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Abstract
The main purpose of the current paper is to contribute towards the comprehension
of the dynamics of the shadow system of a singular Gierer–Meinhardt model on
an isotropically evolving domain. In the case where the inhibitor’s response to the
activator’s growth is rather weak, then the shadow system of the Gierer–Meinhardt
model is reduced to a single though non-local equation whose dynamics is thoroughly
investigated throughout themanuscript. Themain focus is on the derivation of blow-up
results for this non-local equation,which can be interpreted as instability patterns of the
shadow system. In particular, a diffusion-driven instability (DDI), or Turing instability,
in the neighbourhood of a constant stationary solution, which then is destabilised via
diffusion-driven blow-up, is observed. The latter indicates the formation of some
unstable patterns, whilst some stability results of global-in-time solutions towards
non-constant steady states guarantee the occurrence of some stable patterns. Most of
the theoretical results are verified numerically, whilst the numerical approach is also
used to exhibit the dynamics of the shadow system when analytical methods fail.

Keywords Pattern formation · Turing instability · Activator-inhibitor system ·
Shadow-system · Invariant regions · Diffusion-driven blow-up · Evolving domains

Mathematics Subject Classification Primary: 35B44 · 35K51; Secondary: 35B36 ·
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1 Introduction

The purpose of the current work is to study an activator-inhibitor system, introduced by
Gierer and Meinhardt (1972) to describe the phenomenon of morphogenesis in hydra,
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on an isotropically evolving domain. In particular, a singular Gierer–Meinhardt system
on a stationary domain � ⊂ R

N , N ≥ 1 with smooth boundary is given by (Gierer
and Meinhardt 1972),

ut = D1�u − u + u p

vq
, x ∈ �, t ∈ (0, T ), (1.1)

τvt = D2�v − v + ur

vs
, x ∈ �, t ∈ (0, T ), (1.2)

∂u

∂ν
= ∂v

∂ν
= 0 x ∈ ∂�t , t ∈ (0, T ), (1.3)

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ �0 ⊂ R
N , (1.4)

where u(x, t) stands for the concentration of the activator, at a spatial point x ∈ � at
time t ∈ [0, T ], T > 0, which enhances its own production and that of the inhibitor
whose concentration is denoted by v(x, t) according to (1.1). On the other hand, the
presence of the inhibitor suppresses its own production as well as that of the activator
as it is described by (1.2). Also ν denotes the unit normal vector on ∂�.

Here, D1 and D2 are the diffusion coefficients of the activator and inhibitor, respec-
tively; τ represents the response of the inhibitor to the activator’s growth. Moreover,
the exponents satisfying the conditions: p > 1, q, r ,> 0, and s > −1, measure the
interactions between morphogens. The dynamics of system (1.1)–(1.4) is controlled
by two values: the net self-activation indexψ = (p−1)/r and the net cross-inhibition
index γ = q/(s + 1). Index ξ correlates the strength of self-activation of the activator
with the cross-activation of the inhibitor. Thus, if ξ is large, then the net growth of
the activator is large no matter the growth of the inhibitor. The parameter γ mea-
sures how strongly the inhibitor suppresses the production of the activator and that of
itself. If γ is large, then the production of the activator is strongly suppressed by the
inhibitor. Finally, the parameter τ quantifies the inhibitor’s response against the acti-
vator’s growth, cf. Gierer and Meinhardt (1972). Guided by biological interpretation
as well as by mathematical reasons, we assume that the parameters p, q, r , s satisfy
the condition

p − rγ < 1, (1.5)

which in the literature is known as the Turing condition. Indeed, as it is pointed in the
seminal paper (Gierer andMeinhardt 1972), condition (1.5) guarantees the occurrence
of patterns, induced by diffusion, for the solutions of system (1.1)–(1.4), see also Ni
et al. (2006) and Ni (2011).

Apart from its biological importance, system (1.1)–(1.4) has a very rich math-
ematical structure including emerging singularities and thus its dynamics has been
extensively study the last few years. More precisely, a thorough study of the struc-
ture of its stationary solutions is given in Ni et al. (2006), whilst some global-in-time
existence results were proven in Jiang (2006), Li et al. (1995), Masuda and Takahashi
(1987) and Rothe (1984) among others. The author in Jiang (2006) proved that under
the condition ψ = p−1

r < 1, a global-in-time solution exists, which is an almost
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optimal result, also taking into consideration the results in Ni et al. (2006). Moreover,
in Karali et al. (2013) one can find an investigation of the asymptotic behaviour of the
solution of (1.1)–(1.4). The occurrence of finite-time blow-up, which actually implies
unlimited growth for the activator, was first established in Li et al. (1995) and later in
Karch et al. (2016), Li et al. (2017) and Zou (2015), whereas the case of non-diffusing
activator finite-time blow-up was investigated in Karch et al. (2016). The existence
and stability of spiky stationary solutions was thoroughly studied in the survey paper
(Wei 2008).

Now, in the case that the domain of the interaction of activator and inhibitor, denoted
by �t , is evolving in time, then the dynamics of this interaction can be described by
the following reaction–diffusion system

ut + ∇ · (−→α u) = D1�u − u + u p

vq
, x ∈ �t , t ∈ (0, T ), (1.6)

τvt + ∇ · (−→α v) = D2�v − v + ur

vs
, x ∈ �t , t ∈ (0, T ), (1.7)

∂u

∂ν
= ∂v

∂ν
= 0 x ∈ ∂�t , t ∈ (0, T ), (1.8)

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ �0 ⊂ R
N , (1.9)

where−→α ∈ R
N stands for the convectionvelocity, inducedby thematerial deformation

due to the evolution of the domain and �0 ⊂ R
N is the initial domain profile which

has smooth boundary ∂�0. The initial datum u0, v0 are considered bounded, i.e.

u0, v0 ∈ L∞(�0). (1.10)

In the current work, we will only consider the case of an isotropic flow on an
evolving domain, whilst the anisotropic case will be investigated in a forthcoming
paper. Thus, for any x ∈ �t we have:

x = ρ(t)ξ, for ξ ∈ �0 ⊂ R
N , (1.11)

where �0 is an open and bounded C1− domain of RN . Uniform isotropic growth is a
plausible biological assumptionwhereby thedomain is assumed to expanduniformly at
the same rate in all directions at all times. Examples illustrating isotropically evolving
biological surfaces include the famous Nature paper by Kondo and Asai (1995) that
depicted mode doubling in pigmentation patterns of the angelfish Pomacanthus as it
grows from juvenile to adulthood.

To proceed, we take ρ(t) to be a C1−function with ρ(0) = 1. In the case of a
growing domain, we have ρ̇(t) = dρ

dt > 0, whilst when the domain shrinks or for

domain contraction ρ̇(t) = dρ
dt < 0. Furthermore, the following equality holds

dx

dt
= −→α (x, t). (1.12)
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Setting û(ξ, t) = u(ρ(t)ξ, t), v̂(ξ, t) = v(ρ(t)ξ, t), and then using the chain rule as
well as (1.11) and (1.12), see also Madzvamuse and Maini (2007), we obtain:

ût − −→α · ∇xu = ut , ∇xu = 1

ρ(t)
∇ξ û

�xu = 1

ρ2(t)
�ξ û, ∇x · (−→α u

) = −→α · ∇xu + N u
ρ̇(t)

ρ(t)
,

whilst similar relations hold for v as well. Therefore, (1.6)–(1.9) is reduced to the
following reaction–diffusion system on a reference stationary domain �0

ût = D1

ρ2(t)
�ξ û −

(
1 + N

ρ̇(t)

ρ(t)

)
û + û p

v̂q
, ξ ∈ �0, t ∈ (0, T ),(1.13)

τ v̂t = D2

ρ2(t)
�ξ v̂ −

(
1 + N

ρ̇(t)

ρ(t)

)
v̂ + ûr

v̂s
, ξ ∈ �0, t ∈ (0, T ),(1.14)

∂ û

∂ν
= ∂v̂

∂ν
= 0 ξ ∈ ∂�0, t ∈ (0, T ), (1.15)

û(ξ, 0) = û0(ξ) > 0, v̂(ξ, 0) = v̂0(ξ) > 0, ξ ∈ �0, (1.16)

where �ξ represents the Laplacian on the reference static domain �0. Henceforth,
without any loss of generality we will omit the index ξ from the Laplacian.

Defining a new time scale (Labadie (2008)),

σ(t) =
∫ t

0

1

ρ2(θ)
dθ, (1.17)

and setting ũ(ξ, σ ) = û(ξ, t), ṽ(ξ, σ ) = v̂(ξ, t), then system (1.13)–(1.16) can be
written as

ũσ = D1�ξ ũ

−
(

φ2(σ ) + N
φ̇(σ )

φ(σ )

)
ũ + φ2(σ )

ũ p

ṽq
, ξ ∈ �0, σ ∈ (0, �), (1.18)

τ ṽσ = D2�ξ ṽ

−
(

φ2(σ ) + N
φ̇(σ )

φ(σ )

)
ṽ + φ2(σ )

ũr

ṽs
, ξ ∈ �0, σ ∈ (0, �),(1.19)

∂ ũ

∂ν
= ∂ṽ

∂ν
= 0, ξ ∈ ∂�0, σ ∈ (0, �), (1.20)

ũ(ξ, 0) = û0(ξ) > 0, ṽ(ξ, 0) = v̂0(ξ) > 0, ξ ∈ �0, (1.21)

where ρ(t) = φ(σ), and thus ρ̇(t) = φ̇(σ )

φ2(σ )
, and � = σ(T ).

Typically, in cellular biology, molecular species resident in the cytosol are known
to diffuse a lot faster than those molecular species resident in the cell membrane [see
Cusseddu et al. (2019)] and references therein). Hence, if we assume D1 � D2,where
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the inhibitor diffuses much faster than the activator, then system (1.18)–(1.21) can be
fairly approximated by an ODE-PDE system with a non-local reaction term. We will
denote the new approximation by shadow system as coined in Keener (1978). Below,
we provide a rather rough derivation of the shadow system, while for a more rigorous
approach one can appeal to the arguments in Bobrowski and Kunze (2019). Indeed,
dividing (1.19) by D2 and taking D2 → +∞, see also Ni (2011), then it follows that
ṽ solves

�ξ ṽ = 0, ξ ∈ �0,

∂ṽ

∂ν
= 0, ξ ∈ ∂�0,

for any fixed σ ∈ (0, �). Due to the imposed Neumann boundary condition then ṽ is
a spatial homogeneous (independent of ξ ) solution, and thus averaging (1.19) over�0
we get that −∫

�0
ṽ(ξ, σ ) dξ := 1

|�0|
∫
�0

ṽ(ξ, σ ) dξ := η(σ ). It follows then that η(σ )

satisfies the following partial differential equation

τ
dη

dσ
= −�(σ)η + φ2(σ )

−∫
�0

ũr

ηs
, σ ∈ (0, �), (1.22)

where

�(σ) =:
(

φ2(σ ) + N
φ̇(σ )

φ(σ )

)
(1.23)

and −∫
�0

ũr dξ := 1
|�0|

∫
�0

ũr dξ.

Finally, we can infer that the pair (ũ, η) satisfies the shadow system

ũσ = D1�ξ ũ − �(σ)ũ + φ2(σ )
ũ p

ηq
, ξ ∈ �0, σ ∈ (0, �), (1.24)

τ
dη

dσ
= −�(σ)η + φ2(σ )

−∫
�0

ũr dξ

ηs
, σ ∈ (0, �), (1.25)

∂ ũ

∂ν
= 0, ξ ∈ ∂�0, σ ∈ (0, �), (1.26)

ũ(ξ, 0) = û0(ξ) > 0, η(0) = η0 := −
∫

�0

ṽ(ξ, 0) dξ > 0, ξ ∈ �0. (1.27)

In the limit case τ → 0, i.e. when the inhibitor’s response to the growth of the
activator is quite small, then the shadow system is reduced to a single, though, non-

local equation. Indeed, when τ = 0, (1.25) entails that η(σ ) =
(

φ2(σ )
�(σ)

−∫
�0

ũr dξ
) 1

s+1
,

and thus (1.24)–(1.27) reduce to

ũσ = D1�ξ ũ − �(σ)ũ + �(σ)ũ p

(
−∫
�0

ũr dξ
)γ , ξ ∈ �0, σ ∈ (0, �), (1.28)
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∂ ũ

∂ν
= 0, ξ ∈ ∂�0, σ ∈ (0, �), (1.29)

ũ(ξ, 0) = û0(ξ) > 0, ξ ∈ �0, (1.30)

recalling γ = q
s+1 and

�(σ) = φ2(1−γ )(σ )�γ (σ ). (1.31)

Recovering the t variable entails that the following partial differential equation holds

ût = D1

ρ2(t)
�ξ û − L(t)û + L−γ (t)

û p

(
−∫
�0

ûr dξ
)γ , ξ ∈ �0, t ∈ (0, T ), (1.32)

∂ û

∂ν
= 0, ξ ∈ ∂�0, t ∈ (0, T ), (1.33)

û(ξ, 0) = û0(ξ) > 0, ξ ∈ �0, (1.34)

where L(t) :=
(
1 + N ρ̇(t)

ρ(t)

)
. We note that formulation (1.28)–(1.30) is more appro-

priate for the demonstrated mathematical analysis; however, all of our theoretical
results can be directly interpreted in terms of the equivalent formulation (1.32)–(1.34).
Besides, formulation (1.32)–(1.34) is more appropriate for our numerical experiments
since the calculation of the functions �(σ) and �(σ) is not always possible.

The primary aim of the current work is to investigate the long-time dynamics of the
non-local problem (1.28)–(1.30). Then, it is also examined under which circumstances
the dynamics of (1.28)–(1.30) resembles that of the reaction–diffusion system (1.18)–
(1.21), which is not always the case, as it has been pointed out in Jiang (2006), Karali
et al. (2013), Li and Ni (2009), and Li and Yip (2014). The latter study is performed by
using analytical methods, but when these methods fail, then a numerical approach will
be implemented. We also use the numerical approach to verify the derived analytical
results.

Biologically speaking, we will investigate whether it is necessary to study the
dynamics of both reactants or only the study of the activator’s dynamics is sufficient.
This is done under the assumption that the inhibitor’s response to the growth of the
activator is quite small and that it also diffuses much faster than the activator. From
here onwards, we take D1 = 1, revert to the initial variables x, u instead of ξ, ũ and
we drop the index ξ from the Laplacian � without any loss of generality. Hence, we
will focus our study on the following single nonlocal partial differential equation

uσ = �u − �(σ)u + �(σ)u p

(
−∫
�0

ur dx
)γ , x ∈ �0, σ ∈ (0, �), (1.35)

∂u

∂ν
= 0, x ∈ ∂�0, σ ∈ (0, �), (1.36)

u(x, 0) = u0(x) > 0, x ∈ �0. (1.37)
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Hence, the layout of the current work is as follows. Section 2 deals with the
derivation of various blow-up results, induced by the non-local reaction term (ODE
blow-up results), together with some global-time existence results for problem
(1.35)–(1.37). The notion of finite-time blow-up should be understood biologically
as an overcrowding of activator’s population, which mathematically means that
limσ→�b ||u(·, σ )||∞ = ∞. The impact of domain growth on the finite-time blow-up
of a reaction-diffusion equation was first discussed in Labadie (2008); however, the
novelty of our approach, both demonstrated in Sects. 2 and 3, consists of the fact
that we investigate both growing and shrinking domains but for a non-local reaction-
diffusion equation whose dynamics are more complicated. Following the approach
developed in Kavallaris and Suzuki (2017, 2018), in Sect. 3 we present and prove a
Turing instability result associated with (1.35)–(1.37). This Turing instability occurs
under the Turing condition (1.5) and is exhibited in the form of a diffusion-driven
blow-up (DDBU). It is not the first time that DDBU phenomenon is observed, see
for example Fila and Ninomiya (2005), Hu and Yin (1995), Kavallaris and Suzuki
(2017, 2018) and Mizoguchi et al. (1998), nevertheless according to our knowledge it
is the first time that such a result is proven for non-local reaction-diffusion equations
defined on evolving domains. Finally, in Sect. 4 we appeal to various numerical exper-
iments in order to confirm some of the theoretical results presented in Sects. 2 and
3. More importantly, the numerical approach is also used to compare the long-time
dynamics of the non-local problem (1.35)–(1.37) with that of the reaction–diffusion
system (1.24)–(1.27). It is also applied to study the dynamics of the shadow system
(1.35)–(1.37) when analytical methods fail to do so.

2 ODE Blow-up and Global Existence

The current section is devoted to the presentation of some ODE blow-up results for
problem (1.35)–(1.37), i.e. blow-up results induced by the kinetic (non-local) term in
(1.35). Here, by blow-up of the solution u of (1.35)–(1.37) we mean the occurrence of
a finite time�b so that limσ→�b ||u(·, σ )|| = ∞.Next, some global-in-time existence
results for the solution u of (1.35)–(1.37) are also presented, that is u exists for any
σ > 0 and it is bounded. It should be pointed out that local-in-time existence of non-
local problem (1.35)–(1.37) is easily obtained by using ideas in Quittner and Souplet
(2007).

Throughout themanuscript, we use the notationC and c to denote positive constants
with big and small values, respectively. Our first observation is that the concentration
of the activator cannot become zero in finite time. Indeed, the following proposition
holds.

Proposition 2.1 Assume that

inf
(0,�)

�(σ) := m� > 0, inf
(0,�)

�(σ) := m� > 0 and sup
(0,�)

�(σ) := M� < +∞,

(2.1)
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then for each � > 0 there exists C� > 0 such that for the solution u(x, σ ) of (1.35)–
(1.37) the following inequality holds

u(x, σ ) ≥ C� in �0 × [0, �). (2.2)

Proof Owing to the maximum principle and by using (2.1), we derive that u =
u(x, σ ) > 0. By virtue of the comparison principle, we also deduce that u(x, σ ) ≥
ũ(σ ), where ũ = ũ(σ ) is the solution to dũ

dσ
= −M�ũ in (0, �), ũ(0) = ũ0 ≡

inf�0 u0(x) > 0, and thus (2.2) is satisfied with C = ũ0e−M�� . 
�
Remark 2.1 It is easily checked that condition (2.1) is satisfied for any decreasing
function φ(σ) satisfying

φ(σ) >
1√

2Nσ + 1
, 0 < σ < �, (2.3)

since then by virtue of (1.23)

0 < �(σ) =
(

φ2(σ ) + N
φ̇(σ )

φ(σ )

)
< φ2(σ ) < φ2(0) = 1, 0 < σ < �. (2.4)

Then, (2.4) via (1.31) implies that

0 < �(σ) = (φ(σ ))2(1−γ ) �γ (σ ) < 1, for 0 < γ < 1, 0 < σ < � (2.5)

and

0 < �(σ) = (φ(σ ))2(1−γ ) �γ (σ ) < m2(1−γ )
� , for γ > 1, 0 < σ < �, (2.6)

when m� = inf(0,�) �(σ) > 0.

A key estimate for obtaining some blow-up results presented throughout is the
following proposition.

Proposition 2.2 Let �(σ) and �(σ) satisfy (2.1), then there exists δ0 > 0 such for
any 0 < δ ≤ δ0 the following estimate is fulfilled

−
∫

�0

u−δ ≤ C for any 0 < σ < �, (2.7)

where the positive constant C is independent of time σ.

Proof Define χ = u
1
α for α �= 0, then we can easily check that χ satisfies

αχσ = α
(
�χ + 4(α − 1)|∇χ

1
2 |2
)
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−�χ + �u p−1+ 1
α

(
−∫
�0

ur
)γ in �0 × (0, �), (2.8)

∂χ

∂ν
= 0, on ∂�0 × (0, �), (2.9)

χ(x, 0) = u
1
α

0 (x), in �0. (2.10)

Averaging (2.8) over �0, we obtain

α
d

dσ
−
∫

�0

χ + 4α(1 − α)−
∫

�0

|∇χ
1
2 |2 + �−

∫

�0

χ = −∫
�0

�u p−1+ 1
α

(
−∫
�0

ur
)γ , (2.11)

and hence

d

dσ
−
∫

�0

χ + 4(1 − α)−
∫

�0

|∇χ
1
2 |2 + �

α
−
∫

�0

χ ≤ 0, (2.12)

for α < 0. Setting δ = − 1
α
, we have

d

dσ
−
∫

�0

χ + 4(1 + δ−1)−
∫

�0

|∇χ
1
2 |2 ≤ M�δ−

∫

�0

χ.

Now, recall the Sobolev’s inequality, Brezis (2011), that reads

‖∇w‖22 ≥ C1(N ,�0)‖w‖22, for any w ∈ H1(�0) and N ≥ 2, (2.13)

where C1(N ,�0) is a positive constant depending only on dimension N and domain
�0.

Then, by choosing 0 < δ � 1, (2.12) in conjunction with (2.13) and for w = χ
1
2

it follows that d
dσ

−∫
�0

χ +C2−
∫
�0

χ ≤ 0, for some positive constant C2. Consequently,
Gröwnwall’s lemma yields that χ(σ) ≤ C < ∞ for any 0 < σ < � and thus (2.7)
follows due to the fact that χ = u−δ. 
�
Remark 2.2 Note that Proposition 2.2 guarantees that the non-local term of problem
(1.35)–(1.37) stays away from zero and hence solution u can never decay to zero. In

fact, inequality (2.7) implies −
∫

�0

uδ ≥ c = C−1 and then

−
∫

�0

ur ≥
(

−
∫

�0

uδ

)r/δ

≥ cr/δ > 0 for any 0 < σ < �, (2.14)

follows by Jensen’s inequality, Evans (2010), and taking δ ≤ r , where again c is
independent of time σ. The latter estimate rules out the possibility of (finite time or
infinite time) quenching, i.e. limσ→� ||u(·, σ )||∞ = 0 for � < ∞ or � = ∞,

cannot happen, and thus activator’s extinction in the long run is not possible.
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Remark 2.3 In case�(σ) is not bounded fromabove, as it happens forρ(t) = eβt , β >

0, when �(σ) = (1 + Nβ)(1 − 2βσ)−1, 0 < σ < 1
2β , then both of the estimates

(2.7) and (2.14) still hold true; however, the involved constants depend on time σ and
thus (finite or infinite time) quenching cannot be ruled out.

Next, we present our first ODE-type blow-up result for problem (1.35)–(1.37) when
an anti-Turing condition, the reverse of (1.5) is satisfied.

Theorem 2.1 Take p ≥ r , 0 < γ < 1 and ω = p − rγ > 1. Assume also �(σ) > 0
and consider initial data u0(x) such that

ū0 := −
∫

�0

u0 dx > (ω − 1)
1

1−ω I
1

1−ω (�) > 0, (2.15)

provided that

I (�) :=
∫ �

0
�(θ)e(1−ω)

∫ θ
�(η) dη dθ < ∞, (2.16)

then the solution of (1.35)–(1.37) blows up in finite time �b < �, i.e. limσ→�b

‖u(·, σ )‖∞ = +∞.

Proof Since p > 1 and p ≥ r , then by virtue of the Hölder’s inequality −∫
�0

u p ≥
(
−∫
�0

u
)p

and
(
−∫
�0

ur
)γ ≤

(
−∫
�0

u p
) γ r

p
. Then, ū(σ ) = −∫

�0
u(x, σ ) dx satisfies

dū

dσ
= −�(σ)ū + �(σ)

−∫
�0

u p

(
−∫
�0

ur
)γ ≥ −�(σ)ū + �(σ)ū p−rγ for 0 < σ < �.

(2.17)
Set now F(σ ) to be the solution of the following Bernoulli’s type initial value
problem dF

dσ
= −�(σ)F(σ ) + �(σ)Fω(σ ), 0 < σ < �, F(0) = ū0 > 0,

then via the comparison principle F(σ ) ≤ ū(σ ) for 0 < σ < � and F(σ ) is

given by F(σ ) = e(ω−1)
∫ σ

�(η) dη(G(σ ))
1

1−ω , where G(σ ) :=
[
ū1−ω
0 − (ω − 1)

∫ σ

0 �(θ)e(1−ω)
∫ θ

�(η) dη dθ
]
. Note that F(σ ) blows up in finite-time if there exists

σ ∗ < � such that G(σ ∗) = 0. First note that G(0) > 0; furthermore, under the
assumption (2.15) we have limσ→� G(σ ) < 0 and thus by virtue of the intermediate
value theorem there exists σ ∗ < � such that G(σ ∗) = 0. The latter implies that
limσ→σ ∗ F(σ ) = +∞ and therefore, lims→�b ū(σ ) = +∞ for some �b ≤ σ ∗,
which completes the proof. 
�
Remark 2.4 Note that for an exponentially growing domain, i.e. when ρ(t) = eβt , β >

0, condition (2.16) is satisfied since then 1 < �(σ) = (1 + Nβ) (1 − 2βσ)−1 and

1 < �(σ) = (1 + Nβ)γ (1 − 2βσ)−1 for all σ ∈
(
0, 1

2β

)
. Thus,

I (�) = (1 + Nβ)γ
∫ 1

2β

0
(1 − 2βθ)

(ω−1)(1+Nβ)
2β −1 dθ = (1 + Nβ)γ−1

(ω − 1)
< +∞,
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and according to Theorem 2.1 finite-time blow-up takes place at time

�g ≤ σg := 1

2β

{

1 −
[
1 − (1 + Nβ)1−γ ū1−ω

0

] 2β
(ω−1)(1+Nβ)

}

, (2.18)

and for initial data u0 satisfying ū0 > (1 + Nβ)
1−γ
ω−1 . Notably the bigger the exponent

β > 0 is, the faster the evolving domain grows, then a rather large initial condition u0
is needed in order to get blow-up according to Theorem 2.1.

Conversely, for an exponentially shrinking domain, i.e. when ρ(t) = e−βt , 0 <

β < 1
N , then again condition (2.16) is valid since then

0 < �(σ) = (1 − Nβ) (1 + 2βσ)−1 < 1, σ ∈ (0,∞), (2.19)

and

0 < �(σ) = (1 − Nβ)γ (1 + 2βσ)−1 < 1, σ ∈ (0,∞). (2.20)

In that case

I (�) = (1 − Nβ)γ
∫ +∞

0
(1 + 2βθ)

(ω−1)(1−Nβ)
2β −1 dθ = (1 − Nβ)γ−1

(ω − 1)
< +∞,

and again finite-time blow-up occurs at

�d ≤ σd := 1

2β

{[
1 − (1 − Nβ)1−γ ū1−ω

0

] 2β
(1−ω)(1−Nβ) − 1

}

, (2.21)

provided that the initial data satisfy ū0 > (1 − Nβ)
1−γ
ω−1 . Therefore, the smallest

0 < β < 1
N is chosen, the fastest the evolving domain shrinks, then the smaller initial

data u0 are required for the occurrence of finite-time blow-up predicted by Theorem
2.1.

For a stationary domain, i.e. when ρ(t) = φ(σ) = 1, we have �(σ) = �(σ) = 1
and thus finite-time blow-up occurs at

�s ≤ σs := 1

1 − ω
ln
(
1 − ū1−ω

0

)
, (2.22)

provided that ū0 > 1, cf. Kavallaris and Suzuki (2017, 2018).
In conclusion, conditions (2.15) and (2.16) imply, since ω > 1 and �(s) > 0, that

the faster the evolving domain expands, then the bigger initial data are required to
obtain finite-time blow-up. On the other hand, the faster the evolving domain shrinks,
then the smaller initial data u0 are needed for finite-time blow-up to occur.

Note also that by relations (2.18), (2.21) and (2.22), we cannot really obtain an
ordering of blowing-up times �g, �d and �s since there is not a clear ordering of the
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corresponding upper bounds σg, σd , σs However, we conjecture that �g > �s > �d ,

a conjecture which is verified by numerical Experiment 1 in Sect. 4; see in particular
Fig. 1.

Remark 2.5 When the domain evolves logistically, which is a feasible choice in the
context of biology, cf. Plaza et al. (2004), i.e. when ρ(t) = eβt

1+ 1
m (eβt−1)

for m �= 1,

then equation (1.17) cannot be solved for t and it is more convenient to deal with
problem (1.32)–(1.34) instead. Then, following the same approach as in Theorem 2.1
it can be shown that the solution of (1.32)–(1.34) exhibits finite-time blow-up under
the same conditions for parameters p, γ , r provided that the initial condition satisfies

ū0 := −
∫

�0

u0 dx > (ω − 1)
1

1−ω

∫ ∞

0
L−γ (θ)e(1−ω)

∫ θ L(η) dη dθ, (2.23)

where now the quantity L(t) = 1 + Nβ
(
1− 1

m

)

1+ 1
m (eβt−1)

.

Remark 2.6 Assume now that

0 < ū0 < (ω − 1)
1

1−ω I
1

1−ω (�), (2.24)

then G(�) > 0 and since G(σ ) is strictly decreasing we get that G(σ ) > 0 for any
0 < σ < � which implies that F(σ ) never blows up. Therefore, since F(σ ) ≤ ū(σ ),

there is still a possibility that ū(σ ) does not blow up either; however, we cannot be sure
and it remains to be verified numerically; more precisely see Fig. 2 of Experiment 1
in Sect. 4.

Next, we investigate the dynamics of some L�-norms ||u(·, σ )||�, which identify
some invariant regions in the phase space. We first define ζ(σ ) = −∫

�0
ur dx , y(σ ) =

−∫
�0

u−p+1+r dx and w(σ) = −∫
�0

u p−1+r dx , then Hölder’s inequality implies

w(σ)y(σ ) ≥ ζ 2(σ ), 0 ≤ σ < �. (2.25)

Our first result in this direction provides some conditions under which a finite-time
blow-up takes place, when an anti-Turing condition is in place and is stated as follows.

Theorem 2.2 Take 0 < γ < 1 and r ≤ 1 <
p−1
r . Assume that �(σ), �(σ) satisfy

(2.1), then if one of the following conditions holds:

(1) w(0) < m�

M�
ζ(0)1−γ ,

(2) p−1
r ≥ 2 and w(0) < 1,

then finite-time blow-up occurs.

Proof Set χ = u
1
α with α �= 0, then following the same steps as in Proposition 2.2

we derive
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αχσ = α
(
�χ + 4(α − 1)|∇χ

1
2 |2
)

− �χ + �
u p−1+ 1

α

(
−∫
�0

ur
)γ , (2.26)

for x ∈ �0, σ ∈ (0, �),

∂χ

∂ν
= 0, x ∈ ∂�0, σ ∈ (0, �), (2.27)

χ(x, 0) = u
1
α

0 (x), x ∈ �0. (2.28)

Averaging (2.26) over �0 and using zero-flux boundary condition (2.27), we obtain

α
d

dσ
−
∫

�0

χ = −4α(1 − α)−
∫

�0

|∇χ
1
2 |2 − �(σ)−

∫

�0

χ + �(σ)
−∫
�0

u p−1+ 1
α

(
−∫
�0

ur
)γ . (2.29)

Relation (2.29) for α = 1
r , since also r ≤ 1, implies that

1

r

dζ

dσ
= −4

r

(
1 − 1

r

)
−
∫

�0

|∇χ
1
2 |2 − �(σ)ζ(σ ) + �(σ)

−∫
�0

u p−1+r

(
−∫
�0

ur
)γ

≥ −M�ζ(σ ) + m�

ζ 2−γ (σ )

w(σ)
≥ ζ(σ )

w(σ)

(
−M�w(σ) + m�ζ 1−γ (σ )

)
,

(2.30)

which suffices by using (2.25) together with (2.1). Furthermore, since p−1
r > 1, then

(2.29) for α = 1
−p+1+r leads to

α
dw

dσ
= 4α(α − 1)−

∫

�0

|∇u
1
2α |2 − �(σ)w + �(σ)ζ 1−γ , (2.31)

which, owing to (2.1) and using the fact that α = 1
−p+1+r < 0 ensures that

1

p − 1 − r

dw

dσ
≤ M�w(σ) − m�ζ 1−γ (σ ). (2.32)

Note that since 0 < γ < 1,we have that the curve�1 : w = m�ζ 1−γ

M�
, ζ > 0, is concave

in wζ−plane, with its endpoint at the origin (0, 0). Furthermore, relations (2.30) and

(2.32) imply that the region R = {(ζ, w) | w <
m�ζ 1−γ

M�
} is invariant, and ζ(σ ) and

w(σ) are increasing and decreasing on R, respectively. Under the assumption that

w(0) <
m�ζ 1−γ (0)

M�
, we have dw

dσ < 0, dζ
dσ > 0, for 0 ≤ σ < �, and thus,

m�

w(σ)
− M�

ζ 1−γ (σ )
≥ m�

w(0)
− M�

ζ 1−γ (0)
≡ c0 > 0, for 0 ≤ σ < �.
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Therefore, by virtue of (2.30), we derive the differential inequality

1

r

dζ

dσ
≥ −M�ζ(σ ) + m�

ζ 2−γ (σ )

w(σ)
= ζ 2−γ (σ )

(
1

w(σ)
− M�

m�ζ 1−γ (σ )

)

≥ c0ζ
2−γ (σ ), 0 ≤ σ < �. (2.33)

Since 2−γ > 1, inequality (2.33) implies that ζ(σ ) blows up in finite time σ1 ≤ σ̂1 ≡
ζ γ−1(0)
(1−γ )c0r

< ∞, and since ζ(σ ) = −∫
�0

ur dx ≤ ‖u(·, σ )‖r∞ we conclude that u(x, σ )

blows up in finite time �b ≤ σ̂1.

We now consider the latter case when p−1
r ≥ 2, then q = p−1−r

r ≥ 1, and thus

by virtue of Jensen’s inequality, Evans (2010), we obtain −∫
�0

ur
(
−∫
�0

(u−r )q
) 1

q ≥
−∫
�0

ur−∫
�0

u−r ≥ 1, which entails ζ
1
r (σ ) ≥ w

− 1
p−1−r (σ ), and thus by virtue of (2.1)

w(σ) ≥ ζ− p−1−r
r (σ ) = ζ 1− p−1

r (σ ) >
1

�(σ)
ζ 1− p−1

r (σ ) ≥ m�

M�

ζ 1− p−1
r (σ ), (2.34)

for any σ ∈ [0, �). Since p−1
r ≥ 2, the curve �2 : w = m�ζ 1−

p−1
r

M�
, ζ > 0, is convex

and approaches+∞ and 0 as ζ ↓ 0+ and ζ ↑ +∞, respectively. Moreover, the curves
�1 and �2 intersect at the point (ζ, w) = (1, 1), and therefore, w(0) < 1 combined

with (2.34) implies that w(0) <
m�ζ 1−γ (0)

M�
. Thus, the latter case is reduced to the

former case and once again finite-time blow-up for the solution u(x, σ ) is established.

�

Remark 2.7 Note that in the case of a stationary domain then ζ(σ ) blows up, see

Kavallaris and Suzuki (2017, 2018), in finite time σ2 ≤ σ̂2 ≡ ζ γ−1(0)
(1−γ )c1r

, where c1 ≡
1

w(0) − 1
ζ 1−γ (0)

, and thus u(x, σ ) blows in finite time �1 ≤ σ̂2 under the condition

w(0) < ζ(0)1−γ .

Remark 2.8 For a logistically growing or shrinking domain problem, (1.32)–(1.34)
exhibit finite-time blow-up under the assumptions of Theorem 2.2 whenever w(0) <

M−(γ+1)
L ζ(0)1−γ , where ML := sup(0,∞) L(t) = sup(0,∞)

(

1 + Nβ
(
1− 1

m

)

1+ 1
m (eβt−1)

)

. In

particular, for a logistically growing domain, when m > 1, then ML = L(0) =
1+ Nβ

(
1 − 1

m

)
, whilst for logistically decaying domain, when 0 < m < 1 we have

ML = limt→+∞ L(t) = 1 and hence in that case blow-up conditions (1) and (2) of
Theorem 2.2 coincide with the ones of Kavallaris and Suzuki (2017, Theorem 3.5),
see also Remark 2.7.

Now, we present a global-in-time existence result stated as follows.

Theorem 2.3 Assume that p−1
r < min{1, 2

N , 1
2 (1 − 1

r )} and 0 < γ < 1. Consider
functions �(σ), �(σ) > 0 with

inf
(0,�)

�(σ) := m� > 0 and sup
(0,�)

�(σ) := M� < +∞, (2.35)
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then problem (1.35)–(1.37) has a global-in-time solution.

Proof We assume p−1
r < min{1, 2

N , 1
2 (1 − 1

r )} and 0 < γ < 1. We also assume
N ≥ 2 since the complementary case N = 1 is simpler.

Note that for p > 1, we have p−1
r < 2

N and r > p. Therefore, we have 0 <

1
r−p+1 < min

{
1,
(

1
p−1

) (
2

N−2

)
, 1
1−p+rγ

}
, since 0 < γ < 1. Choosing 1

r−p+1 <

α < min{1, 1
p−1 · 2

N−2 ,
1

1−p+rγ }, it follows that the max
{ N−2

N , 1
αr

}
< 1

−α+1+α p , and
then we can find β > 0 such that

max

{
N − 2

N
,
1

αr

}
<

1

β
<

1

−α + 1 + α p
< 2, (2.36)

which satisfies
β

αr
< 1 <

β

−α + 1 + α p
. (2.37)

Recalling thatχ = u
1
α satisfies (2.26)–(2.28) with−

∫

�0

u p−1+ 1
α

(
−∫
�0

ur
)γ = −∫

�0
χ−α+1+α p

(
−∫
�0

χαr
)γ ,

then by virtue of (2.37)

−
∫

�0

χ−α+1+α p ≤
(

−
∫

�0

χβ

)−α+1+α p
β

and

(
−
∫

�0

χαr
)γ

≥
(

−
∫

�0

χβ

) αr
β

·γ
,

thus we obtain the following estimate

−∫
�0

χ−α+1+α p

(
−∫
�0

χαr
)γ ≤

(
−
∫

�0

χβ

)−α+1+α p−αrγ
β = ‖χ 1

2 ‖2(1−λ)
2β , (2.38)

with 0 < λ = α{1− p+rγ } < 1, recalling that p−1
r < γ and α < 1

1−p+rγ . Averaging
(2.26) over �0 leads to the following,

α
d

dσ
−
∫

�0

χ + 4α(1− α)−
∫

�0

|∇χ
1
2 |2 + �(σ)−

∫

�0

χ = �(σ)
−∫
�0

χ−α+1+α p

(
−∫
�0

χαr
)γ , (2.39)

and hence

d

dσ
−
∫

�0

χ + 4(1 − α)−
∫

�0

|∇χ
1
2 |2 + m�

α
−
∫

�0

χ ≤ M�

α
‖χ 1

2 ‖2(1−λ)
2β ,

by virtue of (2.35), (2.36) and (2.38). Now since 1 < 2β < 2N
N−2 holds due to (2.36)

and applying first the Sobolev’s and then Young’s inequalities we obtain

d

dσ
−
∫

�0

χ + c‖χ 1
2 ‖2H1 + M�

α
−
∫

�0

χ ≤ C,

123



5 Page 16 of 34 Journal of Nonlinear Science (2021) 31 :5

which implies −∫
�0

χ ≤ C . Since 1
α
can be chosen to be close to r − p + 1, the above

estimate gives

‖u(·, σ )‖q ≤ Cq , for any 1 ≤ q < r − p + 1, (2.40)

recalling that χ = u
1
α . Note that p−1

r < 1
2 (1 − 1

r ) implies r−p+1
p > 1 and thus we

obtain global-in-time existence by using the same bootstrap argument as in Kavallaris
and Suzuki (2017, Theorem 3.4). 
�
Remark 2.9 Note that condition (2.35) is satisfied in the case of an exponentially
shrinking domain as indicated in Remark 2.4, see in particular (2.19) and (2.20).

3 Turing Instability and Pattern Formation

In this section, we state and prove a Turing-instability, that is a diffusion-driven insta-
bility, result for problem (1.35)–(1.37). Due to technical restrictions, we focus on the
radial case �0 = B1(0) := {x ∈ R

N | |x | < 1} and for dimensions N ≥ 3; however,
in Sect. 4, we treat numerically the two-dimensional case N = 2 as well, see Fig. 6
Next, we consider a radially decreasing and spiky initial datum of the form, (Hu and
Yin 1995),

u0(R) = λψδ(R), (3.1)

with 0 < λ � 1 and

ψδ(R) =
{
R−a, δ ≤ R ≤ 1,

δ−a
(
1 + a

2

)− a
2 δ−(a+2)R2, 0 ≤ R < δ,

(3.2)

where a = 2
p−1 and 0 < δ < 1. Notably u0(R) ∈ L∞(0, 1), which is compatible

with assumption (1.10).
Then, the solution u (1.35)–(1.37) is radially symmetric and decreasing , i.e.

u(x, σ ) = u(R, σ ) for R = |x | and uR(R, σ ) ≤ 0 and thus, it satisfies the following

uσ = �Ru − �(σ)u + �(σ)u p

(
−∫
�0

ur
)γ , R ∈ (0, 1), σ ∈ (0, �), (3.3)

uR(0, σ ) = u(1, σ ) = 0, σ ∈ (0, �), (3.4)

u(R, 0) = u0(R), 0 < R < 1, (3.5)

where �Ru := uRR + N−1
R uR .

Remarkably, under the Turing condition (1.5), the spatial homogeneous solutions
of (3.3)–(3.5), i.e. the solution of the problem

du

dσ
= −�(σ)u + �(σ)u p−rγ ,

u|σ=0 = ū0 > 0,
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never exhibit blow-up, as long as�(σ),�(σ) are both bounded, since the nonlinearity
f (u) = u p−rγ is sub-linear [see also Kavallaris and Suzuki (2017, 2018)]. Otherwise,
considering spatial inhomogeneous solutions of (3.3)–(3.5), the following diffusion-
driven blow-up (Turing instability ) result holds true.

Theorem 3.1 Consider N ≥ 3, 1 ≤ r ≤ p, p > N
N−2 E,

2
N <

p−1
r < γ and γ > 1.

Assume that both�(σ) and�(σ) are positive and bounded. Then, there exists λ0 > 0
such that for any 0 < λ ≤ λ0 there exists 0 < δ0 = δ0(λ) < 1, then any solution of
problem (3.3)–(3.5) with spiky initial data of the form (3.1) and 0 < δ ≤ δ0 blows up
in finite time.

Note that the maximum principle is not applicable for the non-local problem (3.3)–
(3.5) and hence comparison techniques fail, see for example Quittner and Souplet
(2007, Proposition 52.24). Therefore, to overcome this obstacle, and finally prove
Theorem 3.1, we derive a lower estimate of the non-local term

K̃ (σ ) := �(σ)
(
−
∫

�0

ur
)γ

.

and then deal with a local problem for which comparison techniques become applica-
ble. To that end, following an approach used in Hu and Yin (1995) and Kavallaris and
Suzuki (2017, 2018), we need to prove first some auxiliary results.

First, it is easily seen that for ψδ given by (3.2) the following lemma holds (Kaval-
laris and Suzuki 2017, 2018).

Lemma 3.1 For the function ψδ defined by (3.2), we have:

(i) For any 0 < δ < 1, there holds in a weak sense

�Rψδ ≥ −Naψ
p
δ . (3.6)

(ii) If m > 0 and N > ma, we have

−
∫

�0

ψm
δ = N

N − ma
+ O

(
δN−ma

)
, δ ↓ 0. (3.7)

Now, if we consider
μ > 1 + rγ (3.8)

and set α1 = sup0<δ<1
1

ψ̄
μ
δ

−∫
�0

ψ
p
δ , and α2 = inf0<δ<1

1
ψ̄

μ
δ

−∫
�0

ψ
p
δ ,

then since p > N
N−2 , relation (3.7) is applicable for m = p and m = 1, and thus

owing to (3.8) we obtain

0 < α1, α2 < ∞. (3.9)

123



5 Page 18 of 34 Journal of Nonlinear Science (2021) 31 :5

Furthermore, it follows that

d ≡ inf
0<δ<1

(
1

2α1

) rγ
p
(

1

2ϕ̄δ

) rγ
p μ

> 0, (3.10)

and the initial data u0 defined by (3.1) and (3.2) also satisfy the following lemma, for
the proof see Kavallaris and Suzuki (2017, 2018).

Lemma 3.2 If p > N
N−2 and p−1

r < γ , there exists λ0 = λ0(d) > 0 such that for any
0 < λ ≤ λ0 there holds

�Ru0 + dλ−rγ u p
0 ≥ 2u p

0 . (3.11)

Hereafter, we fix 0 < λ ≤ λ0 = λ0(d) such that (3.11) is satisfied. Given 0 < δ < 1,
let �δ > 0 be the maximal existence time of the solution to (3.3)–(3.5) with initial
data of the form (3.1)-(3.2). Next, we introduce the new variable z := e

∫ σ
�(s) dsu,

such that the linear dissipative term −�(σ)u in (3.3) is eliminated and z satisfies

zσ = �Rz

+ K (σ )z p, R ∈ (0, 1), σ ∈ (0, �δ), (3.12)

zR(0, σ ) = zR(1, σ ) = 0, σ ∈ (0, �δ), (3.13)

z(R, 0) = u0(R), 0 < R < 1, (3.14)

where

K (σ ) := �(σ)e(1+rγ−p)
∫ σ

�(s) ds

(
−
∫

�0

zr
)γ

. (3.15)

It is clear that as long as �(σ) is bounded then u blows-up in finite time if and only if
z does so. Assuming now that both �(σ) and �(σ) are positive and bounded, which
is the case for the evolution provided by ψ(σ) satisfying (2.3) or for an exponentially
shrinking domain as indicated in Remarks 2.1 and 2.4, then by virtue of (2.14) we
have

0 < K (σ ) = �(σ)e(1−p)
∫ σ

�(s) ds

(
−
∫

�0

ur
)γ

≤ C < ∞. (3.16)

Averaging of (3.12) entails
dz̄

dσ
= K (σ )−

∫

�0

z p, (3.17)

and thus (3.16) yields

z̄(σ ) ≥ z̄(0) = ū0 := −
∫

�0

u0. (3.18)

Henceforth, the positivity and the boundedness of �(σ), and �(σ) as well as the
Turing condition (1.5) are imposed.
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Next, we provide a useful estimate of z that will be frequently used throughout the
sequel.

Lemma 3.3 The solution z of problem (3.12)–(3.14) satisfies

RN z(R, σ ) ≤ z̄(σ ) in (0, 1) × (0, �δ), (3.19)

and

zR

(
3

4
, σ

)
≤ −c, 0 ≤ σ < �δ, (3.20)

for any 0 < δ < 1 and some positive constant c.

Proof Let us define w = RN−1zR , then it follows that w satisfies H[w] =
0, for (R, σ ) ∈ (0, 1)×(0, �δ), withw(0, σ ) = w(1, σ ) = 0, for σ ∈ (0, �δ), and
w(R, 0) < 0, for 0 < R < 1, whereH[w] ≡ wσ − wRR + N−1

ρ
wR − pK (σ )z p−1w.

Owing to the maximum principle, and recalling that K (σ ) is bounded by (3.16), we
get that w ≤ 0, which implies zR ≤ 0 in (0, 1) × (0, �δ). Accordingly, inequality
(3.19) follows since

RN z(R, σ ) = z(R, σ )

∫ R

0
NsN−1 ds ≤

∫ R

0
Nz(s, σ )sN−1 ds

≤
∫ 1

0
Nz(s, σ )sN−1 ds = −

∫

�0

z = z̄(σ ).

Now, given that w ≤ 0 together with (3.16), we have

wσ − wRR + N − 1

ρ
wR = pK (σ )z p−1w ≤ 0 in (0, 1) × (0, �δ),

with w
( 1
2 , σ

) ≤ 0, w (1, σ ) ≤ 0, for σ ∈ (0, �δ), and w(R, 0) = ρN−1u′
0(R) ≤

−c, for 1
2 < ρ < 1, which implies w ≤ −c in ( 12 , 1) × (0, �δ), and thus (3.20) holds.


�
The next result is vital for proving the key estimate provided by Proposition 3.1 below.

Lemma 3.4 Take ε > 0 and 1 < q < p then ϑ defined as

ϑ := RN−1zR + ε · R
N zq

z̄γ+1 , (3.21)

satisfies

H[ϑ] ≤ − 2qε

z̄γ+1 z
q−1ϑ + εRN zq

z̄2(γ+1)

{
2qεzq−1

−m�(γ + 1)z̄γ−rγ −
∫

�0

z p − m�(p − q)z p−1 z̄γ+1−rγ
}

, (3.22)

for (R, σ ) ∈ (0, 1) × (0, �δ), where m� = infσ∈(0,�δ) �(σ) > 0.
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Proof It is readily checked that H [RN−1zR
] = 0, while by straightforward calcula-

tions we derive

H
[
εRN zq

zγ+1

]
= 2q(N − 1)εRN−1zq−1

zγ+1 zR

+ qεRN z p−1+q

zγ+1 K (σ )

− (γ + 1)εRN zq

zγ+2 K (σ )−
∫

�0

z p dx

− 2qNεRN−1zq−1

zγ+1 zR

− q(q − 1)εRN zq−2

zγ+1 z2R − pεRN z p−1+q

zγ+1 K (σ )

≤ −2qεzq−1

zγ+1 ϑ

+ εRN zq

z2(γ+1)

⎡

⎢
⎣2qεzq−1 − �(σ)(γ + 1)zγ e(1+rγ−p)

∫ σ
�(s) ds

(
−∫
�0

zr dx
)γ −

∫

�0

z p dx

− �(σ)(p − q)z p−1zγ+1

(
−∫
�0

zr dx
)γ e(1+rγ−p)

∫ σ
�(s) ds

⎤

⎥
⎦ . (3.23)

Then, by virtue of the Hölder’s inequality, and since 1 ≤ r ≤ p, (3.23) entails the
desired estimate (3.22). 
�

Next, note that when p > N
N−2 , there is 1 < q < p such that N >

2p
q−1 and thus

the following quantities

A1 ≡ sup
0<δ<1

1

ūμ
0

−
∫

�0

u p
0 = λμ−pα1 and A2 ≡ inf

0<δ<1

1

ūμ
0

−
∫

�0

u p
0 = λμ−pα2,

(3.24)
are finite due to (3.9).

An essential ingredient for the proof of Theorem 3.1 is the following key estimate
of the L p−norm of z in terms of A1 and A2.

Proposition 3.1 There exist 0 < δ0 < 1 and 0 < σ0 ≤ 1 independent of any 0 < δ ≤
δ0, such that the following estimate is satisfied

1

2
A2z

μ ≤ −
∫

�0

z p dx ≤ 2A1z
μ, (3.25)

for any 0 < σ < min{σ0, �δ}.
The proof of Proposition 3.1 requires some further auxiliary results provided below.
Let us define 0 < σ0(δ) < �δ to be the maximal time for which inequality (3.25) is
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valid in 0 < σ < σ0(δ), then we have

1

2
A2 z̄

μ ≤ −
∫

�0

z p ≤ 2A1 z̄
μ. (3.26)

We only regard the case σ0(δ) ≤ 1, since otherwise there is nothing to prove. Then,
the following lemma holds true.

Lemma 3.5 There exists 0 < σ1 < 1 such that

z̄(σ ) ≤ 2ū0, 0 < σ < min{σ1, σ0(δ)}, (3.27)

for any 0 < δ < 1.

Proof Since r ≥ 1 and σ0(δ) ≤ 1, then by virtue of (3.15) and (3.17)

dz̄

dσ
≤ 2A1M�e

(1+rγ−p)M� z̄μ−rγ , for 0 < σ < σ0(δ),

recalling that M� = supσ∈(0,�δ)
�(σ) < +∞ and M� = supσ∈(0,�δ)

�(σ) < +∞.

Setting C1 = 2A1M�e(1+rγ−p)M� and taking into account (3.8), we then derive

z(σ ) ≤
[
ū1+rγ−μ
0 − C1(μ − rγ − 1)σ

]− 1
μ−rγ−1

.

Accordingly, (3.27) holds for any 0 < σ < min{σ1, σ0(δ)} where σ1 is independent

of any 0 < δ < 1 and is estimated as σ1 ≤ min
{

1−21+rγ−μ

C1(μ−rγ−1)u
1+rγ−μ
0 , 1

}
. 
�

Another fruitful estimate is provided by the next lemma.

Lemma 3.6 There exist 0 < δ0 < 1 and 0 < R0 < 3
4 such that for any 0 < δ ≤ δ0

the following estimate is valid

1

|�|
∫

BR0 (0)
z p ≤ A2

8
z̄μ, for 0 < σ < min{σ1, σ0(δ)}, (3.28)

where BR0(0) = {x ∈ R
N | |x | < R0}.

Proof By virtue of (3.18) and (3.27), it follows that

ū0 ≤ z̄(σ ) ≤ 2ū0, for 0 < σ < min{σ1, σ0(δ)}. (3.29)

Furthermore, we note that the growth of −∫
�0

z p is controlled by the estimate (3.25)
for 0 < min{σ1, σ0(δ)} and since p > q then Young’s inequality ensures that the
second term of the right-hand side in (3.22) is negative for 0 < σ < min{σ1, σ0(δ)},
uniformly in 0 < δ < 1, provided that 0 < ε ≤ ε0 for some 0 < ε0 � 1. Therefore,

H[ϑ] ≤ −2qεzq−1

z̄γ+1 ϑ in (0, 1) × (0,min{σ1, σ0(δ)}). (3.30)
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Moreover, (3.19) and (3.29) imply

ϑ(R, σ ) = RN−1zR + ε
RN zq

z̄γ+1 ≤ RN−1zR + εRN (1−q) z̄q−γ−1

≤ RN−1zR + CεRN (1−q) in (0, 1) × (0,min{σ1, σ0(δ)}),

which, for 0 < ε ≤ ε0, entails

ϑ

(
3

4
, σ

)
< 0, 0 < σ < min{σ1, σ0(δ)}, (3.31)

owing to (3.20) and provided that 0 < ε0 � 1. Additionally, (3.21) for t = 0 gives

ϑ(R, 0) = RN−1

(

λψ ′
δ(R) + ελq−γ−1R

ψ
q
δ

ψ̄
γ+1
δ

)

. (3.32)

For 0 ≤ R < δ and ε small enough and independent of 0 < δ < δ0, then the right-hand
side of (3.32) can be estimated as

RNλ

(

−aδ−a−2 + ελq−γ−2 ψ
q
δ

ψ̄
γ+1
δ

)

� RNλ
(
−aδ−a−2 + ελq−γ−2δ−aq

)
� 0,

since by virtue of (3.2) and (3.7) and for m = 1, there holds
ψ

q
δ

ψ̄
γ+1
δ

� δ−aq , δ ↓ 0,

uniformly in 0 ≤ R < δ, taking also into account that a + 2 = ap > ak.
On the other hand, for δ ≤ R ≤ 1 and by using (3.7) for m = 1 we take

ϑ(R, 0) = RNλ

(

−aR−a−1 + ελq−γ−1 R
1−aq

ψ̄
γ+1
R

)

, (3.33)

which, since a + 2 = ap > aq implies −a − 1 < −aq + 1, finally yields ϑ(R, 0) <

0, δ ≤ R ≤ 3
4 , for any 0 < δ ≤ δ0 and 0 < ε ≤ ε0, provided ε0 is chosen sufficiently

small. Accordingly, it follows that

ϑ(R, 0) < 0, and 0 ≤ R ≤ 3

4
, (3.34)

for any 0 < δ ≤ δ0 and 0 < ε ≤ ε0, provided 0 < ε0 � 1.
In conjunction of (3.30), (3.31) and (3.34), we deduce ϑ(R, σ ) = RN−1zR +

ε RN zq

z̄γ+1 ≤ 0 in (0, 3
4 ) × (0,min{σ1, σ0(δ)}), and finally

z(R, σ ) ≤
(ε

2
(q − 1)

)− 1
q−1

R− 2
q−1 z̄

γ−1
q−1 (σ ) in (0,

3

4
) × (0,min{σ1, σ0(δ)}).

(3.35)
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Note that owing to N >
2p
q−1 there holds −

(
2

q−1

)
p + N − 1 > −1 and thus (3.28)

is valid for some 0 < R0 < 3
4 . 
�

Remark 3.1 Estimate (3.35) entails that z(R, σ ) can only blow-up in the origin R = 0;
that is, only a single-point blow-up is feasible.

Next, we prove the key estimate (3.25) using essentially Lemmas 3.5 and 3.6.

Proof of Proposition 3.1 By virtue of (3.8) and since p−1
r < δ, there holds that � =

μ
p > 1.We can easily check that θ = z

z�
satisfies (Kavallaris and Suzuki 2017, 2018)

θσ = �Rθ + �(σ)e(rγ+1−p)
∫ σ

�(s) ds

⎡

⎢
⎣

z p

z�
(
−∫
�0

zr
)γ − �z−∫

�0
z p

z�+1
(
−∫
�0

zr
)γ

⎤

⎥
⎦ ,

in �0 × (0,min{σ0, �δ}), with ∂θ
∂ν

= 0, on ∂�0 × (0,min{σ0, �δ}), and θ(x, 0) =
z(x,0)
z̄�0

, on �0. In conjunction with (2.14), (3.18), (3.19), (3.26), and (3.27), we deduce

that
∥∥∥∥
∥∥∥
θ,

z p

z�
(
−∫
�0

zr
)γ ,

�z−∫
�0

z p

z�+1
(
−∫
�0

zr
)γ

∥∥∥∥
∥∥∥
L∞((�0\BR0 (0))×min{σ1,σ0(δ)})

< +∞, (3.36)

uniformly in 0 < δ ≤ δ0, and using the fact that �(σ) and �(σ) are both
bounded and positive. Estimate (3.36) according to the standard parabolic reg-
ularity condition, see DeGiorgi–Nash–Moser estimates in Lieberman (1996, pp.
144–145), entails the existence of 0 < σ2 ≤ σ1 independent of 0 < δ ≤ δ0:
sup0<σ<min{σ2,σ0(δ)} ‖θ p(·, σ ) − θ p(·, 0)‖L1(�0\BR0 (0) ≤ A2

8 |�0|, which yields

∣∣∣∣∣
1

|�0|
∫

�0\BR0 (0)

z p

z̄μ
− 1

|�0|
∫

�0\BR0 (0)

z p0
z̄μ0

∣∣∣∣∣
≤ A2

8
, (3.37)

with 0 < σ < min{σ2, σ0(δ) for any 0 < δ ≤ δ0. Combining (3.28) and (3.37) we

deduce

∣∣∣∣−
∫
�0

z p

zμ − −∫
�0

z p0
zμ0

∣∣∣∣ ≤ 3A2
8 , for 0 < σ < min{σ2, σ0(δ)} and 0 < δ ≤ δ0, and

thus, we finally obtain

5A2

8
≤ −
∫

�0

z p

zμ
≤ 11A1

8
, for 0 < σ < min{σ2, σ0(δ)}, 0 < δ ≤ δ0, (3.38)

taking also into consideration A2 ≤ −∫
�0

z p0
z̄μ0

≤ A1. Consequently, if we consider

σ0(δ) ≤ σ2, then it follows that 1
2 A2 z̄μ < 5

8 A2 z̄μ ≤ −∫
�0

z p ≤ 11
8 A1 z̄μ < 2A1 z̄μ,
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for 0 < σ < σ0(δ), and thus a continuity argument implies that 1
2 A2 z̄μ ≤ −∫

�0
z p ≤

2A1 z̄μ, with 0 < σ < σ0(δ) + η, for some η > 0, which contradicts the definition of
σ0(δ). Accordingly, we derive that σ2 < σ0(δ) for any 0 < δ ≤ δ0, and the proof of
Proposition 3.1 is complete for σ0 = σ2. 
�
Now, we are ready to proceed with the proof of Theorem 3.1.

Proof of Theorem 3.1 First, note that σ0 ≤ σ1 in (3.27), then from (3.10) and (3.24),
we have

K (σ ) ≥ m�

(
−∫
�0

z p
) rγ

p
≥ m�

(
1

2α1

) rγ
p ·
(

1

2ψ̄δ

) rγ
p μ

λ−rγ ≥ m�dλ
−rγ ≡ D,

(3.39)

for 0 < σ < min{σ0, �δ}. Note also that for 0 < λ ≤ λ0(d), then inequality (3.11)
entails

�u0 + Dup
0 ≥ 2u p

0 (3.40)

for any 0 < δ ≤ δ0. The comparison principle in conjunction with (3.39) and (3.40)
then yields

z ≥ z̃ in Q0 ≡ �0 × (0,min{σ0, �δ}), (3.41)

where z̃ = z̃(x, t) solves the following partial differential equation

z̃σ = �z̃ + Dz̃ p, in Q0, (3.42)
∂ z̃

∂ν
= 0, on ∂�0 × (0,min{σ0, �δ}), (3.43)

z̃(|x |, σ ) = u0(|x |) in �0. (3.44)

Setting h(x, σ ) := z̃σ (x, σ ) − z̃ p(x, σ ), then

hσ = �h + p(p − 1)z̃ p−2|∇ z̃|2 + Dpz̃ p−1 h ≥ �h + Dpz̃ p−1 h, in Q0,

with

h(x, 0) = �z̃(x, 0) + Dz̃ p(x, 0)

−z̃ p(x, 0) = �u0 + (D − 1)u p
0 ≥ u p

0 > 0, in �0,

whilst ∂h
∂ν

= 0 on ∂�0 × (0,min{σ0, �δ}). Therefore, owing to the maximum princi-
ple, we derive z̃σ > z̃ p in Q0, and thus via integration we obtain

z̃(0, σ ) ≥
(

1

z p−1
0 (0)

− (p − 1)σ

)− 1
p−1

=
{(

δa

λ(1 + a
2 )

)p−1

− (p − 1)σ

}− 1
p−1
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for 0 < σ < min{σ0, �δ}, and therefore,

min{σ0, �δ} <
1

p − 1
·
(

δa

λ(1 + a
2 )

)p−1

. (3.45)

Note that for 0 < δ � 1, the right-hand side on (3.45) is less than σ0, so �δ <

1
p−1

(
δa

λ(1+ a
2 )

)p−1
< +∞. 
�

Remark 3.2 Recalling that z = e
∫ σ

�(s) dsu, we also obtain the occurrence of a single-
point blow-up for the solution u of problem (3.3)–(3.5).

Remark 3.3 Notably, by (3.45) we conclude that �δ → 0 as δ → 0, i.e. the more
spiky initial data we consider then the faster the diffusion-driven blow-up for z and
consequently for u as well.

A diffusion-driven instability (Turing instability) phenomenon, as was first indicated
in the seminal paper (Turing 1952), is often followed by pattern formation. A similar
situation is observed as a consequence of the driven-diffusion finite-time blow-up
provided by Theorem 3.1, and it is described below. The blow-up rate of the solution
u of (3.3)–(3.5) and the blow-up pattern (profile) identifying the formed pattern are
given.

Theorem 3.2 Take N ≥ 3, max{r , N
N−2 } < p < N+2

N−2 and 2
N <

p−1
r < γ. Assume

that both �(σ) and �(σ) are positive and bounded. Then, the blow-up rate of the
solution of (3.3)–(3.5) can be characterized as follows

‖u(·, σ )‖∞ ≈ (�max − σ)
− 1

p−1 , t ↑ �max, (3.46)

where �max stands for the blow-up time.

Proof We first perceive that by virtue of (3.16) and in view of the Hölder’s inequality,
since p > r , the following inequality holds

0 < K (σ ) = �(σ)e(1+rγ−p)
∫ σ

�(s) ds

(
−
∫

�0

zr
)γ

≤ C1 < +∞. (3.47)

Define now � satisfying the partial differential equation

�σ = �� + C1�
p, in �0 × (0, �max),

with ∂�
∂ν

= 0, on ∂�0 × (0, �max), and �(x, 0) = z0(x), in �0, then via comparison
z ≤ � in �0 × (0, �max). Yet it is known, see Quittner and Souplet (2007, Theorem

44.6), that |�(x, σ )| ≤ Cη|x |−
2

p−1−η for η > 0, and thus

|z(x, σ )| ≤ Cη|x |−
2

p−1−η
, for (x, σ ) ∈ �0 × (0, �max). (3.48)
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Following the same steps as in the proof of Kavallaris and Suzuki (2017, Theorem
9.1), we derive

lim
σ→�max

K (σ ) = ω ∈ (0,+∞). (3.49)

By virtue of (3.49) and applying Quittner and Souplet (2007, Theorem 44.3(ii)), we
can find a constant CU > 0 such that

||z(·, σ )||∞ ≤ CU (�max − σ)
− 1

(p−1) , in (0, �max). (3.50)

Setting N (σ ) := ||z(·, σ )||∞ = z(0, σ ), then N (σ ) is differentiable for almost every
σ ∈ (0, �δ), in view of Friedman and McLeod (1985), and dN

dσ ≤ K (σ )N p(σ ).

Notably, K (σ ) ∈ C([0, �max)) and owing to (3.47) it is bounded in any time interval
[0, σ ], σ < �max; then, upon integration we obtain

||z(·, σ )||∞ ≥ CL (�max − σ)
− 1

(p−1) , in (0, �max), (3.51)

for some positive constant CL .

Recalling that z(x, σ ) = e
∫ σ

�(s) dsu(x, σ ) then (3.50) and (3.51) entail

C̃L (�max − σ)
− 1

(p−1) ≤ ||u(·, σ )||∞ ≤ C̃U (�max − t)−
1

(p−1) , for σ ∈ (0, �max),

where now C̃L , and C̃U depend on �max, and thus (3.46) is proved. 
�
Remark 3.4 We first note that (3.48) provides a rough form of the blow-up pattern for
z and thus for u as well. Additionally, owing to (3.47) the non-local problem (3.12)–
(3.14) can be treated as a local one for which the more accurate asymptotic blow-up
profile, Duong et al. (Duong et al. 2020) andMerle and Zaag (Merle and Zaag 1998), is

known and is given by limσ→�max z(|x |, σ ) ∼ C
[ | log |x ||

|x |2
]
, for |x | � 1, and C > 0.

Using again the relation between z and u, we end up with a similar asymptotic blow-
up profile for the diffusion-driven-induced blow-up solution u of problem (3.3)–(3.5).
This blow-up profile actually determines the form of the developed patterns which are
induced as a result of the diffusion-driven instability, and it is numerically investigated
in the next section.

4 Numerical Experiments

To confirm and illustrate some of the theoretical results of the previous sections, we
perform a series of numerical experiments for which we solve the involved PDE
problems using the finite element method (Johnson 1987), using piecewise linear
basis functions and implemented using the adaptive finite-element toolbox ALBERTA
(Schmidt andSiebert 2005). In all our simulations (unless statedotherwise), the domain
was triangulated using 16384 elements, the discretisation in time was done using the
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forward Euler method taking 5 × 10−4 as time-step and the resulting linear system
solved using Generalized Minimal Residual iterative solver (Saad 2003).

4.1 Experiment 1

We take an initial condition u0 and a set of parameters satisfying the assumptions of
Theorem 2.1. Then, solve (1.32)–(1.34) on �0 = [−1, 1]2 with initial condition of
the form

u0(x, 0) =
{

−8||x||2 + 3, ||x|| < 1
2 ,

1, otherwise.
(4.1)

As for the domain evolution, we consider four different cases:

• ρ(t) = eβt (exponentially growing domain);
• ρ(t) = e−βt (exponentially decaying domain);
• ρ(t) = eβt

1+ 1
m (eβt−1)

(logistically growing domain);

• ρ(t) = 1 (static domain).

We summarise all parameters used in Table 1. In Fig. 1, we demonstrate the
||u(x, t)||∞ for each of the domain evolutions, so we can monitor their respective
blow-up times.

If we denote by �g , �d , �lg and �s the blow-up times for the case of expo-
nentially growing and decaying, the logistically growing domains and the static

Table 1 Set of parameters used
in Experiment 1

D1 p q r s β m

1 3 2 1 2 0.1 1.5

Fig. 1 Plots representing ||u(x, t)||∞, where u(x, t) is the numerical solution of (1.32)–(1.34) for different
domain evolutions: static, exponentially decaying and growing, and logistically growing domains, starting
from the initial condition (4.1) in �0 = [−1, 1]2. Parameters are shown in Table 1 and satisfy conditions
of Theorem 2.1. (Colour version online)
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Fig. 2 The plot of ||ū||∞ resulting from the numerical solution of (1.32)–(1.34) starting from the initial
condition (4.1) in �0 = [−1, 1]2, evolving exponentially, considering parameters D1 = 1, β = 0.1,
p = 1.4, q = 1, r = 1 and s = 2. (Colour version online)

domain, respectively, we observe from Fig. 1 that we have the following ordering
�g > �lg > �s > �d , which is in agreement with the mathematical intuition, but it
cannot be derived by our analytical results cf. Remark 2.4.

We now take the same initial condition, u0 and the same initial domain which
we assume is evolving exponentially and consider parameters D1 = 1, p = 1.4,
q = 1, r = 1 and s = 2 for which inequality (2.24) of Remark 2.6 holds. As we
can see in Fig. 2, we have an example of a solution u for which its mean value ū
does not blow up, as already conjectured in the aforementioned remark. Hence, this
numerical experiment predicts a very interesting phenomenon both mathematically
and biologicallywhich has been conjectured but not proven byTheorem2.1. It predicts
the infinite-time quenching of the solution of problem (1.32)–(1.34), and thus, the
extinction of the activator in the long run, see alsoRemark 2.3. Itmust also be noted that
this result is not in contradiction with Proposition 2.2, where infinite-time quenching
is ruled out since condition (2.1) is not satisfied for an exponentially growing domain
where �(σ) is an unbounded function as indicated in Remark 2.4.

4.2 Experiment 2

This experiment is meant to illustrate Theorem 2.3, and we take as initial data u0 =
cos(π y)+2 and take�0 as the unit squarewhen numerically solving equations (1.32)–
(1.34). As for domain evolution, we consider ρ(t) = eβt , with β = 0.1. To proceed,
we consider two sets of parameters, one for which assumptions of Theorem 2.3 are
satisfied and another for which those assumptions are not fulfilled. See Table 2 for
model parameters.
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Table 2 Set of parameters used
in Experiment 2

Conditions of Theorem 2.3 D1 p q r s

Are verified 1 1 2 3 2

Are not verified 1 3 2 1 1

Fig. 3 The plot of ||u(x, t)||∞, where u(x, t) is the numerical solution of (1.32)–(1.34). Initial condition is
u0 = cos(π y) + 2, and �0 is the unit square evolving according to exponential growth (β = 0.1). (Colour
version online)

Results shown in Fig. 3 are in agreementwith theoretical predictions of Theorem2.3
since the solutions exist for all times when the assumption of the theorem is met
(Fig. 3a), otherwise, a finite-time blow-up is exhibited to occur (Fig. 3b).

4.3 Experiment 3

In this experiment,we intend to illustrateTheorem3.1, sowenumerically solve (1.32)–
(1.34) in R

3, taking �0 as the unit sphere and initial condition u0 given by (3.1),
considering δ = 0.8 and λ = 0.1.As for other parameters, we choose D1 = 1, p = 4,
q = 4, r = 2 and s = 1, which satisfy the conditions of the theorem. In Fig. 4, we
display the L∞−norm of the solution u for three types of evolution laws implemented,
namely: exponential decay, logistic decay and no evolution. For the exponential and
logistic decay, we select the same set of parameters as used in Experiment 1. As
we can observe, for all the cases the solution blows up, as theoretically predicted by
Theorem 3.1. Again the blow-up times satisfy the ordering �s > �ls > �d , where
�ls stands for the blow-up time for the logistic decay evolution, being in agreement
with the mathematical intuition. Such an ordering, again, cannot be obtained via the
theoretical result of Theorem 3.1.

In Fig. 5a, b, we compare the initial solution with the solution at t = 0.03, respec-
tively, for the logistic decay, close to the blow-up time t = 0.03, by looking at a
cross section of the three-dimensional unit sphere �0. Besides, in Fig. 5c, d again the
solution at section cross of �0 is depicted but now for the stationary and exponential
decaying case, respectively. Through this experiment, we can observe the formation
of blow-up (Turing-instability) patterns around the origin R = 0. We actually con-
clude that the evolution of the domain has no impact on the form of blow-up patterns;

123



5 Page 30 of 34 Journal of Nonlinear Science (2021) 31 :5

Fig. 4 Plots for ||u(x, t)||∞,
where u(x, t) is the numerical
solution of (1.32)–(1.34), in R3,
considering �0 the unit sphere.
Three evolution laws considered:
exponential decay, logistic decay
and no evolution (static domain).
Parameters used: p = 4, q = 4,
r = 2, s = 1 and initial
condition given by (3.1) taking
δ = 0.8 and λ = 0.1. (Colour
version online)

Fig. 5 Numerical solution of experiment 3. The above figures show the blow-up (Turing-instability) patterns
on a cross section of the three-dimensional sphere �0: a initial profile of solution for logistic growth; b
blow-up pattern for logistic growth at t = 0.03; c blow-up pattern for stationary case at t = 0.07; and, d
blow-up pattern for exponential decay at t = 0.03.(Colour version online)

however, it certainly affects the spreading of Turing-instability patterns as it is obvious
from Fig. 5b, c, d.

Notably Theorem 3.1 holds only to N ≥ 3; however, we have numerically tested
the occurrence of blow-up predicted by that theorem also for N = 2, taking � as
the unit circle and the same parameters used in Experiment 3. It is then numerically
verified the exhibition of finite-time blow-up. The numerical results are displayed, in
Fig. 6 where the L∞-norm of the solution u for the same three types of evolution laws
is depicted for the N = 3 case. The initial condition used is displayed in Fig. 7.
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Fig. 6 Plots for ||u(x, t)||∞,
where u(x, t) is the numerical
solution of (1.32)–(1.34), in R2,
considering �0 the unit circle.
Three domain evolution laws
considered: exponential decay,
logistic decay and no evolution
(static domain). Parameters
used: p = 4, q = 4, r = 2,
s = 1 and initial condition given
by (3.1) taking δ = 0.8 and
λ = 0.1. (Colour version online)

Fig. 7 Initial condition used for
Experiment 3 when N = 2, �0
is the unit circle and initial
condition is given by (3.1)
taking δ = 0.8 and λ = 0.1.
(Colour version online)

Fig. 8 Plots of the L∞ norm for the numerical solutions of (1.18)–(1.19) and (1.32)–(1.34). The initial
condition is prescribed as u0 = û0 = cos(π y)+ 2 where �0 is an exponentially decaying unit square with
β = 0.1. (Colour version online)

4.4 Experiment 4

Next, we design a numerical experiment to compare the dynamics of the reaction–
diffusion system (1.18)–(1.19) with that of the non-local problem (1.32)–(1.34) under
the assumptions of Theorem 2.1. To this end, we perform an experiment considering
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u0 = û0 = cos(π y) + 2, �0 = [0, 1]2, p = 3, q = 2, r = 1 and s = 2. For the
reaction–diffusion system (1.18)–(1.19), we also take in addition D1 = 0.01, D2 = 1,
τ = 0.01 and v0 = 2 whilst for (1.32)–(1.34) we only choose D1 = 0.01. For both
cases, we consider an exponential decaying evolution of the domain, with β = 0.1.
Unlike previous numerical examples, here the domain was triangulated using 786432
elements and a timestep 10−4 was taken.

The obtained results are displayed in Fig. 8, and they demonstrate that the reaction–
diffusion system (1.18)–(1.19), and the non-local problem (1.32)–(1.34) share the
same long time dynamics. In particular, the solutions of both problems exhibit blow-
up which takes place in finite time. The latter, biologically speaking, means that in
the examined case we just need to monitor only the dynamics of the activator, whose
dynamics are governed by the non-local problem (1.32)–(1.34). Therefore, we can get
an insight regarding the interaction between both of the chemical reactants (activator
and inhibitor) provided by the reaction–diffusion system (1.18)–(1.19).
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