2θ ψ‖L p(S1) + Cδ‖ψ‖L2(S1)

holds true.

Proof Let φ ∈ Lq(S1) with q > 1 such that 1
p + 1

q = 1. As usual, we identify S1

with the interval [0, 2π ] and we can identity functions φ ∈ Lq(S1) with functions
φ ∈ Lq,loc(R) which are periodic with period 2π . Let ηε be a standard mollifier, i.e.
let

ηε(θ) = 1

ε
η
(

θ
ε

)
, where η ∈ C∞

c (R) with supp(η) ⊂ [−1, 1] and
∫
R

η(θ) dθ = 1.

Moreover, we require that
η(θ) = η(−θ) and η ≥ 0.

Since the argument of ηε might be negative in some of the following calculations, we
extend the function ηε periodically by assuming that ηε(θ) = ηε(θ + 2π). We define
φε = ηε ∗ φ, where ∗ denotes convolution. Then we have φε ∈ C∞(S1) and

φ − φε = ∂θGε, where Gε(θ) =
∫ θ

0

(
φ(s) − φε(s)

)
ds.
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Moreover, since
∫
S1(φ − φε) dθ = 0, it follows that Gε ∈ W 1

q (S1) and we may use
integration by parts to obtain, for every ψ ∈ W 2

p(S
1), the equation

∫
S1

φ ∂θψ dθ =
∫
S1

(
φ − φε) ∂θψ dθ +

∫
S1

φε ∂θψ dθ = −
∫
S1

Gε∂
2
θ ψ dθ −

∫
S1

∂θφε ψ dθ.

In view of Hölder’s inequality, this allows us to derive the estimate

∣∣∣∣
∫
S1

φ ∂θψ dθ

∣∣∣∣ ≤ ‖Gε‖Lq (S1)‖∂2θ ψ‖L p(S1) + ‖∂θφε‖L2(S1)‖ψ‖L2(S1). (3.8)

For the second summand on the right-hand side of (3.8), we have the estimate

‖∂θφε‖L2(S1) ≤ C ‖∂θφε‖L∞(S1) = C sup
θ∈S1

∣∣∣∣
∫
S1

∂θηε(θ − s) φ(s) ds

∣∣∣∣ ≤ Cε‖φ‖Lq (S1).

(3.9)
Thus, in order to prove the desired inequality, we are left with estimating the first
summand in (3.8). To this end, we write

Gε(θ) =
∫ θ

0

∫ 2π

0

(
φ(ξ) − φ(s)

)
ηε(ξ − s) ds dξ

=
∫ 2π

0
χ{0≤ξ≤θ}

∫ 2π

0

(
φ(ξ) − φ(s)

)
ηε(ξ − s) ds dξ

=
∫ 2π

0
φ(s)

∫ 2π

0

(
χ{0≤s≤θ} − χ{0≤ξ≤θ}

)
ηε(ξ − s) dξ ds

for θ ∈ S1, where we used symmetry condition of the mollifier. From this equation
we may then derive the estimate

|Gε(θ)| ≤ C‖φ‖Lq (S1)

(∫ 2π

0
|W (s, θ)|p ds

) 1
p

(3.10)

for (s, θ) ∈ [0, 2π ]2, whereW (s, θ) = ∫ 2π0

∣∣χ{s≤θ} −χ{ξ≤θ}
∣∣ ηε(ξ − s) dξ . Using that

the support of ηε(ξ − s) is contained in the region {|ξ − s| ≤ ε, |ξ − s ± 2π | ≤ ε}, we
conclude that the support of W (s, θ) is contained in the region {|s − θ | ≤ ε, |s − θ ±
2π | ≤ ε}. Since in addition 0 ≤ W (s, θ) ≤ 1 for all (s, θ) ∈ [0, 2π ]2, we find that

∫ 2π

0
|W (s, θ)|p ds =

∫
{|s−θ |≤ε,|s−θ±2π |≤ε}

1 ds ≤ 2ε −→ 0 as ε → 0.

Inserting this into (3.10), we find that the first summand in (3.8) may be estimated by

‖Gε‖Lq (S1) ≤ C‖Gε‖L∞(S1) ≤ C (2ε)
1
p ‖φ‖Lq (S1). (3.11)
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Finally, inserting (3.9) and (3.11) into (3.8), we end up with

‖φ ∂θψ‖L1(S1) ≤ C(2ε)
1
p ‖φ‖Lq (S1)‖∂2θ ψ‖L p(S1) + Cε‖φ‖Lq (S1)‖ψ‖Lq (S1).

Since the constantC(2ε)1/p becomes arbitrarily small, as ε → 0, the statement follows
after choosing φ = (∂θψ)p/q ∈ Lq(S1). ��

We are now able to prove the following lemma.

Lemma 3.8 Let s ∈ (0, 1). Given ε ∈ (0, 1), let hε be the corresponding solution
to (Pε) on [0, Tε) with initial value hε

0 ∈ H1(S1). There exist a time T0 > 0 and a
function Ks ∈ C(R+;R+) with limt↘0 Ks(t) = 0, both independent of ε, such that
for any T ∈ (0, T0) with Tε ≤ T , we have

∥∥hε(t) − h0
∥∥
L∞((0,Tε);Hs (S1)) ≤ Ks(T ), s ∈ [1/2, 1).

Note that, due to the embedding Hs(S1) ↪→ L∞(S1) for s ≥ 1/2, the estimate
obtained in Lemma 3.8 implies in particular that

∥∥hε(t) − h0
∥∥
L∞((0,Tε)×S1) ≤ K (T ).

Proof For convenience we work with functions uε = hε − h̄0 with zero average, that
is
∫
S1 u

ε(t, θ) dθ = 0. Given an initial value u0, consider the equation

∂t
(
uε − uε

0

)+ ∂θ

(
ηε

[
mε(u

ε) ψε

(
ηε

(
∂θu

ε + ∂3θ u
ε
))]) = 0, t ∈ [0, Tε), θ ∈ S1.

(3.12)
In order to derive suitable estimates, we test the equation with the function

φ = ∂−1
θ S

(
∂θ + ∂3θ

)(
uε − uε

0

)
, (3.13)

where the operator S : L2(S1) → L2(S1) is defined by

S f =
∑

n∈Z,n �=0

(S f )ne
inθ with (S f )n = 1

|n| fn for f =
∑

n∈Z,n �=0

fne
inθ .

Therefore, we obtain

(
∂−1
θ S

(
∂θ +∂3θ

)
f
)
n = 1

in

1

|n| (−in3+in) fn = − 1

|n| (n
2−1) fn =: (−M f )n . (3.14)

The operator M is now a nice operator in the sense that M is non-negative, self-adjoint
and may be written as M = A2, where A : H1(S1) → L2(S1) is defined by

A f =
∑

n∈Z,n �=0

(A f )ne
inθ with (A f )n :=

√
n2 − 1

|n| fn for f =
∑

n∈Z,n �=0

fne
inθ .
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On the other hand, we can identify S(∂θ + ∂3θ ) = H(∂2θ + I ), where H is the periodic
Hilbert operator given by

H( f )(θ) =
∑
n∈Z

hne
inθ with hn = −i sgn(n) fn for f (θ) =

∑
n∈Z

fne
inθ , θ ∈ S1.

Testing (3.12) with the function ϕ = −M(uε −u0), introduced in (3.13), respectively
(3.14), we obtain

∫
S1

∂t
(
uε − u0

)
ϕ dθ =

∫
S1
mε(u

ε) ψε

(
ηε

(
∂θu

ε + ∂3θ u
ε
))

ηε(∂θϕ) dθ

⇐⇒ −
∫
S1

∂t u
εM(uε − u0) dθ =

∫
S1
mε(u

ε) ψε

(
ηε

(
∂θu

ε + ∂3θ u
ε
))

[
S(∂θ + ∂3θ )ηε(u

ε − u0)
]
dθ

⇐⇒
∫
S1

∂t u
εA(uε − u0) A(uε − u0) dθ = −

∫
S1
mε(u

ε) ψε

(
ηε

(
∂θu

ε + ∂3θ u
ε
))

[
S(∂θ + ∂3θ )ηε(u

ε − u0)
]
dθ

for t ∈ [0, Tε). As in Lemma 3.6, the inequality (3.6) and Young’s inequality with
exponents p = α+1

α
and q = α + 1 yield, for all δ > 0 the existence of some constant

Cδ,α > 0 such that

d

dt

(
1

2

∫
S1

∣∣A(uε − u0)
∣∣2 dθ

)

= −
∫
S1
mε(u

ε) ψε

(
ηε

(
∂θu

ε + ∂3θ u
ε
)) [

S(∂θ + ∂3θ )ηε(u
ε − u0)

]
dθ

≤
∫
S1
mε(u

ε)

∣∣∣(ηε

(
∂θu

ε + ∂3θ u
ε
))+ ε2

∣∣∣
α(α−1)
2(α+1)

∣∣∣ηε

(
∂θu

ε + ∂3θ u
ε
)∣∣∣

2α
α+1
∣∣∣S(∂θ + ∂3θ )ηε(u

ε − u0)
∣∣∣ dθ

≤ δ

∫
S1
mε(h

ε)

∣∣∣(ηε

(
∂θh

ε + ∂3θ h
ε
))2 + ε2

∣∣∣
α−1
2
∣∣∣ηε

(
∂θu

ε + ∂3θ u
ε
)∣∣∣2 dθ

+ Cδ,α

∫
S1
mε(u

ε)

∣∣∣S(∂θ + ∂3θ )ηε(u
ε − u0)

∣∣∣α+1
dθ

≤ δ

∫
S1
mε(h

ε)

∣∣∣(ηε

(
∂θh

ε + ∂3θ h
ε
))2 + ε2

∣∣∣
α−1
2
∣∣∣ηε

(
∂θu

ε + ∂3θ u
ε
)∣∣∣2 dθ

+ Cδ,α

∫
S1
mε(u

ε)

∣∣∣H(∂2θ + I )ηε(u
ε − u0)

∣∣∣α+1
dθ

(3.15)
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for all t ∈ [0, Tε). Next, we estimate the second integral on the right-hand side of
(3.15). Using the definition of the operator S and Lemma 3.7, we find that

∫
S1
mε(u

ε)
∣∣H(∂2θ + I )ηε(u

ε − u0)
∣∣α+1

dθ

= C
∥∥uε
∥∥α+2
L∞(S1)

∥∥H(∂2θ + I )ηε(u
ε − u0)

∥∥α+1
Lα+1(S1)

≤ C
∥∥uε
∥∥α+2
L∞(S1)

∥∥(∂2θ + I )ηε(u
ε − u0)

∥∥α+1
Lα+1(S1)

≤ C
∥∥uε
∥∥α+2
L∞(S1)

(
δ̃
∥∥(∂θ + ∂3θ )ηε(u

ε − u0)
∥∥α+1
Lα+1

+ Cδ̃

∥∥∥(∂θ + ∂−1
θ )ηε(u

ε − u0)
∥∥∥α+1

L2(S1)

)

≤ δ̃
∥∥uε
∥∥α+2
H1(S1)

∥∥(∂θ + ∂3θ )ηε(u
ε − u0)

∥∥α+1
Lα+1(S1)

+ Cδ̃

∥∥uε
∥∥α+2
H1(S1)

∥∥uε − u0
∥∥α+1
H1(S1)

for arbitrarily small δ̃ > 0. Integrating (3.15) with respect to time and using that at the
initial time t = 0 we have

∥∥A(uε(0) − u0
)∥∥

L2(S1)
= 0 yield

1

2

∥∥A(uε(t) − u0
)∥∥2

L2(S1)

≤ δ

∫ Tε

0

∫
S1
mε(h

ε)

∣∣∣(ηε

(
∂θh

ε + ∂3θ h
ε
))2 + ε2

∣∣∣
α−1
2
∣∣∣ηε

(
∂θu

ε + ∂3θ u
ε
)∣∣∣2 dθ dt

+ Cδ,δ̃,α

∫ Tε

0
‖uε‖α+2

H1(S1)
‖uε − u0‖α+1

H1(S1)
dt

+ C δ̃

∫ Tε

0
‖uε‖α+2

H1(S1)

∫
S1

∣∣∣(∂θ + ∂3θ )ηε(u
ε − u0)

∣∣∣α+1
dθdt

≤ Cδ + Cδ,δ̃,αT + C δ̃,

where we use Lemma 3.6, the fact that the dissipation is bounded thanks to Lemma
3.5 and Tε ≤ T . Note that the right-hand side of this inequality can be made arbitrarily
small by choosing δ, δ̃, and then T sufficiently small. Hence, by definition of A, we
find that there exists a function K 1

2
(T ) ≥ 0 with limT→0 K 1

2
(T ) = 0 such that

∥∥uε − u0
∥∥
L∞((0,T );H1/2(S1)) ≤ K 1

2
(T ).

In view of Lemma 3.6, interpolation between H1/2(S1) and H1(S1) leads us to the
desired estimate ∥∥uε − u0

∥∥
L∞((0,T );Hs (S1)) ≤ Ks(T )

for all s ∈ [1/2, 1]. This completes the proof for s ∈ (0, 1/2]. ��
Note that Lemma 3.8 implies that the solution hε stays bounded away from zero in

the sense that

0 <
h̄0
2

≤ h(t, θ) ≤ 2h̄0, t ∈ [0, T ], θ ∈ S1,

for T > 0 sufficiently small, i.e. with a bound independent of ε, if we require
‖h0 − h̄0‖H1(S1) ≤ δ for δ > 0 sufficiently small (and independent of ε).
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In the following lemma we collect the uniform (in ε) a-priori estimates for the
approximations hε.

Lemma 3.9 (Uniform bounds) Let ε ∈ (0, 1) be given and let hε be the corresponding
solution to (Pε) on [0, Tε)with initial value h0 ∈ H1(S1). There exist δ > 0 sufficiently
small and T > 0, both independent of ε such that, if ‖h0− h̄0‖H1(S1) ≤ δ, then Tε > T
and the functions hε have the following properties.

(i) The family (hε)ε is uniformly bounded in L∞
(
(0, T ); H1(S1)

)
;

(ii) the family
(
mε(hε) ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
)))

ε
is uniformly bounded in

L α+1
α

(
(0, T ) × S1

)
;

(iii) the family (∂t hε)ε is uniformly bounded in L α+1
α

(
(0, T ); (W 1

α+1(S
1))′
)
;

(iv) the family
(
ηε

(
∂θh

ε + ∂3θ h
ε
))

ε
is uniformly bounded in Lα+1

(
(0, T ) × S1

)
;

(v) the family (ηεhε)ε is uniformly bounded in Lα+1
(
(0, T );W 3

α+1(S
1)
)
;

(vi) the family
(
∂t (∂θh

ε)
)
ε
is uniformly bounded in L α+1

α

(
(0, T ); (W 1

α+1,0(S
1) ∩

W 2
α+1(S

1)
)′)

.

Proof

(i) Uniform boundedness of (hε)ε in L∞
(
(0, T ); H1(S1)

)
has already been proved

in Lemma 3.6.
(ii) This follows by applying (3.6), Hölder’s inequality with exponents p = α +1 and

q = (α + 1)/α and using the uniform bounds on the dissipation term (Lemma
3.5) and on the L∞

(
(0, Tε) × S1

)
-norm (cf. part (i) of this lemma):

∥∥∥mε(h
ε) ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))∥∥∥

L α+1
α

((0,T )×S1)

≤ C
∥∥hε
∥∥α+2
L∞((0,T )×S1)

(
Dε
T [hε]) α

α+1 ≤ C(h0).

(iii) Since hε is a weak solution to (Pε), we have that

∫ T

0
〈∂t hε(t), ϕ(t)〉W 1

α+1(S
1) dt =

∫ T

0

∫
S1
mε(h

ε) ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))

ηε(∂θϕ) dθ dt,

for all ϕ ∈ Lα+1
(
(0, T );W 1

α+1(S
1)
)
. Using again the elementary inequality (3.6) and

Hölder’s inequality with exponents p = α + 1 and q = (α + 1)/α, we obtain

∣∣∣∣
∫ T

0
〈∂t hε(t), ϕ(t)〉W 1

α+1(S
1) dt

∣∣∣∣
≤
∫ T

0

∫
S1
mε(h

ε)

∣∣∣(ηε

(
∂θh

ε + ∂3θ h
ε
))2 + ε2

∣∣∣
α(α−1)
2(α+1) ∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣ 2α

α+1
∣∣ηε(∂θϕ)

∣∣ dθ dt

≤ C
(
Dε
T [hε]) α

α+1

(∫ T

0

∫
S1
mε(h

ε)
∣∣ηε(∂θϕ)

∣∣α+1 dθ dt

) 1
α+1

.
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Young’s inequality for convolutions and the fact that the mollifier has mass 1, thus
lead to the uniform estimate

∣∣∣∣
∫ T

0
〈∂t hε(t), ϕ(t)〉W 1

α+1(S
1) dt

∣∣∣∣ ≤ C
∥∥hε
∥∥ α+2

α+1

L∞((0,T )×S1)

(
Dε
T [hε]) α

α+1 ≤ C(h0)

with a positive constant C(hε
0) that does not depend on ε.

(iv) We prove that ηε

(
∂θh

ε + ∂3θ h
ε
)
is uniformly bounded in Lα+1

(
(0, T ) × S1

)
. To

this end, recall from Lemma 3.8 that hε is, for each ε ∈ (0, 1), bounded from away
from zero for short times. For ε > 0, we split

∫ T

0

∫
S1

∣∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣∣α+1

dθ dt

=
∫∫

{|ηε(∂θh
ε+∂3θ h

ε)|≤ε}

∣∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣∣α+1

dθ dt

+
∫∫

{|ηε(∂θh
ε+∂3θ h

ε)|>ε}

∣∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣∣α+1

dθ dt .

Using the inequality

|x |α+1 =
(
1
2 |x |2 + 1

2 |x |2
) α−1

2 |x |2 ≤ ( 12 )
α−1
2
(
|x |2 + σ 2

) α−1
2 |x |2, |x | > ε,

this leads us to the estimate

∫ T

0

∫
S1

∣∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣∣α+1

dθ dt

≤ 2πT εα+1 +
∫ T

0

∫
S1

∣∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)+ σ 2

∣∣∣
α−1
2
∣∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣∣2 dθ dt

≤ 2πT εα+1 + DT [hε].

Using again the uniform bound for the dissipation functional derived in Lemma
3.5, we obtain the desired bound

∫ T

0

∫
S1

∣∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣∣α+1

dθ dt ≤ C(h0).

(v) We prove the estimate

∫ T

0

∫
S1

∣∣∣ηε

(
∂3θ h

ε
)∣∣∣α+1

dθ dt ≤
∫ T

0

∫
S1

∣∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣∣α+1

dθ dt

+C(T )‖ηε(h
ε)‖α+1

H1(S1)
.
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To this end, we define V0 = span{cos(θ), sin(θ)} ⊂ L2(S1) and V1 as the orthogonal
complement of V0 ⊕ span{1} in L2(S1). Given ηε(hε) ∈ H3(S1), we can decompose
ηε(hε) as

ηε(h
ε) = a0 + � + v (3.16)

with a0 ∈ R, � ∈ V0 ∩ H3(S1) and v ∈ V1 ∩ H3(S1). In terms of the corresponding
Fourier series we may write

(∂3θ v)n = −in3vn = m(n)i(n − n3)vn, where m(n)

= − in3

i(n − n3)
= n2

n2 − 1
for n �= 0,±1.

Since m(n) is bounded, we can apply the Littlewood–Paley Theory (c.f. (Stein 1970,
Chapter 4)) to obtain

‖∂3θ v‖α+1
Lα+1(S1)

≤ A‖(∂θ + ∂3θ )v‖α+1
Lα+1(S1)

(3.17)

with a positive constant A which is independent of v. Therefore, using (3.17) and the
fact that � = a1(t) cos θ + a−1(t) sin θ , we can write

∫ T

0

∫
S1

∣∣∣ηε

(
∂3θ h

ε
)∣∣∣α+1

dθ dt ≤ C

(∫ T

0

∫
S1

|∂3θ �|α+1dθ dt +
∫ T

0

∫
S1

|∂3θ v|α+1dθ dt

)

≤ C

(∫ T

0
|a1(t)|α+1 + |a−1(t)|α+1 dt

)

+ CA

(∫ T

0

∫
S1

|∂θv + ∂3θ v|α+1 dθ dt

)
.

(3.18)
Indeed, for the first term on the right-hand side of (3.18) we use the structure of �

and Young’s inequality for convolutions to derive the pointwise estimate

|a1(t)|α+1 + |a−1(t)|α+1 ≤ C
(
|a1(t)|2 + |a−1(t)|2

) α+1
2

= C‖�(t)‖α+1
L2(S1)

≤ C‖ηε(h
ε(t))‖α+1

H1(S1)
.

For the second integral on the right-hand side of (3.18) we use that ∂θ� + ∂3θ � = 0
and we obtain that

∫ T

0

∫
S1

|∂θv + ∂3θ v|α+1 dθ dt =
∫ T

0

∫
S1

∣∣∣∂θηε(h
ε) + ∂3θ ηε(h

ε)

∣∣∣α+1
dθ dt .
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Thus, we can conclude that

∫ T

0

∫
S1

∣∣∣ηε

(
∂3θ h

ε
)∣∣∣α+1

dθ dt

≤ C
∫ T

0
‖hε(t)‖α+1

H1(S1)
dt + CA

∫ T

0

∫
S1

∣∣ηε

(
∂θh

ε + ∂3θ h
ε
)∣∣α+1 dθ dt

≤ C(T , h0)

and we have proved the desired result.
(vi) This follows similarly as in (iii). ��
Next, we prove that the approximations hε converge in a suitable sense.

Lemma 3.10 (Convergence of approximations) Let ε ∈ (0, 1) be given and let hε

be the corresponding solution to (Pε) on [0, Tε) with initial value h0 ∈ H1(S1).
There exist δ > 0 sufficiently small and T > 0, both independent of ε such that, if
‖h0 − h̄0‖H1(S1) ≤ δ, then Tε > T and we may extract a subsequence (hε)ε (not
relabelled) such that, as ε ↘ 0,

(i) hε → h strongly in C
([0, T ];Cρ(S1)

)
;

(ii) mε(hε)ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))

⇀� weakly in L α+1
α

([0, T ] × S1
)
for some limit

function �;
(iii) ∂t hε⇀∂t h weakly in L α+1

α

(
(0, T ) × (W 1

α+1(S
1))′
)
;

(iv) ηε(∂θh
ε + ∂3θ h

ε)⇀(∂θh + ∂3θ h) weakly in Lα+1
([0, T ] × S1

)
;

(v) ∂t (∂θh
ε)⇀∂t∂θh weakly in L α+1

α

(
(0, T ); (W 1

α+1,0(S
1) ∩ W 2

α+1(S
1)
)′)

.

Proof

(i) In the previous Lemma 3.9 (i), (iii) we have proved that

{
(hε)ε is uniformly bounded in L∞

(
(0, T ); H1(S1)

)
(∂t hε)ε is uniformly bounded in L α+1

α

(
(0, T ); (W 1

α+1(S
1))′
)
.

Moreover, thanks to the Rellich–Kondrachov theorem, cf., for instance, in Adams
and Fournier (2003, Thm. 6.3), we know that

H1(S1)
c

↪−→ Cρ(S1) ↪→ (W 1
α+1(S

1))′, ρ ∈ [0, 1/2),

where
c

↪−→ indicates compactness of the embedding. This allows us to invoke
(Simon 1987, Cor. 4) in order to conclude that the sequence

(hε)ε is relatively compact in C
([0, T ];Cρ(S1)

)

with ρ ∈ [0, 1/2) as above.
(ii) This is an immediate consequence of Lemma 3.9 (ii).
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(iii) Thanks to Lemma 3.9 (iii), we may extract a subsequence (∂t hε)ε such that

∂t h
ε⇀v weakly in L α+1

α

(
(0, T ); (W 1

α+1(S
1))′
)

↪→ D′((0, T ); (W 1
α+1(S

1))′
)

for some limit function v ∈ L α+1
α

(
(0, T ); (W 1

α+1(S
1))′
)
. Since we know in addi-

tion that

hε −→ h in C
([0, T ];Cρ(S1)

)
↪→ D′((0, T ); (W 1

α+1(S
1))′
)
, ρ ∈ [0, 1/2),

we conclude that

∂t h
ε −→ ∂t h in D′((0, T ); (W 1

α+1(S
1))′
))

,

and consequently, v = ∂t h ∈ L α+1
α

(
(0, T ); (W 1

α+1(S
1))′
)
.

(iv) The strong convergence hε → h in C
([0, T ];Cρ(S1)

)
, ρ ∈ [0, 1/2), in Lemma

3.10 (i) in particular implies uniform convergence hε → h in C
([0, T ] × S1

)
and

then, by definition of the mollifier,

ηεh
ε −→ h in C

([0, T ] × S1
)
. (3.19)

Moreover,Lemma3.9 (v) guarantees the existenceof some ĥ ∈ Lα+1
(
(0, T );W 3

α+1(S
1)
)

such that
ηεh

ε⇀ĥ in Lα+1
(
(0, T );W 3

α+1(S
1)
)
. (3.20)

In virtue of the uniqueness of the limit function, (3.19) and (3.20) imply

ηεh
ε⇀h in Lα+1

(
(0, T );W 3

α+1(S
1)
)
.

Thanks to the weak lower semicontinuity of the norm and Lemma 3.9 (iv), (v), we
finally obtain

{∥∥∂θh + ∂3θ h
∥∥
Lα+1((0,T )×S1) ≤ lim infε→0

∥∥(∂θ + ∂3θ )(ηεhε)
∥∥
Lα+1((0,T )×S1) ≤ C

‖h‖Lα+1((0,T );W 3
α+1(S

1)) ≤ lim infε→0 ‖ηεhε‖Lα+1((0,T );W 3
α+1(S

1)) ≤ C

(3.21)
for some positive generic constant C > 0 that does not depend on ε.

(v) This follows similarly as in (iii) and the proof is complete.

��
It remains to prove the convergence of the nonlinear flux termmε(hε) ψε

(
ηε

(
∂θh

ε+
∂3θ h

ε
))

⇀ |h|α+2 ψ
(
∂θh + ∂3θ h

)
in L α+1

α

(
(0, T ) × S1

)
. This is the content of the next

lemma. The main idea of the proof is to use lower semicontinuity of the norm and to
apply Minty’s trick in order to be able to identify the nonlinear limit flux.
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Lemma 3.11 Let ε ∈ (0, 1) be given and let hε be the corresponding solution to (Pε)
on [0, Tε) with initial value h0 ∈ H1(S1). There exist δ > 0 sufficiently small and
T > 0, both independent of ε such that, if ‖h0 − h̄0‖H1(S1) ≤ δ, then Tε > T and we
may extract a subsequence (hε)ε (not relabelled) such that

mε(h
ε)ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))

⇀ |h|α+2 ψ
(
∂θh + ∂3θ h

)
weakly in L α+1

α

([0, T ] × S1
)

as ε ↘ 0.

Proof We divide the proof in several steps. For convenience, we pass to a subsequence
where necessary without explicitly mentioning.

(i) First, in virtue of Lemma 3.10 (ii), we know that mε(hε) ψε

(
ηε

(
∂θhε + ∂3θ h

ε
))

is
weakly sequentially compact, i.e. there is an element � ∈ L α+1

α

(
(0, T ) × S1)

)
such that

mε(h
ε)ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))

⇀� weakly in L α+1
α

(
(0, T ) × S1)

)
.

It remains to identify the limit flux �.
(ii) Next, we prove that h is bounded in C

([0, T ]; H1(S1)
)
. We already know from

Lemma 3.10 (i) that

h ∈ C
([0, T ];Cρ(S1)

)
↪→ C

([0, T ]; L2(S
1)
)
.

Moreover,

∂θh ∈ Lα+1
(
(0, T );W 1

α+1,0(S
1) ∩ W 2

α+1(S
1)
)

and

∂t∂θh ∈ L α+1
α

(
(0, T ); (W 1

α+1,0(S
1) ∩ W 2

α+1(S
1)
)′)

,

thanks to Lemma 3.10 (iv) and (v) and lower semicontinuity of the norm. Using
(Bernis 1988, Remark 3.4), this implies that ∂θh ∈ C

([0, T ]; L2(S1)
)
. Conse-

quently, h ∈ C
([0, T ]; H1(S1)

)
.

(iii) In viewof theprevious steps,wemaychooseϕ = h+∂2θ h ∈ Lα+1
(
(0, T );W 1

α+1(S
1)
)

as a test function in the weak formulation (3.3) for hε. This yields

∫ T

0

∫
S1

∂t h
ε(h + ∂2θ h) dθ dt

+
∫ T

0

∫
S1
mε(h

ε)ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))

ηε

(
∂θh + ∂3θ h

)
dθ dt = 0.

As ε ↘ 0, the first term satisfies

∫ T

0

∫
S1

∂t h
ε(h+∂2θ h) dθ dt −→

∫ T

0

∫
S1

∂t h (h+∂2θ h) dθ dt = E[h](T )−E[h](0),
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where we have used that the limit function satisfies h ∈ C
([0, T ]; H1(S1)

)
. More-

over, since (∂θh + ∂3θ h) is bounded in Lα+1
(
(0, T ) × S1

)
by (3.21), the definition

of the mollifier yields the strong convergence

ηε

(
∂θh + ∂3θ h

) −→ ∂θh + ∂3θ h in Lα+1
(
(0, T ) × S1

)
.

Together with Lemma 3.10 (ii), this implies

∫ T

0

∫
S1
mε(h

ε) ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))

ηε

(
∂θh + ∂3θ h

)
dθ dt

−→
∫ T

0

∫
S1

�
(
∂θh + ∂3θ h

)
dθ dt,

and consequently, we obtain the identity

E[h](t) +
〈
�|∂θh + ∂3θ h

〉
= E[h0]

for almost every t ∈ [0, T ].
(iv) Monotonicity and identification of the limit flux � by Minty’s trick. Observe that

the operator

{
ψε : Lα+1

(
(0, T ) × S1

) −→ L α+1
α

(
(0, T ) × S1

)
,

ψε(u) = (|u|2 + ε2
) α−1

2 u

is monotone, i.e. we have

〈ψε(u) − ψε(v)|u − v〉Lα+1 =
∫ T

0

∫
S1

(
ψε(u) − ψε(v)

)
(u − v) dθ dt > 0

for all u, v ∈ Lα+1
([0, T ] × S1

)
with u �= v. This follows immediately from

the monotonicity of the function ψε : R → R, s �→ (s2 + ε2)
α−1
2 s. Let now

φ ∈ W 3
α+1

(
(0, T ) × S1

)
. For better readability, henceforth we simply write 〈u|v〉

for the dual pairing 〈u|v〉Lα+1((0,T )×S1) between u ∈ L α+1
α

(
(0, T ) × S1

)
and v ∈

Lα+1
(
(0, T ) × S1

)
. Thanks to the monotonicity of ψε, we have

0 ≤
〈
mε(h

ε)ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))− mε(h

ε)ψε

(
∂θφ + ∂3θ φ

)|(∂θ + ∂3θ )(ηεh
ε − φ)

〉

=
〈
mε(h

ε)ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))|ηε

(
∂θh

ε + ∂3θ h
ε
)〉

−
〈
mε(h

ε)ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))|∂θφ + ∂3θ φ

〉

−
〈
mε(h

ε)ψε

(
∂θφ + ∂3θ φ

)|ηε

(
∂θh

ε + ∂3θ h
ε)
〉
+
〈
mε(h

ε)ψε

(
∂θφ + ∂3θ φ

)|∂θφ + ∂3θ φ
〉
.
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Let us consider the different pairings on the right-hand side separately.
First, we have proved in Lemma 3.5 that hε satisfies the energy dissipation formula

for the problem (Pε). We rewrite it here as

〈
mε(h

ε)ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))|ηε

(
∂θh

ε + ∂3θ h
ε
)〉 = E[h0] − E[hε](t), for a.e. t ∈ [0, T ].

Thanks to Lemma 3.10 (i) we know that hε(t) → h(t) in H1(S1) for almost every
t ∈ [0, T ]. Thus, as ε tends to zero, we find that

〈
mε(h

ε)ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))|ηε

(
∂θh

ε + ∂3θ h
ε
)〉 −→ E[h0] − E[h](t) (3.22)

for almost every t ∈ [0, T ]. Moreover, Lemma 3.10 (ii) yields

〈
mε(h

ε)ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))|∂θφ + ∂3θ φ

)〉 −→
〈
�|∂θφ + ∂3θ φ

〉
as ε ↘ 0.

(3.23)
For the third pairing we use that

{
mε(hε) −→ hα+2 strongly in C

([0, T ] × S1
)

ηε

(
∂θhε + ∂3θ h

ε
) −−⇀ ∂θh + ∂3θ h weakly in Lα+1

([0, T ] × S1
)
,

thanks to Lemma 3.10 (i), respectively Lemma 3.10 (iv). Here we also use the fact
that mε(hε) = |hε|α+2 in the range of values attained by hε for times t ∈ [0, T ], cf.
(3.2). This implies

〈
mε(h

ε)ψε

(
∂θφ + ∂3θ φ

))|ηε

(
∂θh

ε + ∂3θ h
ε
)〉 −→

〈
|h|α+2 ψ

(
∂θφ + ∂3θ φ

)|∂θh + ∂3θ h
〉
.

(3.24)
Finally, for the fourth term, we obtain

〈
mε(h

ε)ψε

(
∂θφ + ∂3θ φ

)|∂θφ + ∂3θ φ
〉
−→

〈
|h|α+2ψ

(
∂θφ + ∂3θ φ

)|∂θφ + ∂3θ φ
〉
,

(3.25)
where we use again the convergence mε(hε) → hα+2 strongly in C

([0, T ] × S1
)
.

Combining (3.22)–(3.25) leads to the inequality

0 ≤ E[h0] − E[h](t) −
〈
�|∂θφ + ∂3θ φ

〉
−
〈
|h|α+2 ψ

(
∂θφ + ∂3θ φ

)|(∂θ + ∂3θ )(h − φ)
〉

Thus, using the identity

E[h](t) +
〈
�|∂θh + ∂3θ h

〉
= E[h0],

proved in step (iii), for almost every t ∈ [0, T ], we discover that

0 ≤
〈
� − |h|α+2 ψ

(
∂θφ + ∂3θ φ

)|(∂θ + ∂3θ )(h − φ)
〉
.
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By choosing φ = h − λv for some arbitrary v ∈ W 3
α+1

(
(0, T ) × S1

)
and λ > 0, we

obtain the inequality

〈
� − |h|α+2 ψ

(
(∂θ + ∂3θ )(h − λv)

)|∂θv + ∂3θ v
〉
≥ 0

and hence, in the limit λ ↘ 0:

〈
� − |h|α+2 ψ

(
∂θh + ∂3θ h

)|∂θv + ∂3θ v
〉
≥ 0, v ∈ W 3

α+1

(
(0, T ) × S1

)
,

for almost every t ∈ [0, T ]. Similarly, choosing φ = h + λv, we discover that

〈
� − |h|α+2 ψ

(
∂θh + ∂3θ h

)|∂θv + ∂3θ v
〉
≤ 0, v ∈ W 3

α+1

(
(0, T ) × S1

)
,

and consequently

〈
� − |h|α+2 ψ

(
∂θh + ∂3θ h

)|∂θv + ∂3θ v
〉
= 0, v ∈ W 3

α+1

(
(0, T ) × S1

)
.

Since v ∈ W 3
α+1

(
(0, T ) × S1

)
is arbitrary, we are finally able to identify

� = |h|α+2 ψ
(
∂θh + ∂3θ h

) ∈ L α+1
α

(
(0, T ) × S1

)
.

This completes the proof. ��
With the previous convergence results at hand, we are now able to prove Theorem

3.1.

Proof of Theorem 3.1

(i) It follows from Lemma 3.10 (iii) and (iv) and step (ii) of the proof of Lemma 3.11
that

h ∈ C
([0, T ]; H1(S1)

) ∩ Lα+1
(
(0, T );W 3

α+1(S
1)
)

and ∂t h ∈ L α+1
α

(
(0, T ); (W 1

α+1(S
1))′
)
.

(ii) We now prove that h complies with the integral equation in Theorem 3.1 (ii). To
this end, recall that

∫ T

0
〈∂t hε(t), ϕ(t)〉W 1

α+1(S
1) dt =

∫ T

0

∫
S1

ηε

[
mε(h

ε)ψε

(
ηε

(
∂θh

ε + ∂3θ h
ε
))]

∂θφ dθ dt

for all test functions φ ∈ Lα+1
(
(0, T );W 1

α+1(S
1)
)
. Since ∂θφ ∈ Lα+1

(
(0, T ) ×

S1), we may invoke Lemma 3.11 to deduce that, on the one hand,

∫ T

0
〈∂t hε(t), ϕ(t)〉W 1

α+1(S
1) dt −→

∫ T

0

∫
S1
hα+2ψ

(
∂θh + ∂3θ h

)
dθ dt .
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On the other hand, Lemma 3.10 (iii) implies that

∫ T

0
〈∂t hε(t), ϕ(t)〉W 1

α+1(S
1) dt −→

∫ T

0
〈∂t h(t), ϕ(t)〉W 1

α+1(S
1) dt .

Combining both, we find that h satisfies the desired integral identity

∫ T

0
〈∂t h(t), ϕ(t)〉W 1

α+1(S
1) dt =

∫ T

0

∫
S1
hα+2ψ

(
∂θh + ∂3θ h

)
dθ dt

for all φ ∈ Lα+1
(
(0, T );W 1

α+1(S
1)
)
.

(iii) That the initial condition is satisfied is clear since we chose them identically in (P)
and (Pε).

(iv) That a solution conserves its mass follows from the convergence hε → h in
C
([0, T ];Cρ(S1)

)
, cf. Lemma3.10 (i), and from the conservation ofmass property

∫
S1
hε(t, θ) dθ =

∫
S1
h0(θ) dθ, t ∈ [0, T ],

for the approximations hε.
(v) That the solution satisfies the energy equality has already been proved in step (iii)

of the proof of Lemma 3.11.
(vi) To see that the solution is bounded away from zero for short times, we just argue

as in the proof of Lemma 3.6 and Lemma 3.8. ��

3.2 Global Existence and Convergence to a Circle in Finite Time in the
Shear-Thickening Regime

In this section we study the setting in which the thin film next to the internal cylinder is
occupied by a shear-thickening fluid. This corresponds to the regime of flow-behaviour
exponents α < 1. We consider solutions emerging from initial values that are close to
a circle. For these solutions we show that they converge to a circle in finite time. This
circle does not necessarily have to be centred at the origin. Note that this behaviour
clearly differs from the Newtonian case (c.f. Sect. 4).

The main result of this section is stated in the following theorem.

Theorem 3.12 Let α < 1. There exists a δ > 0 such that for all initial values h0 ∈
H1(S1)with

∥∥h0 − h̄0
∥∥
H1(S1) < δ, there is a weak solution h ∈ C

([0,∞); H1(S1)
)∩

Lα+1,loc
(
(0,∞);W 3

α+1(S
1)
)
that exists globally in time. Moreover, there exists a time

0 < t∗ < ∞ such that

h(t, θ) = h̄0 + v(θ) with v(θ) = v−1(t
∗)e−iθ + v1(t

∗)eiθ , t ≥ t∗, θ ∈ S1,

Here v±1 denote the Fourier coefficients corresponding to the Fourier modes n = ±1
that are constant for times t ≥ t∗.
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The idea of the proof is to derive a differential inequality for the energy E that
guarantees that the energy drops down to zero in finite time. Using Fourier analysis,
we may then prove that solutions with zero average and zero energy are necessarily
given by a circle. Let first

h0(θ) = h̄0 + v0(θ), θ ∈ S1.

Then, the condition ‖h0− h̄0‖H1(S1) < δ for some δ > 0 is equivalent to the condition
‖v0‖H1(S1) < δ for some δ > 0.

Thanks to Theorem 3.1, there exists a time T > 0 and a positive weak solution
h ∈ C

([0, T ]; H1(S1)
) ∩ Lα+1

(
(0, T );W 3

α+1(S
1)
)
on [0, T ]. We write this solution

in terms of its Fourier series as

h(t, θ) = c + v(t, θ) with v(t, θ) =
∑

n∈Z,n �=0

vn(t)e
inθ , θ ∈ S1,

for all t ∈ (0, T ], where the constant c is given by the average

c = 1

2π

∫
S1
h(t, θ) dθ.

Then it clearly holds that v̄ = 0, i.e. v = h − c has average zero.

Lemma 3.13 Let α < 1. For all v ∈ C
([0, T ]; H1(S1)

)
with v̄ = 1

2π

∫
S1 v(t, θ) dθ =

0, the energy E[v](t) satisfies the differential inequality

d

dt
E[v](t) ≤ −C

(
E[v](t)) α+1

2 , t ∈ [0, T ].

Proof Using the Fourier series representation of v, we have that

v(t, θ) =
∑

n∈Z,n �=0

vn(t)e
inθ and E[v](t) = π

∑
n∈Z,n �=0,1

(n2 − 1) |vn(t)|2 ≥ 0

for all t ∈ [0, T ] and θ ∈ S1. We define

�(t, θ) = ∂θv(t, θ) + ∂3θ v(t, θ) =
∑

n∈Z,n �=0,±1

�n(t)e
inθ with �n(t) = (in − in3

)
vn(t)

and write

v(t, θ) = (A�)(t, θ) + w(t, θ) with w(t, θ) = a(t) cos(θ) + b(t) sin(θ)
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and a(t), b(t) ∈ R for all t ∈ [0, T ]. Then the Fourier series representation of A� is

(A�)(t, θ) =
∑

n∈Z,n �=0,±1

vn(t)e
inθ

=
∑

n∈Z,n �=0,±1

�n(t)

(in − in3)
einθ

= 1

2π

∑
n∈Z,n �=0,±1

∫
S1

�n(t)

(in − in3)
ein(θ−ξ) dξ,

that is, A� is given by

(A�)(t, θ) =
∫
S1

�(t, ξ)G(θ − ξ) dξ = (�(t) ∗ G)(θ), where

G(θ) = 1

2π

∑
n∈Z,n �=0,±1

einθ

(in − in3)

for θ ∈ S1. Moreover, since G ∈ C1(S1), we observe that the derivative ∂θ (A�)

satisfies

∣∣∂θ (A�(t))
∣∣ ≤

∫
S1

|�(t, ξ)| · sup
θ∈S1

∣∣∂θG(θ)
∣∣ dξ

≤ C ‖�(t)‖L1(S1) ≤ C ‖�(t)‖Lα+1(S1) , t ∈ [0, T ].

Consequently, using the identities

E[v](t) = 1

2

∫
S1

(∂θv(t))2 − v(t)2 dθ = 1

2

∫
S1

(
∂θ (A�(t))

)2 − (A�(t))2 dθ,

we discover that

0 ≤ E[v](t) ≤ 1

2

∥∥∂θ (A�(t))
∥∥2
L2(S1)

≤ C

(∫
S1

∣∣∣∂θv(t) + ∂3θ v(t)
∣∣∣α+1

dθ

) 2
α+1

≤ C

(∫
S1

|c + v(t)|α+2
∣∣∣∂θv(t) + ∂3θ v(t)

∣∣∣α+1
dθ

) 2
α+1 = C

(
− d

dt
E[v](t)

) 2
α+1

.

This yields the desired estimate. ��
Using this differential inequality for the energy, we may prove that the energy

converges to zero in finite time. We obtain an upper bound of the extinction time t∗
in terms of the distance δ from the initial value h0 to its average h̄0. The Fourier
coefficients v±1(t) converge to a constant, as t → t∗, while the remaining terms
converge to zero in the H1-norm. For times t ≥ t∗ the solution can be extended
globally in time as the limit circle at time t∗, i.e. it does not change its shape at later
times. In this way we obtain a solution that is defined for arbitrarily large times.
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Proof of Theorem 3.12 We divide the proof into several steps.

(i) Wefirst prove that there exists a positive time t∗ > 0 such that E[v](t) = 0, t ≥ t∗.
In the previous Lemma 3.13 we have derived the differential inequality

d

dt
E[v](t) ≤ −C

(
E[v](t)) α+1

2 , t ∈ [0, T ],

for all v ∈ C
([0, T ]; H1(S1)

)
with zero average and for all flow behaviour expo-

nents α < 1. This inequality implies that E[v](·) is decreasing and thus

d

dt

(
E[v](t) 1−α

2
) ≤ −Cα, t ∈ [0, T ],

as long as E[v](t) > 0, where Cα = C(1−α)
2 . Therefore,

(
E[v](t)) 1−α

2 ≤ (E[v0]
) 1−α

2 − Cαt, t ∈ [0, T ], if E[v](t) > 0. (3.26)

This in turn implies that

E[v](t) ≤
((

E[v0]
) 1−α

2 − Cαt

) 2
1−α

, t ∈ [0, T ], if E[v](t) > 0.

Thus, we can conclude that there exists a time t∗ ≥ 0 such that

E[v](t) = 0, t ≥ t∗, where t∗ ≤ (E[v0]) 1−α
2

Cα

.

Note that t∗ > 0 is strictly positive, if E[v0] > 0, as a consequence of the continuity
of the energy. Moreover, recall that we assume h to be initially close to a circle
in the sense that ‖h0 − c‖H1(S1) = ‖v0‖H1(S1) < δ for some small but positive

δ > 0. If we choose δ < (CαT )
1

1−α , then we find that

E[v](t) = 0, t ≥ t∗, where 0 < t∗ <
‖v0‖1−α

H1(S1)

Cα

<
δ1−α

Cα

< T .

It is worthwhile to mention that the extinction time t∗ is smaller that the maximal
time T of existence if δ is small enough.

(iii) We can write h in terms of its Fourier series as

h(t, θ) = c + v−1(t)e
−iθ + v1(t)e

iθ + �(t, θ) with �(t, θ) =
∑

n∈Z,n �=0,±1

vn(t)e
inθ
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for t ∈ [0, T ] and θ ∈ S1. We show that � converges to zero as time t tends to the
extinction time t∗. It holds that

‖�(t)‖2H1(S1) = ‖�(t)‖2L2(S1)
+ ∥∥∂θ�(t)

∥∥2
L2(S1)

= 2π
∑

n=∈Z,n �=0,±1

(n2 + 1) |vn(t)|2

≤ Cπ
∑

n∈Z,n �=0,±1

(n2 − 1) |vn(t)|2 .

= CE[v](t).

Consequently, we discover that

‖�(t)‖2H1(S1) ≤ Cδ2, t ∈ [0, T ], and ‖�(t)‖2H1(S1) −→ 0 as t → t∗

(iv) Next, we prove that |v±1(t)| is bounded by δ for all t ∈ [0, t∗). To this end, observe
first that

|v±1(0)| ≤ ‖v0‖H1(S1) ≤ δ.

Moreover, as in the proof of Lemma 3.6 we can derive the estimate

∣∣∣∣ ddt v±1(t)

∣∣∣∣ =
∣∣∣∣ ddt
(

1

2π

∫
S1
h(t, θ)e∓iθ dθ

)∣∣∣∣
=
∣∣∣∣ i

2π

∫
S1
hα+2ψ(∂θh + ∂3θ h)e∓iθ dθ

∣∣∣∣
≤ C

∫
S1

|h|α+2
∣∣∣∂θh + ∂3θ h

∣∣∣α dθ.

Integration with respect to time and applying Hölder’s inequality lead to the esti-
mate

|v±1(t) − v±1(0)|

≤ C

(∫ t

0

∫
S1

|h|α+2
∣∣∂θh + ∂3θ h

∣∣α+1
dθ ds

) α
α+1
(∫ t

0

∫
S1

|h|α+2 dθ ds

) 1
α+1

≤ Ct
1

α+1 sup
t∈(0,T )

‖h(t)‖
α+2
α+1

L∞(S1)

(∫ t

0

∫
S1

|h|α+2
∣∣∂θh + ∂3θ h

∣∣α+1
dθ ds

) α
α+1

, t ≤ t∗,

whence we find that

|v±1(t) − v±1(0)| ≤ C
α+2
α+1 (Dt [h]) α

α+1 ≤ C ‖v0‖
2α

α+1

H1(S1)
≤ Cδ

2α
α+1 .

This implies

|v±1(t)| ≤ δ + Cδ
2α

α+1 , t ≤ t∗.

123



Journal of Nonlinear Science (2022) 32 :24 Page 47 of 55 24

(v) Next, we prove that v±1(t) → v±1(t∗) as t → t∗. To this end, we first observe
that the bound

|v±1(t)| ≤ C sup
t∈(0,T )

‖h(t, θ)‖L∞(S1) ≤ C, t ∈ [0, T ),

implies that there exists a sequence tn → t∗ and an element χ ∈ R such that

lim
n→∞ v±1(tn) = χ. (3.27)

Moreover, as in the previous step (iv), we obtain

lim
n→∞ |v±1(tn) − v±1(t)|

≤ lim
n→∞C sup

s∈(t,t∗)
‖h(s)‖

α+2
α+1

L∞(S1)

(∫ tn

t

∫
S1

|h|α+2
∣∣∣∂θh + ∂3θ h

∣∣∣α+1
dθ ds

) α
α+1

= C sup
s∈(t,t∗)

‖h(s)‖
α+2
α+1

L∞(S1)

(∫ t∗

t

∫
S1

|h|α+2
∣∣∣∂θh + ∂3θ h

∣∣∣α+1
dθ ds

) α
α+1

.

Thanks to the convergence in (3.27), we also have

|χ − v±1(t)| = lim
n→∞ |v±1(tn) − v±1(t)|

≤ C sup
s∈(t,t∗)

‖h(s)‖
α+2
α+1

L∞(S1)

(∫ t∗

t

∫
S1

|h|α+2
∣∣∣∂θh + ∂3θ h

∣∣∣α+1
dθ ds

) α
α+1

and the right-hand side converges to zero, as t → t∗.
(vi) Now we construct a solution with infinite lifetime by defining

h(t, θ) = c + v−1(t)e
−iθ + v1(t)e

iθ + �(t, θ), t ≥ 0,

where

v±1(t) =
{

v±1(t), t ≤ t∗

v±1(t∗), t > t∗,

�(t, θ) =
{

�(t, θ), t ≤ t∗

0, t > t∗.

Then h defines for all times t > 0 a weak solution of (P).
(vii) Finally, we prove that the extension of the solution to the time interval [t∗,∞) by

h(t, θ) = c + v−1(t
∗)e−iθ + v1(t

∗)eiθ , t ≥ t∗, θ ∈ S1,
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where v±1 = v±1(t∗), is unique. For this purpose, assume that f is another solution
of (P) on [0,∞) such that

f (t∗, θ) = h(t∗, θ), θ ∈ S1.

Then also E[ f ](t) = 0 for all t ≥ t∗ and f is given by

f (t, θ) = c + w−1(t)e
−iθ + w1(t)e

iθ , t ≥ t∗, θ ∈ S1. (3.28)

In addition, f satisfies the integral equation

∫ ∞

t∗
〈∂t f , ϕ〉 dt = −

∫ ∞

t∗

∫
S1

| f |α+2ψ
(
∂θ f + ∂3θ f

)
dθ dt, ϕ ∈ Lα+1

(
(0, T );W 1

α+1(S
1)
)
.

(3.29)
Since f is, for times t ≥ t∗, given by a circle, cf. (3.28), it holds that

(
∂θ f (t, θ) +

∂3θ f (t, θ)
) = 0 pointwise for all t ≥ t∗ and θ ∈ S1. Consequently, (3.29) implies that

f is constant in time. This in turn implies that the w±1 are constant in time. Finally,
the continuity property of the solution implies that w±1 = v±1(t∗) and the proof is
complete. ��

4 The Caseˇ of Order One: Stability and Long-Time Behaviour

In this sectionwe study the stability of constant solutions of (2.28) and (2.29)whenβ is
of order one, i.e. when the surface tension forces are comparable with the shear forces
induced by the rotation of the cylinder. These constant solutions describe circular
interfaces which are concentric with the confining cylinders. We prove that, in the
scaling limit β of order one, solutions of (2.28) and (2.29) with initial data close to
a constant, converge to the constant with an error of order one as t → ∞. A more
detailed analysis of the solution shows that the interface behaves, to the leading order,
as a circle the centre of which moves along a spiral towards the origin O , as t → ∞
(cf. Theorem 4.3).

In the following,we denote by Ḣ k(S1) the homogeneous Sobolev spaces, consisting
of functions f ∈ Hk(S1) with zero average 1

2π

∫
S1 f dθ = 0.

4.1 The Case B > 0 of Order One

In the case B > 0 of order one, the effects of the surface tension are comparable
with those of the shear forces induced by the rotation of the cylinder and we have the
evolution equation (2.28), i.e.

∂t h + ∂θ

(
h(θ)2

∫ 1

0
zψ
(
β̃ + z h(θ)

(
∂θh(θ) + ∂3θ h(θ)

))
dz

)
= 0, t > 0, θ ∈ S1.

It turns out that, in this physical limit, the asymptotic behaviour of solutions, as t → ∞,
is as in the Newtonian case studied in Pernas-Castaño andVelázquez (2020). However,
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since the involved differential operators are different, we briefly sketch the arguments
yielding the long-time asymptotics in order to give a complete picture of all the possible
scaling limits.

Theorem 4.1 Let c > 0. There exists δ > 0 (depending on c) such that, for any
h0 ∈ H4(S1) satisfying ‖h0 − c‖H4(S1) < δ with 1

2π

∫
S1 h0 = c, there exists a unique

solution h ∈ C([0,∞); H4(S1)) ∩ C1((0,∞); H4(S1)) of (2.28), where h(0, ·) =
h0(·). Moreover, we have

‖h(t, ·) − c‖H4(S1) ≤ Cδ, t ≥ 0, (4.1)

where C depends only on c.

In order to prove Theorem 4.1, it is convenient to reformulate (2.28) in a coordinate
system rotating at velocity c. Moreover, we linearise around the constant solution
h = c. More precisely, we define

v(t, ϕ) = h(t, θ) − c with ϕ = θ − cψ(β̃)t . (4.2)

Using the evolution Eq. (2.28), we obtain that v solves the equation

dv

dt
= L(v) + R(v), (4.3)

where L : Ḣ k(S1) → L2(S1) is a linear operator, given by

L(v) = −c3

3
ψ(β̃)

(
∂2ϕv + ∂4ϕv

)
, v ∈ Ḣ4(S1), (4.4)

and R : Ḣ k(S1) → L2(S1) is the non-linear operator defined by

R(v) = −ψ(β̃)∂φ(v2) − 5

3
c2ψ ′(β̃)∂φ

(
v
(
∂φv + ∂3φv

))

+c4

2
ψ ′′(β̃)∂φ

((
∂θv + ∂3φv

)2)+ h.o.t (4.5)

for v ∈ Ḣ4(S1). Note that L and R are well-defined bounded operators from Ḣ k(S1)
to L2(S1). Now we define

V0 = span{cos(φ), sin(φ)} ⊂ L2(S
1) and V1 = (V0 ⊕ span{1})⊥ ⊂ L2(S

1),

where ⊥ denotes the orthogonal complement in L2(S1). Moreover, we introduce the
following subspaces of Ḣ4(S1),

E0 = V0 ∩ Ḣ4(S1) and E1 = V1 ∩ Ḣ4(S1), (4.6)
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andwe denote by P0 and P1 the orthogonal projections of L2(S1) onto V0, respectively
V1. Therefore, we have that Ḣ4(S1) = E0 ⊕ E1. Indeed, using Fourier expansion, it
readily follows that P0(Ḣ4(S1)) ⊂ E0, and P1(Ḣ4(S1)) ⊂ E1. Consequently, we
can write each v ∈ Ḣ4(S1) as a sum v = v0 + v1 with v0 = P0(v) ∈ E0 and
v1 = P1(v) ∈ E1. We finally introduce the quadratic operator, Q : E0 × E0 → E1 by

Q(v0) = iψ(β̃)

8c3ψ ′(β̃)
a2−1e

−2iφ − iψ(β̃)

8c3ψ ′(β̃)
a21e

2iφ (4.7)

for each v0 = a−1e−iφ + a1eiφ ∈ E0, where a1 = a−1. Since the proof Theorem 4.1
follows the lines of the proof of Pernas-Castaño and Velázquez (2020, Thm 5.1), we
only sketch it here.

Proof First, one can prove existence of solutions

v ∈ C
([0, T ]; Ḣ4(S1)

) ∩ C1((0, T ]; Ḣ4(S1)
)

on some small time interval [0, T ], cf. (Pernas-Castaño and Velázquez 2020, Prop.
A.1). By standard parabolic theory, one can then prove that the solution even has the
better regularity

v ∈ C∞((0, T ]; Ḣ k(S1)
)
, k ≥ 1,

cf. (Pernas-Castaño and Velázquez 2020, Lemma 5.2). With the improved regularity,
one may then derive appropriate a-priori estimates for the operators introduced above
in order to obtain global existence by a continuation argument. ��

A centre manifold theory for quasilinear problems has been developed in Mielke
(1988). We follow here the version of this type of theory as developed in Haragus and
Iooss (2011). Similar techniques can be also found in Lunardi (1995, Chapter 9).

Theorem 4.2 Let L and R be defined as in (4.4) and (4.5). There exists a map � ∈
Ck(E0, E1), where E0 = ImP0 = ReP1 ⊂ Ḣ4(S1) and E1 = P1 Ḣ4 ⊂ Ḣ4(S1), with
�(0) = 0 and D�(0) = 0. Moreover, there exists a neighbourhoodO of 0 in Ḣ4(S1)
such that the manifold

M0 = {v0 + �(v0); v0 ∈ E0} ⊂ Ḣ4(S1) (4.8)

has the following properties:

(i) M0 is locally invariant, i.e. if v is a solution to (4.3), satisfying v(0) ∈ M0 ∩ O
and v(t) ∈ O for all t ∈ [0, T ], then v(t) ∈ M0 for all t ∈ [0, T ].

(ii) M0 contains the set of bounded solutions of (4.3) that stay in O for all t ∈ R. If
v is a solution to dv

dt = L(v) + R(v) that belongs to M0 for t ∈ I , where I ⊂ R

is an open interval, then v = v0 + �(v0) and v0 satisfies

dv0
dt

= L0(v0) + P0R
(
v0 + �(v0)

)
, (4.9)
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where L0 is the restriction of L to E0. Moreover, � satisfies

D�(v0)
(
L0(v0)+P0R(v0+�(v0))

) = L1�(v0)+P1R
(
v0+�(v0)

) ∀v0 ∈ E0.
(4.10)

(iii) M0 is locally attracting in the following sense. If v(0) ∈ O and if the solution
to (4.3), corresponding to this initial value, satisfies v(t) ∈ O for all t > 0, then
there exist an initial value ṽ(0) ∈ M0 ∩ O and a constant a > 0 such that
‖v − ṽ‖Ḣ4(S1) ≤ Ce−at , as t → ∞.

Proof In order to prove this theorem, we have to verify that the operators L and R
introduced above satisfy the Hypotheses 5.1–5.3 of Pernas-Castaño and Velázquez
(2020). To this end, observe first that

(i) L ∈ L(Ḣ4(S1); L2(S1)
)
.

(ii) For some k ≥ 2, there exists a neighbourhood V ⊂ Ḣ4(S1) of 0 such that R ∈
Ck(V; L2(S1)

)
, R(0) = 0 and DR(0) = 0.

Moreover, the linear operator L has the following spectral properties. First, its spectrum
can be written as σ = σ0 ∪ σ− where σ0 = {λ ∈ σ ; Reλ = 0} and σ− = {λ ∈
σ ; Reλ < 0}. More precisely, the following statements are true:

(iii) There exists a positive constant γ > 0 such that

sup
λ∈σ−

(Reλ) < −γ.

(iv) σ0 consists of a finite number of eigenvalues with finite multiplicities.

Finally, there exist positive constants s0 > 0 and C > 0 such that, for all s ∈ R with
|s| ≥ s0, we have that

(v) ‖(is I − L1)
−1‖L(L2(S1)) ≤ C

|s| ,

where L1 is the restriction of L to P1 Ḣ4(S1), P1 is the projection P1 : L2(S1) →
L2(S1) defined by P1 = I − P0 and P0 is the spectral projection corresponding to σ0
that is given by

P0 = 1

2π i

∫
�

(λI − L)−1dλ, (4.11)

for a simple, counterclockwise oriented Jordan curve � surrounding σ0 and lying
entirely in {λ ∈ C; Reλ > −γ }. It is worthwhile to note that, thanks to Haragus and
Iooss (2011, Rem. 2.16), the only property that we need to check for the operator L1
is the one in (v). This is the case since we are working with the Hilbert spaces L2(S1)
and Ḣ4(S1). The theorem is now a minor adaptation of Theorems 2.9 and 3.22 in
Haragus and Iooss (2011). ��
Theorem 4.3 Let c > 0. There exist δ > 0 and a manifold M0 as in (4.8) (both of
them depending on c) such that all the properties stated in Theorem 4.2 hold true with
O = Bδ(0). In particular, if v(0, ·) ∈ M0 ∩ O, then the corresponding solution h of

123



24 Page 52 of 55 Journal of Nonlinear Science (2022) 32 :24

(2.28) (cf. (4.2)) satisfies:

∥∥∥h(· + cψ(β̃)t, t) − c − 2K√
t
cos(· + K̃ log t + C0)

∥∥∥
H4(S1)

≤ C

t
for all t ≥ 1,

(4.12)
where

K =
√
2c3ψ ′(β̃)

ψ(β̃)
, K̃ = c2ψ ′(β̃)

2ψ(β̃)
, C0 = C0(h0), (4.13)

and C depends only on c. Moreover, if v(·, 0) ∈ O, we have that

distḢ4(T)(v(·, t),M0) ≤ Ce−at , t > 0, (4.14)

with a = a(c).

Proof Using the same techniques as in Pernas-Castaño and Velázquez (2020), we can
prove that the operators L and R, given by (4.4) and (4.5), are well-defined from
Ḣ4(S1) → L2(S1) and Ḣ4(S1) × Ḣ4(S1) → L2(S1), respectively.

Moreover, the operator L satisfies the properties (i), (iii) and (iv) of the proof
Theorem 4.2 and the operator R satisfies property (ii) for any k ≥ 2. Therefore,
the operator P0 defined in (4.11) is the orthogonal projection of L2(S1) onto E0 =
span{cos(θ), sin(θ)} and there exists a manifold M0 with the properties stated in
Theorem 4.2 that can be parametrised as in (4.8) with � ∈ Ck(E0, E1) for any k ≥ 2.
Furthermore, we have �(0) = 0, D�(0) = 0 and, if v0 = a−1e−iθ + a1eiθ ∈ E0,
then

D2�(0)(v0, v0) = iψ(β̃)

4c3ψ ′(β̃)
a2−1e

−2iφ − iψ(β̃)

4c3ψ ′(β̃)
a21e

2iφ. (4.15)

The differential equation (4.9) that describes the dynamics of v on this manifold is
reduced to

dv0
dt

= P0R
(
v0 + �(v0)

)
, (4.16)

where we used that L0(v0) = 0 for v0 ∈ E0. Using (4.15) and (4.16), we can conclude
(4.12). Finally, the estimate (4.14) is a consequence of the global existence result in
Theorem 4.1 and Theorem 4.2(iii). Formore details c.f. Pernas-Castaño andVelázquez
(2020). ��
Remark 4.4 The asymptotic behaviour in (4.12) can be reformulated in terms of the
original non-dimensional variables (cf. (2.24)) as:

h(t, θ) = λc+ 2K

√
τλ

εt
cos

(
θ − cψ(β̃) ε

τ
λt + K̃ log

(
ε
τ
λt
)+C0

)
+O( 1t ), (4.17)

where λ = 1√
B
and t � τ

ελ
.

Moreover, we recall that the interface separating the two fluids is given by the curve
r = 1+ εh. Therefore, a geometrical argument shows that the interface associated to
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Fig. 3 Centre of the interface spiralling towards the centre of the cylinders

the solution described by (4.17) behaves asymptotically as the circle given by

(
x − σ(t) cos(θ0(t))

)2 + (y − σ(t) sin(θ0(t))
)2 = r20 ,

where σ(t) = 2K
√

τελ
t , θ0(t) = cψ(β̃) ε

τ
λt + K̃ log ( ε

τ
λt) + C0 and r0 = 1 + ελc.

Note that the centre of this circle spirals towards the origin as t → ∞ (Fig. 3).

4.2 The Cases B → 0 and B → ∞

We recall that in these cases we have the evolution Eq. (2.29). For this case we can
proof exactly the analogous Theorems in Sect. 4.1. For this purpose, we consider:

v(t, ϕ) = h(t, θ) − c with ϕ = θ − cβ
1
p t . (4.18)

Using the evolution Eq. (2.27), we obtain that v solves the equation

dv

dt
= L(v) + R(v), (4.19)

where L : Ḣ4(S1) → L2(S1) is a linear operator, given by

L(v) = − c3

3p
|β| 1p−1(

∂2ϕv + ∂4ϕv
)
, v ∈ Ḣ4(S1), (4.20)

and R : Ḣ4(S1) → L2(S1) is the non-linear operator defined by

R(v) = −β
1
p ∂ϕ(v2) − 2

3
c2|β| 1p −1 2p + 1

p2
∂ϕ

(
v
(
∂ϕv + ∂3ϕv

))+ h.o.t ., v ∈ Ḣ4(S1).

(4.21)
Note that L and R are well-defined bounded operators from Ḣ4(S1) to L2(S1). More-
over, we consider the quadratic operator Q : E0 × E0 → E1 defined by

Q(v0) = i pβ

4c3
a2−1e

−2iϕ − i pβ

4c3
a21e

2iϕ, v0 = a−1e
−iϕ + a1e

iϕ ∈ E0, (4.22)
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where a1 = a−1. Using (4.18)-(4.22) we can prove the global existence result.
On the other hand, taking

K =
√√√√ c3

pβ
1
p +1

, K̃ = 2p + 1

p2
c2

β
, C0 = C0(h0), (4.23)

we can prove that

∥∥∥h(t, · + ct) − c − 2K√
t
cos(· + K̃ log t + C0)

∥∥∥
H4(S1)

≤ C

t
, t ≥ 1. (4.24)

Therefore, we can conclude that in the these cases, we have that the centre of the circle
spirals towards the origin as in Sect. 4.1.
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