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Abstract
Avariational latticemodel is proposed to define an evolution of sets from a single point
(nucleation) following a criterion of “maximization” of the perimeter. At a discrete
level, the evolution has a “checkerboard” structure and its shape is affected by the
choice of the norm defining the dissipation term. For every choice of the scales, the
convergence of the discrete scheme to a family of expanding setswith constant velocity
is proved.

Keywords Discrete systems · Nucleation ·Minimizing movements · Geometric
evolution · Pinning ·Microstructure

Mathematics Subject Classification 35B27 · 74Q10 · 53E10 · 49M25 · 49J45

1 Introduction

In this paper, we propose a variational model for nucleation and growth of a set by
maximization of its perimeter through an energy-dissipation balance at fixed time
step. We follow an implicit Euler scheme used by Almgren, Taylor andWang to prove
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existence of sets moving by mean curvature by minimization of the perimeter (see
Almgren et al. 1993). In that case, fixed a time step τ > 0, one can define iteratively
the discrete orbits Eτ

k at fixed τ from an initial set E0 as Eτ
0 = E0 and Eτ

k as a solution
of

min
{
P(E)+ 1

τ
Dp(E, Eτ

k−1)
}
, Dp(E, F) =

∫

E�F
dist p(x, ∂F) dx, (1.1)

where dist p(x, ∂E) = min{‖x − y‖p : y ∈ ∂E}, p ∈ [1,∞]. The term Dp is
interpreted as a dissipation, and (1.1) can be seen as a minimization of P subject to
a constraint due to the dissipation, which forces Eτ

k to be close to Eτ
k−1 for τ small.

In Almgren et al. (1993), it is proved (in the case p = 2) that the piecewise-constant
interpolations Eτ (t) = Eτ�t/τ� converge to a decreasing family of sets E(t) which
move by mean curvature.

Such a scheme cannot be directly followed taking maximization of the perimeter as
a driving mechanism, which would correspond to replacing P with −P . Indeed, we
may have sets E such that E�E0 has small measure (and hencewith small dissipation)
but with arbitrarily large perimeter, so that theminimumvalue for k = 1 in (1.1) is−∞
and the scheme arrests at the first step. In order to overcome this issue, we discretize
our problem by introducing a spatial length scale ε. For technical reasons explained
below,wewill examine only a two-dimensional setting and for simplicity parameterize
our problem on the lattices εZ2. We then restrict to sets that can be written as the union
of squares of side length ε and centers in εZ2. Within this class, we shall consider
the problem of nucleation, i.e., of motion from a minimal set, a single ε-square Eε

0
(which we may suppose to be centered in 0). With fixed ε and τ , the discrete orbits
are defined as Eε,τ

0 = Eε
0 and Eε,τ

k as a solution of

min
{
−Pε(E)+ 1

τ
Dp

ε (E, Eε,τ
k−1) : Eε,τ

k−1 ⊆ E
}
, (1.2)

where Pε is the restriction of the perimeter functional to unions of ε-squares, and Dp
ε

is a discretization of the dissipation Dp which, for every E ⊇ F , reduces to

Dp
ε (E, F) = ε2

∑

i∈E∩εZ2

dist p(i, (εZ
2 \ F)) .

Note that we consider a growing family of sets with respect to inclusion. With fixed
τ = τε, we will characterize the cluster points E(t) as ε → 0 of the interpolated
functions Eε(t) = Eε,τ

�εt/τ�, which are the generalization to varying energies of the
Almgren–Taylor–Wang scheme scaled in the time variable. Note the different scaling
of the time variable, which is the one that better describes the evolution. The form of
E will depend on the interplay between ε and τ ; more precisely, on the limit ratio α

of ε2/τ as ε → 0. We remark that the chosen time scaling can be directly interpreted
as giving the minimizing movements along the sequence −εPε at scale τ , which are
defined in Braides (2013). This scaling is also justified by the fact that the energies
−εPε have a non-trivial �-limit.
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We describe the case 0 < α < +∞, which is the most relevant. It is not restrictive
to suppose that ατ = ε2. By the homogeneity properties of the perimeter and the
dissipation, we note that Eε,τ

k = εAα
k , where Aα

0 = q (the unit square centered in 0),
and we solve iteratively

min
{
−P1(A)+ αDp

1 (A, Aα
k−1) : Aα

k−1 ⊆ A
}
. (1.3)

The first step is particularly meaningful and consists in solving the minimum prob-
lem

min
{
−P1(A)+ αDp

1 (A, q) : q ⊆ A
}
. (1.4)

We have
• the first set Aα

1 is a part of the checkerboard of unit squares in R
2 containing 0

(which we call the even checkerboard). While this fact is clear “locally,” the proof
that the whole set is a single checkerboard requires a non-trivial covering argument,
in which R

2 is covered by sets in which the minimal set A is (part of) the correct
checkerboard. This argument can be avoided in the case p = ∞, which has been
treated directly in Braides and Scilla (2013b);
• since every square of the (even) checkerboard gives an independent contribution

of energy and dissipation, a point i ∈ Z
2 may belong to Aα

1 if and only if (i1+ i2 ∈ 2Z
and) the corresponding contribution is non-positive, i.e.,

− 4+ α‖i‖p ≤ 0; (1.5)

• if α /∈ {4/‖i‖p : i ∈ Z
2, i1 + i2 ∈ 2Z}, then Aα

1 is uniquely determined by (1.5),
and it is the union of all squares in the even checkerboard with centers in the set

Np
α = {i ∈ Z

2 ∩ B p
4/α : i1 + i2 ∈ 2Z},

where B p
r = {x ∈ R

2 : ‖x‖p < r}. Note that Np
α = {0} if α > 4:

We consider only α with such a unique minimizer. The subset Np
α of Z2 will be

called the nucleus of the process. Correspondingly, we have the continuum set P p
α

obtained as the convexification of N p
α . Note that P1

α and P∞α are always squares, but
for the other p the form of P p

α does depend on α.
The most delicate argument in the study of the discrete scheme is the characteri-

zation of the sets Aα
k for k > 1. Similarly to the case k = 1, this is done by covering

R
2 with a family of small sets, mainly squares and rectangles, in each of which we

prove that the minimal set is again the even checkerboard. In order to construct this
covering, we have to define the “edges” of the nucleusNp

α and consider separately the
regions of R2 that project on those edges according to the p-distance. At this point,
we have a technical hypothesis to add; namely, that all such regions are infinite (which
is satisfied if these edges enclose a convex shape but may not be the case for some
exceptional values of α). The complex construction of this covering is the reason why
we limit our analysis to a two-dimensional setting.
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With this characterization, using (1.5) we immediately have that the centers of the
squares in Aα

k are exactly the points i ∈ Z
2 with i1+ i2 ∈ 2Z and distance not greater

than 4/α from Aα
k−1, so that

Aα
k ∩ Z

2 = (Aα
k−1 ∩ Z

2)+ (Aα
1 ∩ Z

2).

In a sense, every square in Aα
k−1 acts as the “center” of a nucleus. Note in this step

that if Aα
1 were not unique, then we would have an “increasing non-uniqueness” of

Aα
k , which in particular may even not be the intersection of the square checkerboard

with a convex region.
Since the centers of the squares in Aα

k are obtained as sums of k elements in N
p
α ,

a result on Minkowski sums of sets shows then that the convex envelope of Aα
k ∩ Z

2

is the convex envelope of kNp
α , which is an interesting and not a trivial fact. At this

point, we can go back to the original problem and describe the discrete orbits

Eε,τ
k = εAα

k = εkP p
α , Eε(t) = Eε,τ

�εt/τ� = ε
⌊α

ε

⌋
P p

α .

Letting ε → 0, we then conclude that the desired evolution is a linear evolution of
sets

E(t) = αt P p
α .

Note that P p
α = {0} and hence the evolution is pinned if α > 4. Moreover, remarking

that αP p
α ∼ B p

4 for α small, we also recover the case α = 0, corresponding to the
regime ε2 << τ , for which E(t) = 4t B p

1 .
We note that in Braides et al. (2010), the same discretization approach had been

followed for the (positive) perimeter and non-trivial initial data. The resulting evolu-
tion therein is a discretized motion by square-crystalline curvature (see Almgren and
Taylor 1995), which highlights the anisotropy of the lattice intervening in the perime-
ter part, while the effect of the dissipation is confined in the form of the mobility. In
the present analysis, the effect of the dissipation and that of the perimeter parts is com-
bined in the determination of the shape of the nucleus, but the perimeter term actually
acts as an approximation of an area and is less relevant for small values of α. Note
that our discretization approach can be regarded as a “backward” version of Braides
et al. (2010) if the index k is considered as parameterizing negative time (see Braides
2013, Section 10.2). Other analyses of minimizing movements on lattices related to
the perimeter can be found in Braides and Scilla (2013a), Scilla (2014, 2020) and
Ruf (2018). We note that checkerboard, stripes and other structures arise in antiferro-
magnetic systems related to maximization of the perimeter (see Braides and Cicalese
2017 for a variational analysis in terms of �-convergence, and the wide literature in
Statistical Mechanics, e.g., Giuliani et al. 2011; Daneri and Runa 2019). Some cases
in which microstructures on lattices are involved and produce interesting variants of
motion by crystalline curvature are studied in Braides et al. (2016) and Braides and
Solci (2016). For an overview on geometric motion on planar lattices, see the recent
lecture notes (Braides and Solci 2021).
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Even though our interest is mainly in the analytical issues of this nucleation process,
it is suggestive and interesting to connect this work with the process of biomineraliza-
tion,where nucleation occurs via the formation of a small nucleus of a newphase inside
the large volume of the old phase (see, e.g., De Yoreo and Vekilov 2003). At very small
size, adding even one more molecule increases the free energy of the system and this
produces, on average, the dissolution of the nucleus. Above a threshold, when the con-
tribution of the surface free energy becomes negligible, every addition of a molecule
to the lattice lowers the free energy and allows for the growth of the nucleus. In this
direction, lattice systems have been widely used as a simple model in simulations of
complex phenomena, as the vapor–liquid nucleation (see, e.g., Kalikmanov 2013, Sec-
tion 8.9). From a completely different point of view, our structure results can be related
to the investigation of the influences of environmental heterogeneities on the spatial
self-organization of microbial communities (see, e.g., Ciccarese 2020; Mimura et al.
2000); in particular, how interactions of different type (mutualism/commensalism)
between competing neighboring genotypes and their mutual distance can produce
spatial patterns of varying complexity and intermixing, as a random distribution, a
spatial segregation or even a checkerboard, and how they may affect the collective
behaviour and the rate of growth of the colony.

Outline of the paper In Sect. 2, we fix some notation and recall some preliminaries
in discrete geometry. We introduce the class of admissible sets that we will consider
throughout the paper, and the notions of effective boundary and discrete edge of a set.
In Sect. 3, we define perimeter energies Pε and, for a general norm ϕ, dissipations
Dϕ

ε we will deal with, together with the main functional Fϕ
ε,τ . Correspondingly, we

introduce the time-discrete minimization scheme for a suitably scaled version of the
energies Fϕ

ε,τ (Sect. 3.1).
The convergence analysis of this scheme at the regime ε << τ is carried out in

Sect. 4. In Sect. 5, we address the problem of determining the solutions of scheme
(1.4) at the critical regime ε = ατ , under a monotonicity constraint on the discrete tra-
jectories. We introduce here also a first restriction on the dissipations Dϕ

ε , by requiring
that ϕ be an absolute norm, i.e., ϕ(x) = ϕ(|x1|, |x2|). The explicit characterization
of the first step A1

α of the discrete evolution, provided with Proposition 27, is based
on a local analysis by means of the 2 × 2-square tilings introduced in Sect. 5.1 and
the key submodularity-type norm-inequality (5.8). In order to prove that an analogous
structure result can be obtained for each step Ak

α , k ≥ 2, i.e., for minimizers of the
energy F

ϕ
α(·, Ak−1

α ), we will assume that ϕ is a symmetric absolute normalized norm
(see Sect. 5.2), complying with a technical assumption (H3), and that the competitors
fulfill suitable geometric assumptions (see (5.13)). The proof of this stability result,
given with Proposition 30, is the content of Sect. 5.5 and relies on a localization argu-
ment only reminiscent of that used in the proof of Proposition 27, as we are forced to
define a new covering outside every discrete edge contained in the effective discrete
boundary of the current step Ak−1

α . In Sect. 5.6, with Theorem 38 we characterize the
time-discrete flow {Ak

α}k≥0 as a geometric iterative process, based on properties of
Minkowski sums.

In Sect. 6, we describe the resulting limit evolutions and we prove the existence of
a pinning threshold (see Definition 40). We conclude our analysis by exhibiting, in
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Sect. 6.1, some examples where both the microscopic and the limit evolutions can be
explicitly characterized. The closing Sect. 6.2 contains some conjectures on evolutions
without the monotonicity constraint.

2 Notation and Preliminaries

The generic point of R2 will be denoted by x = (x1, x2), the Euclidean norm by | · |
in any dimension. The space of subsets of R2 with finite perimeter endowed with the
Hausdorff distance dH is denoted by X, and the one-dimensional Hausdorff measure
byH1 (see, for instance, Ambrosio et al. 2000).

The function ϕ : R
2 → [0,+∞) denotes any norm in the plane. We use the

standard notation for the �p-norm, for every 1 ≤ p ≤ ∞; that is,

‖x‖p =
(|x1|p + |x2|p

) 1
p if 1 ≤ p < ∞, ‖x‖∞ = max{|x1|, |x2|} if p = ∞,

for every x ∈ R
2. For every r > 0, Bϕ

r (x) = {y ∈ R
2 : ϕ(x−y) < r} is the open ball

of radius r and center x corresponding to the normϕ, whileqr (x) = x+[−r/2, r/2]2 is
the r-square of side length r centered at x; when x = (0, 0), we will use the shorthand
Bϕ
r and qr in place of Bϕ

r (x) and qr (x), respectively. For every x ∈ R
2, E ⊆ R

2 we
set dϕ(x, E) = infy∈E ϕ(x − y). The segment connecting x1, x2 ∈ R

2 is denoted by
[x1, x2] :=

{
y ∈ R

2 : y = sx1 + (1− s)x2, s ∈ [0, 1]
}
.

Definition 1 Given two unit vectors v1, v2 ∈ S
1, θ(v2, v1) ∈ [−π, π ] denotes the

signed angle between v1 and v2, defined as

θ(v2, v1) =
(
θ2 − θ1 + π (mod. 2π)

)− π,

where θ1 and θ2 are the angles corresponding to the exponential representations of v1
and v2, respectively.

Let Z2 be the standard square lattice. We consider the partition of Z2 given by
Z
2 = Z

2
e ∪ Z

2
o, where Z

2
e =

{
i ∈ Z

2 : i1 + i2 ∈ 2Z
}
and Z

2
o = (1, 0)+ Z

2
e .

We will call a lattice set any subset I ⊆ Z
2, and #I denotes its cardinality. We also

recall that the boundary of a lattice set I is the set

∂I = {
i ∈ I | there exists j ∈ Z

2 \ I : |i− j| = 1
}
.

Given a lattice set I, the convex hull of I is the smallest convex subset ofR2 containing
I, which is denoted by conv(I). A polygon whose vertices are points of the lattice is
said a lattice polygon. The set conv(I) is an example of a (convex) lattice polygon, for
every I ⊂ Z

2.
Let ε > 0 be a fixed parameter and consider the lattice εZ2. All the notation given

above for subsets of Z2 extends also to subsets of εZ2. We identify any lattice set
I ⊂ εZ2 with the subset E(I) ofR2 given by the union of ε-squares centered at points
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of I; namely,

E(I) :=
⋃
i∈I

qε(i).

Accordingly, we define the class of admissible sets as

Dε :=
{
E ⊂ R

2 : E = E(I) for some lattice set I ⊆ εZ2}, (2.1)

and to each set E ∈ Dε we associate the lattice set Zε(E) := E ∩ εZ2, the set of
centers of E . When ε = 1, we will simply write D and Z(E) in place of D1 and
Z1(E), respectively.

Definition 2 (The classes of checkerboard sets) We introduce the classes of even and
odd ε-checkerboard sets

Ae
ε =

{
E ∈ Dε : Zε(E) ⊆ εZ2

e

}
, (2.2)

and analogously the class Ao
ε by requiring that I ⊆ εZ2

o. We refer to E(εZ2
e) and

E(εZ2
o) as the even and odd ε-checkerboard, respectively. In the following, we will

writeD, Ae, Ao in place ofD1, Ae
1, A

o
1, and we will use the shorthand checkerboard

set (in place of “1-checkerboard set”) to denote any set in Ae and Ao.

2.1 Preliminaries on Lattice Geometry

For our purposes, we fix some notation and introduce some basic definitions in lattice
geometry that will be useful for the analysis performed in Sect. 5.4.

Definition 3 A lattice set I ⊆ Z
2
e is said to be Z

2
e-convex if conv(I) ∩ Z

2
e = I.

Analogously, I ⊆ Z
2
o is Z2

o-convex if conv(I) ∩ Z
2
o = I. Accordingly, we define the

subclass Ae
conv ⊂ D as

Ae
conv = {E ∈ D : Z(E) is Z2

e-convex},

and, analogously, the subclass Ao
conv by requiring Z(E) to be Z2

o-convex. We also set
the class Aconv := Ae

conv ∪Ao
conv.

The notion of convex lattice set has already been given for I ⊂ Z
2 (see, for instance,

Gardner et al. 2005). Note that I is Z2
e-convex if and only if there exists a convex set

K ⊂ R
2 such that I = K ∩ Z

2
e , and the same holds for Z2

o-convex sets.
For every lattice set I ⊆ Z

2
e (or Z

2
o), there holds ∂I = I, since I consists of isolated

points of Z2. Since in the following we will deal with checkerboard sets, we need a
finer definition of boundary for such lattice sets.
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Fig. 1 The (discrete) effective boundary of E (in blue). (Color figure online)

Fig. 2 The black dots are lattice points of I. The first two figures are different examples of “degenerate” i.
On the right an example of a non-degenerate i and corresponding i− and i+; in gray polygon P

Definition 4 Let I ⊂ Z
2
e be a lattice set. We define the effective (discrete) boundary

of I as

∂effI = {
j ∈ I : there exists j0 ∈ Z

2
e \ I such that |j− j0| =

√
2
}
.

The same definition is given for lattice sets I ⊂ Z
2
o. Let E ∈ Ae ∪ Ao, we will write

∂effE = ∂eff Z(E), see Fig. 1.

Given E ∈ Ae ∪ Ao, consider i ∈ ∂effE . We set I = {j ∈ Z(E) : ‖j − i‖1 ≤ 2}.
Then, i is said to be non-degenerate if the set

⋃
j1,j2∈I|j1−j2|≤2

[j1, j2]

is the boundary of a triangulation of a simple polygon P. Then, we can define two
boundary points i−, i+ ∈ ∂effE as the vertices of P, respectively, preceding and
following i in the clockwise orientation of ∂P, as depicted in Fig. 2. We will say that
i− precedes i and that i+ follows i.
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Fig. 3 A discrete vertex of E may be a boundary point (not a vertex) of conv(Z(E))

In the sequel, we will often consider the following non-degeneracy condition on
sets E ∈ Aconv;

every i ∈ ∂effE is non-degenerate. (2.3)

Condition (2.3) allows to define an orientation of ∂effE , since for every i ∈ ∂effE we
can define i− and i+ as above. The following definitions are therefore well-posed.

Definition 5 (Discrete convex vertices) Let E ∈ Aconv satisfy (2.3). Given j ∈ ∂effE ,
let j+ (resp., j−) follow (resp., precede) j in ∂effE in the clockwise orientation. We
define the right and left outward unit normal vector at j as

ν+(j) := ( j2 − j+2 , j+1 − j1)√
( j+2 − j2)2 + ( j+1 − j1)2

, ν−(j) := ( j−2 − j2, j1 − j−1 )√
( j2 − j−2 )2 + ( j1 − j−1 )2

,

respectively. Then, we say that j is a discrete convex vertex (or discrete vertex) if

θ(ν+(j), ν−(j)) < 0

where θ is introduced in Definition 1.

Remark 6 (Vertices and discrete vertices) The definition of discrete vertex given above
is motivated by the fact that the vertices of conv(Z(E)) are discrete (convex) vertices
of E , whereas points j ∈ ∂effE such that

θ(ν+(j), ν−(j)) > 0

are always contained in the interior of conv(Z(E)) (Fig. 3). This choice will also
facilitate the definition of discrete edge (see Definition 7).

Note that we may have discrete vertices of E lying on the boundary of conv(Z(E))

which are not vertices of conv(Z(E)) (see Fig. 3), and discrete vertices of E in the
interior of conv(Z(E)), as well (see Fig. 4).
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Fig. 4 An example of a discrete vertex of E contained in the interior of conv(Z(E))

(a)
(b)

(c) (d)

Fig. 5 Some examples of discrete edges

Definition 7 (Discrete edges) Let E ∈ Aconv satisfy (2.3). We define a discrete edge
as a set of consecutive points of ∂effE , say � = {jl}Ll=0 where L ≥ 2 and j0 and jL are
discrete vertices. We define the outward unit normal vector of the discrete edge � as

ν(�) := ( j02 − j L2 , j L1 − j01 )√
( j L2 − j02 )2 + ( j L1 − j01 )2

.

We denote by E(E) the set of all discrete edges � ⊂ ∂effE .

Let E ∈ Aconv satisfy (2.3). For every � ∈ ∂effE , we define the slope of � as

s(�) := ν(�)1

ν(�)2
∈ [−∞,+∞] , (2.4)

where ν(�)k , k = 1, 2 indicate the components of ν(�), with the convention that
±1
0 = ±∞.

Remark 8 We list all the possible cases of discrete edges of sets E ∈ Aconv satisfying
(2.3) that are symmetric with respect to the axes and the bisectors x2 = ±x1. Such
symmetric sets will play a central role in the sequel of the paper. Up to rotations
of angle kπ and reflections, we can restrict this characterization to discrete edges
� ∈ E(E) such that � = {jl}Ll=0 ⊂ {x ∈ R

2 : x2 > 0} having s(�) ∈ [0, 1]. We have
the following characterization:
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(i) if s(�) = 0, then jl = jl−1 + (2, 0) for every 1 ≤ l ≤ L;
(ii) if s(�) ∈ (0, 1

3 ], then jl = jl−1+ (2, 0) for every 1 < l ≤ L and j1 = j0+ (1,−1);
(iii) if s(�) ∈ ( 13 , 1), then jl = jl−1 + (1,−1) for every 1 ≤ l < L and jL =

jL−1 + (2, 0);
(iv) if s(�) = 1, then jl = jl−1 + (1,−1) for every 1 ≤ l ≤ L .

These four types of discrete edge are pictured in Fig. 5a–d, respectively.

Definition 9 For every norm ϕ and every E ∈ D, we introduce the projection map of
integer points on E ; that is, the set-valued map π

ϕ
E : Z2 → P(Z2) defined as

π
ϕ
E (j) := argmin

j′∈Z(E)

ϕ(j− j′) . (2.5)

2.2 Minkowski Sum of Sets

We recall that the Minkowski sum of sets A and B is defined as A+ B = {a+ b | a ∈
A, b ∈ B}, and A + ∅ = ∅. If m ∈ N, we denote by mA the set {ma | a ∈ A}, and
if A is non-empty, we will often write A[m] to indicate the sum A + A + · · · + A
m-times. Among the many properties of Minkowski sum, we recall the commutability
of Minkowski sum and the compatibility to the operation of taking the convex hull;
that is,

conv(A + B) = conv(A)+ conv(B) . (2.6)

We recall without proof a result about the Minkowski sum of two convex polygons
(see, e.g., Barki et al. 2009).

Proposition 10 Let A and B be convex polygons in R
2. Let L A := {li,A}i=1,...,n

and LB := {l j,B} j=1,...,m be the sets of the edges of A and B, respectively. Let
VA := {νi,A}i=1,...,n and VB := {ν j,B} j=1,...,m be the sets of the outer normal vectors
of A and B, respectively. Then,

(i) if VA ∩ VB = ∅, then L A+B = L A ∪ LB and VA+B = VA ∪ VB;
(ii) if |VA∩VB | = p, 1 ≤ p ≤ min{n,m}, then |LA+B | = n+m−p.More precisely, if

νi,A = ν j,B for some i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, then li,A+ l j,B ∈ L A+B,
li,A /∈ L A+B, l j,B /∈ L A+B and νi,A = ν j,B ∈ VA+B. If, instead, νi,A �= ν j,B,
then li,A ∈ L A+B, l j,B ∈ L A+B, νi,A ∈ VA+B and ν j,B ∈ VA+B.

In particular, if A = B, then L A+A = {li,A + li,A}i=1,...,n and VA+A = VA.

2.3 The Lattice Point-Counting Problem:m-Fold Minkowski Sums

Let B = {w1,w2} be a basis of R2. The set

� = �(B) := {z1w1 + z2w2 : z1, z2 ∈ Z}
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is called a lattice of R2 with basis B. The corresponding fundamental cell is defined
as

{μ1w1 + μ2w2 : μ1, μ2 ∈ [0, 1)}

whose area is |det(B)|. It can be checked that the area of the fundamental cell is
independent of the choice of the basis and is referred to as the determinant of �,
det(�). Lattices are additive subgroups of R2 and they are discrete sets. Examples of
lattices are the standard lattice Z2, with basis {(1, 0), (0, 1)} and |det(Z2)| = 1, and
the “checkerboard lattice” Z

2
e , with basis {(−1, 1), (1, 1)} and |det(Z2

e)| = 2. Z2
o is

not a lattice, since (1, 0)+ (0, 1) = (1, 1) /∈ Z
2
o.

It will be useful in the sequel to obtain an estimate on the number of the lattice
points contained in mQ, m ∈ N for Q lattice convex polygon. For this, we first recall
a fundamental result for counting the lattice points in Q.

Theorem 11 (Pick’s Theorem, Pick 1899) Let � be any lattice in R
2, let I ⊂ � be a

finite set and Q = conv(I). Then,

#(Q ∩�) = 1

|det(�)| |Q| +
1

2
#(∂Q ∩�)+ 1, (2.7)

where |Q| is the area of Q and ∂Q its topological boundary.

A non-trivial problem in discrete geometry is the comparison between the set of the
lattice points contained in the homothetic copy mQ of a convex lattice polyhedron Q

with them-foldMinkowski sum (Q∩Zn)[m],n ≥ 2 (see, e.g., Lindner andRoch 2011).
It will be sufficient for our purposes here tomention that in the two-dimensional setting
the two lattice sets coincide (see Lindner and Roch 2011, Corollary 2.4). Moreover,
an inspection of the proof reveals that the result still holds if we replace Z2 with any
two-dimensional lattice �.

Proposition 12 Let � be any lattice in R
2, let I ⊂ � be a finite set and Q = conv(I)

be two-dimensional. Then, the equality

(Q ∩�)[m] = (mQ) ∩� (2.8)

holds for every m ∈ N.

Now, in view of Proposition 12 and by iterating formula (2.7), Pick’s theorem
generalizes to mQ, m ≥ 1, as

#((mQ) ∩�) = 1

|det(�)| |Q|m
2 + 1

2
#(∂Q ∩�)m + 1 . (2.9)

2.4 Submodularity and Absolute Norms

We briefly recall the concept of submodularity which is well known in discrete convex
analysis (see, e.g., Murota 2003, Ch. 2, eq. (2.17)). Setting R

2+ := {x = (x1, x2) ∈
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R
2 | x1, x2 ≥ 0}, for every x, y ∈ R

2 we define

x ∨ y := (max{x1, y1},max{x2, y2}) and x ∧ y := (min{x1, y1},min{x2, y2}) .

A function f : R2+ → R is said to be submodular if it satisfies the following inequality

f (x ∨ y)+ f (x ∧ y) ≤ f (x)+ f (y), for every x, y ∈ R
2+ . (2.10)

It is known (seeMarinacci andMontrucchio 2008, Proposition 5) that every positively
homogeneous function defined in the cone R2+ is subadditive if and only if it is sub-
modular. In particular, this yields that every absolute norm ϕ (i.e., ϕ(x) depends only
on |x1| and |x2|) complies with (2.10). We recall that an absolute norm is monotonic:

|x1| ≤ |y1| and |x2| ≤ |y2| imply ϕ(x) ≤ ϕ(y) . (2.11)

3 Setting of the Problem

We will deal with negative discrete perimeters; that is, the Euclidean perimeter func-
tional (with negative sign) restricted toDε relaxed to the space X. Namely, we define
the functionals Fε : X→ (−∞,+∞] as

Fε(E) =
{
−H1(∂E) E ∈ Dε

+∞ otherwise.
(3.1)

Note that these energies are related to the corresponding interaction energies defined
on lattice sets

F lat
ε (I) = − ε #

{
(i, j) ∈ εZ2 × εZ2 | i ∈ I, j /∈ I, |i− j| = ε

}
,

where I ⊂ εZ2, and F lat
ε (Zε(E)) = Fε(E). The functionals Fε, in turn, may be seen

as nearest-neighbor (NN) antiferromagnetic interaction energies associated to a lattice
spin system; i.e., given u : εZ2 → {−1, 1}, one defines

Eε(u) = −ε

4

∑

i,j∈εZ2

|i−j|=ε

(u(i)− u(j))2,

whence Fε(E({u = 1})) = Eε(u). The asymptotic behavior as ε → 0 of energies
like Fε has been studied, e.g., in Alicandro et al. (2006).

Let ϕ : R2 → [0,+∞) be a norm. For every pair of lattice sets E, E ′ ∈ Dε, we
define the dissipations

Dϕ
ε (E, E ′) = ε2

∑
i∈Zε(E)�Zε(E ′)

dϕ
ε (i, ∂Zε(E

′)), (3.2)
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where, given I ⊂ εZ2, dϕ
ε denotes the discrete distance of any lattice point i ∈ εZ2 to

∂I defined as

dϕ
ε (i, ∂I) =

{
inf{ϕ(i− j) | j ∈ I} if i /∈ I

inf{ϕ(i− j) | j ∈ εZ2 \ I} if i ∈ I.

Remark 13 In the sequel, the following integral formulation of the dissipation (3.2)
will be useful. Indeed, for every E ′ ∈ X we set dϕ

ε (i, ∂E ′) = dϕ
ε

(
i, ∂(E ′ ∩ εZ2)

)
.

Furthermore, we can extend dϕ
ε (·, ∂E ′) to R

2 by setting dϕ
ε (x, ∂E ′) := dϕ

ε (i, ∂E ′)
for x ∈ qε(i). Thus, for every E, E ′ ∈ X, let Eε, E ′ε ∈ Dε be the corresponding
discretizations; i.e., Zε(Eε) = E ∩ εZ2 and the same for E ′ε, we may write

∫

E�E ′
dϕ
ε (x, ∂E ′) dx = ε2

∑
i∈Zε(Eε)�Zε(E ′ε)

dϕ
ε (i, ∂E ′ε) = Dϕ

ε (Eε, E
′
ε).

We will consider the dissipation in (3.2) as defined on every pair of sets of finite
perimeter; i.e., Dϕ

ε : X× X→ [0+∞].

3.1 The Time-Discrete Minimization Schemewith aMonotonicity Constraint

For any ε > 0 and τ > 0, let Fε and Dϕ
ε be defined as in (3.1) and (3.2), respectively.

We introduce a discrete motion with underlying time step τ obtained by successive
minimization. At each time step, we will minimize an energy F

ϕ
ε,τ : X × X →

(−∞,+∞] defined as

Fϕ
ε,τ (E, F) = εFε(E)+ 1

τ
Dϕ

ε (E, F) , (3.3)

with a monotonicity constraint on the discrete trajectories. Namely, we recursively
define an increasing (with respect to inclusion) sequence Ek

ε,τ in Dε by requiring the
following:

⎧
⎨
⎩
E0

ε,τ = qε,

Ek+1
ε,τ ∈ argmin

E∈Dε, E⊃Ek
ε,τ

F
ϕ
ε,τ (E, Ek

ε,τ ), k ≥ 0. (3.4)

In some cases, we will also analyze solutions of the corresponding unconstrained
scheme; that is,

⎧⎨
⎩
E0

ε,τ = qε,

Ek+1
ε,τ ∈ argmin

E∈Dε

F
ϕ
ε,τ (E, Ek

ε,τ ), k ≥ 0, (3.5)
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in which the minimization problems are performed over the whole class Dε. The
discrete orbits associated with functionals Fϕ

ε,τ are thus defined by

Eε,τ (t) := E�t/τ�ε,τ , t > 0. (3.6)

We say that a curve E : [0,+∞) → X is a minimizing movement for the problem
(3.4) or (3.5) at regime τ -ε if it is pointwise limit (in the Hausdorff topology) of
discrete orbits Eε,τ , as ε, τ → 0 up to subsequences.

Remark 14 (choice of scaling) The scale ε in the energies εFε above is suggested
by energetic considerations (see Braides and Scilla 2013b, (6)–(7)) and leads to a
non-trivial limit of the discrete solutions defined in (3.6). This choice is motivated by
the fact that εFε has a non-trivial �-limit, as we will show in Sect. 4.1. The energy
scaling may also be seen as a time scaling of the discrete flow generated by taking the
relaxation on Dε of the energy functional −H1 (see Braides 2013, Section 10.2).

4 Fast Convergences and the Emergence of a Critical Regime

As remarked in (Braides 2013, Ch. 8), minimizing movements along families of func-
tionals will depend in general on the regime τ–ε; in our case, on the ratio between the
two parameters τ and ε that characterizes the motion. We first provide the following
result that ensures a compactness property of the minimizers of the energies Fϕ

ε,τ . In
this section, ϕ denotes a general norm, without any restriction.

Lemma 15 Let Fε and Dϕ
ε be defined as in (3.1) and (3.2), respectively, and F

ϕ
ε,τ be

as in (3.3). Let E ′ ∈ Dε be an admissible set. For every fixed τ > 0, consider

Eε,τ ∈ argmin
E∈X

Fϕ
ε,τ (E, E ′) .

Then, Zε(Eε,τ ) ⊂ E ′ + Bϕ
4τ and dH

(
Eε,τ , E ′ + Bϕ

4τ

)
< 3

√
2ε for ε small enough.

Proof For any E ∈ Dε, the variation of the energy F
ϕ
ε,τ when removing a square of

center i ∈ εZ2 is

Fϕ
ε,τ (E, E ′)− Fϕ

ε,τ (E \ qε(i), E ′) ≤ 4ε2 − ε2

τ
dϕ
ε (i, ∂E ′)

which is strictly negative when dϕ
ε (i, ∂E ′) > 4τ , thus implying that Zε(Eε,τ ) ⊂

E ′ + Bϕ
4τ . Furthermore, since it is always convenient to add an isolated square qε(j), if

j ∈ Zε(E ′+Bϕ
4τ ), then for every j ∈ 3εZ2∩E ′+Bϕ

4τ wemust have Eε,τ ∩q3ε(j) �= ∅;
otherwise, Fϕ

ε,τ (Eε,τ ∪ qε(j), E ′) < F
ϕ
ε,τ (Eε,τ , E ′). ��

Remark 16 The regime τ/ε → 0 is completely characterized by the previous lemma.
Indeed, in this case, when τ and ε are small enough, B4τ ∩ εZ2 = {(0, 0)} and the
minimizing movement is trivially E(t) ≡ {(0, 0)}. This degenerate evolution is called
a pinnedmotion.Wewill focus on suchmotions in Sect. 6, wherewewill also introduce
a “pinning threshold.”
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Fig. 6 On the left the set Eε , on the right we exhibit a set Eδ
ε satisfying (i) and (ii)

4.1 0-Convergence of Interaction Energies

This section is devoted to the study of the asymptotic behavior of energies εFε. To
this end, we associate with any admissible set E ∈ Dε the corresponding charac-
teristic function χE ∈ L∞(R2) and compute the �-limit with respect to the local
weak∗-topology.We then generalize energies in (3.1) by considering Fε : L∞(R2) →
(−∞,+∞] as

Fε(u) =
{
Fε(E) u = χE , E ∈ Dε

+∞ otherwise,
(4.1)

with a slight abuse of notation.

Theorem 17 Let Fε be defined as in (4.1), and set Gε := εFε. Then, Gε �-converge
as ε → 0 to the energy

G(u) =
⎧⎨
⎩
4

∫

R2

(∣∣∣u(x)− 1

2

∣∣∣− 1

2

)
dx u ∈ L∞(R2; [0, 1])

+∞ otherwise,

with respect to the local weak∗-topology.

Proof It will suffice to prove the result for u ∈ L∞(R2; [0, 1]); otherwise, the assertion
is trivial. We can assume, without loss of generality, that u has compact support, and
let Eε ∈ Dε be a sequence of sets such that χEε locally weakly-∗ converge to u.

We now provide a rearrangement of the centers of Eε which is energy decreasing.
Let δ > 0 be fixed.We consider the lattice δZ2 and sets Eδ

ε ∈ Dε satisfying #(Zε(Eδ
ε )∩

qδ(i)) = #(Zε(Eε) ∩ qδ(i)) and with the following properties:

(i) if ε2#(Zε(Eε) ∩ qδ(i)) ≤ δ2/2, then Zε(Eδ
ε ∩ qδ(i)) ⊂ εZ2

e ,
(ii) if ε2#(Zε(Eε) ∩ qδ(i)) > δ2/2, then Zε(Eδ

ε ∩ qδ(i)) ⊃ εZ2
e ∩ qδ(i),

for every i ∈ δZ2 (see Fig. 6).
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Now, for every E ∈ Dε and F ∈ X we define

Fε(E; F) = Fε(E ∩ E(εZ2 ∩ F)) ,

and analogously Gε(E; F). In both cases (i) and (ii), we have Fε(Eε; qδ(i)) ≥
Fε(Eδ

ε ; qδ(i)). Since the contribution of the interaction between two adjacent δ-squares
qδ(i) and qδ(j) is less than 2δε and the number of δ-squares whose intersection with
supp(u) �= ∅ is proportional to 1/δ2, we get

Gε(Eε) ≥ Gε(E
δ
ε )− C

ε

δ

for some positive constantC . Now, from the convergence ofχEε to u, for every i ∈ δZ2

we get

Gε(E
δ
ε ; qδ(i))+ O(ε) = −4|Eε ∩ qδ(i)| + O(ε) = −4

∫

qδ(i)
u(x) dx := uδ(i) ,

(4.2)

Gε(E
δ
ε ; qδ(i))+ O(ε) = −4|qδ(i) \ Eε| + O(ε) = −4

∫

qδ(i)
(1− u(x)) dx := uδ(i)

(4.3)

in cases (i) and (ii), respectively. After identifying uδ with its piecewise-constant
interpolation, taking the limit as ε → 0 first, we get

lim inf
ε→0

Gε(Eε) ≥
∫

R2
uδ(x) dx ,

and then taking the limit as δ → 0 we obtain the liminf inequality.
The construction of a recovery sequence follows an analogous argument. Let u ∈

L∞(R2; [0, 1]) have a compact support. Consider the lattice
√

εZ2, and define

uε(i) = 1

ε

∫

q√ε(i)
u(x) dx , for every i ∈ √εZ2.

As a recovery sequence, we will choose Eε having the same mean (unless a small
error) of u in every

√
ε-square with maximal perimeter term. Indeed, we can take a

set Eε ∈ Dε satisfying #
(
Zε(Eε) ∩ q√ε(i)

) = �uε(i)/ε� and such that:

(i) if uε(i) ≤ 1/2, then Zε(Eε) ∩ q√ε(i) ⊂ εZ2
e ;

(ii) if uε(i) > 1/2, then Zε(Eε) ∩ q√ε(i) ⊃ εZ2
e ∩ q√ε(i).

Then, χEε weakly-
∗ converge to u and

Gε(Eε; q√ε(i))+ O(ε) =

⎧
⎪⎪⎨
⎪⎪⎩

−4
∫

q√ε(i)
u(x)dx if uε(i) ≤ 1

2

−4
∫

q√ε(i)
(1− u(x))dx if uε(i) > 1

2

123



97 Page 18 of 63 Journal of Nonlinear Science (2021) 31 :97

for every i ∈ √εZ2, which proves that χEε is a recovery sequence and concludes the
proof. ��
Remark 18 Note that in the proof of Theorem 17, we have exhibited a recovery
sequence whose supports Eε also converges to E = supp(u) in the Hausdorff sense.
This remark allows us to reduce the computation of the �-limit of Gε to functions
weakly-∗ converging to u having supports in Dε converging to E with respect to the
Hausdorff distance.

Remark 19 (�-limit on characteristic functions) An immediate consequence of Theo-
rem 17 is that, among all the functions having the same support E , the ground state of
the energy G is achieved by the simple function 1

2 χE . In particular, since any family
of sets {Eε} converging in the Hausdorff sense to E are such that χEε is weakly-∗
compact, from Theorem 17 we infer that

�(dH)- lim
ε→0

Gε(E) = −2|E |,

once noted that the recovery sequences are ε-checkerboard sets.

4.2 Convergence of theMinimizing-Movement Scheme

We prove that when ε/τ → 0, every minimizing movement of scheme (3.5) may be
seen as the solution of a continuum problem having a gradient-flow structure with
respect to the limit energy. In this regime, the monotonicity constraint is not needed
to obtain a completely characterized limit motion. A straightforward consequence is
that the solution of the unconstrained problem corresponds to that of the monotone
scheme (3.4).

Theorem 20 Let Fε, D
ϕ
ε and F

ϕ
ε,τ be as in (3.1), (3.2) and (3.3), respectively. Then,

there exists a uniqueminimizingmovement of the unconstrained scheme (3.5) at regime
ε/τ → 0 and it satisfies

E(t) = Bϕ
4t , t ≥ 0.

Moreover, for every discrete solution Eε,τ of (3.5) we have χEε,τ (t)
∗
⇀ 1

2χBϕ
4t
for all

t ≥ 0 as ε → 0.

Proof Thefirst claim is a direct consequenceofLemma15. Indeed,dH(Eε,τ (t), B4�t/τ�)
< C�t/τ�ε, which goes to zero locally uniformly at regimes ε/τ → 0. In an analogous
way as for (4.1), we further generalize the dissipations in Remark 13 as functionals
Dϕ

ε : L∞(R2)× X→ [0,+∞] defined by

Dϕ
ε (u, E ′) =

{
Dϕ

ε (E, E ′) u = χE , E ∈ Dε

+∞ otherwise.
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Accordingly, we write Fϕ
ε,τ (u, E ′) = εFε(u) + 1

τ
Dϕ

ε (u, E ′) for every u ∈ L∞(R2)

with Fε as in (4.1). Since for every sequence {Eε} ⊂ Dε such that χEε weakly-∗
converge to u we have

Dϕ
ε (Eε, qε) →

∫

R2
u(x)ϕ(x) dx,

then Theorem 17 yields that Fϕ
ε,τ �-converge, as ε → 0, to the functional Fϕ

τ given
by

Fϕ
τ (u) :=

∫

R2

(
|4u(x)− 2| − 2+ 1

τ
u(x)ϕ(x)

)
dx, (4.4)

with respect to the weak-∗ topology. Energy Fϕ has a unique minimizer in
L∞(R2; [0, 1]), given by u = 1

2 χBϕ
4τ
. Indeed,

∫

R2

(
|4u(x)− 2| − 2+ 1

τ
u(x)ϕ(x)

)
dx =

∫

{u≤1/2}

(ϕ(x)
τ

− 4
)
u(x) dx

+
∫

{u>1/2}

(
4u(x)− 4+ ϕ(x)

τ
u(x)

)
dx.

Both integrands are positive for almost every x such thatϕ(x) > 4τ , and areminimized
when u ≡ 1/2. Then, since �-convergence implies the convergence of minimum
problems (see, for instance, Braides 2002, Theorem 1.21) and the minimum is unique,
we get thatχE1

ε,τ
weakly-∗ converges to u1τ = 1

2χBϕ
4τ
as ε → 0. Note also that, by virtue

of Lemma 15, E1
ε,τ → Bϕ

4τ in the Hausdorff sense and moreover by the minimality of
E1

ε,τ and Remark 13 follows that

εFε(E
1
ε,τ ) ≤ εFε(Eε)+ 1

τ

(
Dϕ

ε (Eε, qε)− Dϕ
ε (E1

ε,τ , qε)
)

≤ εFε(Eε)+ 1

τ

∫

R2

(
χEε (x)− χE1

ε,τ
(x)

)(
ϕ(x)+ ε

)
dx

≤ εFε(Eε)+ o(1),

(4.5)

for every χEε weakly
∗ converging to u1τ .

Now,we show the�-convergence ofFε,τ (·, E1
ε,τ ), whichwill allow us to deduce the

convergence of the whole scheme by an inductive procedure. Consider Eε ∈ Dε such
that χEε are converging weakly-∗ to some u ∈ L∞(R2). Mimicking the arguments
of the proof of Theorem 17, we consider E ′ε ∈ Dε satisfying #(Zε(E ′ε) ∩ q√ε(i)) =
#(Zε(Eε) ∩ q√ε(i)) and such that:

(i) if #(Zε(Eε)∩q√ε(i)) ≤ #
(
Zε(E1

ε,τ )∩q√ε(i)
)
, then Zε(E ′ε∩q√ε(i)) ⊂ Zε(E1

ε,τ ),
(ii) if #(Zε(Eε)∩q√ε(i)) > #

(
Zε(E1

ε,τ )∩q√ε(i)
)
, then Zε(E ′ε∩q√ε(i)) ⊃ Zε(E1

ε,τ )∩
q√ε(i),
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for every i ∈ √εZ2∩Bϕ
4τ , and Zε(E ′ε)\Bϕ

4τ = Zε(Eε)\Bϕ
4τ . Reasoning as in the proof

of Theorem 17 and from (4.5),χE ′ε still weakly-
∗ converges to u and εFε(Eε)+o(1) ≥

εFε(E ′ε). Then, we get

Fϕ
ε,τ (Eε, E

1
ε,τ )+ o(1) ≥ Fϕ

ε,τ (E
′
ε, E

1
ε,τ )

= εFε(E
′
ε)+

1

τ
Dϕ

ε (Eε \ Bϕ
4τ , E

1
ε,τ )

+ 1

τ

∑

i∈√εZ2∩Bϕ
4τ

Dϕ
ε (E ′ε ∩ q√ε(i), E

1
ε,τ ).

Since Dϕ
ε (E ′ε∩q√ε(i), E

1
ε,τ ) = Cε3|#Zε(Eε)−#Zε(E1

ε,τ )|+O(ε2) and dϕ
ε (x, ∂E1

ε,τ )

converge uniformly to dϕ(x, Bϕ
4τ ) for every x /∈ E1

τ , we get that

�- lim
ε→0

Fϕ
ε,τ (u, E1

ε,τ ) =
∫

R2

(
|4u(x)− 2| − 2+ 1

τ
u(x)dϕ(x, Bϕ

4τ )
)
dx, (4.6)

since the same argument applies to every recovery sequence Eε. By arguing as above,
we get χE2

ε,τ
converge to 1/2χBϕ

8τ
and by induction the result follows. ��

Arguing as in the proof of Theorem 20, we obtain the following result.

Corollary 21 Let Fε, D
ϕ
ε and F

ϕ
ε,τ be defined as in (3.1)–(3.3). Then, there exists a

unique minimizing movement of scheme (3.4) at regime ε/τ → 0 and it satisfies
E(t) = Bϕ

4t for t ≥ 0. Moreover, for every discrete solution Eε,τ of (3.4) we have

χEε,τ (t)
∗
⇀ 1

2χBϕ
4t
for t ≥ 0 as ε → 0.

Remark 22 Arguing as in Remark 19, for any E ′ ∈ X and every E ′ε converging to E ′
in dH such that εF(E ′ε) →−2|E ′| we get, from (4.6), that

�(dH)- lim
ε→0

Fϕ
ε,τ (E, E ′ε) = Fϕ

τ (E, E ′) := −2|E | + 1

2τ

∫

E�E ′
dϕ(x, E ′)dx .

Note that the minima of Fϕ
τ (·, E ′) are solutions of

(
− 2+ 1

2τ
dϕ(x, E ′)

)
νE (x)H1 ∂E = 0;

that is, E ∈ X such that dϕ(x, E ′) ≡ 4τ forH1-almost every x ∈ ∂E . This gives that
the limit scheme

⎧⎨
⎩
E0

τ = {(0, 0)},
Ek+1

τ ∈ argmin
E∈X

F
ϕ
τ (E, Ek

τ ) (4.7)

is solved by Ek
τ = Bϕ

4kτ . Hence, by Theorem 20 and Corollary 21 the minimizing
movements of schemes (3.4) and (3.5) at regimes ε/τ → 0 are solutions of limit
scheme (4.7).
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5 The Critical Regime: AMicroscopic Checkerboard Structure

So far, we have shown that scheme (3.4) is completely characterized in the regimes
τ/ε → 0 (Remark 16) and ε/τ → 0 (Remark 22). Throughout this section, we will
study the regimes where ε/τ has a nonzero finite limit, which turn out to be richer of
features than the others.

Without loss of generality, we consider only the case ε = ατ , where α > 0 is a
positive constant. Themain goal is to determine any solution to the iterative variational
scheme (3.4). Within this regime, instead of solving a family of schemes depending
on ε, by a rescaling argument we can solve one minimization scheme in the unique
environment Z2. Indeed, for every E, F ∈ Dε, the energies defined in (3.3) can be
rewritten as

Fϕ
ε,τ (E, F) = −εH1(∂E)+ 1

τ
Dϕ

ε (E, F) = −εH1(E)+ ε2

τ

∑
i∈Zε(E)�Zε(F)

dϕ
ε (i, ∂F)

= ε
(
−H1(∂E)+ α

∑
i∈Zε(E)�Zε(F)

dϕ
ε (i, ∂F)

)
= ε2Fϕ

α

(1
ε
E,

1

ε
F

)
,

where we have defined F
ϕ
α : D×D→ R as

Fϕ
α(E ′, F ′) = −H1(∂E ′)+ α

∑
i∈Z(E ′)�Z(F ′)

dϕ(i, ∂F ′). (5.1)

Thus, the solutions of (3.4) are Ek
ε,τ = εEk

α for every ε > 0, k ∈ N, where {Ek
α}

solves the scaled scheme

⎧⎨
⎩
E0

α = q,

Ek+1
α ∈ argmin

E∈D, E⊃Ek
α

Fα(E, Ek
α), k ≥ 0. (5.2)

We will prove that scheme (5.2) has a unique solution {Ek
α} whenever α is outside

a countable set (see Remark 24). If α is greater than a threshold value α̃ > 0, the
corresponding solution is trivially Ek

α ≡ q, and we will say that the motion is pinned.
If instead α is below the pinning threshold (see Definition 40), the solutions {Ek

α} have
a checkerboard structure; that is, Ek

α ∈ Ae for every k ∈ N, and they are obtained by
the iterative formula

Z(Ek+1
α ) = Z(Ek

α)+ Z(E1
α), for every k ∈ N, k ≥ 1.

Wecall this process nucleation from the origin, and the lattice set Z(E1
α), whichwe call

the nucleus of the process, completely characterizes the motion. The limit evolution
will be a motion of expanding polygons with constant velocity; both the velocity and
the shape of the limit sets will be a discretization (depending on α) of those of the
minimizing movement of (3.4) at regime ε/τ → 0 studied in Sect. 4. This result will
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be proven under a technical assumption on the “convexity” of the nucleus Z(E1
α) (cf.

(5.13)) which will allow us to use a localization method to solve any minimization
problem of the scheme (5.2).

The following result is a rereading of Lemma 15 in the scaled setting. We note that,
as for Lemma 15, the following result holds for every norm.

Lemma 23 Let Fϕ
α : D ×D → R be as in (5.1), where D is defined as in (2.1) with

ε = 1. Then, for any given E ′ ∈ D it holds that

Fϕ
α

(
E(I), E ′

) ≤ Fϕ
α(E, E ′), where I =

{
i ∈ Z(E) : dϕ(i, ∂E ′) ≤ 4

α

}

for every E ∈ D. In particular, for every {Ek
α} discrete solution of the scheme (5.2),

there holds

Z(Ek+1
α ) ⊂

{
i ∈ Z

2 : dϕ(i, ∂Ek
α) ≤ 4

α

}
, for every k ∈ N. (5.3)

Proof The result immediately follows from the fact that for every E ′ ∈ D, the variation
of adding an isolated square to any E ∈ D is F

ϕ
α(E ∪ q(i), E ′) − F

ϕ
α(E, E ′) =

−4+ αdϕ(i, ∂E ′). ��
Remark 24 (Non-uniqueness) Note that for every i ∈ Z

2 such that dϕ(i, ∂Ek
α) = 4

α
(if

any), the energy contribution of the square q(i) is zero; that is,

Fϕ
α(Ek+1

α ∪ q(i), Ek
α) = Fϕ

α(Ek+1
α \ q(i), Ek

α).

Therefore, in this case, there is non-uniqueness of solutions for the problem (5.2).
Note that if ϕ(x) = 4

α
has no integer solutions, then, by the periodicity ofZ2, the same

holds true for equation dϕ(x, ∂E) = 4
α
for every E ∈ D. This in particular implies

that the kth minimization problem of the scheme (5.2) has non-unique solution if and
only if the first minimization problem has non-unique solution.

With the previous remark in mind, we define the singular set �ϕ as

�ϕ :=
{ 4

ϕ(i)
: i ∈ Z

2
e \ {(0, 0)}

}
. (5.4)

Note that the set �ϕ is countable and has a unique accumulation point in 0.

Example 25 We take ϕ as the �∞-norm and choose α = 4, so that α ∈ �ϕ as defined in
(5.4). In this case, the set of lattice points having zero energy is {i ∈ Z

2 : ‖i‖∞ = 1}.
This yields that Fϕ

α(q, q) = F
ϕ
α(E, q) = −4 for every admissible set E ⊂ q ∪ {q(i) :

|i1| = |i2| = 1}which implies that the minimum of the first step of (5.2) is not unique.
As already noted in Remark 24, the same situation arises at each minimization step of
the scheme (5.2).
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Fig. 7 Examples of 2 × 2 squares of the covering. On the left the case j1, j2 > 0, on the right j1 > 0,
j2 < 0

Without entering into the details, we may check that every parametrized family
E : [0,+∞) → X of connected sets satisfying

E(0) = {(0, 0)}, E(t) ⊂ E(s) for every t < s, ‖v⊥(t)‖∞ ≤ 4 for every t ≥ 0,

(5.5)

is a minimizing movement, where v⊥ denotes the normal velocity of ∂E(t). Indeed,
for every fixed t > 0, from (5.5) we have E(t) ⊆ [−4t, 4t]2, since E(t) is connected.
Then, for any τ > 0 define

Ek
ε,τ := E(E(kτ) ∩ εZ2

e).

Since E(kτ) ⊆ [−4kτ, 4kτ ]2 = [−kε, kε]2, Ek
τ,ε can be obtained by solving the

first k steps of (3.4). The corresponding discrete solutions Eε,τ (t) converge to E(t)
as ε, τ → 0 in the Hausdorff sense for every t > 0, whence E(t) is a minimizing
movement.

5.1 A Localization Argument: The 2× 2-Square Tiling

In order to determine the optimal structure of a minimizer, we will argue locally by
defining the following covering of admissible sets.

Definition 26 (2 × 2-square coverings) For every j = ( j1, j2) ∈ Z
2, we define the

vectors e1j = (sgn( j1), 0), e2j = (0, sgn( j2)), e3j = e1j + e2j and, correspondingly, the
2× 2 square (see Fig. 7)

Q(j) := q(j) ∪
3⋃

k=1
q(j+ ekj ) . (5.6)

Let E ∈ D be an admissible set. Then, we define the family of sets

Se(E) := {
Q(j) : j ∈ Z

2
e with j1, j2 odd, Q(j) ∩ E �= ∅}, (5.7)
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Fig. 8 The picture clarifies the
2× 2-square covering for a set
E , whose boundary is marked
by a bold black line. The darker
2× 2 squares are in Sce(E), the
lighter ones in Sbe (E). The areas
in white are those left uncovered

which is a covering of non-overlapping squares of E \C0, whereC0 := ⋃{q(i) | i1i2 =
0} (see Fig. 8). We can subdivide the squares of Se(E) in those contained in E and
those that are not, defining the partition Se(E) = Sbe(E) ∪ Sce(E) where Sce(E) =
{Q(j) ∈ Se(E) | Q(j) ⊆ E} and Sbe(E) = {Q(j) ∈ Se(E) | Q(j) ∩ Ec �= ∅}.

5.2 Choice of the Dissipation Term

We restrict our analysis to dissipations (3.2) induced by an absolute norm ϕ; i.e., ϕ(x)
depends only on |x1| and |x2|, with the additional assumptions

(H1) ϕ is symmetric (or permutation invariant); that is, ϕ(x1, x2) = ϕ(x2, x1) for
every x ∈ R

2;
(H2) ϕ complies with the normalization condition ϕ(1, 0) = ϕ(0, 1) = 1.

We refer to an absolute normwith these properties as a symmetric absolute normalized
norm. The �p-norms, 1 ≤ p ≤ ∞, are examples of such norms. This choice is of course
motivated by the symmetry properties of the corresponding unit balls, which simplify
the computations and the arguments of the proofs. Moreover, as remarked in Sect. 2.4
an absolute norm is a submodular function on R

2+, a property that will be crucial in
the sequel as it will allow to reduce the main minimization problem to a finite number
of local minimization problems, taking into account four-point interactions. Indeed,
we can infer from (2.10) a submodularity-type inequality involving only the norms of
the four lattice points contained in any of the 2 × 2 squares of the coverings defined
above. Namely,

ϕ(i)+ ϕ(i+ e3i ) ≤ ϕ(i+ e1i )+ ϕ(i+ e2i ), (5.8)

for every i ∈ Z
2.
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Fig. 9 Clusters of two or three lattice points are “locally” not energetically convenient

5.3 The First Step of the Evolution: Checkerboards Nucleating from a Point

With the covering argument of Sect. 5.1 and the key norm inequality (5.8) at hand,
we are now in position to give the explicit characterization of the first step E1

α of the
discrete evolution, showing that it is an even checkerboard. A local analysis by means
of the 2× 2-square tilings will allow us to prove, with Proposition 27, that the set of
centers of E1

α coincides with the discretization of the ball B 4
α
on the even lattice Z2

e .
We stress the generality of the following result, which only requires ϕ to be an absolute
norm without any additional assumption; in particular, we do not assume (H1) and
(H2).

Proposition 27 Let ϕ be an absolute norm, let α > 0 be such that α /∈ �ϕ , and let
F

ϕ
α be as in (5.1). Then, the first minimization problem of scheme (5.2) has a unique

solution

E1
α = argmin

E∈D, E⊃q
Fϕ

α(E, q)

and it satisfies

E1
α = E(Z2

e ∩ Bϕ
4
α

) . (5.9)

In particular, E1
α ∈ Ae

conv.

Proof The argument does not require the normalization assumption (H2); we then set

ϕmax := max{ϕ(1, 0), ϕ(0, 1)}, ϕmin := min{ϕ(1, 0), ϕ(0, 1)},

and we assume, without loss of generality, that ϕmax = ϕ(1, 0). Note that 4
ϕmin

, 4
ϕmax

∈
�ϕ .

If α > 4
ϕmin

, we get E1
α = q since Fϕ

α(q(i), q) > 0 for every i ∈ Z
2 \ {(0, 0)} and

(5.9) trivially holds. If 4
ϕmax

< α < 4
ϕmin

, we get that for any i = (i1, i2) with i1 �= 0,

there holds Fϕ
α(q(i), q) > 0, thus Z(E1

α) ⊂ {0} × Z.
Let E ∈ D be a competitor such that Z(E) ⊂ {0}×Z. If i ∈ Z(E)\{(0, 0)} has two

nearest-neighbors, removing q(i) leaves the total perimeter unchanged but decreases
the dissipation (see Fig. 9). If instead i has only one nearest-neighbor i′ �= (0, 0) and
if |i2| < |i ′2|, then shifting q(i) toward the origin does not decrease the perimeter
but reduces the dissipation; if instead |i2| > |i ′2|, the same holds shifting q(i′) (see
Fig. 9). Hence, we may restrict our analysis to the two configurations E

(
Z
2
e ∩ Bϕ

4
α

)

and E
(
Z
2
o ∩ Bϕ

4
α

) ∪ q. A comparison between the two energy contributions yields
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Fig. 10 It is convenient to
remove q(i) if i has two
nearest-neighbors

that the variation from the odd checkerboard to the even one is less than 0; thus,
E1

α = E
(
Z
2
e ∩ Bϕ

4
α

)
.

Now, let α < 4
ϕmax

. We consider the covering described in Definition 26. First, we
note that the energy of every admissible set E complies with the estimate

Fϕ
α(E, q) ≥

∑

Q(j)∈Se(R2)

Fϕ
α(E ∩ Q(j), q)+ Fϕ

α(E ∩ C0, q) , (5.10)

the equality holding if and only if {E ∩ Q(j)} and E ∩C0 are non-overlapping; this is
the case of sets E having a checkerboard structure. Inequality (5.10) corresponds to
localizing the energy, neglecting interactions between neighboring squares.

FromLemma23,we can reduce our analysis to admissible sets contained in Eα,ϕ :=
Z
2 ∩ Bϕ

4
α

and inequality (5.10) holds restricting the sum to every Q(j) ∈ Se(Eα,ϕ)

since Fϕ
α(q(j), q) > 0 for every ϕ(j) > 4

α
. We will prove that

min
E∈D, E⊃q

Fϕ
α(E ∩ Q(j), q) = Fϕ

α(E(Z2
e ∩ Bϕ

4
α

)) ∩ Q(j), q)

min
E∈D, E⊃q

Fϕ
α(E ∩ C0, q) = Fϕ

α(E(Z2
e ∩ Bϕ

4
α

) ∩ C0, q)
(5.11)

for every Q(j) ∈ Se(Eα,ϕ); that is, the optimal structure is an even checkerboard set in
each of the following cases: (a) inside Q(j) ∈ Sce(Eα,ϕ); (b) inside Q(j) ∈ Sbe(Eα,ϕ);
(c) on Eα,ϕ ∩C0. In the sequel, E will denote a general competitor E ∈ D, E ⊂ Eα,ϕ .

(a) Consider Q(j) ∈ Sce(Eα,ϕ) and let q(i) ⊂ Q(j) ∩ E . Note that the class Sce(E)

is not empty if and only if α <
ϕmax
2 . Moreover, since adding an isolated square in

Q(j) is always energetically convenient, we can restrict to configurations of Q(j) ∩
E consisting of exactly two squares q(i′) and q(i′′) (see Fig. 10). Now, if q(i′) ∪
q(i′′) has no checkerboard structure; that is, i′ and i′′ are nearest-neighbors, both
the checkerboard configurations E ′ and E ′′, containing q(i′) and q(i′′), respectively,
decrease the energy. Indeed, the corresponding variation of the energy is given by

Fϕ
α(E ′, q)− Fϕ

α(q(i′) ∪ q(i′′), q) ≤ −2+ αϕmax,

Fϕ
α(E ′′, q)− Fϕ

α(q(i′) ∪ q(i′′), q) ≤ −2+ αϕmax.

This variation is never positive, since when α > 2
ϕmax

the class Se(Eα,ϕ) is empty.
Thus, any checkerboard configuration inside Q(j) is a competitor with less energy than
E (see Fig. 11). Now,we should compare the energies of the two possible checkerboard
configurations inside Q(j). For this, we note that the variation of the energy in order
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Fig. 11 Any checkerboard configuration inside Q(j) is a competitor with less energy

Fig. 12 The possible cases of Q(j) ∩ Eα,ϕ

to pass from the odd checkerboard configuration q(j+ e1j )∪ q(j+ e2j ) to the even one

q(j) ∪ q(j+ e3j ) is

Fϕ
α(q(j) ∪ q(j+ e3j ), q)− Fϕ

α(q(j+ e1j ) ∪ q(j+ e2j ), q)

= α
(
ϕ(j)+ ϕ(j+ e3j )− ϕ(j+ e1j )− ϕ(j+ e2j )

)
,

which is non-positive by (5.8).
(b) Now, let Q(j) ∈ Sbe(Eα,ϕ). Without loss of generality, we may assume that

j1, j2 > 0, the situation being completely symmetric in the other cases. Inside such a
2× 2 square, we have four possible cases for Q(j) ∩ Eα,ϕ , as pictured in Fig. 12. We
claim that the configuration with minimal energy inside Q(j) is a checkerboard set.
Consider first α > 2

ϕmax
, then i ∈ Bϕ

4
α

if and only if |i1| ≤ 1; thus, the only possible

cases for Q(j) ∩ Eα,ϕ are those labeled by B and D in Fig. 12. Since

Fϕ
α(q(j), q) < Fϕ

α(e2j , q), Fϕ
α(q(j), q)− Fϕ

α(q(j) ∪ q(j+ e2j ), q) = 2− αϕmax < 0

in both cases the optimal configuration is q(j). Consider now α < 2
ϕmax

. Reasoning as
before, we can assume Q(j) ∩ E = q(i′) ∪ q(i′′). In cases B, C and D, if i′ and i′′
were nearest-neighbors, with, e.g., ϕ(i′) > ϕ(i′′), then removing q(i′) would produce
a negative variation; that is,

Fϕ
α(q(i′′), q)− Fϕ

α(q(i′) ∪ q(i′′), q) ≤ 2− αϕ(i′) < 2− α
( 4

α
− ϕmax

)

≤ −2+ αϕmax.

Thus, the minimal configuration is the even checkerboard. For what concerns the case
A, since ϕ(j+ e3j ) > 4

α
, by (5.8), we have that

Fϕ
α(q(j), q) < Fϕ

α(q(j) ∪ q(j+ e3j ), q) ≤ Fϕ
α(q(j+ e1j ) ∪ q(j+ e2j ), q)

which again leads to the result.
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Fig. 13 Optimal configuration for Eα,ϕ ∩ C0

(c) Finally, we consider Eα,ϕ ∩ C0. Reasoning as in the case 4
ϕmax

< α < 4
ϕmin

,
we can restrict our analysis to competitors having a checkerboard structure union q
on the coordinate axes. A comparison between the two energy contributions on each
axis yields that the variation from the odd checkerboard to the even one is less than
0 and equals 0 if and only if α ∈ �. Thus, the minimal configuration is the even
checkerboard (see Fig. 13). With (5.10) and the finite superadditivity of the infimum,
this implies that

min
E∈D, E⊃q

Fϕ
α(E, q)

≥ min
E∈D, E⊃q

( ∑
Q(j)∈Se(Eα,ϕ)

Fϕ
α(E ∩ Q(j), q)+ Fϕ

α(E ∩ C0, q)
)

≥
∑

Q(j)∈Se(Eα,ϕ)

min
E∈D, E⊃q

Fϕ
α(E ∩ Q(j), q)+ min

E∈D, E⊃q
Fϕ

α(E ∩ C0, q)

=
∑

Q(j)∈Se(Eα,ϕ)

Fϕ
α(E(Z2

e ∩ Bϕ
4
α

) ∩ Q(j), q)+ Fϕ
α(E(Z2

e ∩ Bϕ
4
α

) ∩ C0, q)

= Fϕ
α(E(Z2

e ∩ Bϕ
4
α

), q) ,

(5.12)

whence the equality follows, thus concluding the proof. Uniqueness comes from step
(c). ��

Note that the local minimum problems studied in points (a) and (b) in the proof
above might be satisfied also by the odd checkerboard if (5.8) reduces to an equality
(e.g., when ϕ = ‖ · ‖1). Nevertheless, for odd checkerboards the equality in (5.12) no
longer holds and this implies that Eα,ϕ is the unique minimum.

Definition 28 For every α > 0, α /∈ �ϕ , we define the nucleus of the motion given
by the scheme (5.2) as the lattice set

Nϕ
α := Z(E1

α)

where E1
α = argmin

E∈D, E⊃q
F

ϕ
α(E, q), which is well defined by Proposition 27.
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Fig. 14 The black dots represent
the lattice set Z2 ∩ Bϕ

4
α

, while

the set E1
α is pictured in gray

We stress that the assumption on ϕ to be an absolute norm is crucial in order to
obtain the previous structure result of Proposition 27. Indeed, if not fulfilled, the set
E1

α may not be a checkerboard as shown by the following simple example.

Example 29 (Non-checkerboard minimizers) We consider the norm

ϕ(x) = max
{ |3x1 + 2x2|

10
, |3x2 − 2x1|

}
,

and we assume that α ∈ ( 2013 ,
40
21 ). In this case, for every such α, the set Bϕ

4
α

is a

rectangle and

Iϕ,α := Bϕ
4
α

∩ Z
2 = {(0, 0),±(1, 1),±(2, 1),±(3, 2),±(4, 3),±(5, 3)}

(see Fig. 14).We show that the first step of (5.2) E1
α is not a checkerboard set. First note

that the points (0, 0) and±(3, 2) are isolated in Iϕ,α , so their contribution is−4+αϕ(i)
which is always negative, thus Z(E1

α) contains these points. Hence, we are reduced to
study the minimal configurations of the pairs of nearest-neighbors {(1, 1), (2, 1)} and
{(4, 3), (5, 3)}:

Fϕ
α

(
q(1, 1) ∪ q(2, 1), q

) = −6+ 2α < −4+ α = Fϕ
α

(
q(1, 1), q

) = Fϕ
α

(
q(2, 1), q

)

and

Fϕ
α

(
q(4, 3), q

) = −4+ 9

5
α < −6+ α

(9
5
+ 21

10

)
= Fϕ

α

(
q(4, 3) ∪ q(5, 3), q

)

< −4+ α
21

10
= Fϕ

α

(
q(5, 3), q

)
.

The same holds for {(−1,−1), (−2,−1)} and {(−4,−3), (−5,−3)}, and this gives
that

E1
α = E(Iϕ,α\{±(5, 3)})
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which is not a checkerboard (see Fig. 14).

We conclude noting that if we renounce to the monotonicity constraint E ⊃ q, the
minimization problem above may admit, for suitable values of α, also a checkerboard
solution E1

α of odd parity. In order not to distract the reader’s attention from the
monotone case, we prefer to postpone this generalization of Proposition 27 to Sect. 6.2
(see Proposition 48).

5.4 The Structure Result for Non-trivial Initial Datum

Proposition 27 shows that the first step E1
α of discrete scheme (5.2) is a checkerboard

set and that Z(E1
α) is a Z2

e-convex set (see Definition 3). Our aim now is to prove that
an analogous structure result can be obtained for minimizers of the energy F

ϕ
α(·, E),

where ϕ is a symmetric absolute normalized norm (see Sect. 5.2), also for a general
E ∈ Aconv fulfilling suitable assumptions (see (5.13)), and then to iteratively apply it
to E = Ek−1

α for k ≥ 1. The proof of this stability result will rely on a localization
argument only reminiscent of that used in the proof of Proposition 27. Indeed, we
have to face a technical issue: since the dissipation term Dϕ(·, E) does not satisfy a
submodularity inequality analogous to (5.8), the 2×2-square coveringno longerworks.
We will then define suitable coverings “outside” every discrete edge (see Definition
7) of E which mimic the 2× 2-square covering and then match them altogether. For
this, we need the following “convexity” conditions:

(i) on the norm, we assume that

(H3) ϕ(h, h + 1)− ϕ(h, h) ≥ 1
2 , for every h ∈ N;

(ii) on the structure of ∂effE , we require that

θ(ν(�′), ν(�)) < 0 for every �, �′ ∈ E(E) such that � precedes (clockwise) �′ ,
(5.13)

where θ is introduced in Definition 1.
The �p-norms, 1 ≤ p ≤ ∞, are a class of norms complying with (H1)–(H3). We

also note that assumption (H3)will play a role only in Step 5 of the proof of Proposition
30.

In order to avoid some (interesting) pathological phenomena (as a one-dimensional
motion, see Example 37), we assume non-degeneracy conditions on the sets E and on
the minimizer of Fϕ

α(·, E); namely, (H2) and (2.3). Finally, to simplify the exposition,
we assume that

E is symmetric with respect to the axes and the lines x2 = ±x1. (5.14)

We now state the main result of this section.

Proposition 30 Let ϕ be a symmetric absolute normalized norm complying with (H3),
and let α > 0 be such that α /∈ �ϕ . Let E ∈ Ae

conv be a set satisfying (2.3), (5.13) and
(5.14). Then, there exists a unique solution of the minimization problem
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Fig. 15 In red an example of A(�) for � as in (ii) of Remark 8. On the left, lighter dots are outside A(�).
On the right, the projection of the centers of a 2× 2-square on a common point of �

Eα = argmin
E ′⊃E E ′∈D

Fϕ
α(E ′, E) (5.15)

and it satisfies

Z(Eα) =
{
i ∈ Z

2
e : dϕ(i, E) <

4

α

}
. (5.16)

In particular, Eα ∈ Ae
conv.

Before entering in the details of the proof, we premise some remarks.

Remark 31 (Projection of a 2× 2 square) Let E be given as in the statement of Propo-
sition 30. We partition the lattice points of the region of the plane “outside” E into
sets A(�) according to the discrete edge � ∈ E(E) they project onto. We follow the
classification of discrete edges given in Remark 8, and we start with case (ii); that is,
� ⊂ {x ∈ R

2 : x2 > 0} and s(�) ∈ (0, 1
3 ]. For such edges, we define the set

A(�) := {
i ∈ Z

2 : i1 ≥ j11 , i2 ≥ j12 , π
ϕ
E (i) ⊂ {jl}Ll=1 or π

ϕ
E (i)  jL

}
, (5.17)

consisting of all the lattice points that project on � \ {j0} (Fig. 15). The choice of
excluding the points projecting also on j0, although arbitrary, will simplify the defini-
tion of the covering in the proof of Proposition 30; moreover, thanks to this choice, if
� and �′ are two consecutive edges, then A(�) and A(�′) are disjoint.

We can assume, up to translations and for the sake of simplicity, that � := {jl}Ll=0 =
{(1, 1)} ∪ {(2l, 0)}Ll=1. From the fact that ϕ is monotonic, for every i ∈ A(�) it holds
that

π
ϕ
E (i)  

{
jl 2l − 1 ≤ i1 ≤ 2l + 1 with 0 < l < L

jL i1 ≥ 2L − 1.
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Fig. 16 In red an example of A(�) for � as in (iii) of Remark 8. On the left, lighter dots are outside A(�).
On the right, the projection of the centers of a 2× 2-square on a common point of �

This yields that for every i ∈ A(�) such that Z
(
Q(i)

) ⊂ A(�), there holds

( ⋂
j∈Z(Q(i))

π
ϕ
E (j)

)
∩ (

� \ {j0}) �= ∅ . (5.18)

This means that the four lattice points inside Q(i) project onto a common point of �,
see Fig. 15. An analogous result holds in case (i) of Remark 8, when s(�) = 0.

Now, consider � ∈ E(E) complying with case (iii) of Remark 8; that is, � ⊂ {x ∈
R
2 : x2 > 0} and s(�) ∈ ( 13 , 1). In this case, the sets of lattice points that project on

� \ {jL} is defined as

A(�) := {
i ∈ Z

2 : ‖i− ( j01 , j L−12 )‖1 ≥ | j02 − j L−12 |, i2 ≥ j L−12 ,

π
ϕ
E (i) ⊂ {jl}L−1l=0 or π

ϕ
E (i)  jL−1

}
, (5.19)

see Fig. 16. For simplicity, we can assume, up to translations, that � = {jl}Ll=0 =
{(l,−l)}L−1l=0 ∪ {(L + 1,−L + 1)}. From the symmetry assumption (H1) there holds

π
ϕ
E (i)  

{
j0 i1 − i2 ≤ 1

jl 2l − 1 ≤ i1 − i2 ≤ 2l + 1 with 0 < l < L.

This can be seen by characterizing the projection of points i ∈ A(�) of coordinates
i = (h, h) and (h+1, h)with h ∈ N, since the other cases reduce to this situation from
the translation invariance of the distance. Thus, assume by contradiction that there exist
h and 0 < l < L such that ϕ(i − jl) = ϕ(h − l, h + l) < ϕ(h, h) = ϕ(i − j0). We
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Fig. 17 The triples of points involved in (5.21)

reduce to l ≤ h from the fact that ϕ is monotonic. Then, by (H1) and convexity we
get

ϕ(h, h) ≤ 1

2
ϕ(h + l, h − l)+ 1

2
ϕ(h − l, h + l) = ϕ(h − l, h + l),

leading to a contradiction. As for the case i = (h + 1, h), assuming that ϕ(i − jl) <

ϕ(i− j0) again by (H1) and convexity we get

ϕ(h + 1, h) ≤ h + 1

2h + 1
ϕ(h + 1− l, h + l)

+ h

2h + 1
ϕ(h + l, h + 1− l) = ϕ(h + 1− l, h + l)

and we obtain a contradiction. Hence, for every i ∈ A(�) such that Z
(
Q(i)

) ⊂ A(�)

there holds
( ⋂
j∈Z(Q(i))

π
ϕ
E (j)

)
∩ (

� \ {jL}) �= ∅ ; (5.20)

again, as for (5.18), (5.20) means that the lattice points inside Q(i) project onto a
common point of �, see Fig. 16. An analog of (5.20) holds in the case (iv) of Remark
8.

Remark 32 In order to compare the energies of checkerboard configurations with
different parities inside certain rectangular tiles, it will be useful to establish some
inequalities involving the dissipation term.

Consider E as in the statement of Proposition 30 and � ∈ E(E) such that � ⊂ {x ∈
R
2 : x2 > 0} and s(�) ∈ [0, 1]. For the sake of simplicity, we can assume (up to a

translation) that jL = (0, 0) where � = {jl}Ll=0. If s(�) ∈ [0, 1
3 ], for every i ∈ A(�)

with i1 ∈ 2Z such that (5.18) holds, from (5.8) and the properties of ϕ one can infer
(see Fig. 17) the inequality

dϕ(i, E)+ dϕ(i+ (1, 1), E)+ dϕ(i+ (2, 0), E)

≤ dϕ(i+ (0, 1), E)+ dϕ(i+ (1, 0), E)+ dϕ(i+ (2, 1), E). (5.21)

The same inequality holds if s(�) ∈ ( 13 , 1], for every i ∈ A(�) with i ∈ Z
2
e such that

(5.20) holds.
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Indeed, (5.18) and (5.20) ensure the existence of some j′ ∈ � such that dϕ(j, E) =
ϕ(j− j′) for every j ∈ Z

(
Q(i)

)
. Hence, (5.8) reads

dϕ(i, E)+ dϕ(i+ (1, 1), E) ≤ dϕ(i+ (0, 1), E)+ dϕ(i+ (1, 0), E) . (5.22)

Now, from the fact that i2 ≥ j ′2 (see Remark 31) and the monotonicity of the norm ϕ,
we have ϕ(i+ (2, 0)− j′) ≤ ϕ(i+ (2, 1)− j′), whence we get

dϕ(i+ (2, 0), E) ≤ dϕ(i+ (2, 1), E) . (5.23)

Inequality (5.21) then follows by adding term by term (5.22) and (5.23).

Remark 33 As a last preparatory remark to the proof of Proposition 30, we analyze
and motivate assumption (5.13) on the sets that intervene in minimization problem
(5.15). Assumption (5.13) ensures that for every discrete edge, there are infinitely
many 2× 2-squares whose centers project onto it. This property is crucial to define a
well-posed covering argument (see Sect. 5.5). Specifically, let E be as in the statement
of Proposition 30 and � ∈ E(E) be such that � ⊂ {x ∈ R

2 : x2 > 0} and

s(�) ∈ [0, 1] . (5.24)

We claim that for every such � the following property holds:

for every h ∈ N there exists i ∈ A(�) ∩ (
Z× {h}) ∩ Z

2
e : Z(Q(i)) ⊂ A(�),

(5.25)

where we have set � = {jl}Ll=0 and jL = (0, 0) for simplicity. This claim is proved
inductively (on parameter labeling clockwise consecutive discrete edges) by showing
that for any triple of consecutive edges of E , say �−, �, �+ with �− satisfying (5.25),
we can find a point i ∈ (Z× {h}) ∩ Z

2
e for which, thanks to (5.13) and the translation

invariance of the distance, there holds dϕ(j, �) ≤ dϕ(j, �−∪�+) for every j ∈ Z
(
Q(i)

)
and every h ≥ 0.

Let �0 = {jl0}L0
l=0 be the first (clockwise-ordered) edge such that s(�) ≥ 0 and set

�′0 :=
{

�0 if ν(�0) = (0, 1)

{j00} otherwise.

It is straightforward that (5.25) is satisfied for � = �′0 (reasoning as in Remark 31)
where we have set

A(j00) =
{
i ∈ Z

2 : π
ϕ
E (i)  j00

}
. (5.26)

Consider �, �−, �+ ∈ E(E) satisfying (5.24), with �− preceding �, � preceding �+.
Write �− = {j−,l}L−l=0 and �+ = {j+,l}L+l=0. We point out that if �− coincide with
�0 = {j00}, then � = �0.
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Fig. 18 An example of the situation described in Remark 33 in the case s(�) ≤ 1
3 . The lighter dots represent

the points of Z2
e inside A(�−), A(�) and A(�+)

Assume that �− satisfies (5.25). Consider first the case s(�) ≤ 1
3 (see Fig. 18). For

any fixed h ∈ N, we set ih = argmax {i1 : i ∈ Z
2
e, Z

(
Q(i)

) ⊂ A(�−), i2 = h + 1},
which is well defined since we have assumed that �− satisfies (5.25). By Remark 31
and by definition of A(�−) (5.17), there holds

dϕ(j, E) = ϕ(j− j0) < dϕ(j, �) for every j ∈ Z
(
Q(ih)

)
. (5.27)

Set i := ih+(2L−1,−1) and note that i ∈ Z
2
e and i2 = h. Note also that the definition

of ih yields Z
(
Q(i)

) ∩ A(�−) = ∅. Then, by (5.27) and the translation invariance of
the distance, since j0 + (2L − 1,−1) = jL , we get

dϕ(j, �) = ϕ(j− jL) < dϕ(j, �+ (2L − 1,−1)), for every j ∈ Z
(
Q(i)

)
.

Now, (5.13) yields dϕ(j, �+ (2L − 1,−1)) ≤ dϕ(j, �+). Indeed, if s(�+) ≤ 1
3 , then

L+ ≤ L by (5.13); thus, �+ ⊂ � + (2L − 1,−1). If instead s(�+) > 1
3 , then by the

monotonicity of ϕ we get dϕ(j, �+) ≥ ϕ(j− jL).
Now, consider the case s(�) > 1

3 (Fig. 19). For any fixed h ∈ N, we set

ih = argmax {i1 : i ∈ Z
2
e, Z

(
Q(i)

) ⊂ A(�−), i2 = h + L − 1},

which is well defined as above. By Remark 31 and by definition of A(�−) (5.19), there
holds

dϕ(j, E) = ϕ(j− j′) ≤ ϕ(j− j0) = dϕ(j, �) for every j ∈ Z
(
Q(ih)

)
, (5.28)

for some j′ ∈ { j−,l}L−−1l=0 . Again, set i := ih + (L − 1,−L + 1) and note that i ∈ Z
2
e

and i2 = h. Reasoning as above, we have Z
(
Q(i)

) ∩ A(�−) = ∅. By (5.28), we have
the translation invariance of the distance and since j′′ := j′ + (L− + 1,−L− + 1) ∈
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Fig. 19 An example of the situation described in Remark 33 in the case s(�) < 1
3 . The lighter dots represent

those points of Z2
e lying inside A(�−), A(�) and A(�+)

{jl}L−−1l=0 ⊂ � we get

dϕ(j, �) = ϕ(j− j′′) ≤ ϕ
(
j− jL), for every j ∈ Z

(
Q(i)

)
.

From (5.13), we have s(�) > 1
3 and L+ ≥ L , thus ϕ

(
j− jL) = dϕ(j, �+), arguing as

in Remark 31.

5.5 Proof of Proposition 30

Weare now ready to prove themain result on the structure of theminimizer ofFϕ
α (·, E).

For the covering argument that we will introduce, the 2× 2-squares are not sufficient.
Therefore, we define a new class of tiles for the covering.

Definition 34 For every i ∈ Z
2, we set

Rhor(i) := Q(i) ∪ q(i+ (2, 0)) ∪ q(i+ (2, 1)) , R+(i) := Rver(i) ∪ Rhor(i) ,

Rver(i) := Q(i) ∪ q(i+ (0, 2)) ∪ q(i+ (1, 2)) , R−(i) := Rver(i+ (1,−1)) ∪ Rhor(i) ,

where Q(i) is defined as in (5.6) (see Fig. 20).
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Fig. 20 The different tiles of the covering

For every discrete edge � ∈ E(E), we will define a covering of the region outside E
projecting onto �. We warn the reader that the choice of the tiles will depend both on
the slope s(�) and the neighboring edges. Heuristically, where the discrete projection
π

ϕ
E behaves as in the case of the distance from a point, we will still use the tiles

Q(i), as in the proof of Proposition 27. In order to match the coverings of the regions
projecting onto adjacent edges, we will need tiles Rhor(i) and Rver(i) (see Steps 2 and
3 of the proof), in which the even checkerboard is the minimizer by virtue of Remark
32. Moreover, we will take into account that the effective boundary ∂effE may present
some irregularities due to the discrete nature of the problem (see Steps 4 and 5). In
that case, where needed, we will use the “siding tiles” R+(i) and R−(i) which are
compatible with the rest of the covering and still favor the even configurations in the
local minimum problems therein.

Proof of Proposition 30 According to the discussion in Remark 8, we reduce the
description of the covering corresponding to the discrete edges of E contained in
{x ∈ R

2 : x2 ≥ 0} complying with

0 ≤ s(�) ≤ 1 , (5.29)

as the covering for the remaining edges can be obtained symmetrically. We divide the
proof into several steps.

Step 1: ordering of the discrete edges. We label in clockwise order the set of
discrete edges of E ; namely, {�m}m1

m=1 ⊂ E(E). For our convenience, writing �1 =
{jl}Ll=0, with a slight abuse of notation, in the case that s(�1) = 0 we write (without
relabeling) �1 = {jl1}Ll=� L2 �. If s(�1) > 0, we set �0 := {j01}. Now, we set

m0 := max
{
0 ≤ m ≤ M : s(�m) ≤ 1

3

}
.

Step 2: covering of the region outside E projecting onto �m with 0 < m < m0.
We set �m := {jl}Ll=0 assuming, without loss of generality, that jL = (0, 0). We also
define

ah := min{h′ ∈ 2Z : (h′, 2h + 1) ∈ A(�m)} ,
bh := max{h′ ∈ 2Z : (h′ + 1, 2h) ∈ A(�m)} , (5.30)
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Fig. 21 The point (ah , 2h+ 1) ∈ A(�) (black circle on the left). The point (bh + 1, 2h) ∈ A(�m+1) (black
circle on the right). The gray points represent Z× {2h}

Fig. 22 Examples of coverings defined in (5.32). The black circle represents the point (ah−1, 2h + 3)

for every h ∈ N, where A(�) is defined in (5.17) (see Fig. 21). In the case m = 1 and
s(�1) = 0, the set A(�1) is still as in (5.17) with {jl}L

l=� L2 �
in place of {jl}Ll=1. Note

that, by Remark 33, assumption (5.13) yields that ah and bh are well-defined for every
h ∈ N. We then introduce the set

I(�m) :=
⋃
h≥0

{(h′, 2h) : h′ ∈ 2Z, ah ≤ h′ ≤ bh} . (5.31)
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Fig. 23 Examples of whole coverings defined in formula (5.32). The black dots represent the points of
I(�m )

Correspondingly, for every h ∈ N we define the following covering (see Fig. 22):

C(i) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rver(i) i = (ah, 2h) and (ah, 2h + 3) /∈ A(�m)

Q(i) i = (ah, 2h) and (ah, 2h + 3) ∈ A(�m)

Q(i) i1 ∈ 2Z, ah < i1 < bh
Rhor(i) i = (bh, 2h)

, if ah < bh ,

C(i) :=
{
R+(i), i = (ah, 2h) and (ah, 2h + 3) /∈ A(�m)

Rhor(i), i = (ah, 2h) and (ah, 2h + 3) ∈ A(�m)
, if ah = bh ,

(5.32)

(see Fig. 23 for an example of {C(i) : i ∈ I(�m)}).
Step 3: covering of the region outside E projecting onto �m with m0 ≤ m ≤

m1−1. As before, we label clockwise the set of points {jr }r≥0 = ⋃m1
m=m0+1 �m \ {�0}.

For every m0 + 1 ≤ m ≤ m1 − 1, writing �m = {jl}Ll=0 we define

r0 := min{r ∈ 2Z : jr ∈ �m} and r1 := max{r ∈ 2Z : jr ∈ �m \ {jL}} . (5.33)

Fix first �m with m0 + 1 < m ≤ m1 − 1 and assume, without loss of generality,
that jr1 = (0, 0). Now, for every h ∈ N we determine the integers ah and bh as in
(5.30) (see Fig. 24), which are well defined by Remark 33, where A(�) is as in (5.19).
Correspondingly, we define the sets I(�m) as in (5.31) and C(i) for every i ∈ I(�m) as
in (5.32), respectively (see Figs. 25 and 26).

The covering outside the discrete edges �m0 and �m0+1 must be treated separately.
Let r0, r1 be as in (5.33) with m = m0+ 1. Again, we assume that jr1 = (0, 0), define
ah , bh as in (5.30) for every h ∈ Nwith A(�m0)∪ A(�m0+1) in place of A(�m) and the
set I(�m0∪�m0+1) as in (5.31). The setsC(i) are defined, for every i ∈ I(�m0 ∪�m0+1),
as in (5.32) with A(�m0)∪ A(�m0+1) in place of A(�m) (see Fig. 27). Note that in this
case ah �= bh for every h ∈ N.
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Fig. 24 The point
(ah , 2h + 1) ∈ A(�m ) (black
circle on the left). The point
(bh + 1, 2h) ∈ A(�m ) (black
circle on the right)

Fig. 25 Examples of coverings of the two possible parities defined in formula (5.32). The black circle
represents the point (ah , 2h + 3)

Step4: coveringof the regionoutside E projectingonto�m1 .We set�m1 = {jl}Ll=0
with jL = (0, 0). There are different possible cases depending on ν(�m1):

(i) let m0 = m1; i.e., s(�m) ≤ 1
3 for every m. We set, for every h ∈ N, ah as in

(5.30), bh = 2h and I(�m1) as in (5.31). Then, C(i) is defined as in (5.32) for every
i ∈ I(�m1) \ {(bh, 2h)}h∈N and C((bh, 2h)) = Q((bh, 2h)) for every h ∈ N (Fig. 28);

(ii) let 1
3 < s(�m1) < 1 and let r1 be defined as in (5.33) with m = m1. Then, ah

and bh are as in (5.30) for every h ∈ N with A(�m1) or A(�m1) ∪ A(�m1−1) in place
of A(�m) whether m1 − 1 > m0 or m1 − 1 = m0, respectively. We define I(�m1) as
in (5.31). If jr1 = jL−2, C(i) is defined as in (5.32), whereas if jr1 = jL−1, C(i) is
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Fig. 26 Examples of whole coverings defined in formula (5.32) of two different parities. The black dots
represent the points of I(�m )

Fig. 27 On the left, an example of ah and bh , and the black circle represents the point (ah , 2h+ 3). On the
right the corresponding covering, where the black dots represent the points of I(�m0−1 ∪ �m0 )

defined as in (5.32) for every i ∈ I(�m1) \ {jr1, jr1 + (0, 2)} and

C(jr1) = ∅, C(jr1 + (0, 2)) = R−(jr1 + (0, 2)).

Then, setting A(jL) = {i ∈ Z
2 : i1, i2 > 0, π

ϕ
E (i) = jL}, we introduce the integers

a′h =
{
min{h′ ∈ 2Z : (h′, 2h + 1) ∈ A(jL)} if jr1 = jL−2

min{h′ ∈ 2Z+ 1 : (h′, 2h + 2) ∈ A(jL)} if jr1 = jL−1

b′h =
{
2h if jr1 = jL−2

2h + 1 if jr1 = jL−1.
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Fig. 28 Example of covering outside �m1 in the case (i)

Fig. 29 The covering in the cases jr1 = jL−1 (on the left) and jr1 = jL (on the right)

123



Journal of Nonlinear Science (2021) 31 :97 Page 43 of 63 97

Fig. 30 The covering considered
in (iii) in the case L even

Fig. 31 The coverings defined in (iii), in the case L odd, for jr0 �= jL (on the left) and jr0 = jL (on the
right)

Now, we define I(�′m1
) as in (5.31) with a′h, b′h in place of ah and bh , and the tile C(i)

as in (5.32) for every i ∈ I(jL) \ {(b′h, b′h)}h∈N, and C((b′h, b′h)) = Q((b′h, b′h)) (see
Fig. 29);

(iii) consider now the case s(�m1) = 1. Let r0 be defined as in (5.33) withm = m1.

Without relabeling,we set �m1 := {jl}�
L
2 �

l=0 and assume j� L2 � = (0, 0).Here, the covering
depends on the parity of L . If L is even, ah is defined as in (5.30) with m = m1 and
bh = 2h for every h ∈ N. I(�m1) is defined as in (5.31). Then, C(i) is defined as in
(5.32) for every i ∈ I(�m1) \ {(bh, 2h)}h∈N and C((bh, 2h)) = Q((bh, 2h)) (Fig. 30).
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Fig. 32 The covering S0 in the cases listed in (5.34)

If L is odd, analogously to what done in case (ii), for every h ∈ N we define

ah =
{
min{h′ ∈ 2Z : (h′, 2h + 1) ∈ A(�m1)} if jr0 �= jL

min{h′ ∈ 2Z+ 1 : (h′, 2h + 2) ∈ A(jL)} if jr0 = jL

b′h =
{
2h if jr0 �= jL

2h + 1 if jr1 = jL .

Then, I(�m1) is defined as in (5.31) and C(i) is defined as in (5.32) for every i ∈
I(�m1) \ {(bh, 2h)}h∈N and

Ch((bh, bh)) =
{
R−((bh, bh)) if h = 0

R((bh, bh)) if h > 0,

see Fig. 31.
Step 5: covering of the region outside E projecting onto �0. We define the set

S0 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E({i ∈ Z
2 : i1 = j

� L2 �
1 − 1, i2 ≥ 1}) if s(�1) = 0 ,

∅ if 0 < s(�1) <
1

3
,

E({i ∈ Z
2 : i1 = j01 , i2 ≥ 0}) if

1

3
< s(�1) ≤ 1 .

(5.34)

(see Fig. 32).
If � is such that 0 < s(�) < 1

3 , we define I(�0) = {(0, 2h)}h∈N and for every h ∈ N

bh = max{h′ ∈ 2Z | (h′ + 1, 2h) ∈ A(j0)},

where A(�0) is as in (5.26). Then, for every i ∈ I(�0) we choose the tile

C(i) =
⋃{

q((k, 2h)) ∪ q((k, 2h + 1)) : k ∈ Z , −bh − 2 ≤ k ≤ bh + 2 , i2 = 2h
}
,

(5.35)
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Fig. 33 Example of C(i), i ∈ I(�0). The black dots represent the lattice points (±bh , 2h)

see Fig. 33.
Step 6: compatibility between different coverings. Here, we note that the family

of sets {C(i) : i ∈ I(�m), 0 ≤ m ≤ m1, i ∈ I(�′m1
)} is a covering of E({i ∈ Z

2 :
inf j∈Z(E) ‖i−j‖1, i2 ≥ i1}), which is the region of plane “outside” the edges as in Step
1. We point out that if case (ii) of Step 4 does not hold, then I(�′m1

) = A(�′m1
) = ∅.

Indeed, for every pair �, �′ ∈ E(E) with �′ preceding �, the sets

⋃
i∈I(�′)

C(i) and
⋃

i∈I(�)

C(i)

are non-overlapping and their union does not leave uncovered regions.
We denote by ah, bh and a′h, b′h the values defined in (5.30) corresponding to � and

�′, respectively. We assume, for simplicity, that jL = (0, 0). Hence, every i ∈ I(�) and
i′ ∈ I(�′) are such that i2 = 2h and i ′2 = 2h+ 1+ 2h0, where h0 = 0 if 0 ≤ s(�) ≤ 1

3
and 2h0 = r1 − r0 otherwise, where r0 and r1 are defined in Step 3. Therefore, in this
coordinate system, the definition of b′h−h0

reads

b′h−h0 = max{h′ ∈ 2Z+ 1 : (h′ + 1, 2h + 1) ∈ A(�′)} .

Now, it is sufficient to note that if Q((ah, 2h)) = Rver((ah, 2h)), then ah+1 = ah + 2,
while if Q((ah, 2h)) = Q((ah, 2h)), then ah+1 = ah , as it immediately follows from
(5.32) (see Fig. 34).

The covering of the regions projecting onto discrete edges � ∈ E(E) not fulfilling
(5.29) can be obtained symmetrically; we use the notation I(�) and C(i) to denote the
sets obtained symmetrically as in (5.31) and (5.32), respectively. With C0, we denote
the union of the set S0 defined in (5.34) and its symmetric analogs.
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Fig. 34 Matching of the coverings outside a pair of adjacent discrete edges

Fig. 35 The checkerboard configurations are energetically favorable inside each Rhor(i)

Step 7: local minimum problems on C(i). As a next step, we prove that the
configuration with minimal energy inside each tile C(i) is the even checkerboard, for
any i ∈ I(�), � ∈ E(E); i.e.,

Fϕ
α(E(Z2

e) ∩ C(i), E) ≤ Fϕ
α(F ∩ C(i), E) (5.36)

for every F ∈ D, and the same for C0; i.e.,

Fϕ
α(E(Z2

e) ∩ C0, E) ≤ Fϕ
α(F ∩ C0, E). (5.37)

Indeed, if C(i) = Q(i) from Remark 31, either (5.18) or (5.20) holds. Hence, by
arguing as in the proof of Proposition 27, from (5.8) we get (5.36).

If Ch(i) = Rhor(i), we can restrict the minimization in (5.36) to the checkerboard
configurations. Indeed, if j ∈ Z(Rhor(i)) has a nearest-neighbor j′, then by suitably
shifting one of them toward an “empty” location the corresponding variation of the
energy is at most −2 + α < 0 (see Fig. 35); the case α > 2 is trivial. Moreover,
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Fig. 36 The lattice points involved in (5.38). The black dots are points of Z2
e , and circles are points of Z

2
o.

The energy contribution of the even checkerboard in the white regions is negative

by the definition of bh we have that either (5.18) or (5.20) is satisfied, thence from
Remark 32, (5.21) holds yielding (5.36). The cases of C(i) = Rver(i), C(i) = R+(i)
and C(i) = R−(i) can be treated analogously.

Now, consider the case C(i) as in (5.35) with i ∈ I(�0). Reasoning as above, we
can reduce minimum problem (5.36) to a comparison between the energies of the
two checkerboards. Then, for every h ∈ N, k ∈ 2Z with 0 < |k| ≤ bh , the even
checkerboard has minimum energy in Q((k, 2h)), as above. Hence, (5.36) is proved
if

ϕ(0, 2h)+ 2ϕ(1, 2h + 1)+ 2dϕ((bh + 2, 2h), E)

≤ ϕ(0, 2h + 1)+ 2ϕ(1, 2h)+ 2dϕ((bh + 2, 2h + 1), E) ;

that is,

ϕ(1, 2h + 1)+ dϕ((bh + 2, 2h), E) ≤ 1

2
+ ϕ(1, 2h)+ dϕ((bh + 2, 2h + 1), E),

(5.38)

see Fig. 36. If (bh+2, 2h+1) /∈ A(�0), the inequality above is trivial, since dϕ((bh+
2, 2h), E) ≤ ϕ(1, 2h) and dϕ((bh + 2, 2h), E) ≤ ϕ(1, 2h + 1). If, instead, (bh +
2, 2h + 1) ∈ A(�0), (5.38) reduces to

ϕ(1, 2h + 1)+ ϕ(bh + 2, 2h) ≤ 1

2
+ ϕ(1, 2h)+ ϕ(bh + 2, 2h + 1),

which holds from (5.8) and (H3).
Reasoning as in point (c) of the proof of Proposition 27, there holds

Fϕ
α(E(Z2

e) ∩ C0, E) ≤ Fϕ
α(F ∩ C0, E) .

As a final remark, we note that for every i ∈ E(Z2
e) such that dϕ(i, E) > 4

α
the

variation of removing q(i) is negative; hence,

argmin
E ′⊃E

Fϕ
α(E ′, E) ⊂ E

({
i ∈ Z

2 : dϕ(i, E) <
4

α

})
.

Step 8: conclusion. Set

I :=
( ⋃

�∈E(E)

I(�)
)
∩

{
i ∈ Z

2 : dϕ(i, E) <
4

α

}
.
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An analogous argument as that in the proof of Proposition 27 (see (5.12)) shows that

Fϕ
α(E ′, E) ≥

∑
i∈I

Fϕ
α(E ′ ∩ C(i), E)+ Fϕ

α(E ′ ∩ C0, E)

for every E ′ ⊃ E , E ′ ∈ D. By virtue of Step 7, we get

min
E ′⊃E

Fϕ
α(E ′, E) ≥

∑
i∈I

Fϕ
α(E(Z2

e) ∩ C(i), E)+ Fϕ
α(E(Z2

e) ∩ C0, E) = Fϕ
α(E(I ∪ Z(E)), E)

which implies that the ground state of the energy is achieved by the even checkerboard
configuration. Lastly, themonotonicity constraint yields the uniqueness of the solution.

��
We will apply Proposition 30 iteratively to each E = Ek

α , k ≥ 1 in order to
characterize the solutions of the recursive scheme (5.2) (see Theorem 38). Indeed,
as shown with Proposition 27, the first step E1

α coincides with E(Bϕ
4
α

∩ Z
2
e) which

satisfies the symmetry conditions (5.14) and, thanks to the following Lemma, the
non-degeneracy condition (2.3).

Lemma 35 If ϕ satisfies (H1) and (H2), then for every r > 2 the set E = Bϕ
r ∩ Z

2
e

satisfies (2.3).

Proof By the symmetric assumption (H1), we can restrict our analysis to points i ∈
∂effE with i2 ≥ i1 ≥ 0. We subdivide the proof into two cases. If i1 = 0, then
i2 > 0 from (H2) and the condition r > 2. Since (0, 0) ∈ Z(E), we have that
(0, i2− 2) ∈ Z(E). By (H1), the point (±i2, 0) ∈ Z(E); then, by the Z2

e-convexity of
E we get that (±1, i2 − 1) ∈ Z(E). Since, for every i′ with i ′2 > i2, i′ /∈ Z(E), thus
i is non-degenerate. If, instead, i1 > 0, for every j ∈ Z(E) such that ‖j − i‖1 ≤ 2,
by the symmetry with respect to the coordinate axes of ϕ we get that (− j1, j2),
( j1,− j2) ∈ Z(E). The Z

2
e-convexity and the fact that (0, 0) ∈ Z(E) yield that

( j1−2, j2), ( j1, j2−2), ( j1+1, j2−2) ∈ Z(E). This implies that i is non-degenerate.
��

We conclude this section with some examples clarifying the role of compatibility
assumption (5.13) and non-degeneracy condition (H2).

Example 36 Consider ϕ the Euclidean norm, and set α = 0.7. Then, the resulting E1
α

complies with (5.13) and the lattice sets A(�) fulfill (5.25), as it can be noted in Fig. 37.
If we choose instead ϕ = ‖ · ‖3 and α = 0.71, the compatibility condition (5.13) is

violated for E1
α as shown in Fig. 38. This also provides an example in which (5.25) is

not satisfied; hence, the indices ah and bh introduced in Step 2 of Proposition 30 are
not well defined.

Example 37 (one-dimensional motion) We consider an absolute norm which does not
satisfy the normalization assumption ϕ(1, 0) = ϕ(0, 1) = 1; that is,

ϕ(x) = |x1| + 2|x2|, for every x ∈ R
2,
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Fig. 37 From the left, the set E1
α and the polygon conv(Z(E1

α)), the lattice sets A(�), � ∈ E(E) and, lastly,
the corresponding covering

Fig. 38 The discrete edge � represented with black dots does not satisfy the compatibility condition (5.13).
The red dots denote the points of A(�) which does not comply with (5.25). (Color figure online)

Fig. 39 On the left the set E1
α and the boundary of Bϕ

4
α

in red. On the right the discrete solution Ek
α after

two steps. (Color figure online)

123



97 Page 50 of 63 Journal of Nonlinear Science (2021) 31 :97

and take 4
3 < α < 2. Then, Proposition 27 applies in this case and gives

E1
α = q((−2, 0)) ∪ q((0, 0)) ∪ q((2, 0)) .

Even though Proposition 30 cannot be applied on such set, it is straightforward to see
in a direct way that the solution of 5.2 {Ek

α} is given by

Ek
α =

k⋃
h=0

(
q((−2h, 0)) ∪ q((2h, 0))

)
, k ≥ 0 ,

see Fig. 39. The resulting minimizing movement will be the family of horizontal line
segments

E(t) = lim
ε→0

Eε,τ (t) = lim
ε→0

εE
� t

τ
�

α = [−2αt, 2αt] × {0} , t ≥ 0 .

5.6 Nucleation and Growth of a Set

By virtue of Proposition 30, we can characterize the time-discrete flow {Ek
α}k≥0 solu-

tion of (5.2). This evolution admits an alternative interpretation, based on a geometric
iterative process that we will call nucleation of the initial set. Indeed, the set of centers
of the kth step of the discrete evolution Z(Ek

α) can be obtained from that of the previ-
ous step Z(Ek−1

α ) by adding (in the Minkowski sense) the nucleusNϕ
α (see Definition

28); i.e., a lattice set that characterizes the motion.

Theorem 38 Let ϕ be a symmetric absolute normalized norm satisfying (H3), and let
α > 0 be such that α /∈ �ϕ . If E(N

ϕ
α) satisfies assumption (5.13), then there exists a

unique discrete solution {Ek
α} of (5.2) which is given, for any k ≥ 1, by

Z(Ek
α) = Nϕ

α + · · · +Nϕ
α︸ ︷︷ ︸

k-times

. (5.39)

In particular, Ek
α ∈ Ae

conv for every k ≥ 1.

Proof We first note that for a lattice set I such that E(I) belongs toAe
conv and satisfies

(5.13)

E(I+ I+ · · · + I︸ ︷︷ ︸
m-times

) ∈ Ae
conv still satisfies (5.13), for everym ∈ N. (5.40)

It will suffice to show (5.40) for m = 2, as the claim for m ≥ 3 will follow by
an induction argument on the number m of the summands. Setting Q := conv(I),
property (2.8) with � = Z

2
e and m = 2 reads as (Q ∩ Z

2
e) + (Q ∩ Z

2
e) = 2Q ∩ Z

2
e ,

yielding that E(I + I) ∈ Ae
conv. Moreover, a property equivalent to (5.13) is that all

the discrete vertices of E(I) belongs to ∂Q. This implies that the set of outward unit
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normal vectors of Q coincide with the set of (discrete) outward unit normal vectors of
E(I). In particular, every edge l of Q identifies a finite chain of discrete edges of E(I)

having the same unit normal vector ν(l). This fact depends only on ν(l) and not on
the length of l. Proposition 10 with A = B = Q implies that the set of outward unit
normal vectors of 2Q coincide with that of Q. Hence, the edge l+ l of 2Q corresponds
to a chain of a finite number of discrete edges of E(I+I) having the same unit normal
vector ν(l). The Z2

e-convexity of E(I+ I) implies (5.13).
Going back to the proof of (5.39), we argue by induction on the step k. By Propo-

sition 27 and Lemma 35, Z(E1
α) = N

ϕ
α complies with all the assumptions on E of

Proposition 30. Now, let k ≥ 2 and assume that

Z(Ek−1
α ) = Nϕ

α + · · · +Nϕ
α︸ ︷︷ ︸

(k−1)-times

.

For what remarked in (5.40), all the hypotheses of Proposition 30 are satisfied. Then,
taking into account (5.16) with E = Ek−1

α , we have that

Z(Ek
α) = Z(Ek−1

α )+Nϕ
α . (5.41)

Indeed, setting Ik := Z(Ek−1
α )+N

ϕ
α , we have

max{dϕ(i, j) : i ∈ Ik, j ∈ Z(Ek−1
α )} ≤ max

i∈Nϕ
α

ϕ(i) <
4

α
,

and this shows that Ik ⊆ Z(Ek
α). On the other hand, if i ∈ Z(Ek

α), there exist i′ ∈
Z(Ek−1

α ) and i′′ ∈ N
ϕ
α such that i = i′ + i′′. This comes by noting that by (5.16) there

exists i′ ∈ Z(Ek−1
α ) such that ϕ(i − i′) = dϕ(i, Ek−1

α ) < 4
α
, thus i′′ = i − i′ ∈ N

ϕ
α .

This yields (5.39). Moreover, again by (5.40) we get that the Minkowski sum in (5.41)
preserves assumption (5.13), so Ek

α still satisfies (5.13) and the thesis is proved. ��

6 The Limit Motion

In this section,we characterize theminimizingmovements of scheme (3.4) as τ, ε → 0
in the critical regime ε = ατ for any positive value of the parameter α outside the
singular set �ϕ , under the assumption that E(N

ϕ
α) complies with (5.13).

As already explained at the beginning of Sect. 5, we also prove the existence of
a value for α depending only on the chosen norm ϕ, above which every minimizing
movement is trivial. For every α below the pinning threshold, instead, the limit motion
is a family of expanding sets, nucleating from the origin with constant velocity, as the
limit set E(t) turns out to be a dilation of the (renormalized) polygon

Pϕ
α :=

⎧⎨
⎩

(
max
i∈Nϕ

α

i1
)−1

conv(Nϕ
α) if Nϕ

α �= {(0, 0)}
{(0, 0)} if Nϕ

α = {(0, 0)}
(6.1)
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Note that maxi∈Nϕ
α
i1 ∈ {2� 2

α
�, � 4

α
�}, from the definition of Nϕ

α and the fact that
ϕ(i1, 0) = i1, i1 ∈ N.

Theorem 39 Letϕ be a symmetric absolute normalized norm satisfying (H3), letα > 0
be given such that α /∈ �ϕ , and let Fϕ

ε,τ be defined by (3.3). LetN
ϕ
α be as in Definition

28. If the set E(N
ϕ
α) satisfies assumption (5.13), then there exists a unique minimizing

movement E : [0,+∞) → X for the scheme (3.4) at regime ε = ατ defined by

E(t) = vϕ
α t Pϕ

α for every t ≥ 0 , (6.2)

where Pϕ
α is defined in (6.1) and v

ϕ
α = αmaxi∈Nϕ

α
i1. Moreover, there exists a unique

discrete solution Eε,τ (t) of scheme (3.4) at regime ε = ατ and there holds

χEε,τ (t)
∗
⇀

1

2
χE(t), for every t ≥ 0 as ε → 0. (6.3)

Proof By a scaling argument, for every discrete solution Ek
ε,τ of (3.4) in the regime

ε = ατ we have Ek
ε,τ = εEk

α for every k ≥ 0, where Ek
α denotes a discrete solution

of (5.2). Then, by Theorem 38 there exists a unique minimizing movement of scheme
(3.4) at regime ε = ατ . Since, by Proposition 12 and (6.1),

Nϕ
α + · · · +Nϕ

α︸ ︷︷ ︸
k-times

=
(
k
v

ϕ
α

α
Pϕ

α

)
∩ Z

2
e,

we get that conv(Zε(Eε,τ (t))) = ε
v

ϕ
α

α
�αt

ε
�Pϕ

α . Moreover, noting that
dH(F, conv(Zε(F))) < ε for any F ∈ Aε, we get

dH
(
Eε,τ (t), v

ϕ
α t Pϕ

α

)
< ε + vϕ

α

(
t − ε

α

⌊αt

ε

⌋)

which tends to zero as ε → 0, for any t ≥ 0, whence (6.2) follows. Eventually, from
the fact that |Eε,τ (t)∩ A| → 1

2 |A| as ε → 0 for any open set A ⊂ E(t), we get (6.3).
��
Definition 40 (pinning threshold) We define the pinning threshold of the motion
obtained by solving scheme (3.4) as

αϕ := inf
{
α > 0 : Eα(t) ≡ {(0, 0)} for every Eαminimizing movement of(3.4)

}
.

(6.4)

It turns out that αϕ is related to the singular set �ϕ defined in (5.4) as follows.

Proposition 41 The pinning threshold is given by αϕ = 4

ϕ(1, 1)
= max�ϕ .

Proof We note that Bϕ
4
α

∩Z2
e = {(0, 0)} if and only if α > 4

ϕ(1,1) , and thus, Proposition

27 yields the result. ��
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Remark 42 The results of Theorems 38 and 39 can be extended to solutions of a
minimizing-movement scheme with a more general initial datum E0. Indeed, let
E0
disc ∈ Ae

conv be a set satisfying (2.3), (5.13) and (5.14). We can apply Proposi-
tion 30 with E ′ = E0

disc obtaining the first step of the discrete solution corresponding
to scheme (5.2) with E0

α = E0
disc. Then, if E(N

ϕ
α) satisfies assumption (5.13), from

the same arguments of the proof of Theorem 38 there exists a unique discrete solution
of the scheme

⎧⎨
⎩
E0

α = E0
disc

Ek+1
α ∈ argmax

E ′∈D, E ′⊃E
F

ϕ
α(E ′, Ek

α) k ≥ 1,

which is given, for any k ≥ 1, by Z(Ek
α) = Z(E0

disc)+Nϕ
α + · · · +Nϕ

α︸ ︷︷ ︸
k-times

.

We therefore obtain a limit result analogous to that of Theorem 39, provided the
initial datum E0 can be approximated by a sequence of admissible sets E0

ε j
∈ Aε j

whose rescaled sets 1
ε j
E0

ε j
∈ Ae

conv satisfy (2.3), (5.13) and (5.14). This implies, in

particular, that E0 must be a convex symmetric set with respect to coordinated axes and
bisectors x1 = ±x2. Then, there exists (up to subsequences) a minimizing movement
E : [0,+∞) → X for the scheme

⎧⎨
⎩
E0

ε,τ = E0
ε

Ek+1
ε,τ ∈ argmin

E ′∈Dε, E ′⊃Ek
ε,τ

F
ϕ
ε,τ (E ′, E) k ≥ 1 (6.5)

at regime ε = ατ defined by

E(t) = E0 + vϕ
α t Pϕ

α for every t ≥ 0. (6.6)

Moreover, there exists a unique discrete flat flow Eε j ,τ j (t) of the scheme (6.5) along the

sequence ε j = ατ j and there holds χEε j ,τ j (t)
∗
⇀ 1

2 χE(t) for every t ≥ 0 as j →+∞.

6.1 Examples of Explicit Evolutions

We continue our analysis by providing several examples of minimizing movements
that can be completely characterized, which exhibit interesting phenomena that may
appear due to the discrete nature of our problem.

Example 43 (the �∞-norm) The solutions of the unconstrained scheme (3.5) have
already been analyzed in any dimension in the case ϕ = ‖ · ‖∞ in Braides and Scilla
(2013b), where it has been proved that every step of the discrete evolution is an even
ε-checkerboard (see Fig. 40). Thus, solutions of (3.4) and (3.5) coincide. The singular
set (5.4) corresponds to�ϕ = { 4n }n∈N and the pinning threshold is αϕ = 4. Here, since

N
ϕ
α =

[
− 4

α
, 4

α

]2 ∩ Z
2
e for every α /∈ �ϕ , E(N

ϕ
α) always fulfills (5.13). Therefore,
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Fig. 40 Some steps of the discrete evolution

Fig. 41 For different choices of α, the polygon Pϕ
α may have different shapes

from Theorem 39, for every α /∈ �ϕ the minimizing movement is

E(t) =
[
− α

⌊ 4

α

⌋
t, α

⌊ 4

α

⌋
t
]2

, for every t ≥ 0.

We note that, for this choice of the norm ϕ, the polygon Pϕ
α = [−1, 1]2 does not

depend on α.

Example 44 (α-depending shape of Pϕ
α ) Contrarily to the previous example, in the

case of the Euclidean norm the polygon Pϕ
α may change with α (see, for instance,

Fig. 41 corresponding to α = 0.85 on the left and α = 0.7 on the right). Therefore,
the limit motions corresponding to the two different values of α are not homothetic.
This phenomenon may happen for those norms ϕ whose balls are not polygons or are
polygons having a unit normal vectors different from (0,±1), (±1, 0)or (± 1√

2
,± 1√

2
).

Example 45 (the �1-norm) We consider now ϕ = ‖ · ‖1. Also in this case, as for the
∞-norm, the structure of ϕ facilitates the analysis of the unconstrained scheme (3.5).
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Fig. 42 The picture clarifies the
2× 2-square covering So(E) for
a set E , whose boundary is
marked by a bold black line. The
darker 2× 2-squares are,
respectively, in Sco(E), the
lighter ones in Sbo(E). The areas
in white are those left uncovered

Fig. 43 An example of Ee
α (on the left) and Eo

α (on the right)

We then study the rescaled problem

⎧⎨
⎩
E0 = q

Ek+1
α ∈ argmin

E ′∈D
F

ϕ
α(E ′, E) k ≥ 1 , (6.7)

wherewe separately examine the cases inwhich theminimizer of the first step contains
q or not. For this, in addition to Se(E) of Definition 26 we introduce the family

So(E) := {Q(j) : Q(j) ∩ E �= ∅ and j1 even, j2 odd} (6.8)

which is a covering of E \ q (see Fig. 42) and, accordingly, we consider the partition
So(E) = Sbo(E) ∪ Sco(E).

Now, in the case of scheme (6.7) with the monotonicity constraint, Proposition 27
and (5.4) ensure that if α /∈ { 2n : n ∈ N}, then argmin

E⊃q
F

ϕ
α(E, q) = E(Z2

e∩Bϕ
4
α

) =: Ee
α .

In the unconstrained case, an analogous argument as in the proof of Proposition 27,
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Fig. 44 On the left the covering Se(E(Ie)) and the set Ee
α . On the right the covering So(E(Io)) and the set

Eo
α . The darker dots represent I

e and Io, respectively

with So in place of Se, shows that if α /∈ { 4
2n−1 : n ∈ N}, then argmin

E �⊃q
F

ϕ
α(E, q) =

E(Z2
o ∩ Bϕ

4
α

) =: Eo
α . This proves that E

1
α is either an even or an odd checkerboard.

We remark that Bϕ
r is a regular rhombus (of radius r ) and so are the convex hulls of

Z(Ee
α) and Z(Eo

α). The checkerboard sets Ee
α and Eo

α are pictured in Fig. 43.
The relevant point of this example is that, for this choice of the norm, the shape

of the minimizers is very simple and the 2× 2-square covering argument of Sect. 5.1
directly applies to the kth-step Ek

α , k ≥ 1, without any further adjustment. Moreover,
it provides a covering of R2 (in the even case) or R2 \ q (in the odd case) and not
only of R2 \ E(conv(Z(Ek−1

α ))), see Fig. 44. Thus, the corresponding localization
argument allows to study the unconstrained problem. Indeed, if E1

α = Ee
α , then for

every Q(j) ∈ Se(E(Ie)) we get

Fϕ
α(Q(j) ∩ E(Z2

e), E
1
α) = min

E∈D
Fϕ

α(Q(j) ∩ E, E1
α),

Fϕ
α(C0 ∩ E(Z2

e), E
1
α) ≤ min

E∈D
Fϕ

α(C0 ∩ E, E1
α),

whereas if E1
α = Eo

α , then for every Q(j) ∈ So(E(Io)) we get

Fϕ
α(Q(j) ∩ E(Z2

o), E
1
α) ≤ min

E∈D
Fϕ

α(Q(j) ∩ E, E1
α),

where

Ie =
{
i ∈ Z

2
e : dϕ(i, E1

α) <
4

α

}
, Io =

{
i ∈ Z

2
o : dϕ(i, E1

α) <
4

α

}

which gives that Z(E2
α) ∈ {Ie, Io}. This yields, after an inductive argument, that Ek

α

is either an even or an odd checkerboard. The parity of Ek
α will be determined by a

comparison between the two possible (checkerboard) configurations. Nevertheless, a
change of parity is eventually not energetically favorable. Indeed, assume Ek

α to be,
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Fig. 45 Some steps of the even evolution

e.g., an even checkerboard and set I = {i ∈ Z
2
o : dϕ(i, Ek

α) < 4
α
}, we then get

Fϕ
α(E(I), Ek

α)− Fϕ
α(Ek

α, Ek
α) ≥ −4#Z(E(I))+ 2α#Z(Ek

α)+ 4#Z(Ek
α)+ c

≥ −8
(4(k + 1)

α

)2 + 2α
(4(k + 1)

α

)2 +−8
(4k

α

)2 + c

= −c′k + c′′k2 + c,

for some positive constants c, c′, c′′. Since for k large enough the contribution above
is positive, for every fixed α /∈ { 4n }n∈N, there exists an index kα ∈ N such that

Z(Ek
α) = Z(Ekα

α )+Nϕ
α + · · · +Nϕ

α︸ ︷︷ ︸
(k−kα)-times

, for every k ≥ kα.

We can characterize the limit motion as follows. For every α > 0 such that α /∈
{ 4n }n∈N there exists a unique minimizing movement of unconstrained scheme (3.5)
E : [0,+∞) → X and it satisfies

E(t) = 2α
⌊ 2

α

⌋
tR, for every t ≥ 0, (6.9)

where R is the regular rhombus of radius 1. Note that, by Theorem 39, this coincides
with the minimizing movement of the constrained scheme (3.4).

At least for the first step, the comparison between the energies of the two possible
minimizers, i.e., Ee

α and Eo
α , can be performed by a straightforward computation. This

induces a partition into subintervals of the set (0,+∞) \ { 4n : n ∈ N}, wherein one
configuration is energetically more favorable than the other one. Setting R := � 4

α
�,

we get

Fϕ
α(Ee

α, q) = −4
(
2
⌊ R

2

⌋
+ 1

)2 + 4α

� R
2 �∑

j=1
(2 j)2 , (6.10)
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Fϕ
α(Eo

α, q) = −4
(
2
⌊ R + 1

2

⌋)2 + 4α

� R+1
2 �∑

j=1
(2 j − 1)2 + α . (6.11)

After comparing the values in (6.10) and (6.11) we get that when R is even

Fϕ
α(Ee

α, q) < Fϕ
α(Eo

α, q) if and only if α <
4(2R + 1)

2R(R + 1)− 1
,

while when R is odd

Fϕ
α(Ee

α, q) < Fϕ
α(Eo

α, q) if and only if α >
4(2R + 1)

2R(R + 1)+ 1
.

Thus, for the following values of α

αC (R) :=

⎧⎪⎨
⎪⎩

4(2R + 1)

2R(R + 1)+ 1
if R is odd,

4(2R + 1)

2R(R + 1)− 1
if R is even,

the energies of the two checkerboards coincide and we also obtain that

E1
α =

⎧
⎪⎪⎨
⎪⎪⎩

Ee
α if α ∈

⋃
h≥1

(αC (2h + 1), αC (2h)) ∪ (αC (1),+∞),

Eo
α if α ∈

⋃
h≥0

(αC (2h + 2), αC (2h + 1)).
(6.12)

In particular, (6.12) provides an example of a discrete solution having an oscillating
behavior; that is, a change of parity from a step to another, at least from E0

α = q to
E1

α = Eo
α .

In this case, the pinning threshold of unconstrained problem (3.5) is αp = 2, as can
be seen in formula (6.9). This is the same as that of the constrained problem (3.4), given
by Proposition 41. In the constrained problem, for every α > 2, since Nϕ

α = {(0, 0)},
Ek

α = q for every k ≥ 1, whereas, in the unconstrained problem, by (6.12) we get that
if 2 < α < 12

5 , the discrete motion is not trivial; that is, Ek
α =

⋃
‖i‖1=1 q(i) for every

k ≥ 1, even though the limit motion is pinned.

Example 46 (a strongly anisotropic norm)We now give, along the lines of Example 37,
another examplewhere the discreteminimizers are (degenerate) checkerboard sets and
the limit set is one-dimensional, i.e., a linearly growing segment. For this, we construct
ad hoc a strongly anisotropic non-absolute norm ϕ such that ϕ(1, 1) < ϕ(1, 0) =
ϕ(0, 1). Namely, we consider the symmetric positive definite matrix A = (ai j ) such
that a11 = a22 > 1, a12 < 0 and

1

8
< a11 + a12 <

1

2
, 2 < a11 − a12 . (6.13)
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Fig. 46 The unit ball of ϕ for
a11 = 2 and a12 = − 5

3

Fig. 47 Some steps of the evolution

Correspondingly, we define the elliptic norm

ϕ(x) := √
xtAx =

√
a11(x21 + x22 )+ 2a12x1x2 , (6.14)

whose unit ball is pictured in Fig. 46.

Assumption (6.13) ensures that ϕ(1, 1) = √
2(a11 + a12) <

√
a11 = ϕ(1, 0) =

ϕ(0, 1). In addition, we assume that

4√
a11

< α ≤ 2
√
2√

a11 + a12
. (6.15)

In this case, if we let E0
α = q, the set of centers of the first step is

Nϕ
α = Z(E1

α) =
{
i ∈ Z

2 : ϕ(i) ≤ 4

α

}
= {(−1,−1), (0, 0), (1, 1)}, (6.16)

whence, arguing by induction on the step k, we infer that

Z(Ek
α) = {( j, j) : | j | = 0, 1, . . . , k} , k ≥ 1 . (6.17)
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A similar computation as for the proof of Theorem 38 shows that an analogous
characterization for Z(Ek

α) by means of the Minkowski sum as in (5.39) holds. The
polygon Pϕ

α here reduces to the line segmentL of length 2
√
2 centered at 0 with slope

1. In Fig. 47, some steps of the discrete evolution are represented. Note that the proof
of (6.16)–(6.17) does not require any covering argument in the fashion of Sect. 5.3
or any monotonicity assumption (5.13). The following characterization of the limit
evolution immediately follows from the proof of Theorem 39.

Proposition 47 Let α be such that (6.15) holds. Then, there exists a unique minimizing
movement of (3.4) Eα(t) = αLt where L is the line segment above.

6.2 Further Results and Conjectures

In this section, we focus on the non-trivial issue of addressing our problemwithout the
monotonicity constraint. If on the one hand in the case of the �∞-norm (Example 43),
the monotonicity constraint did not play any role, on the other hand in Example 45
we proved that the first step of the unconstrained scheme (6.7) for the �1-norm can
be either an even or an odd checkerboard set. The idea of the proof was to follow the
argument of Proposition 27, replacing, when using the 2 × 2-square coverings, the
family Se(E) with So(E) defined in (6.8) in the case E �⊃ q. This approach works for
every absolute norm ϕ. Therefore, when removing the monotonicity constraint in the
minimization scheme, we find the following generalization of Proposition 27.

Proposition 48 Let ϕ be an absolute norm, let α > 0 be such that α /∈ �ϕ , and let Fϕ
α

be as in (5.1). Then, the first minimization problem of scheme (6.7) admits the only
solutions

E1
α = argmin

E∈D
Fϕ

α(E, q) =
⎧
⎨
⎩
E(Z2

e ∩ Bϕ
4
α

) ∈ Ae , if q ⊂ E1
α ,

E(Z2
o ∩ Bϕ

4
α

) ∈ Ao , if q �⊂ E1
α .

At this point, we are forced to depart from Example 45 for the determination of the
sets Ek

α , k ≥ 2, as the delicate construction of a covering needed in the proof of
Proposition 30 strongly relies on the monotonicity constraint on the discrete evolution
and thence is no longer enough to infer an analogous result for the subsequent steps
of the evolution. The investigation of this issue has therefore to be deferred to further
contributions. Anyway, motivated by the previous “positive” examples, we do believe
that under suitable assumptions on the norm ϕ and the geometry of the competitors
in the minimization problem, one can still infer a (checkerboard) structure result as
in Proposition 30 and a characterization by means of Minkowski sums, analogous
to that of Theorem 38. Within this scenario, oscillations of the minimizers between
checkerboards of different parity, in principle, cannot be excluded. However, energetic
considerations suggest that thesemayoccur only for afinite number of steps, depending
on α: heuristically, a change of parity at step k involves a variation of the perimeter
term of order k which cannot match, for k large, the corresponding increase in the
bulk term of order k2. In order to see, this we may assume, without loss of generality,
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that Z(Ek+1
α ) = (k + 1)Nϕ

α ⊂ Z
2
o and Z(Ek

α) = kNϕ
α ⊂ Z

2
e for some k ≥ 1, as an

interchanging of the parity of the sets would provide an analogous estimate. Then, by
virtue of (2.7)–(2.9), the variation of the energy Fϕ

α from an even checkerboard Ek
α to

the odd one Ek+1
α is bounded from below by

− 4
(
#Z(Ek+1

α )− #Z(Ek
α)

)
+ αmin{ϕ(1, 0), ϕ(0, 1)}

(
#Z(Ek

α)+ #Z(Ek+1
α )

)

= −4#((k + 1)Nϕ
α ∩ Z

2
o)+ 4#(kNϕ

α ∩ Z
2
e)+ α

(
#(kNϕ

α ∩ Z
2
e)+ #((k + 1)Nϕ

α ∩ Z
2
o)

)

≥ −4#((k + 1)Nϕ
α ∩ Z

2
o)+ 4#(kNϕ

α ∩ Z
2
e)+ α#(kNϕ

α ∩ Z
2)

= α|conv(Nϕ
α)|k2 + C ′

αk + C ′′
α .

(6.18)

Thus, there exists kα := k(α) such that the right-hand side in (6.18) is positive for k ≥
kα . As a consequence, the change of parity is not energetically favorable (definitely in
k), and we expect either Ek

α ∈ Ae
conv or E

k
α ∈ Ao

conv for every k ≥ kα to hold as a result
of iterated Minkowski sums with the even nucleus Nϕ

α of (3.5). In conclusion, since
a finite number of oscillations is neglected in the limit, an analogous characterization
of the limit evolution as in Theorem 39 holds.

We summarize our conjecture as follows.

Conjecture Under suitable assumptions on ϕ and for suitable values of α, the discrete
solutions {Ek} of scheme (3.5) satisfy

either Z(Ek
α) =

{
i ∈ Z

2
e : dϕ(i, Ek−1

α ) <
4

α

}
or Z(Ek

α) =
{
i ∈ Z

2
o : dϕ(i, Ek−1

α ) <
4

α

}
.

Moreover, there exists an index kα ∈ N such that

Z(Ek
α) = Z(Ekα

α )+Nϕ
α + · · · +Nϕ

α︸ ︷︷ ︸
(k−kα)-times

, for every k ≥ kα .

As for the limit evolution, there exists a unique minimizing movement E : [0,+∞) →
X for scheme (3.5) defined by E(t) = v

ϕ
α t Pϕ

α for every t ≥ 0, where Pϕ
α and v

ϕ
α are

as in the statement of Theorem 39.
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