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Abstract
In this paper, we propose and study a stochastic aggregation–diffusion equation of the
Keller–Segel (KS) type for modeling the chemotaxis in dimensions d = 2, 3. Unlike
the classical deterministic KS system, which only allows for idiosyncratic noises,
the stochastic KS equation is derived from an interacting particle system subject to
both idiosyncratic and common noises. Both the unique existence of solutions to the
stochastic KS equation and the mean-field limit result are addressed.

Keywords Chemotaxis · Propagation of chaos · Bessel potential · Stochastic partial
differential equation
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1 Introduction

Many bacteria, such as Escherichia coli, Rhodobacter sphaeroides and Bacillus sub-
tilus, are able to direct their movements according to the surrounding environment
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by a biased random walk. For example, bacteria try to swim toward the highest
concentration of nutrition or to flee from poisons. In biology, this phenomenon is
called chemotaxis, which describes the directed movement of cells and organisms in
response to chemical gradients. Chemotaxis is also observed in other biological fields,
for instance the movement of sperm toward the egg during fertilization, the migration
of neurons or lymphocytes, and inflammatory processes.

Mathematically, one of the most classical models for studying chemotaxis is the
Keller–Segel (KS) equation that was originally proposed in Keller and Segel (1970)
to characterize the aggregation of the slime mold amoebae. The classical parabolic-
elliptic type KS equation is of the following form:

⎧
⎪⎨

⎪⎩

∂tρt = �ρt − χ∇ · (ρt∇ct ), x ∈ R
d , t > 0,

−�ct = ρt ,

ρ0 is given,

(1.1)

where ρt (x) denotes the bacteria density, and ct (x) represents the chemical substance
concentration. The constant χ > 0 denotes the chemo-sensitivity or response of the
bacteria to the chemical substance. From a mathematical point of view, this equation
displays many interesting effects and it has become a topic of intense mathematical
research.An important feature of this equation is the competition between the diffusion
�ρt and the nonlocal aggregation−χ∇·(ρt∇ct ). Depending on the choice of the initial
massm0 := ∫

Rd ρ0(x) dx and the chemo-sensitivityχ , the solutions to theKSequation
may exist globally or blow-up in finite time. In particular, for sufficiently smooth initial
conditions, the existence of solutions was verified by Jäger and Luckhaus (1992): if
m0χ is large, then solutions are local in time, and they are global in time ifm0χ is small.
For the two-dimensional case, Dolbeault and Perthame (2004) completed the result of
Jäger and Luckhaus (1992) by providing an exact value for the critical mass: classical
solutions to (1.1) blow-up in finite time when m0χ > 8π , and there exists a global
in time solution of (1.1) when m0χ < 8π . For the case with m0χ = 8π , Blanchet
et al. (2008) showed that global solutions blow-up in infinite time converging toward
a delta diarc distribution at the center of mass. There is an extensive literature on KS
systems and their variations, which is out of the scope of this paper. A comprehensive
survey on known results related to the KS model from 1970 to 2000 can be found in
Horstmann (2003). We also refer to (Hillen and Painter 2009; Perthame 2006; Biler
2018) among many others for more recent developments.

It is also well known that the KS equation (1.1) can be derived from a system of
interacting particles {(Xi

t )t≥0}Ni=1 satisfying the following form of stochastic differ-
ential equations (SDEs):

dXi
t = χ

N − 1

N∑

j �=i

F(Xi
t − X j

t ) dt + √
2dBi

t , i = 1, . . . , N , t > 0, (1.2)

where the process (Xi
t )t≥0 denotes the trajectory of the i-th particle, the function F

models the pairwise interaction between particles and {(Bi
t )t≥0}Ni=1 are N independent
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Wiener processes. The rigorous derivation of the KS equation, for example (1.1),
from the microscopic particle system, e.g., (1.2), through the propagation of chaos as
N → ∞ may be found in Huang and Liu (2017a, b), Fournier and Jourdain (2017),
Haškovec and Schmeiser (2011), Huang et al. (2019), Fetecau et al. (2019), Bresch
et al. (2019). For a review of the topic of the propagation of chaos and the mean-field
limit, we refer the readers to Jabin et al. (2017), Carrillo (2014) and the references
therein. An asymptotic method, inspired by Hilbert’s sixth problem (Hilbert 1902),
can also be applied to derive models at the macro-scale (PDEs) from the underlying
description at the micro-scale (particle systems); see Bellomo (2016), Burini and
Chouhad (2019) for instance.

However, for the classical deterministic KS equation (1.1), the associated particle
system (1.2) is only subject to the idiosyncratic noises that are independent from one
particle to another, and the effect of the idiosyncratic noises averages out, leading
to the deterministic nature of Eq. (1.1). In addition to such idiosyncratic noises, this
paper studies the particle systems allowing for common/environmental noises, and the
limiting density function satisfies a stochastic partial differential equation of KS type
which is new to the best of our knowledge. Common environmental noises (such as
temperature, light and sound) are intrinsic to a more realistic setting such as culturing
bacteria .

Let (�,F , (Ft )t≥0,P) be a complete filtered probability space where the d ′-
dimensional Wiener processes {(Bi

t )t≥0}Ni=1 are independent of each other as well
as of a d ′-dimensional Wiener process (Wt )t≥0.1 The initial data ζ i , i = 1, 2, . . . , N
are independently and identically distributed (i.i.d.)with a commondensity functionρ0
and are independent of {(Bi

t )t≥0}Ni=1 and (Wt )t≥0. Denote by (FW
t )t≥0 the augmented

filtration generated by (Wt )t≥0.
As the mean-field limit from the interacting particle system that allows for both

idiosyncratic and common noises, the stochastic aggregation–diffusion equation of
Keller–Segel (KS) type, also called stochastic KS equation, is of the following form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dρt = 1
2

∑d
i, j=1 Di j

(
ρt
∑d ′

k=1(ν
ik
t ν

jk
t + σ ik

t σ
jk
t )
)
dt − χ∇ · (∇ctρt ) dt

−∑d
i=1 Di

(
ρt
∑d ′

k=1 σ ik
t dWk

t

)
,

−�ct + ct = ρt ,

ρ0 is given,
(1.3)

where Di j := ∂2

∂xi ∂x j
, Di := ∂

∂xi
, and the leading coefficients ν and σ are deterministic

functions from [0, T ] × R
d to R

d×d ′
. One may solve the second equation for the

chemical concentration:

ct = (I − �)−1ρt = G ∗ ρt (x), (1.4)

1 The dimension of Wiener process W may be different from d ′; we assume the same dimensionality for
notational simplicity.
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with G being the Bessel potential, and it follows that ∇ct = ∇G ∗ ρt where ∇G is
called the interaction force. The underlying regularized interacting particle system has
the form:
⎧
⎪⎨

⎪⎩

dXi,ε
t = χ

N−1

N∑

j �=i
∇Gε(X

i,ε
t − X j,ε

t ) dt + νt (X
i,ε
t ) dBi

t + σt (X
i,ε
t ) dWt , i = 1 . . . , N , t > 0,

Xi,ε
0 = ζ i ,

(1.5)

where

Gε(x) = ψε ∗ G(x) =
∫

Rd
G(y)ψε(x − y) dy, x ∈ R

d , ε > 0,

is the regularized Bessel potential with the mollifier function ψε(x) := 1
εd

ψ( x
ε
) satis-

fying

0 ≤ ψ ∈ C∞
c (Rd), supp ψ ⊆ B(0, 1),

∫

B(0,1)
ψ(x) dx = 1. (1.6)

We mention here relevant work (Cattiaux et al. 2016; Fournier and Jourdain 2017)
for the existence of solutions to the non-mollified stochastic particle system (1.2).
Especially in Fournier and Jourdain (2017), Proposition 4), they proved that for any
N ≥ 2 and T > 0, if {(Xi

t )t≥0}Ni=1 is the solution to (1.2), then

P

(
∃s ∈ [0, T ], ∃1 ≤ i < j ≤ N : Xi

s = X j
s

)
> 0,

i.e., the singularity of the drift term is visited and the particle system is not clearly
well-defined. Therefore, in order to obtain a global strong solution to the interacting
particle system, we regularize the singular force term ∇G.

In contrast with the classical KS models (1.1) and (1.2), which only allow for
the idiosyncratic noise (Bi

t )t≥0 that is independent from one particle to another, the
stochastic systems (1.3) and (1.5) are additionally subject to common noise (Wt )t≥0,
accounting for the common environment where the particles evolve. This common
noise leads to the stochastic integrals in stochastic KS equation (1.3), whose (contin-
uous) martingale property and unboundedness result in the inapplicability of classical
analysis for deterministic KS equations. In addition, the diffusion coefficients σ and
ν are time-state dependent; along the same lines, a general model may allow for dif-
fusion incorporating Lévy type noises and/or dependence on the density (for instance,
see Burini and Chouhad 2019; Escudero 2006; Huang and Liu 2016 for discussions on
deterministic KS models with flux limited or fractional diffusion), although we will
not seek such a generality herein.

In this paper, we first prove the existence and uniqueness results for both weak
and strong solutions to SPDE (1.3). Basically, over a given finite time interval [0, T ]
when the L4-norm of ρ0 is sufficiently small, the weak solution exists uniquely and
its regularity may be increased for regular initial value ρ0 (see Theorems 3.2 and 3.3).
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Then, based on a duality analysis of forward and backward SPDE, we prove that the
following stochastic differential equations (SDEs) of McKean–Vlasov type:

⎧
⎪⎨

⎪⎩

dY i
t = χ∇G ∗ ρi

t (Y
i
t ) dt + ν(Y i

t ) dB
i
t + σ(Y i

t ) dWt , i = 1, . . . , N , t > 0,

ρi
t is the conditional density of Y i

t given FW
t ,

Y i
0 = ζ i ,

(1.7)

has a unique solution with the conditional density ρi
t of Y

i
t given the common noiseWt

existing and satisfying SPDE (1.3); see Theorem 4.1. Here by the conditional density
ρi
t of Y

i
t given FW

t , we mean that

E[Y i
t ∈ dx |FW

t ] = ρi
t (x) dx,

, i.e., for any ϕ ∈ Cb(R
d), it holds that

E[ϕ(Y i
t )|FW

t ] =
∫

Rd
ϕ(x)ρi

t (x) dx .

Finally, we prove that the solution {(Xi,ε
t )t≥0}Ni=1 of the particle system (1.5) well

approximates that of (1.7), which indicates the mean-field limit result, i.e., the empir-
ical measure

ρ
ε,N
t := 1

N

N∑

i=1

δXi,ε
t

,

associated with the particle system (1.5) converges weakly to the unique solution ρ to
SPDE (1.3) as N → ∞ and ε → 0+; see Theorem 5.1 and Corollary 2.

In view of SPDE (1.3) and the particle system (1.5), one may see that when the
particle number N tends to infinity, the effect of the idiosyncratic noises averages
out, while the effect of common noises does not, leading to the stochastic nature
of the limit distribution characterized by SPDE (1.3). We refer to Bensoussan et al.
(2013), Carmona et al. (2016), Carmona and Delarue (2018), Coghi and Flandoli
(2016) for different models with common noise in the literature. In particular, in a
closely related work (Coghi and Flandoli 2016), the authors study the propagation of
chaos for an interacting particle system subject to a common environmental noise but
with a uniformly Lipschitz continuous potential, and in Choi and Salem (2019), the
stochastic mean-field limit of the Cucker–Smale flocking particle system is obtained
for a special class of noises. In contrast to the existing literature concerning common
noise, the main difficulties in dealing with the proposed stochastic KS models are
from the Bessel potential G which entails the singularity of the drift of SDE (1.7)
and the KS type nonlinear and nonlocal properties of SPDE (1.3); in particular, the
KS type nonlinear term −χ∇ · ((∇G ∗ ρt )ρt ) prevents us from adopting the existing
methods in the SPDE literature. Accordingly, the existence and uniqueness of solution

123



6 Page 6 of 31 Journal of Nonlinear Science (2021) 31 :6

to SPDE (1.3) is established within sufficiently regular spaces under a divergence-free
assumption on coefficient σ , and we prove that the conditional density exists and
satisfies equation (1.3) with a new method based on duality analysis. In addition, for
the mean-field limit result, we also introduce regularization with a mollifier function
in the particle system (1.5). In this paper, the approaches mix and develop the existing
probability theory and stochastic analysis, (S)PDE theory, and the duality analysis in
nonlinear filtering theory. Given the outstanding interests shown in the mathematical
analysis of biological phenomena, we hope this article will set the stage for further
studies on stochastic aggregation-diffusion type equations, opening new perspectives
and motivating applied mathematicians to expand the research on this class of models
to novel applications.

The rest of the paper is organized as follows. In Sect. 2, we set some notations,
present some auxiliary results and give the standing assumptions on the diffusion
coefficients. Section 3 is then devoted to the proof of the existence and uniqueness
of the weak and strong solution to stochastic KS equation (1.3) in certain regular
spaces. On the basis of the well-posedness of SPDE (1.3), we prove the existence and
uniqueness of the strong solution to SDE (1.7) in Sect. 4. Finally, the mean-field limit
result is addressed in Sect. 5.

2 Preliminaries

2.1 Notations

The set of all the integers is denoted by Z, with Z
+ the subset of the strictly positive

elements. Denote by | · | (respectively, 〈·, ·〉 or ·) the usual norm (respectively, scalar
product) in finite-dimensional Hilbert space such as R,Rk,Rk×l , k, l ∈ Z

+. We use
‖ f ‖p for the L p (1 ≤ p ≤ ∞) norm of a function f .

Define the set of multi-indices

A := {α = (α1, . . . , αd) : α1, . . . , αd are nonnegative integers}.

For any α ∈ A and x = (x1, . . . , xd) ∈ R
d , denote

|α| =
d∑

i=1

αi , xα := xα1
1 xα2

2 . . . xαd
d , Dα := ∂ |α|

∂xα1
1 ∂xα2

2 . . . ∂xαd
d

.

For each Banach space (X , ‖ · ‖X ), real q ∈ [1,∞], and 0 ≤ t < τ ≤ T , we
denote by SqF ([t, τ ];X ) the set of X -valued, Ft∈[0,T ]-adapted and continuous pro-
cesses {Xs}s∈[t,τ ] such that

‖X‖SqF ([t,τ ];X ) :=
{(

E

[
sups∈[t,τ ] ‖Xs‖qX

])1/q
, q ∈ [1,∞);

ess supω∈� sups∈[t,τ ] ‖Xs‖X , q = ∞.
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Lq
F (t, τ ;X ) denotes the set of (equivalent classes of) X -valued predictable processes

{Xs}s∈[t,τ ] such that

‖X‖Lq
F (t,τ ;X ) :=

{(
E

[ ∫ τ

t ‖Xs‖qX ds
])1/q

, q ∈ [1,∞);
ess sup(ω,s)∈�×[t,τ ] ‖Xs‖X , q = ∞.

Both
(
SqF ([t, τ ];X ), ‖ · ‖Sq ([t,τ ]X )

)
and

(
Lq
F (t, τ ;X ), ‖ · ‖Lq

F (t,τ ;X )

)
are Banach

spaces, and they are well defined with the filtration (Ft )t≥0 replaced by (FW
t )t≥0.

2.2 Auxiliary Results and Assumptions

We first recall some properties of the Bessel potential introduced in (1.4). For p ∈
[1,∞], denote by L p = L p(Rd) the usual Lebesgue integrable spaces with norm
‖ · ‖p. Then, for p ∈ (1,∞) and m ∈ R, we may define the space of Bessel potentials
(or the Sobolev space with fractional derivatives) (Triebel 1983, p. 37) as

Hm
p (Rd) =

{
f
∣
∣ ‖ f ‖Hm

p
:= ‖F−1[(1 + |ω|2)m

2 F ( f )]‖p < ∞
}

,

where F is the Fourier transformation. Namely, Hm
p (Rd) (simply written as Hm

p ) is

defined as space of functions f such that (1 − �)
m
2 f ∈ L p(Rd). In (1.4), if ρt ∈ L p

with 1 < p < ∞, then ct ∈ H2
p. In addition, it holds that

‖ct ‖H2
p

=
∥
∥
∥F−1

[
(1 + |ω|2)F [ct ]

] ∥
∥
∥
p

= ‖ρt ‖p .

Due to the equivalence between the Bessel potential space Hk
p(R

d) and the Sobolev
space Wk,p(Rd) (k ∈ N), we have

‖G ∗ ρt ‖W 2,p = ‖ct ‖W 2,p ≤ C ‖ρt ‖p . (2.1)

Here, the Sobolev space Wk,p(Rd) is defined as

Wk,p(Rd) =
{
u ∈ L p(Rd)

∣
∣ Dαu ∈ L p(Rd), ∀ |α| ≤ k

}

and

‖u‖Wk,p :=
⎧
⎨

⎩

(∑
|α|≤k ‖Dαu‖p

L p(Rd )

) 1
p
1 ≤ p < ∞,

max|α|≤k ‖Dαu‖L∞(Rd ) p = ∞.

On the other side, notice that

(I − �)−1 = (−�)−1 − (−�)−1(I − �)−1.
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Thus, we may split the Bessel potential into the Newtonian potential Φ and a function
Ψ such that F (Ψ )(ω) = − 1

ω2(1+ω2)
, which implies that Ψ ∈ L∞(Rd) (d = 3) or

∇Ψ ∈ L∞(Rd) (d = 2). Namely, one has

G(x) = Φ(x) + Ψ (x), (2.2)

where

Φ(x) =
{

Cd
|x |d−2 , if d ≥ 3

− 1
2π ln |x |, if d = 2

is the Newtonian potential. It then follows that for any α ∈ A with |α| ≥ 1, there
holds

∥
∥Dα(∇Gε)

∥
∥∞ ≤ Cαε1−d−|α| +

{
Cα,‖Ψ ‖∞ε−1−|α|, when d = 3 ;
Cα,‖∇Ψ ‖∞ε−|α|, when d = 2

≤ Cαε1−d−|α|. (2.3)

Here, we have used the estimate ‖Dα(∇Φε) ‖∞ ≤ Cαε1−d−|α| from Huang and
Liu (2017b, Lemma 2.1).

Following are the standing assumptions on the coefficients ν and σ .

Assumption 1 Given T > 0 any arbitrary time horizon and d = 2, 3 , the measurable
diffusion coefficients σ, ν : [0, T ] × R

d −→ R
d×d ′

satisfy

(i) There exists a positive constant λ such that

d∑

i, j=1

d ′
∑

k=1

νikt (x)ν jk
t (x)ξ iξ j ≥ λ|ξ |2

holds for all x, ξ ∈ R
d and all t ≥ 0;

(ii) There exist m ∈ Z
+ and real Λ > 0 such that for all t ∈ [0, T ] there holds

νikt (·), σ ik
t (·) ∈ Cm, for i = 1, . . . , d, k = 1, . . . , d ′,

and
d∑

i=1

d ′
∑

k=1

‖σ ik
t (·)‖Cm + ‖νikt (·)‖Cm ≤ Λ,

where the Cm norm is defined as ‖ f ‖Cm = ∑
|α|≤m ‖Dα f ‖∞.

(iii) For all (t, x) ∈ [0, T ] × R
d and k = 1, 2, . . . , d ′,

d∑

i=1

Diσ
ik
t (x) = 0.
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Remark 2.1 The assumption (i) ensures the superparabolicity of the concerned SPDE,
and the boundedness and regularity requirements in (ii) are placed for unique existence
of certain regular solutions of SPDE. The readers are referred to Krylov (1999) for
more discussions. The divergence-free condition (iii) may be thought of as a technical
one for the well-posedness of SPDE (1.3) (see Remark 3.1); on the other hand, the
common noise in the stochastic integral term σt (X

i,ε
t ) dWt induces the fluctuations of

the velocity field (of the i th particle) formally written as vit = σt (X
i,ε
t ) dWt

dt and in this
way, the divergence-free condition means that such fluctuations are of incompressible
type. In fact, such kind of divergence-free conditions have been existing in the liter-
ature; refer to Brzezniak et al. (2016), Coghi and Flandoli (2016) for more clear and
elegant arguments.

In the remaining part of the work, we shall useC to denote a generic constant whose
value may vary from line to line, and when needed, a bracket will follow immediately
after C to indicate what parameters C depend on. By A ↪→ B, we mean that normed
space (A, ‖ · ‖A) is embedded into (B, ‖ · ‖B) with a constant C such that

‖ f ‖B ≤ C‖ f ‖A, ∀ f ∈ A.

For readers’ convenience, we list Sobolev’s embedding theorem in the following
lemma, see, e.g., Triebel (1983, p. 129, p. 131) and Brezis (2010, Chapter 9).

Lemma 2.1 There holds the following assertions:

(i) For integer n > d/q + k with k ∈ N and q ∈ (1,∞), we have Wn,q(Rd) ↪→
Ck,δ(Rd), for any δ ∈ (0, (n − d/q − k) ∧ 1).

(ii) If 1 < p0 < p1 < ∞ and −∞ < s1 < s0 < +∞ such that d
p0

− s0 = d
p1

− s1,

then Hs0
p0(R

d) ↪→ Hs1
p1(R

d) (with Sobolev spaces as special cases ).

3 Existence and Uniqueness of the Solution to SPDE (1.3)

This section is devoted to the global existence and uniqueness of the solution to
nonlinear SPDE (1.7).

As already noted in (2.1), if ρt ∈ L4, then it holds that

‖ct ‖W 2,4 = ‖G ∗ ρt ‖W 2,4 ≤ Sd ‖ρt ‖4 . (3.1)

A direct result of Sobolev’s embedding theorem implies

‖ct ‖W 1,∞ = ‖G ∗ ρt ‖W 1,∞ ≤ ‖G ∗ ρt ‖W 2,4 ≤ Sd ‖ρt ‖4 , (3.2)

where Sd depends only on d.
Before stating the theorem about the well-posedness, we introduce the definition

of solutions to SPDE (1.3). Denote by C2
c (R

d) the space of compactly supported
functions having up to second-order continuous derivatives.
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Definition 3.1 A family of random functions {ρt (ω) : t ≥ 0, ω ∈ �} lying in
S∞
FW ([0, T ]; L1∩L4(Rd)) is a solution to Eq. (1.3) ifρt satisfies the following stochas-

tic integral equation for all ϕ ∈ C2
c (R

d),

〈ρt , ϕ〉 = 〈ρ0, ϕ〉 + χ

∫ t

0
〈ρs,∇ϕ · ∇cs〉 ds +

∫ t

0

〈

ρs,

d∑

i=1

Diϕ

d ′
∑

k=1

σ ik
s dWk

s

〉

+ 1

2

∫ t

0

〈

ρs,

d∑

i, j=1

Di jϕ

d ′
∑

k=1

(νiks ν
jk
s + σ ik

s σ
jk
s )

〉

ds. (3.3)

Theorem 3.2 Let Assumption 1 hold with m = 2. Assume 0 ≤ ρ0 ∈ L1 ∩ H
1
2
4 (Rd)2

with ‖ρ0 ‖1 = 1. For each T > 0, there exists a κ > 0 depending only on T , χ, λ,Λ

and d such that if ‖ρ0‖4 ≤ κ , SPDE (1.3) admits a unique nonnegative solution in

M := L2
FW (0, T ;W 1,2(Rd)) ∩ L4

FW (0, T ;W 1,4(Rd))

∩S∞
FW ([0, T ]; L1 ∩ L4(Rd)). (3.4)

Proof The proof is based on delicate estimates of the solution and the latest develop-
ments of L p-theory of SPDE. First, let

B :=
{
u ∈ S∞

FW ([0, T ]; L4(Rd)) : ‖u‖S∞
FW ([0,T ];L4(Rd )) ≤ �κ

}
,

with metric d(u, v) = ‖u − v ‖S∞
FW ([0,T ];L4(Rd )), and the positive constants κ and �

are to be determined.
Suppose ‖ρ0‖4 ≤ κ . Now, we define a map T : B → S∞

FW ([0, T ]; L4(Rd)) as

follows: For each ξ ∈ B, let T (ξ) := ρξ be the solution to the following linear SPDE:

⎧
⎪⎨

⎪⎩

dρt =
[
1
2

∑d
i, j=1 Di j (ρt

∑d ′
k=1(ν

ik
t ν

jk
t + σ ik

t σ
jk
t )) − χ∇ · ((∇G ∗ ξt )ρt )

]
dt

−∑d
i=1 Di (ρt

∑d ′
k=1 σ ik

t dWk
t ),

ρ0 is given.

(3.5)

Indeed, as Assumption 1 holds with m = 2, one may write SPDE (3.5) as a non-
divergence form:

⎧
⎪⎨

⎪⎩

dρt =
[
1
2

∑d
i, j=1

∑d ′
k=1(ν

ik
t ν

jk
t + σ ik

t σ
jk
t )Di jρt dt + Ft (ρt )

]
dt

−∑d
i=1

∑d ′
k=1 σ ik

t Diρt dWk
t ,

ρ0 is given,

(3.6)

2 Here, the initial condition ρ0 ∈ H
1
2
4 (Rd ) is required by the L p-theory of SPDEs (see Krylov 1999,

Theorem 5.1) for p = 4.
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with

Ft (ρt ) : = 1

2

d∑

i, j=1

Di

⎛

⎝ρt

d ′
∑

k=1

Dj (ν
ik
t ν

jk
t + σ ik

t σ
jk
t )

⎞

⎠

+ 1

2

d∑

i, j=1

Djρt

d ′
∑

k=1

Di (ν
ik
t ν

jk
t + σ ik

t σ
jk
t )

− χ∇ · ((∇G ∗ ξt )ρt ),

where we have used Assumption 1 (iii) for the stochastic integral, i.e.,

d∑

j=1

Dj (σ
jk
s ρs) =

d∑

j=1

ρs D jσ
jk
s +

d∑

j=1

Djρsσ
jk
s =

d∑

j=1

Djρsσ
jk
s . (3.7)

For each ξ ∈ B and ρt ∈ L p(Rd) with p ∈ {2, 4}, relation (3.2) indicates that

‖(∇G ∗ ξt )ρt‖p ≤ ‖∇G ∗ ξt‖∞‖ρt‖p ≤ Sd ‖ξt ‖4 ‖ρt‖p ≤ �Sdκ‖ρt‖p, a.s., for all t ∈ [0, T ].

This together with Assumption 1 allows us, through standard computations, to check
that the conditions of the L p-theory of SPDE (see Krylov 1999, Theorems 5.1 and 7.1
for the casewhen n = −1 therein) and themaximumprinciple (Krylov 1999, Theorem
5.12) are satisfied and we conclude that the linear SPDE (3.5) admits a unique solution
ρξ which is nonnegative and lying in L p

FW (0, T ;W 1,p(Rd))∩ S p
FW ([0, T ]; L p(Rd)),

p ∈ {2, 4}.
Next, we check thatρξ ∈ S∞

FW ([0, T ]; L1∩L4(Rd)) andwithout causing confusion
we drop the superscript ξ . It is easy to see that the solution of (3.5) has the property
of conservation of mass, i.e.,

‖ρt ‖1 = ‖ρ0 ‖1 = 1 a.s..

Applying the Itô formula for L p-norms in Krylov (2010, Theorem 2.1), we have for
any 0 < t ≤ T

‖ρt‖44 − ‖ρ0‖44

=
∫ t

0

( d∑

i, j=1

d ′
∑

k=1

−
〈
6|ρs |2Diρs , Dj

(
(νiks ν

jk
s + σ ik

s σ
jk
s )ρs

)〉

+ 6
d ′
∑

k=1

〈

|ρs |2, |
d∑

j=1

Dj (ρsσ
jk
s )|2

〉

+ 12χ
〈
ρs(∇ρs), (∇G ∗ ξs)ρ

2
s

〉
)

ds + 12
d∑

i=1

d ′
∑

k=1

∫ t

0

〈
|ρs |2Diρs , σ ik

s ρs

〉
dWk

s a.s..

(3.8)
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Due to (iii) in Assumption 1, we know that for k = 1, 2, . . . , d ′,

12
d∑

i=1

〈
|ρs |2Diρs, σ ikρs

〉
= 3

d∑

i=1

〈
Di

(
|ρs |4

)
, σ ik

s

〉
= −3

〈

|ρs |4,
d∑

i=1

Diσ
ik
s

〉

= 0.

Thus, one has

‖ρt‖44 − ‖ρ0‖44

= −
∫ t

0

d∑

i, j=1

d ′
∑

k=1

〈
6|ρs |2Diρs, (νiks ν

jk
s + σ ik

s σ
jk
s )Djρs

〉
ds

−
d∑

i, j=1

d ′
∑

k=1

∫ t

0

〈
6|ρs |2Diρs, Dj (ν

ik
s ν

jk
s + σ ik

s σ
jk
s )ρs

〉
ds

+
∫ t

0
6

d ′
∑

k=1

〈

|ρs |2, |
d∑

j=1

Dj (ρsσ
jk
s )|2

〉

+ 12χ
〈
ρs(∇ρs), (∇G ∗ ξs)ρ

2
s

〉
ds a.s..

Using (iii) in Assumption 1 as in (3.7) again yields that

−
d∑

i, j=1

d ′
∑

k=1

〈
6|ρs |2Diρs, (νiks ν

jk
s + σ ik

s σ
jk
s )Djρs

〉

= −
d∑

i, j=1

d ′
∑

k=1

〈
6|ρs |2Diρs, (νiks ν

jk
s )Djρs

〉
−

d ′
∑

k=1

〈

6|ρs |2,
∣
∣
∣
∣
∣
∣

d∑

j=1

Djρsσ
jk
s

∣
∣
∣
∣
∣
∣

2〉

= −
d∑

i, j=1

d ′
∑

k=1

〈
6|ρs |2Diρs, (νiks ν

jk
s )Djρs

〉
−

d ′
∑

k=1

〈

6|ρs |2,
∣
∣
∣
∣
∣
∣

d∑

j=1

Dj (ρsσ
jk
s )

∣
∣
∣
∣
∣
∣

2〉

.

Therefore, it holds that

‖ρt‖44 − ‖ρ0‖44

= −
∫ t

0

d∑

i, j=1

d ′
∑

k=1

〈
6|ρs |2Diρs, (νiks ν

jk
s )Djρs

〉
ds

−
∫ t

0

d∑

i, j=1

d ′
∑

k=1

〈
6|ρs |2Diρs, Dj (ν

ik
s ν

jk
s + σ ik

s σ
jk
s )ρs

〉
ds

+ 12χ
∫ t

0

〈
ρs(∇ρs), (∇G ∗ ξs)ρ

2
s

〉
ds, a.s.. (3.9)
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It follows from (i) in Assumption 1 that

−
d∑

i, j=1

d ′
∑

k=1

〈
6|ρs |2Diρs, (νiks ν

jk
s )Djρs

〉
≤ −6λ‖ρs∇ρs‖22,

and by (ii) in Assumption 1 one has

− 6
d∑

i, j=1

d ′
∑

k=1

〈
|ρs |2Diρs, Dj (ν

ik
s ν

jk
s + σ ik

s σ
jk
s )ρs

〉

≤ 24Λ2
〈
|ρs |2|∇ρs |, ρs

〉

≤ 2λ‖ρs∇ρs‖22 + (12Λ2)2

2λ
‖ρs‖44. (3.10)

We also notice that

12χ
〈
ρs(∇ρs), (∇G ∗ ξs)ρ

2
s

〉 ≤ 12χ‖ρs∇ρs‖2‖ρs‖24‖∇G ∗ ξs‖∞
(by relation(3.2)) ≤ 12χ Sd‖ρs∇ρs‖2‖ρs‖24 ‖ξs ‖4 ≤ 12�χ Sdκ‖ρs∇ρs‖2‖ρs‖24

(by Young’s inequality) ≤ 2λ‖ρs∇ρs‖22 + (6�χ Sdκ)2

2λ
‖ρs‖44. (3.11)

Collecting above estimates, (3.9) yields that

‖ρt‖44 − ‖ρ0‖44
≤ −6λ

∫ t

0
‖ρs∇ρs‖22 ds + 4λ

∫ t

0
‖ρs∇ρs‖22 ds +

(
(12Λ2)2

2λ
+ (6�χ Sdκ)2

2λ

)∫ t

0
‖ρs‖44 ds

≤
(

(12Λ2)2

2λ
+ (6�χ Sdκ)2

λ

)∫ t

0
‖ρs‖44 ds. (3.12)

Take a sufficiently large � > 1 and relatively small κ03 such that whenever κ ≤ κ0 it
holds that

exp

{
T

4

(
(12Λ2)2

2λ
+ (6�χ Sdκ)2

λ

)}

≤ �. (3.13)

3 The selections of � and κ are not unique; a particular case is to take κ0 ≤ 1
χ�

with

� = exp

{
T

4

(
(12Λ2)2

2λ
+ (6Sd )2

λ

)}

.
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Applying Gronwall’s inequality to (3.12) yields that

sup
t∈[0,T ]

‖ρt‖4 ≤ ‖ρ0‖4 exp
{
T

4

(
(12Λ2)2

2λ
+ (6�χ Sdκ)2

λ

)}

,

≤ �κ,

which gives that ρ ∈ B.
Fix the constants � and κ0 as selected above. Let κ ≤ κ0. For all ξ ∈ B, let ρξ be

the unique solution of the linear SPDE (3.5). From the discussion above, we get the
solution map

T : B → B, ξ �→ ρξ .

Next, we show that the map T is a contraction.

For any ξ̄ , ξ̂ ∈ B, set δρ = ρξ̄ − ρξ̂ and δξ = ξ̄ − ξ̂ . As before, we apply Itô
formula for the L4-norm of δρ:

‖δρt‖44

=
∫ t

0

⎛

⎝−
d∑

i, j=1

d ′
∑

k=1

〈
6|δρs |2Diδρs, Dj

(
(νiks ν

jk
s + σ ik

s σ
jk
s )δρs

)〉

+6
d ′
∑

k=1

〈

|δρs |2,
∣
∣
∣
∣
∣
∣

∑

j

D j (δρsσ
jk
s )

∣
∣
∣
∣
∣
∣

2〉
⎞

⎟
⎠ ds

+
∫ t

0
12χ

〈
|δρs |2∇δρs,∇G ∗ ξ̄sρ

ξ̄
s − ∇G ∗ ξ̂sρ

ξ̂
s

〉
ds

+ 12
d∑

i=1

d ′
∑

k=1

∫ t

0

〈
|δρs |2Diδρs, σ ik

s δρs

〉
dWk

s

=
∫ t

0

⎛

⎝−
d∑

i, j=1

d ′
∑

k=1

〈
6|δρs |2Diδρs, (νiks ν

jk
s )Djδρs

〉

−
d∑

i, j=1

d ′
∑

k=1

〈
6|δρs |2Diδρs, Dj (ν

ik
s ν

jk
s + σ ik

s σ
jk
s )δρs

〉
⎞

⎠ ds

+
∫ t

0
12χ

〈
|δρs |2∇δρs,∇G ∗ ξ̄sρ

ξ̄
s − ∇G ∗ ξ̂sρ

ξ̂
s

〉
ds

≤ −6λ
∫ t

0
‖δρs∇δρs‖22 ds + 2λ

∫ t

0
‖δρs∇δρs‖22 ds + (12Λ2)2

2λ

∫ t

0
‖δρs‖44 ds

+
∫ t

0
12χ

〈
|δρs |2∇δρs,∇G ∗ ξ̄sρ

ξ̄
s − ∇G ∗ ξ̂sρ

ξ̂
s

〉
ds, a.s.. (3.14)
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Let us compute that

12χ
〈
|δρs |2∇δρs,∇G ∗ δξsρ

ξ̄
s

〉

≤ 12χ‖δρs∇δρs‖2‖δρsρξ̄
s ‖2‖∇G ∗ δξs‖∞

≤ 12χ Sd‖δρs∇δρs‖2‖δρs‖4‖ρξ̄
s ‖4 ‖δξs ‖4

≤ 2λ‖δρs∇δρs‖22 + (6χ Sd)2

2λ
‖δρs‖24‖ρξ̄

s ‖24 ‖δξs ‖24

≤ 2λ‖δρs∇δρs‖22 + (6χ Sd)2

4λ

(
(�κ)2‖δρs‖44 + (�κ)−2‖ρξ̄

s ‖44 ‖δξs ‖44
)

≤ 2λ‖δρs∇δρs‖22 + (6�χ Sdκ)2

4λ
‖δρs‖44 + (6�χ Sdκ)2

4λ
‖δξs‖44.

In a similar way to (3.11), we have

12χ
〈
|δρs |2∇δρs,∇G ∗ ξ̂sδρs

〉
≤ 2λ‖δρs∇δρs‖22 + (6�χ Sdκ)2

2λ
‖δρs‖44.

Thus, combining above estimates gives

12χ
〈
|δρs |2∇δρs ,∇G ∗ ξ̄sρ

ξ̄
s − ∇G ∗ ξ̂sρ

ξ̂
s

〉
= 12χ

〈
|δρs |2∇δρs ,∇G ∗ δξsρ

ξ̄
s + ∇G ∗ ξ̂sδρs

〉

≤ 4λ‖δρs∇δρs‖22 + (6�χ Sdκ)2

λ
‖δρs‖44 + (6�χ Sdκ)2

4λ
‖δξs‖44, (3.15)

which together with (3.14) and (3.13) implies

‖δρt‖44 ≤
(

(12Λ2)2

2λ
+ (6�χ Sdκ)2

λ

)∫ t

0
‖δρs‖44 ds + (6�χ Sdκ)2

4λ

∫ t

0
‖δξs‖44 ds

≤ 4 ln �

T

∫ t

0
‖δρs‖44 ds + (6�χ Sdκ)2

4λ

∫ t

0
‖δξs‖44 ds a.s..

By Gronwall’s inequality, we get

‖δρ‖S∞
FW ([0,T ];L4(Rd )) ≤

[
(6�χ Sdκ)2T

4λ

] 1
4

�‖δξ‖S∞
FW ([0,T ];L4(Rd )) a.s.. (3.16)

Hence, whenever 0 < κ < κ0 ∧
[

4λ
(6�3χ Sd )2T

] 1
2
, the solution map T is a contraction

mapping on the complete metric space B, and it admits a unique fixed point ρ = ρρ

which is the unique solution to SPDE (1.3). ��
Remark 3.1 For the well-posedness of SPDE (1.3), the main difficulty lies in the KS
type nonlinear term −χ∇ · ((∇G ∗ ρt )ρt ) which prevents us from using the exist-
ing methods in the SPDE literature. In view of Eq. (3.8) and the computation that
follows, one may see that the stochastic integral there equals zero because of the
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divergence-free condition (iii) of Assumption 1. This further allows us to obtain
ρ ∈ S∞

FW (0, T ; L4(Rd)) which finally yields the conclusions in Theorem 3.2 with
a deterministic κ . Without (iii) of Assumption 1, one may try to generalize the local-
ization technique with stopping times (see Karatzas and Shreve 1998, Chapter 1,
Section 5) for random fields which, however, may incur cumbersome arguments not
just for the well-posedness of SPDE (1.3) in this section, but also for the subsequent
sections.

In view of the above proof, we can particularly take

0 < χκ <
1

�
∧
[

4λ

(6�3Sd)2T

] 1
2

, with � = exp

{
T

4

(
(12Λ2)2

2λ
+ (6Sd)2

λ

)}

,

for the well-posedness of SPDE (1.3) in Theorem 3.2. Therefore, whenever χ‖ρ0‖4 <

1
�
∧
[

4λ
(6�3Sd )2T

] 1
2
, the unique existence of solution inM can be asserted as in Theorem

3.2.
Furthermore, suppose that the diffusion coefficients ν and σ are spatial invariant,

i.e.,

the measurable diffusion coefficients σ, ν : ([0, T ],B([0, T ]) −→
(
R
d×d ′

,B(Rd×d ′
)
)

.

(3.17)

Then, the left-hand side of (3.10) and the third termof line (3.14)will vanish. Repeating
the proof and combining computations around (3.13) and (3.16), we can obtain the
well-posedness of SPDE (1.3) in Theorem 3.2 with a particular selection:

0 < χκ
√
T <

1

�
∧
[

4λ

(6�3Sd)2

] 1
2

, with � = exp

{
(6Sd)2

4λ

}

, (3.18)

which indicates that for any given ρ0, the existence and uniqueness of solution may
be guaranteed on time interval [0, T0] if

T0 <
1

�2χ2‖ρ0‖24
∧ 4λ

(6�3χ‖ρ0‖4Sd)2 .

For this solution on [0, T0], we may conduct estimates as in the proof of Theorem 3.2.
Notice that instead of (3.11) and (3.12), we have

12χ
〈
ρs(∇ρs), (∇G ∗ ρs)ρ

2
s

〉
≤ 12χ‖ρs∇ρs‖2‖ρs‖24‖∇G ∗ ρs‖∞

≤ 12χ Sd‖ρs∇ρs‖2‖ρs‖24 ‖ρs ‖4
≤ 2λ‖ρs∇ρs‖22 + (6χ Sd)2

2λ
‖ρs‖64,
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and

‖ρt‖44 − ‖ρ0‖44
≤ −6λ

∫ t

0
‖ρs∇ρs‖22 ds + 2λ

∫ t

0
‖ρs∇ρs‖22 ds + (6χ Sd)2

2λ

∫ t

0
‖ρs‖44 ds

≤ −λ

∫ t

0
‖∇(ρ2

s )‖22 ds + (6χ Sd)2

2λ

∫ t

0
‖ρs‖64 ds. (3.19)

Meanwhile, using the Gagliardo–Nirenberg inequality yields that there exists a con-
stant Nd > 0 depending on d such that

‖ρs‖24 = ‖ρ2
s ‖2 ≤ Nd‖∇(ρ2

s )‖
d

d+2
2 · ‖ρ2

s ‖
2

d+2
1 = Nd‖∇(ρ2

s )‖
d

d+2
2 · ‖ρs‖

4
d+2
2

(by interpolation inequality) ≤ Nd‖∇(ρ2
s )‖

d
d+2
2 · ‖ρs‖

8
3(d+2)
4 · ‖ρs‖

4
3(d+2)
1

= Nd‖∇(ρ2
s )‖

d
d+2
2 · ‖ρs‖

8
3(d+2)
4 .

Then, it follows that

‖∇(ρ2
s )‖22 ≥ |Nd |− 2(d+2)

d · ‖ρs‖4+
8
3d

4 ,

which inserted into (3.19) gives

‖ρt‖44 − ‖ρ0‖44 ≤
∫ t

0
‖ρs‖4+

8
3d

4

(
(6χ Sd)2

2λ
· ‖ρs‖2−

8
3d

4 − λ

|Nd | 2(d+2)
d

)

ds. (3.20)

Therefore, if

(6χ Sd)2

2λ
· ‖ρ0‖2−

8
3d

4 − λ

|Nd | 2(d+2)
d

≤ 0

, i.e.,

‖ρ0‖4 ≤
(

2λ2

|Nd | 2(d+2)
d (6χ Sd)2

) 3d
6d−8

, (3.21)

then we conclude from (3.20) that ‖ρt‖4 ≤ ‖ρ0‖4 for all t ∈ [0, T0] and that the
unique solution may actually be extended to any finite time interval [0, T ].
Corollary 1 Let Assumption 1 hold with m = 2 and the diffusion coefficients ν and σ

being spatial invariant [see (3.17)]. Assume 0 ≤ ρ0 ∈ L1 ∩H
1
2
4 (Rd) with ‖ρ0 ‖1 = 1.

There exists a constant κ > 0 depending only on χ, λ, and d such that if ‖ρ0‖4 ≤ κ ,
SPDE (1.3) admits a unique nonnegative solution in

L2
FW (0, T ;W 1,2(Rd)) ∩ L4

FW (0, T ;W 1,4(Rd)) ∩ S∞
FW ([0, T ]; L1 ∩ L4(Rd)),
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for all T > 0.

In Corollary 1, the constant κ may be given as the right-hand side of (3.21) that
is independent of (T ,Λ) and the global solution result with small initial value under
L4-norm seems to hold in a similar way as the deterministic counterparts (see Blanchet
et al. 2006; Corrias et al. 2004; Biler 2010 for instance). The results in Theorem 3.2,
Corollary 1, and subsequent theorems, may be extended to general L p-norms for
p > 3, which would not be discussed in this paper to avoid cumbersome arguments.

To explore the connections between the stochastic Keller–Segel Eq. (1.3) and asso-
ciated SDEs ofMcKean–Vlasov type (1.7), we need stronger regularity of the solution.

Theorem 3.3 LetAssumption1holdwithm = 3. Suppose furtherρ0 ∈ L1∩W 2,2(Rd).
Then, for any T > 0, there exists κ > 0 depending only on T ,Λ, λ, χ and d such
that if ‖ρ0‖4 ≤ κ , SPDE (1.3) admits a unique nonnegative solution in

M1 := L2
FW (0, T ;W 3,2(Rd)) ∩ S2FW ([0, T ];W 2,2(Rd))

∩ L4
FW (0, T ;W 1,4(Rd)) ∩ S∞

FW ([0, T ]; L1 ∩ L4(Rd)).

Proof Notice that W 2,2(Rd) ↪→ H
1
2
4 (Rd) ↪→ L4(Rd) for d = 2 or 3. Comparing

Theorems 3.3 and 3.2, we only need to prove that the obtained unique solution ρ in
Theorem 3.2 is also lying in L2

FW (0, T ;W 3,2(Rd))∩ S2FW ([0, T ];W 2,2(Rd)). In fact,
ρ ∈ M [defined in (3.4)] is the solution of the following linear SPDE:

⎧
⎪⎪⎨

⎪⎪⎩

dρt =
[
1
2

∑d
i, j=1 Di j (ρt

∑d ′
k=1(ν

ikν jk + σ ikσ jk)) + χ ft
]
dt

−∑d
i=1 Di (ρt

∑d ′
k=1 σ ik) dWk

t

ρ0 is given,

(3.22)

with

ft = −∇ · (ρt∇ct ) = −∇ρt · ∇ct + ρ2
t − ρt ct .

As ρ ∈ M, it follows that

‖ ft‖2 = ‖∇ · (ρt∇ct )‖2 ≤ ‖∇ct ‖∞ ‖∇ρt ‖2 + ‖ρt‖24 + ‖ρt ‖2 ‖ct ‖∞
≤ Sd‖ρ‖4 ‖∇ρt ‖2 + ‖ρt‖24 + Sd ‖ρt ‖2 ‖ρt ‖4 ≤ Sd‖ρ‖4 ‖ρt ‖W 1,2 + ‖ρt‖24,

which indicates that

‖ f ‖2
L2
FW (0,T ;L2)

≤ 2S2d‖ρ‖2S∞
FW ([0,T ];L4)

‖ρ‖2
L2
FW (0,T ;W 1,2)

+ 2‖ρ‖4
L4
FW (0,T ;L4)

< ∞.

(3.23)
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The L p-theory of SPDE (see Krylov 1999, Theorem 5.1) and Theorem 3.2 imply that

ρ ∈ L2
FW (0, T ;W 2,2(Rd)) ∩ S2FW ([0, T ];W 1,2(Rd)) ∩ M. (3.24)

Similarly, for j = 1, . . . , d, one has

‖Dj ft‖2 ≤ C ‖ρt ‖W 2,2 ‖ρt ‖4 + C ‖ρt ‖W 1,4 ‖ρt ‖4 ,

which together with (3.24) and (3.23) implies that

‖ f ‖L2
FW (0,T ;W 1,2) < ∞.

Hence, applying the L p-theory of SPDE (seeKrylov 1999, Theorem 5.1) and Theorem
3.2 again, we conclude

ρ ∈ L2
FW (0, T ;W 3,2(Rd)) ∩ S2FW ([0, T ];W 2,2(Rd))

∩ L4
FW (0, T ;W 1,4(Rd)) ∩ S∞

FW ([0, T ]; L1 ∩ L4(Rd)).

The proof is completed. ��

4 Well-Posedness of the Nonlinear SDE

Let us consider the following SDE:

⎧
⎪⎨

⎪⎩

dYt = χ∇G ∗ ρt (Yt ) dt + νt (Yt ) dBt + σt (Yt ) dWt , t > 0,

ρt is the conditional density of Yt given FW
t ,

Y0 = ζ 1,

(4.1)

wherewe take Bt = B1
t in this section as a d

′-dimensionalWiener process independent
of Wt and ζ 1. In the following, we prove the well-posedness of the nonlinear SDE
(4.1) which actually shares the same solvability as SDE (1.7) for each i ∈ Z

+.

Theorem 4.1 (Well-posedness of the SDE) Under the same assumptions as in Theo-
rem 3.3, let ρ be the regular solution to the SPDE (1.3) obtained in Theorem 3.3.
Then, the nonlinear SDE (4.1) has a unique strong solution (Yt )t≥0 with ρ ∈
S2FW ([0, T ];W 2,2(Rd)) ∩ S∞

FW ([0, T ]; L4(Rd)) being its conditional density under

filtration (FW
t )t∈[0,T ].

Proof For the solution ρ ∈ S2FW (([0, T ];W 2,2(Rd)) ∩ S∞
FW ([0, T ]; L4(Rd)) of the

SPDE (1.3) given in Theorem 3.3, by embedding theorems , we have

∇G ∗ ρ ∈ S2FW ([0, T ];W 3,2(Rd)) ∩ S∞
FW ([0, T ];W 1,4(Rd))

↪→ S2FW ([0, T ];W 1,∞(Rd)) ∩ S∞
FW ([0, T ]; L∞(Rd)), (4.2)
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which ensures the existence and uniqueness of strong solution (Y t )t≥0 to the following
linear SDE:

{
dY t = χ∇G ∗ ρt (Y t ) dt + νt (Y t ) dBt + σt (Y t ) dWt , t > 0,

Y 0 = ζ 1.
(4.3)

To prove that the conditional density given FW
t of (Y t )t≥0 exists and is the solu-

tion to SPDE (1.3), we need the following result on backward SPDE and associated
probabilistic representation.

Lemma 4.1 Let Assumption 1 hold with m = 3, ρ ∈ S2FW ([0, T ];W 2,2(Rd)) ∩
S∞
FW ([0, T ]; L4(Rd)) and T1 ∈ (0, T ]. Then, for each G ∈ L2(�,FT1;W 2,2(Rd)),

the following backward SPDE:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− dut =
⎡

⎣
1

2

d∑

i, j=1

d ′
∑

k=1

(νikt ν
j,k
t +σ ik

t σ
jk
t )Di j ut +χ

d∑

i=1

DiG ∗ ρt Di ut +
d∑

i=1

d ′
∑

k=1

σ ik
t Diψ

k
t

⎤

⎦ dt

−
d ′
∑

k=1

ψk
t dW

k
t ,

uT1 = G,

(4.4)

admits a unique solution

(u, ψ) ∈
(
L2
FW (0, T ;W 3,2(Rd )) ∩ S2FW ([0, T ];W 2,2(Rd ))

)
× L2

FW (0, T ;W 2,2(Rd )),

i.e., for any ϕ ∈ C2
c (R

d), there holds for each t ∈ [0, T1],
〈ut , ϕ〉 = 〈ϕ, G〉

+
∫ T1

t

〈

ϕ,
1

2

d∑

i, j=1

d ′
∑

k=1

(νiks ν
jk
s +σ ik

s σ
jk
s )Di j us+χ

d∑

i=1

DiG ∗ ρs Di us+
d∑

i=1

d ′
∑

k=1

σ ik
s Diψ

k
s

〉

ds

−
∫ T1

t

d ′
∑

k=1

〈
ϕ, ψk

s

〉
dWk

s , a.s.

Moreover, for this solution, we have

ut (y) = E

[
G(Y T1)

∣
∣Y t = y, FW

t

]
, a.s.foranyt ∈ [0,T1]. (4.5)

For each T1 ∈ (0, T ], take an arbitrary ξ ∈ L∞(�,FT1) and φ ∈ C∞
c (Rd). In view

of the SPDE (1.3), applying the Itô formula to 〈ut , ρt 〉 [the duality analysis on the
(1.3) and (4.4) as in Du et al. (2011), Zhou (1992)] gives

〈u0, ρ0〉 = 〈ξφ, ρT1 〉 −
∫ T1

0

d∑

i=1

d ′
∑

k=1

〈ut , Di (σ
ik
t ρt )〉 dWk

t −
∫ T1

0

d ′
∑

k=1

〈ρt , ψk
t 〉 dWk

t , a.s.,
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where (u, ψ) is the solution in Lemma 4.1 with G = ξφ. Then, we have by taking
expectations on both sides,

〈u0, ρ0〉 = E[〈ξφ, ρT1〉] = E[ξ 〈φ, ρT1〉].

On the other hand, in view of the probabilistic representation (4.5), we have

〈u0, ρ0〉 =
∫

Rd
E

[
G(Y T1 )

∣
∣Y 0 = y, FW

0

]
ρ0(y) dy = E[ξφ(Y T1 )] = E

[
ξE[φ(Y T1 )

∣
∣FW

T1 ]
]
.

Therefore,

E[ξ 〈φ, ρT1〉] = E

[
ξE[φ(Y T1)

∣
∣FW

T1 ]
]
,

which by the arbitrariness of (T1, ξ, φ) implies that ρt is the conditional density
of Y t given FW

t for each t ∈ [0, T ] and shows the existence of strong solution
to SDE (4.1). In fact, this also means that each strong solution of SDE (4.1) with
ρ ∈ S2FW ([0, T ];W 2,2(Rd)) ∩ S∞

FW ([0, T ]; L4(Rd)) must have the conditional den-
sity ρ being the solution to SPDE (1.3), and thus, the strong solution is unique. We
complete the proof. ��
Proof of Lemma 4.1 Embedding theorem gives (4.2) which by the L2-theory of back-
ward SPDE (see Du et al. 2011; Zhou 1992) implies that backward SPDE (4.4)

has a unique solution (u, ψ) ∈
(
L2
FW (0, T ;W 1,2(Rd)) ∩ S2FW ([0, T ]; L2(Rd))

)
×

L2
FW (0, T ; L2(Rd)).4 Then, we need to show that the solution (u, ψ) has higher regu-

larity as it is done in the proof of Theorem 3.3. In fact, we have for each i = 1, . . . , d,

‖DiG ∗ ρs Dius‖2 ≤ ‖DiG ∗ ρs‖∞ ‖Dius‖2 ≤ Sd‖ρs‖4 ‖Dius‖2 ,

and thus, DiG ∗ ρDiu ∈ L2
FW (0, T1; L2), which by L2-theory of backward SPDE

indicated further

(u, ψ) ∈
(
L2
FW (0, T ;W 2,2(Rd )) ∩ S2FW ([0, T ];W 1,2(Rd ))

)
× L2

FW (0, T ;W 1,2(Rd )).

(4.6)

Taking derivatives gives further

∥
∥Dj (DiG ∗ ρs Dius)

∥
∥
2 ≤ ∥

∥Di jG ∗ ρs Dius
∥
∥
2 + ∥

∥DiG ∗ ρs Di j us
∥
∥
2

≤ ∥
∥Di jG ∗ ρs

∥
∥
4 ‖Dius‖4 + ‖DiG ∗ ρs‖∞

∥
∥Di jus

∥
∥
2

≤ Sd ‖ρs‖4 ‖Dius‖1/42 ‖Dius‖3/46 + Sd ‖ρs‖4
∥
∥Di jus

∥
∥
2

≤ ‖ρs‖4 ‖us‖W 2,2 + Sd ‖ρs‖4 ‖us‖W 2,2 ,

4 The fact u ∈ S2FW ([0, T ]; L2(Rd )) is not claimed in Du et al. (2011), Zhou (1992), but it follows
straightforwardly from Ren et al. (2007, Theorem A.2) for Itô’s formula of square norms. It is similar in
the relation (4.6).
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and thus, DiG ∗ ρs Dius ∈ L2
FW (0, T1;W 1,2(Rd)), i = 1, . . . , d. Applying the L2-

theory again, we arrive at

(u, ψ) ∈
(
L2
FW (0, T ;W 3,2(Rd )) ∩ S2FW ([0, T ];W 2,2(Rd ))

)
× L2

FW (0, T ;W 2,2(Rd )).

W.l.o.g., we prove the probabilistic representation (4.5) for the case when t = 0. In
fact, a straightforward application of Yang and Tang (2013, Theorem 3.1) yields that

u0(y) = G(Y T1) −
∫ T1

0

⎛

⎝
d ′
∑

k

ψk
s (Y s) +

d∑

i=1

σ ik
s (Y s)Dius(Y s)

⎞

⎠ dWk
s , a.s.

Noticing that by embedding theorem it holds that L2
FW (0, T ;W 2,2(Rd)) ↪→

L2
FW (0, T ;C1/4(Rd)), we may easily check that the stochastic integral in the above

equality is mean-zero. Therefore, we have u0(y) = E
[
G(Y T1)

∣
∣Y 0 = y, FW

0

]
by tak-

ing conditional expectation on both sides. For general t ∈ (0, T1], the proof of (4.5)
follows similarly. ��

5 Mean-Field Limit of the Particle System (1.5) Toward the Stochastic
KS Equation (1.3)

To prove the mean-field limit, we recall the following auxiliary stochastic dynamics
{(Y i

t )t≥0}Ni=1 as defined in (1.7)

⎧
⎪⎨

⎪⎩

dY i
t = χ∇G ∗ ρt (Y i

t ) dt + νt (Y i
t ) dB

i
t + σt (Y i

t ) dWt , t > 0, i = 1, . . . , N ,

ρt is the conditional density of Y i
t given FW

t for all i = 1, . . . , N .

Y i
0 = ζ i .

(5.1)

This means that {(Y i
t )t≥0}Ni=1 are N copies of solutions to the nonlinear SDE (4.1),

and they are conditional i.i.d. given Wt . We will also use the regularized version

⎧
⎪⎨

⎪⎩

dY i,ε
t = χ∇Gε ∗ ρε

t (Y
i,ε
t ) dt + νt (Y

i,ε
t ) dBi

t + σt (Y
i,ε
t ) dWt , t > 0, i = 1, . . . , N ,

ρε
t is the conditional density of Y i,ε

t given FW
t for all i = 1, . . . , N .

Y i,ε
0 = Y i

0 = ζ i ,

(5.2)

with ρε
t satisfying the following regularized stochastic KS equation

⎧
⎪⎪⎨

⎪⎪⎩

dρε
t = 1

2

∑d
i, j=1 Di j

(
ρε
t
∑d ′

k=1(ν
ik
t ν

jk
t + σ ik

t σ
jk
t )

)
dt − χ∇ · (∇(Gε ∗ ρε

t )ρ
ε
t ) dt

−∑d
i=1 Di

(
ρε
t
∑d ′

k=1 σ ik
t dWk

t

)
,

ρε
0 = ρ0,

(5.3)
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Indeed, following the same arguments as in Sects. 3–4, we obtain the well-posedness
of the regularized system (5.2) and Eq. (5.3). Next, we estimate the difference of
the solutions. Set eε

t = ρε
t − ρt for t ∈ [0, T ] with eε

0 = 0. Following the same
computation as in (3.14), one has

‖eε
t ‖44 ≤ −6λ

∫ t

0
‖eε

s∇eε
s‖22 ds + 2λ

∫ t

0
‖eε

s∇eε
s‖22 ds + (12Λ2)2

2λ

∫ t

0
‖eε

s‖44 ds

+
∫ t

0
12χ

〈
|eε
s |2∇eε

s , (∇Gε ∗ ρε
s )ρ

ε
s − (∇G ∗ ρs)ρs

〉
ds, a.s.. (5.4)

Notice that

12χ
〈|eε

s |2∇eε
s , (∇Gε ∗ ρε

s )ρ
ε
s − (∇G ∗ ρs)ρs

〉

= 12χ
〈|eε

s |2∇eε
s ,∇G ∗ eε

sρ
ε
s + ∇G ∗ ρse

ε
s

〉+ 12χ
〈|eε

s |2∇eε
s , (∇Gε − ∇G) ∗ ρε

s ρ
ε
s

〉
.

Similar to the computation in (3.15), one obtains

12χ
〈
|eε
s |2∇eε

s ,∇G ∗ eε
sρ

ε
s + ∇G ∗ ρse

ε
s

〉
≤ 2λ‖eε

s∇eε
s‖22 + C(T , χ, λ,Λ, d)‖eε

s‖44.

On the other hand, we compute

12χ
〈|eε

s |2∇eε
s , (∇Gε − ∇G) ∗ ρε

s ρ
ε
s

〉 ≤ 12χ‖eε
s∇eε

s‖2
∥
∥(∇Gε − ∇G) ∗ ρε

s

∥
∥∞ ‖eε

s‖4‖ρε
s ‖4.

Notice that

|(∇Gε − ∇G) ∗ ρε
s |(x)

= |ψε ∗ (∇G ∗ ρε
s ) − ∇G ∗ ρε

s |(x) =
∣
∣
∣
∣

∫

Rd
ψε(y)[∇G ∗ ρε

s (x − y) − ∇G ∗ ρε
s (x)] dy

∣
∣
∣
∣

≤ ∥
∥∇G ∗ ρε

s

∥
∥
W 1,∞

∫

Rd
|y|ψε(y) dy ≤ Cε

∥
∥∇G ∗ ρε

s

∥
∥
W 1,∞ ≤ Cε

∥
∥ρε

s

∥
∥
W 1,4 , (5.5)

where C depends only on T , χ, λ,Λ, and d. Then, one has

12χ
〈
|eε
s |2∇eε

s , (∇Gε − ∇G) ∗ ρε
s ρ

ε
s

〉
≤ 2λ‖eε

s∇eε
s‖22 + Cε2

∥
∥ρε

s

∥
∥2
W 1,4 ‖eε

s‖24‖ρε
s ‖24,
(5.6)

and thus

12χ
〈
|eε
s |2∇eε

s , (∇Gε ∗ ρε
s )ρ

ε
s − (∇G ∗ ρs)ρs

〉

≤ 4λ‖eε
s∇eε

s‖22 + Cε2
∥
∥ρε

s

∥
∥2
W 1,4 ‖eε

s‖24‖ρε
s ‖24 + C

∥
∥eε

s

∥
∥4
4 . (5.7)
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It follows from (5.4) that

‖eε
t ‖44 ≤ C1

∫ t

0
‖eε

s‖44 ds + C2ε
2
∫ t

0

∥
∥ρε

s

∥
∥2
W 1,4 ‖eε

s‖24‖ρε
s ‖24 ds,

where C1,C2 depend only on T , χ, λ,Λ, and d. By Gronwall’s inequality, we have

sup
t∈[0,T ]

‖eε
t ‖44 ≤

[

C2ε
2 sup
t∈[0,T ]

{‖eε
t ‖24‖ρε

t ‖24}
∫ T

0

∥
∥ρε

s

∥
∥2
W 1,4 ds

]

exp(C1T ) a.s..

(5.8)

This leads to

‖ρε − ρ‖S2FW ([0,T ];L4(Rd ))

≤ C
(
C1,C2, T , ‖ρ‖S∞

FW ([0,T ];L4(Rd )), ‖ρε‖S∞
FW ([0,T ];L4(Rd )), ‖ρε‖L2

FW ([0,T ];W 1,4(Rd ))

)
ε

≤ C (T , χ, λ,Λ, d) · ε (5.9)

where we have used the fact that the quantities ‖ρ‖S∞
FW ([0,T ];L4(Rd )),

‖ρε‖S∞
FW ([0,T ];L4(Rd )), and ‖ρε‖L2

FW ([0,T ];W 1,4(Rd )) depend only on T , χ, λ,Λ, and

d, independent of ε.
Our main theorem of mean-field limit states that the mean-field dynamics

{(Y i,ε
t )t≥0}Ni=1 well approximate the regularized interacting particle system

{(Xi,ε
t )t≥0}Ni=1 in (1.5).

Theorem 5.1 Under the same assumptions as in Theorem 3.3, let {(Xi,ε
t )t≥0}Ni=1 and

{(Y i,ε
t )t≥0}Ni=1 satisfy the interacting particle system (1.5) and themean-field dynamics

(5.2), respectively. Then, for anyfixed0 < δ � 1, such that ε−d ≤ δ ln(N )andCδ < 1
it holds that

sup
t∈[0,T ]

sup
i=1,...,N

E

[∣
∣
∣Xi,ε

t − Y i,ε
t

∣
∣
∣
2
]

≤ C
(δ ln(N ))

2d−2
d

N 1−Cδ
, (5.10)

where C is a constant depending only on χ, T , d, d ′ and Λ.

Proof Applying Itô’s formula yields that

|Xi,ε
t − Y i,ε

t |2

=
∫ t

0
2χ(Xi,ε

s − Y i,ε
s ) ·

⎛

⎝
1

N − 1

N∑

j �=i

∇Gε(X
i,ε
s − X j,ε

s ) − ∇Gε ∗ ρε
s (Y

i,ε
s )

⎞

⎠ ds

+
∫ t

0
2(Xi,ε

s − Y i,ε
s ) · (νs(X

i,ε
s ) − νs(Y

i,ε
s )) dBi

s
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+
∫ t

0
2(Xi,ε

s − Y i,ε
s ) · (σs(X

i,ε
s ) − σs(Y

i,ε
s )) dWs

+
∫ t

0

d∑

j

d ′
∑

k=1

(
ν
jk
s (Xi,ε

s ) − ν
jk
s (Y i,ε

s )
)2

ds

+
∫ t

0

d∑

j

d ′
∑

k=1

(
σ

jk
s (Xi,ε

s ) − σ
jk
s (Y i,ε

s )
)2

ds.

Taking expectations on both sides, one has

E

[
|Xi,ε

t − Y i,ε
t |2

]

≤ E

⎡

⎣

∫ t

0
2χ(Xi,ε

s − Y i,ε
s ) ·

⎛

⎝
1

N − 1

N∑

j �=i

∇Gε(X
i,ε
s − X j,ε

s ) − ∇Gε ∗ ρε
s (Y

i,ε
s )

⎞

⎠ ds

⎤

⎦

+ C(d, d ′,Λ)

∫ t

0
E

[
|Xi,ε

s − Y i,ε
s |2

]
ds, (5.11)

where we have used the fact that

E

[∫ t

0
2(Xi,ε

s − Y i,ε
s ) · (νs(X

i,ε
s ) − νs(Y

i,ε
s )) dBi

s

]

= E

[∫ t

0
2(Xi,ε

s − Y i,ε
s ) · (σs(X

i,ε
s ) − σs(Y

i,ε
s )) dWs

]

= 0,

and (ii) in Assumption 1.
To continue, we split the error

E

⎡

⎣

∫ t

0
2χ(Xi,ε

s − Y i,ε
s ) ·

⎛

⎝
1

N − 1

N∑

j �=i

∇Gε(X
i,ε
s − X j,ε

s ) − ∇Gε ∗ ρε
s (Y

i,ε
s )

⎞

⎠ ds

⎤

⎦

into three parts. Notice that

1

N − 1

N∑

j �=i

∇Gε(X
i,ε
s − X j,ε

s ) − ∇Gε ∗ ρε
s (Y

i,ε
s )

= 1

N − 1

⎛

⎝
N∑

j �=i

∇Gε(X
i,ε
s − X j,ε

s ) −
N∑

j �=i

∇Gε(Y
i,ε
s − Y j,ε

s )

⎞

⎠

+ 1

N − 1

N∑

j �=i

∇Gε(Y
i,ε
s − Y j,ε

s ) − ∇Gε ∗ ρε
s (Y

i,ε
s )

=: I s11 + I s12.
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First, we compute

∫ t

0
2χ(Xi,ε

s − Y i,ε
s ) · I s11 ds ≤ 2χ

∫ t

0
|Xi,ε

s − Y i,ε
s | 1

N − 1
‖∇Gε ‖W 1,∞

N∑

j=1

∣
∣
∣X

j,ε
s − Y j,ε

s

∣
∣
∣ ds

≤ Cε−d

N − 1

∫ t

0

N∑

j=1

∣
∣
∣X

j,ε
s − Y j,ε

s

∣
∣
∣
2
ds,

which leads to

E

[∫ t

0
2χ(Xi,ε

s − Y i,ε
s ) · I s11 ds

]

≤ Cε−d

N − 1

∫ t

0

N∑

j=1

E

[∣
∣
∣X

j,ε
s − Y j,ε

s

∣
∣
∣
2
]

ds

≤ Cε−d
∫ t

0
sup

i=1,...,N
E

[∣
∣
∣Xi,ε

s − Y i,ε
s

∣
∣
∣
2
]

ds,

(5.12)

where C depends only on χ and d.
To estimate the second term, we rewrite

I s12 = 1

N − 1

N∑

j �=i

(
∇Gε(Y

i,ε
s − Y j,ε

s ) − ∇Gε ∗ ρε
s (Y

i,ε
s )

)
=: 1

N − 1

N∑

j �=i

Z i
j ,

where

Zi
j = ∇Gε(Y

i,ε
s − Y j,ε

s ) − ∇Gε ∗ ρε
s (Y

i,ε
s ), j �= i .

It is easy to check that

E[Zi
j |FW

t ,Y i,ε
s ] = ∇Gε ∗ ρε

s (Y
i,ε
s ) − ∇Gε ∗ ρε

s (Y
i,ε
s ) = 0,

since {Y j,ε
s }Nj=1 are conditional i.i.d. with common conditional density ρε

s given FW
t .

Thus, one concludes that

E[|I s12|2] = 1

(N − 1)2
E

⎡

⎣

⎛

⎝
N∑

j �=i

Z i
j

⎞

⎠

⎛

⎝
N∑

k �=i

Z i
k

⎞

⎠

⎤

⎦

= 1

(N − 1)2
E

⎡

⎣E

⎡

⎣

⎛

⎝
N∑

j �=i

Z i
j

⎞

⎠

⎛

⎝
N∑

k �=i

Z i
k

⎞

⎠ |FW
t ,Y i,ε

s

⎤

⎦

⎤

⎦

= 1

(N − 1)2
E

⎡

⎣E

⎡

⎣
N∑

j �=i

|Zi
j |2|FW

t ,Y i,ε
s

⎤

⎦

⎤

⎦ = 1

N − 1
E[|Z2

1 |2].
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Due to the fact that, using (2.3),

E[|Z1
2 |2] = E

[
(∇Gε(Y

1,ε
s − Y 2,ε

s ) − ∇Gε ∗ ρε
s (Y

1,ε
s ))2

]
≤ 4‖∇Gε‖2∞ ≤ Cε−2(d−1),

one has

E[|I s12|2] ≤ Cε−2(d−1)

N − 1
.

Thus, we concludes

E

[∫ t

0
2χ(Xi,ε

s − Y i,ε
s ) · I s12 ds

]

≤
∫ t

0
E

[
|Xi,ε

s − Y i,ε
s |2

]
ds +

∫ t

0
χ2

E

[
|I s12|2

]
ds ≤

∫ t

0
E

[
|Xi,ε

s − Y i,ε
s |2

]
ds

+ Cε−2(d−1)

N − 1
,

where C depends only on χ and d.
Now, collecting estimates (5.12) and (5.13) implies

E

⎡

⎣

∫ t

0
2χ(Xi,ε

s − Y i,ε
s ) ·

⎛

⎝
1

N − 1

N∑

j �=i

∇Gε(X
i,ε
s − X j,ε

s ) − ∇Gε ∗ ρε
s (Y

i,ε
s )

⎞

⎠ ds

⎤

⎦

≤ Cε−d
∫ t

0
sup

i=1,...,N
E

[∣
∣
∣Xi,ε

s − Y i,ε
s

∣
∣
∣
2
]

ds + Cε−2(d−1)

N − 1
(5.13)

which together with (5.11) lead to

sup
i=1,...,N

E

[∣
∣
∣Xi,ε

t − Y i,ε
t

∣
∣
∣
2
]

≤ C1ε
−d
∫ t

0
sup

i=1,...,N
E

[∣
∣
∣Xi,ε

s − Y i,ε
s

∣
∣
∣
2
]

ds + C2ε
−2(d−1)

N − 1
.

Applying Gronwall’s inequality further yields that

sup
t∈[0,T ]

sup
i=1,...,N

E

[∣
∣
∣Xi,ε

t − Y i
t

∣
∣
∣
2
]

≤ C2ε
−2(d−1)

N − 1
eC1ε

−d T ≤ C
(δ ln(N ))

2d−2
d

N 1−Cδ
,

where we let eε−d ≤ N δ , i.e., ε−d ≤ δ ln(N ), for any fixed 0 < δ < 1
C . The proof is

completed. ��

Theorem 5.1 implies the convergence in law of the empirical measure in the fol-
lowing sense:
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Corollary 2 Under the same assumptions as in Theorem 5.1, the empirical measure

ρ
ε,N
t := 1

N

N∑

i=1

δXi,ε
t

(5.14)

associatedwith the stochastic particle system (1.5) convergesweakly to unique solution
ρt to the nonlinear SPDE (1.3). More precisely, for any fixed 0 < δ � 1, such that
ε−d = δ ln(N ) and Cδ < 1, it holds that for all t ∈ [0, T ]

E

[
|〈ρε,N

t , φ〉 − 〈ρt , φ〉|2
]

≤ C

(
(δ ln(N ))

2d−2
d

N 1−Cδ
+ 1

N
+ (δ ln(N ))−

2
d

)

, (5.15)

for any φ ∈ C1
c (R

d), where C depends only on ‖φ ‖C1 , χ, T , λ,Λ, d, and
‖ρ0 ‖W 2,2(Rd ).

Proof Let us compute

E

[
|〈ρε,N

t , φ〉 − 〈ρε
t , φ〉|2

]

= E

⎡

⎣

∣
∣
∣
∣
∣

1

N

N∑

i=1

φ(Xi,ε
t ) −

∫

Rd
φ(x)ρε

t (x) dx

∣
∣
∣
∣
∣

2⎤

⎦

≤ 2E
[
|φ(X1,ε

t ) − φ(Y 1,ε
t )|2

]
+ 2E

⎡

⎣

∣
∣
∣
∣
∣

1

N

N∑

i=1

φ(Y i,ε
t ) −

∫

Rd
φ(x)ρε

t (x) dx

∣
∣
∣
∣
∣

2⎤

⎦

=: I1 + I2. (5.16)

According to (5.10), one has

I1 ≤ 2 ‖∇φ ‖2∞ E

[
|X1,ε

t − Y 1,ε
t |2

]

≤ C
(δ ln(N ))

2d−2
d

N 1−Cδ
, (5.17)

where C depends only on ‖∇φ ‖∞, χ, T , λ,Λ, d and ‖ρ0 ‖W 2,2(Rd ). To estimate I2,
we compute that

E

⎡

⎣

∣
∣
∣
∣
∣

1

N

N∑

i=1

φ(Y i,ε
t ) −

∫

Rd
φ(x)ρε

t (x) dx

∣
∣
∣
∣
∣

2⎤

⎦

≤ 1

N 2

N∑

i=1

E

[∣
∣
∣
∣φ(Y i,ε

t ) −
∫

Rd
φ(x)ρε

t (x)

∣
∣
∣
∣

2
]

≤ C
1

N
, (5.18)
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where C depends only on ‖φ ‖∞. This combined with (5.17) implies

E

[
|〈ρε,N

t , φ〉 − 〈ρε
t , φ〉|2

]
≤ C

(
(δ ln(N ))

2d−2
d

N 1−Cδ
+ 1

N

)

, (5.19)

Next, using (5.9) we compute

E
[|〈ρε

t , φ〉 − 〈ρt , φ〉|2] ≤ CE

[

sup
t∈[0,T ]

∥
∥ρε

t − ρt
∥
∥2
4

]

= C
∥
∥ρε − ρ

∥
∥2
S2FW ([0,T ];L4(Rd ))

≤ Cε2.

(5.20)

Hence, one has

E

[
|〈ρε,N

t , φ〉 − 〈ρt , φ〉|2
]

≤ 2E
[
|〈ρε,N

t , φ〉 − 〈ρε
t , φ〉|2

]
+ 2E

[|〈ρε
t , φ〉 − 〈ρt , φ〉|2]

≤ C

(
(δ ln(N ))

2d−2
d

N 1−Cδ
+ 1

N
+ (δ ln(N ))−

2
d

)

. (5.21)

This completes the proof. ��
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