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Abstract
Recent experimental work has revealed that interstitial fluid flow can mobilize two
types of tumor cell migration mechanisms. One is a chemotactic-driven mechanism
where chemokine (chemical component) bounded to the extracellular matrix (ECM)
is released and skewed in the flow direction. This leads to higher chemical concen-
trations downstream which the tumor cells can sense and migrate toward. The other
is a mechanism where the flowing fluid imposes a stress on the tumor cells which
triggers them to go in the upstream direction. Researchers have suggested that these
two migration modes possibly can play a role in metastatic behavior, i.e., the process
where tumor cells are able to break loose from the primary tumor and move to nearby
lymphatic vessels. In Waldeland and Evje (J Biomech 81:22–35, 2018), a mathemat-
ical cell–fluid model was put forward based on a mixture theory formulation. It was
demonstrated that the model was able to capture the main characteristics of the two
competing migration mechanisms. The objective of the current work is to seek deeper
insight into certain qualitative aspects of these competing mechanisms by means of
mathematical methods. For that purpose, we propose a simpler version of the cell–fluid
model mentioned above but such that the two competing migration mechanisms are
retained. An initial cell distribution in a one-dimensional slab is exposed to a constant
fluid flow from one end to the other, consistent with the experimental setup. Then, we
explore by means of analytical estimates the long-time behavior of the two competing
migration mechanisms for two different scenarios: (i) when the initial cell volume
fraction is low and (ii) when the initial cell volume fraction is high. In particular, it
is demonstrated in a strict mathematical sense that for a sufficiently low initial cell
volume fraction, the downstream migration dominates in the sense that the solution
converges to a downstream-dominated steady state as time elapses. On the other hand,
with a sufficiently high initial cell volume fraction, the upstream migration mecha-
nism is the stronger in the sense that the solution converges to an upstream-dominated
steady state.
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1 Introduction

1.1 Aggressive Cancer Cells and Fluid Flow

How and why is it so that aggressive cancer cells are able to detach from the pri-
mary tumor and migrate to nearby lymphatic vessels through which they can escape
and give rise to formation of tumors at other places in the human body? This phe-
nomenon of lymph node metastasis, which is a main reason why cancer becomes
a deadly disease, has been recognized for a long time. However, the underlying
mechanism by which malignant tumor cells leave the primary tumor site, invade the
lymphatics and metastasize to lymph nodes is unclear (Shields et al. 2007; Polacheck
et al. 2011). Many malignant tumors are associated with an elevated interstitial fluid
pressure (IFP) caused by leaky blood vessels situated at the inside of the punc-
tum. Lymphatic vessels normally adsorb this fluid and keep the IFP at a normal
level. However, lymphatic vessels are often defective in the intratumoral region.
This implies that the additional fluid oozes to the region outside the tumor periph-
ery where it is adsorbed by collecting lymphatic vessels. It has been proposed that
this elevated IF flow can be exploited by the tumor cells and has led researchers
to systematically explore how tumor cells are sensitive to IF flow. In Shields et al.
(2007), it was suggested that interstitial flow caused by lymphatic drainage directs
tumor cell migration through chemotaxis. More precisely, the tumor cells utilize
interstitial flow to create and amplify gradients in chemokine (a protein) and thus
chemotact toward the adsorbing lymphatic vessels in a process termed autologous
chemotaxis. Polacheck et al. Polacheck et al. (2011) extended the study by Shields
et al. (2007), demonstrating that the IF velocity as well as the cell seeding den-
sity affected the migration direction. Experiments were conducted at two different
seeding densities and at two different flow velocities. In particular, it was observed
that for the low cell seeding density, culture tumor cells tended to migrate with the
flow in accordance with the behavior reported in Shields et al. (2007). However,
for the high cell seeding density, the migration was dominated by upstream migra-
tion.

1.2 A General Cell–Fluid–ECMModel

A rather general cell–fluid–ECMmodel was proposed in Waldeland and Evje (2018a)
and further developed in Waldeland and Evje (2018b) and Evje andWaldeland (2019)
to shed light on the above-mentioned competing cell migration mechanisms governed
by interstitial fluid flow. A gently simplified version of the model, where we ignore
certain details of the biochemical part by assuming that chemokine C is directly
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produced by the tumor cells instead of being released from ECM, takes the following
form:

αct + ∇ · (αcuc) = + Sc
αwt + ∇ · (αwuw) = − Sc
αc∇(Pw + �P(αc) + �(C)) = − ζ̂cuc + ζ̂ (uw − uc)
αw∇Pw = − ζ̂wuw − ζ̂ (uw − uc)
Ct + ∇ · (Cuw) = ∇ · (DC∇C) + RC

(1.1)

The model, which bears similarity to the model studied in Evje and Wen (2018),
accounts for the volume fraction αw of interstitial fluid (IF) and the volume fraction
αc of cancer cells such that αc +αw = 1. In other words, the pore space is occupied by
cancer cells and fluid and described my the two mass balance equations (1.1)1,2. The
two different phases move with their own interstitial velocity, respectively, uw and uc.
These are involved in the two momentum balance equations (1.1)3,4. The momentum
balance for the IF given by (1.1)4 reflects that the interstitial fluid pressure gradient
∇Pw is balanced by two interaction forces whose coefficients are ζ̂w and ζ̂ .

The first one reflects the resistance force felt by the fluid as it flows through the
porous tissue, whereas the second reflects a drag force effect between the fluid and
cells. Similarly, the momentum balance (1.1)3 reflects that the cell phase pressure
Pw + �P(αc) + �(C) differs from the IFP Pw by two stress effects: �P(αc) is an
increasing function which accounts for the effect that cells tend to move away from
each other toward a region of lower cell volume fraction when they are densely packed
to reduce the total cell phase pressure. �(C) is a decreasing function which accounts
for the cell’s ability to create directed motion toward higher concentration of C (i.e.,
toward positive gradients in C) to reduce the overall pressure. Similarly, ζ̂c represents
cell–ECM interaction and ζ̂ the cell–fluid drag. The last equation (1.1)5 reflects that
the chemokine concentration C is advected according to the fluid velocity field uw,
in addition to a diffusive spreading, combined with production and consumption as
described by the source term RC .

From the two momentum equations (1.1)3,4, we can compute explicit expressions
for the cell and fluid velocity, respectively, uc and uw (Waldeland and Evje 2018a).
The following expressions are found:

αcuc = UT f̂c(αc) − ĥ(αc)∇(�P(αc)) − ĥ(αc)∇�(C)

αwuw = UT f̂w(αc) + ĥ(αc)∇(�P(αc)) + ĥ(αc)∇�(C)
(1.2)

with coefficients f̂c(αc), f̂w(αc) and ĥ(αc) given by

f̂c(αc) = [α2
c ζ̂w]+αc ζ̂

[α2
c ζ̂w]+[α2

wζ̂c]+ζ̂

f̂w(αc) = [α2
wζ̂c]+αwζ̂

[α2
c ζ̂w]+[α2

wζ̂c]+ζ̂

ĥ(αc) = α2
cα

2
w

α2
c ζ̂w+α2

wζ̂c+ζ̂

(1.3)
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Fig. 1 An illustration of typical examples of f̂c(αc) (left) and − ĥ(αc) (right) defined by (1.3) used in
Waldeland and Evje (2018b)

and where the total velocity UT = αcuc + αwuw is determined from the equation
UT = −λ̂T∇Pw − λ̂c∇(�P+�) and the fact that∇ ·UT = 0.We refer toWaldeland
and Evje (2018a) for details. Model (1.1) then takes the more compact form with
unknowns (αc,C):

αct + ∇ · (αcuc) = Sc
Ct + ∇ · (Cuw) = ∇ · (DC∇C) + RC

(1.4)

where αcuc is given by (1.2)1. Note that f̂c(αc) and ĥ(αc) given by (1.3) are direct
functions of the specified fluid–ECM interaction ζ̂w, cell–ECM interaction ζ̂c and
cell–fluid interaction ζ̂ . These correlations reflect essential information in what way
tumor cells respond and relate to their microenvironment.Moreover, we note that there
are three different mechanisms involved in (1.2)1: (i) the term UT f̂c(αc) represents a
cell migration effect due to fluid stress; (ii) ĥc(αc)∇(�P(αc)) represents a diffusive
cell–cell migration effect; and (iii) ĥc(αc)∇(�(C)) represents a chemotaxis migration
effect.

For typical correlations used for ζ̂w, ζ̂c and ζ̂ , the shape of f̂c(αc) and ĥ(αc) will
be as shown in Fig. 1. The resulting cell migration behavior is shown in Figs. 2
and 3, respectively, for the case with an initial low cell volume fraction and a high
initial cell volume fraction. The numerical examples illustrate the competition between
downstream and upstream migration as a function of cell volume fraction.

1.3 A ToyModel with Competing Downstream and UpstreamMigration

In order to obtain amodel that is more amenable formathematical investigations, with-
out losing the key characteristics of the cell–fluid model (1.4), we make the following
assumptions:

(i) We use the approximation UT ≈ uw ≈ const.
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Fig. 2 Competing tumor cell migrationmechanisms for a cell aggregate with low volume fraction αc ≈ 0.1.
a cell volume fraction αc . The downstream chemotactic-driven mechanism dominates. b The interstitial
fluid pressure Pw gradient. High pressure at x = 0 and low pressure at x = 1 give rise to fluid flow from
left to right. c The three different cell migration components. d Chemokine (chemical component) whose
concentration is skewed in the downstream direction

(ii) ĥ(αc)�P ′(αc) ∼ const.
(iii) f̂c(αc) ∼ −ακ

c with κ > 1.
(iv) ĥ(αc)�

′(C) ∼ −αc(1 − αc)
λ with λ > 1.

(v) DC = 1, Sc = 0, and RC = αc(1 − C).

The IF velocity uw typically is a 100-fold higher than the cell migration velocity uc
(Polacheck et al. 2011; Waldeland and Evje 2018a, b), which in turn is largely dictated
by the linear pressure curve seen in Figs. 2 and 3 (panel B). This justifies assumption
(i). The constant diffusion coefficient in (ii) is standard. The choice of f̂c(αc) in (iii)
accounts for the negative dip that gives rise to upstream migration for higher cell
volume fraction αc, see Fig. 1 (left). The choice of ĥ(αc) in (iv) is also consistent with
the functional form of ĥ(αc) in (1.3)3 which amounts to a bell-shaped function starting
and ending at 0, see Fig. 1 (right), combined with the fact that �(C) is a decreasing
function Waldeland and Evje (2018a, b). Finally, the choice of parameters and terms
in (v) is standard.

With these assumptions and by replacing αc and C by u and v, respectively, we
obtain the following simplified version of (1.4):

{
ut − f (u)x = uxx − (h(u)vx )x ,

vt + vx = vxx + u(1 − v).
(1.5)
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Fig. 3 Competing tumor cell migration mechanisms. The situation is the same as in Fig. 2. The only
difference is that we use the higher volume fraction αc ≈ 0.5. The upstream mechanism now dominates.
The reason for that can be seen from an inspection of f̂c(αc) in Fig. 1. A larger cell volume fractionαc means
that a larger part of the downward dip is activated and therefore increases the impact from the upstream
migration

where f (u) and h(u) are given by

f (u) = uκ and h(u) = uψ(u) = u(1 − u)λ, u ∈ [0, 1], (1.6)

where κ > 1 and λ > 1 are fixed parameters.

1.3.1 Analysis of Related Models for Chemotaxis–Fluid Interplay in the Literature

Understanding the interaction of chemotaxis systems with liquid environments has
been the objective of a remarkably quickly growing literature during the past few
years. Most analytical studies in this direction, however, focus on models addressing
situations inwhichbesidesfluid-induced transportmechanisms, also certain buoyancy-
driven gravitational forcing of the considered fluid flows is relevant; especially due
the fact that then the fluid velocity forms a genuine unknown in the model, such
additional feedback effects evidently go along with a noticeably higher complexity
in comparison with (1.5); therefore, the analysis of accordingly obtained chemotaxis-
(Navier–)Stokes systems (Tuval et al. 2005) has yet been predominantly concerned
with rather basic issues such as questions from existence and regularity theory (Duan
et al. 2010; Winkler 2012, 2016; Chae et al. 2014; Cao and Lankeit 2016; Kozono
et al. 2016), and only few studies seem go beyond this by examining qualitative
aspects such as large-time stabilization toward homogeneous equilibria (Lankeit 2016;
Winkler 2014, 2017, 2019). Only for some more specialized and simplified variants
involving suitably designed given fluid flows, more subtle findings on possible effects
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of fluid interaction, e.g., on taxis driven blowup or also certain spreading properties,
are available (He and Tadmor 2019; Kiselev and Xu 2016; Kiselev and Ryzhik 2012).

1.3.2 Main Results I: Dominance of DownstreamMigration in Sparsely Distributed
Populations

In the first part of our analysis, we shall consider the fully no-flux-type initial-boundary
value problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uεt − (uκ
ε )x = uεxx −

(
uε(1 − uε)

λvεx

)
x
, x ∈ 
, t > 0,

vεt + vεx = vεxx + uε(1 − vε), x ∈ 
, t > 0,
uεx − uε(1 − uε)

λvεx + uκ
ε = 0, vεx − vε = 0, x ∈ ∂
, t > 0,

uε(x, 0) = εw0(x), vε(x, 0) = v0(x), x ∈ 
,

(1.7)
in the interval 
 = (0, L) with L > 0, with suitably small and appropriately regular
initial data in the sense that ε > 0 is suitably small and that

{
w0 ∈ W 1,∞(
) is nonnegative with w0 �≡ 0 and
v0 ∈ W 1,∞(
) is nonnegative withv0 �≡ 0.

(1.8)

Within this framework, the first of our main results states that indeed for appropriately
small values of ε, this problem is classically solvable by functions which exhibit a
certain tendency toward migration in the direction of the fluid flow, that is, toward
large positive values of x , in the following sense.

Theorem 1.1 Let L > 0, κ > 1, λ > 1 and 
 = (0, L) ⊂ R, and assume that w0
and v0 satisfy (1.8). Then, for all δ > 0, there exists T (δ) > 0 with the following
property: Given any T > T (δ), one can find ε0(δ, T ) > 0 such that for arbitrary
ε ∈ (0, ε0(δ, T )) the problem (1.7) possesses a classical solution (uε, vε) in
×(0, T )

with {
uε ∈ C0(
 × [0, T ]) ∩ C2,1(
 × (0, T ]) and

vε ∈ ⋂
q>1 C

0([0, T ];W 1,q(
)) ∩ C2,1(
 × (0, T ]), (1.9)

which is such that 0 ≤ uε ≤ 1 and vε ≥ 0 in 
 × (0, T ), and such that with some
β > 0 and γ > 0, we have

∣∣∣∣uε(x, t)

ε
− γ eβex

∣∣∣∣ ≤ δ for all x ∈ 
 and any t ∈ [T (δ), T ]. (1.10)

1.3.3 Main Results II: Prevalence of UpstreamMigration in Densely Populated Groups

In the second part of our study, we consider the parabolic system from (1.7) along
with slightly different boundary conditions for the first solution component, which
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namely enforce the latter to attain the boundary value 1 on ∂
 throughout evolution.
Specifically, for ε > 0 we shall be concerned with the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uεt − (uκ
ε )x = uεxx −

(
uε(1 − uε)

λvεx

)
x
, x ∈ 
, t > 0,

vεt + vεx = vεxx + uε(1 − vε), x ∈ 
, t > 0,
uεx = 1, vεx − vε = 0, x ∈ ∂
, t > 0,
uε(x, 0) = 1 − εz0(x), vε(x, 0) = v0(x), x ∈ 
,

(1.11)

under the assumptions that

{
z0 ∈ W 1,∞(
) is nonnegative with z0 �≡ 0 and z0 = 0 on ∂
 and
v0 ∈ W 1,∞(
) is nonnegative withv0 �≡ 0.

(1.12)

Under these assumptions, we shall see that in sharp contrast to the above, the profiles
of the deviations 1−uε from the level 1will, throughout arbitrarily large time intervals,
to a considerable extent remain near functions that are more concentrated near x = 0
than near x = L .

Theorem 1.2 Let 
 = (0, L) with some L > 0, let κ > 1 and λ > 1 and suppose
that z0 and v0 satisfy (1.12). Then, given any δ > 0, one can find T (δ) > 0 with the
property that for any choice of T > T (δ), it is possible to fix ε0(δ, T ) > 0 such that
whenever ε ∈ (0, ε0(δ, T )), the problem (1.11) admits a classical solution (uε, vε) in

 × (0, T ) fulfilling (1.9) as well as 0 ≤ uε ≤ 1 and vε ≥ 0 in 
 × (0, T ), for which
there exist β > 0 and γ > 0 such that

∣∣∣∣eβt · 1 − uε(x, t)

ε
− γ e− κ

2 x sin
πx

L

∣∣∣∣ ≤ δ for all x ∈ 
 and each t ∈ [T (δ), T ].
(1.13)

2 Preferred DownstreamMigration: Proof of Theorem 1.1

2.1 Classical Solutions to (1.7) inÄ× (0, T) for Small "

In order to construct solutions to (1.7) bymeans of a convenient approximation involv-
ing homogeneous Neumann boundary conditions in the first solution component,
following precedent works pursuing a similar idea, we fix a family (ζ j ) j∈N ⊂ C∞

0 (
)

such that 0 ≤ ζ j ≤ 1 in 
 for all j ∈ N and that ζ j → 1 in C2
loc(
) as j → ∞. Then,

for ε > 0 and j ∈ N, the problems

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uε j t − (ζ j (x)uκ
ε j )x = uε j xx −

(
ζ j (x)uε j (1 − uε j )

λ+vε j x

)
x
, x ∈ 
, t > 0,

vε j t + vε j x = vε j xx + uε j (1 − vε j ), x ∈ 
, t > 0,
uε j x = 0, vε j x − vε j = 0, x ∈ ∂
, t > 0,
uε j (x, 0) = εw0(x), vε j (x, 0) = v0(x), x ∈ 
,

(2.1)
admit local classical solutions enjoying a handy extensibility criterion:
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Lemma 2.1 Let ε > 0 and j ∈ N. Then, there exist Tε j and a unique pair of nonneg-
ative functions

{
uε j ∈ C0(
 × [0, Tε j )) ∩ C2,1(
 × (0, Tε j )) and
vε j ∈ ⋂

q>1 C
0([0, Tε j );W 1,q(
)) ∩ C2,1(
 × (0, Tε j ))

such that (uε j , vε j ) solves (2.1) classically in 
 × (0, Tε j ) and such that

if Tε j < ∞, then lim sup
t↗Tε j

{
‖uε j (·, t)‖L∞(
) + ‖vε j (·, t)‖W 1,q (
)

}
= ∞ for all q > 1.

(2.2)
Moreover, ∫




uε j (x, t)dx = ε

∫



w0 for all t ∈ (0, Tε j ). (2.3)

Proof All statements can be verified by straightforward adaptation of well-known
arguments to the present context, either following precedents concerned with taxis-
type problems, such as e.g., Horstmann and Winkler (2005), or also directly resorting
to general theory for abstract parabolic evolution problems (Amann 1989). ��
A first significant regularity information about these solutions, becoming important
in our derivation of uniform bounds on uε j in Lemma 2.3, can be obtained by conve-
niently transforming the second equation in (2.1) and then performing an essentially
straightforward testing procedure.

Lemma 2.2 Let q ≥ 1 and T > 0. Then, there exists C(q, T ) > 0 such that for all
ε > 0 and j ∈ N,

‖vε j (·, t)‖W 1,q (
) ≤ C(q, T )·
{
1+ sup

s∈(0,T̂ε j )

‖uε j (·, s)‖2L∞(
)

}
for all t ∈ (0, T̂ε j ),

(2.4)
where T̂ε j :=min{T , Tε j }.
Proof For ε > 0 and j ∈ N, we let v̂ε j (x, t):=e−xvε j (x, t), x ∈ 
, t ≥ 0, and noting
that then vε j x = ex (̂vε j x + v̂ε j ) and vε j xx = ex (̂vε j xx +2v̂ε j x + v̂ε j ), we obtain from
(2.1) that

⎧⎨
⎩

v̂ε j t = v̂ε j xx + v̂ε j x + hε j (x, t), x ∈ 
, t ∈ (0, Tε j ),

v̂ε j x = 0, x ∈ ∂
, t ∈ (0, Tε j ),

v̂ε j (x, 0) = e−xv0(x), x ∈ 
,

(2.5)

where

hε j (x, t):=e−xuε j (x, t)
(
1 − vε j (x, t)

)
, x ∈ 
, t ∈ (0, Tε j ). (2.6)

Thus, abbreviating Kε j (T ):= sups∈(0,T̂ε j )
‖uε j (·, s)‖L∞(
) for T > 0, ε > 0 and

j ∈ N, and with T̂ε j :=min{T , Tε j }, we see that since
hε j (x, t) ≤ e−xuε j (x, t) ≤ Kε j (T ) for all x ∈ 
 and t ∈ (0, T̂ε j )
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by nonnegativity of uε j and vε j , we have

v̂ε j t ≤ v̂ε j xx + v̂ε j x + Kε j (T ) in 
 × (0, T̂ε j ).

As v(x, t):=‖v0‖L∞(
)+Kε j (T )·t , x ∈ 
, t ≥ 0, satisfies vt−vxx−vx−Kε j (T ) = 0
in 
 × (0,∞) as well as v(x, 0) ≥ e−xv0(x) for all x ∈ 
 and vx (·, t) = 0 on ∂


for all t > 0, by means of a comparison argument, we thus infer that

‖̂vε j (·, t)‖L∞(
) ≤ c1(T ) · (1 + Kε j (T )) for all t ∈ (0, T̂ε j ) (2.7)

with c1(T ):=max{‖v0‖L∞(
) , T , 1}.
Now in view of the Hölder inequality, for verifying the statement of the lemma, it

is sufficient to establish (2.4) for any fixed integer q ≥ 2, and in order to achieve this,
we again use the Neumann-type structure of the boundary condition in (2.5) to see
that for any such q,

1

q

d

dt

∫



v̂
q
ε j x =

∫



v̂
q−1
ε j x v̂εx j t

= − (q − 1)
∫




v̂
q−2
ε j x v̂ε j xx v̂ε j t

= − (q − 1)
∫




v̂
q−2
ε j x v̂2ε j xx − (q − 1)

∫



v̂
q−1
ε j x v̂ε j xx − (q − 1)

∫



v̂
q−2
ε j x v̂ε j xx hε j

= − (q − 1)
∫




v̂
q−2
ε j x v̂2ε j xx − (q − 1)

∫



v̂
q−2
ε j x v̂ε j xx hε j for all t ∈ (0, Tε j ).

Here, observing that by (2.6), (2.7), Young’s inequality and the fact that c1(T ) ≥ 1,
we can estimate

|hε j | ≤ uε j (1 + vε j )

≤ Kε j (T ) ·
{
1 + c1(T ) · (1 + Kε j (T ))

}
≤ Kε j (T ) · 2c1(T ) · (1 + Kε j (T ))

≤ 4c1(T ) · (1 + K 2
ε j (T )) in 
 × (0, T̂ε j ),

we see that once more due to Young’s inequality,

−(q − 1)
∫




v̂
q−2
ε j x v̂ε j xx hε j ≤ (q − 1)

∫



v̂
q−2
ε j x v̂2ε j xx + q − 1

4

∫



v̂
q−2
ε j x h

2
ε j

≤ (q − 1)
∫




v̂
q−2
ε j x v̂2ε j xx + q − 1

4

∫



v̂
q
ε j x

+ (q − 1)L

4
· 4qcq1 (T ) · (1 + K 2

ε j (T ))q
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for all t ∈ (0, T̂ε j ), so that

d

dt

∫



v̂
q
ε j x ≤ q(q − 1)

4

∫



v̂
q
ε j x + c2(q, T ) · (1 + K 2

ε j (T ))q for all t ∈ (0, T̂ε j )

with c2(q, T ):=4q−1q(q − 1)cq1 (T )L . Integration in time gives

∫



v̂
q
ε j x ≤

{ ∫


e−qx · (v0x − v0)

q
}

· e q(q−1)t
4 + c2(q, T ) · (1 + K 2

ε j (T ))q
∫ t

0
e
q(q−1)(t−s)

4 ds

=
{ ∫



e−qx · (v0x − v0)

q
}

· e q(q−1)t
4 + c2(q, T ) · (1 + K 2

ε j (T ))q ·
(
e
q(q−1)t

4 − 1
)

for all t ∈ (0, T̂ε j ), which in conjunction with (2.7) readily entails (2.4). ��
Thus, in particular, having at hand some information on integrability of the taxic
gradient in (2.1), by making essential use of the presence of homogeneous Neumann
boundary conditions for uε j , we can invoke smoothing estimates for the Neumann
heat semigroup to assert a favorable uniform a priori bound for the first solution
component, up to an arbitrary fixed time.

Lemma 2.3 Let T > 0. Then, there exists εdown(T ) > 0 such that whenever ε ∈
(0, εdown(T )), for each j ∈ N the solution of (2.1) has the properties that Tε j > T
and that

‖uε j (·, t)‖L∞(
) ≤ 1 for all t ∈ (0, T ). (2.8)

Proof Given T > 0, on employing Lemma 2.2, we can find c1(T ) > 0 such that for
all ε > 0 and j ∈ N,

‖vε j x (·, t)‖L4(
) ≤ c1(T ) ·
{
1 + sup

s∈(0,T̂ε j )

‖uε j (·, s)‖2L∞(
)

}
for all t ∈ (0, T̂ε j ),

(2.9)
where again T̂ε j :=min{T , Tε j }.We furthermore recall a well-known smoothing prop-
erty of theNeumann heat semigroup (eτ�)τ≥0 on
 (Fujie et al. 2016) to fix c2(T ) > 0
such that whenever ϕ ∈ C1(
) satisfies ϕ = 0 on ∂
, then

‖eτ�ϕx‖L∞(
) ≤ c2(T )τ− 3
4 ‖ϕ‖L2(
) for all τ ∈ (0, T ). (2.10)

As κ > 1, it thereafter becomes possible to firstly pick δ(T ) > 0 small enough such
that δ(T ) ≤ 1 and

4c2(T )L
1
2 T

1
4 δκ(T ) ≤ δ(T )

6
, (2.11)

and then choose εdown(T ) > 0 in such a way that

‖w0‖L∞(
) · εdown(T ) ≤ δ(T )

6
(2.12)
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as well as

8c1(T )c2(T )‖w0‖
1
4
L1(
)

T
1
4 ε

1
4 δ

3
4 (T ) ≤ δ(T )

6
. (2.13)

We now fix ε ∈ (0, εdown(T )), and we claim that then for each j ∈ N,

T̃ε j := sup

{
T̃ ∈ (0, T̂ε j )

∣∣∣∣ ‖uε j (·, t)‖L∞(
) < δ(T ) for all t ∈ (0, T̃ )

}
,

well-defined by continuity of uε j in
×[0, Tε j ) due to the fact that ‖uε j (·, 0)‖L∞(
) ≤
δ(T )
6 < δ(T ) by (2.12), actually satisfies T̃ε j = T̂ε j . In fact, if this was false, then again

by continuity of uε j , we would have ‖uε j (·, t)‖L∞(
) < δ(T ) for all t ∈ (0, T̃ε j ) but

‖uε j (·, T̃ε j )‖L∞(
) = δ(T ). (2.14)

To see that this is impossible, we represent uε j according to a Duhamel formula
associated with the first equation in (2.1) and apply the maximum principle as well as
(2.10) to infer that for all t ∈ (0, T̃ε j ],

‖uε j (·, t)‖L∞(
) =
∥∥∥∥et�(

εw0
) −

∫ t

0
e(t−s)�∂x

{
ζ j uε j (1 − uε j )

λ+vε j x

}
(·, s)ds

+
∫ t

0
e(t−s)�∂x

{
ζ j u

κ
ε j

}
(·, s)ds

∥∥∥∥
L∞(
)

≤ ε‖w0‖L∞(
) + c2(T )

∫ T

0
(t − s)−

3
4 ‖uε j (·, s)vε j x (·, s)‖L2(
)ds

+c2(T )

∫ t

0
(t − s)−

3
4 ‖uκ

ε j (·, s)‖L2(
)ds,

because 0 ≤ ζ j ≤ 1 and (1 − uε j )+ ≤ 1. Since clearly

‖uκ
ε j (·, s)‖L2(
) ≤ L

1
2 ‖uε j (·, s)‖κ

L∞(
) ≤ L
1
2 δκ(T ) for all s ∈ (0, T̃ε j ),

and since by the Cauchy–Schwarz inequality, (2.3), (2.9) and the inequality δ(T ) ≤ 1,
we moreover have

‖uε j (·, s)vε j x (·, s)‖L2(
) ≤ ‖uε j (·, s)‖
3
4
L∞(
)‖uε j (·, s)‖

1
4
L1(
)

‖vε j x (·, s)‖L4(
)

≤ δ
3
4 (T ) · (ε‖w0‖L1(
)

) 1
4 · c1(T )(1 + δ2(T ))

≤ 2c1(T )‖w0‖
1
4
L1(
)

ε
1
4 δ

3
4 (T ) for all s ∈ (0, T̃ε j );

this entails that thanks to (2.11), (2.12) and (2.13),

‖uε j (·, t)‖L∞(
) ≤ ε‖w0‖L∞(
) + c2(T )L
1
2 δκ(T )

∫ t

0
(t − s)−

3
4 ds

+2c1(T )c2(T )‖w0‖
1
4
L1(
)

ε
1
4 δ

3
4 (T )

∫ t

0
(t − s)−

3
4 ds
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≤ ε‖w0‖L∞(
) + 4c2(T )L
1
2 T

1
4 δκ(T )

+8c1(T )c2(T )‖w0‖
1
4
L1(
)

T
1
4 ε

1
4 δ

3
4 (T ) for all t ∈ (0, T̃ε j ].

When evaluated at t = T̃ε j , this contradicts (2.14) and thereby shows that indeed
T̃ε j = T̂ε j . As thus ‖uε j (·, t)‖L∞(
) ≤ δ(T ) ≤ 1 for all t ∈ (0, T̂ε j ), in view of (2.9)
and (2.2) this furthermore implies that we must have Tε j > T̂ε j and that (2.8) holds.

��

On the basis of the latter, straightforward application of parabolic regularity theory,
followed by suitable compactness arguments, enables us to construct a solution of
(1.7) in 
 × (0, T ) as a limit of solutions to (2.1), provided that ε < εdown(T ).

Lemma 2.4 Let T > 0, and let εdown(T ) > 0 be as in Lemma 2.3. Then, for all
ε ∈ (0, εdown(T )), there exist functions

{
uε ∈ C0(
 × [0, T ]) ∩ C2,1(
 × (0, T ]) and
vε ∈ ⋂

q>1 C
0([0, T ];W 1,q(
)) ∩ C2,1(
 × (0, T ])

such that uε ≥ 0 and vε ≥ 0 in 
 × (0, T ], that (uε, vε) solves (1.7) in the classical
sense in 
 × (0, T ) and that

∫



uε(x, t)dx = ε

∫



w0 for all t ∈ (0, T ) (2.15)

as well as
‖uε(·, t)‖L∞(
) ≤ 1 for all t ∈ (0, T ). (2.16)

This solution can be obtained as limits of the solutions to (2.1) in the sense that there
exists a sequence ( jk)k∈N ⊂ N such that as k → ∞, we have jk → ∞, uε jk → uε

and vε jk → vε in C0(
 × [0, T ]) ∩ C2,1
loc (
 × (0, T ]) as well as vε jk x

�
⇀ vεx in

L∞((0, T ); Lq(
)) for all q > 1.

Proof Relying on Lemma 2.3 and a series of straightforward parabolic bootstrap
arguments, thanks to the assumed limit behavior of (ζ j ) j∈N as j → ∞, the part
concerning existence and approximation can be seen by following a type of reasoning
well-established in contexts of taxis problems involving no-flux boundary conditions
different from homogeneous Neumann data; as concise derivations can be found in
quite an elaborate manner in the literature on closely related problems, we may refrain
from giving details here, and rather refer to, for example, Cao and Lankeit (2016) (see
also Li et al. (2015) for a precedent). The properties (2.15) and (2.16) can thereupon
easily be obtained on taking j → ∞ in (2.3) and (2.8). ��

With regard to the rescaled version of uε addressed in the finally intended estimate
(1.10), this result can be rephrased as follows.
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Corollary 2.5 Let T > 0, and for ε ∈ (0, εdown(T )) let uε and vε be as provided by
Lemma 2.4, with εdown(T ) > 0 taken from Lemma 2.3. Then, the pair (wε, vε), with
wε:= uε

ε
, forms a global classical solution of the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wεt − εκ−1(wκ
ε )x = wεxx −

(
wε(1 − εwε)

λvεx

)
x
, x ∈ 
, t ∈ (0, T ),

vεt + vεx = vεxx + εwε(1 − vε), x ∈ 
, t ∈ (0, T ),

wεx − wε(1 − εwε)
λvεx + εκ−1wκ

ε = 0, vεx − vε = 0, x ∈ ∂
, t ∈ (0, T ),

wε(x, 0) = w0(x), vε(x, 0) = v0(x), x ∈ 
,

(2.17)
which is such that

∫



wε(x, t)dx =
∫




w0(x)dx for all t ∈ (0, T ) (2.18)

and

0 ≤ wε ≤ 1

ε
in 
 × (0, T ). (2.19)

Moreover, for any q > 1, one can find C(q, T ) > 0 fulfilling

‖vε(·, t)‖W 1,q (
) ≤ C(q, T ) for all t ∈ (0, T ) and each ε ∈ (0, εdown(T )).

(2.20)

Proof The claimed solution features of (wε, vε) aswell as (2.18) and (2.19) are obvious
by-products of Lemma2.4. In viewof the statement fromLemma2.4 on approximation
of (uε, vε) by solutions to (2.1), property (2.20) is a consequence of Lemma 2.2 when
combined with Lemma 2.3. ��

2.2 Existence, Uniqueness and Stabilization in a Formally Obtained Limit Problem

Motivated by formally taking ε ↘ 0 in the reformulation (2.17) of (1.7), in this section
we shall analyze the behavior of solutions to the corresponding limit problem given
by ⎧⎪⎪⎨

⎪⎪⎩

wt = wxx − (wvx )x , x ∈ 
, t > 0,
vt + vx = vxx , x ∈ 
, t > 0,
wx − wvx = 0, vx − v = 0, x ∈ ∂
, t > 0,
w(x, 0) = w0(x), v(x, 0) = v0(x), x ∈ 
,

(2.21)

under the assumptions (1.8). In fact, a basic theory of well-posedness thereof can quite
easily be obtained:

Lemma 2.6 Suppose that (1.8) holds. Then, (2.21) admits precisely one classical solu-
tion (w, v) such that

⎧⎨
⎩

w ∈ C0(
 × [0,∞)) ∩ C2,1(
 × (0,∞)),

v ∈ C0(
 × [0,∞)) ∩ C2,1(
 × (0,∞)) and
vx ∈ L∞

loc([0,∞; L2(
)).

(2.22)
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Proof As (2.21) consists of two actually decoupled scalar and linear drift-diffusion
problemswithRobin-type boundary conditions, global existence of a classical solution
enjoying the claimed regularity properties is asserted by standard parabolic Schauder
theory (Ladyzenskaja et al. 1968).

To see its uniqueness within the indicated class, given two solutions (w, v) and
w̃, ṽ) both fulfilling the regularity requirements in (2.22), we write ϕ:=w − w̃ and
ψ :=v − ṽ to see using (2.21) that

⎧⎨
⎩

ϕt = ϕxx − (ϕvx )x − (w̃ψx )x , x ∈ 
, t > 0,
ϕx − ϕvx − w̃ψx = 0, x ∈ ∂
, t > 0,
ϕ(x, 0) = 0, x ∈ 
,

(2.23)

and that ⎧⎨
⎩

ψt − ψx = ψxx , x ∈ 
, t > 0,
ψx − ψ = 0, x ∈ ∂
, t > 0,
ψ(x, 0) = 0, x ∈ 
.

(2.24)

Therefore, by Young’s inequality,

1

2

d

dt

∫



ϕ2 +
∫




ϕ2
x =

∫



ϕϕxvx +
∫




w̃ϕxψx

≤ 1

2

∫



ϕ2
x +

∫



ϕ2v2x +
∫




w̃2ψ2
x

≤ 1

2

∫



ϕ2
x + ‖vx‖2L2(
)

‖ϕ‖2L∞(
)

+‖w̃‖2L∞(
)‖ψx‖2L2(
)
for all t > 0 (2.25)

and

1

2

d

dt

∫



ψ2 +
∫




ψ2
x =

∫



ψψx ≤ 1

2

∫



ψ2
x + 1

2

∫



ψ2 for all t > 0. (2.26)

Now for fixed t > 0, (2.22) asserts the existence of c1 = c1(T ) > 0 and c2 = c2(T ) >

0 such that

‖vx (·, t)‖L2(
) ≤ c1 and ‖w̃(·, t)‖L∞(
) ≤ c2 for all t ∈ (0, T ),

whence in particular, using the Gagliardo–Nirenberg inequality and Young’s inequal-
ity, we see that with some cx = c3(T ) > 0, we have

‖vx‖2L2(
)
‖ϕ‖2L∞(
) ≤ c3‖ϕx‖L2(
)‖ϕ‖L2(
) + c3‖ϕ‖2L2(
)

≤ 1

2
‖ϕx‖2L2(
)

+
(c23
2

+ c3
)
‖ϕ‖2L2(
)

for all t ∈ (0, T ).

By combining (2.25) with (2.26) we thus infer that
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d

dt

{ ∫



ϕ2 + c22

∫



ψ2
}

≤
( c23
2

+ c3
) ∫



ϕ2 + c22

∫



ψ2

≤ max
{
1 ,

C2
3
2

+ c3
}

·
{∫



ϕ2 + c22

∫



ψ2
}

for all t ∈ (0, T ).

Thus, an integration using the initial conditions in (2.23) and (2.24) shows that∫



ϕ2(·, t) + c22
∫



ψ2(·, t) = 0 for all t ∈ (0, T ) and therefore implies that
ϕ ≡ ψ ≡ 0, for T > 0 was arbitrary. ��
Apart from that, thanks to the simple structure of the second equation in (2.21), one
can readily achieve also some higher-order regularity information.

Lemma 2.7 If (1.8) holds, there exists C > 0 such that the solution of (2.21) satisfies

‖w‖C2,1(
×[t,t+1]) ≤ C for all t > 1 (2.27)

and
‖v‖C2,1(
×[t,t+1]) ≤ C for all t > 1. (2.28)

Proof An application of standard parabolic Schauder theory ( Ladyzenskaja et al.
(1968)) to the second subproblem contained in (2.21) provides θ1 ∈ (0, 1) and c1 > 0
such that

‖v‖
C2+θ1,1+ θ1

2 (
×[t,t+1])
≤ c1 for all t >

1

2
. (2.29)

Therefore, when rewritten in the form wt = wxx + a(x, t)wx + b(x, t)w with
a(x, t):= − vx and b(x, t):= − vxx enjoying suitable Hölder bounds according to
(2.29), also the first equation in (2.21) becomes accessible to the same tool so as to
allow for the existence of θ2 ∈ (0, 1) and c2 > 0 fulfilling

‖w‖
C2+θ1,1+ θ1

2 (
×[t,t+1])
≤ c1 for all t > 1.

This entails (2.27), whereas (2.28) directly results from (2.29). ��
Nowbymeans of a transformation in the style of that fromLemma2.2,we can detect an
energy structure associated with the second equation in (2.21), in particular resulting
in the following basic statement on stabilization of v.

Lemma 2.8 Assume (1.8). Then, the solution of (2.21) has the properties that

∫



(e−xv)2x (·, t) → 0 as t → ∞ (2.30)

and that ∫ ∞

0

∫



v2t < ∞. (2.31)
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Proof Abbreviating v̂(x, t):=e−xv(x, t) for x ∈ 
 and t ≥ 0, we compute vx =
ex (̂vx + v̂) and vxx = ex (̂vxx + 2v̂x + v̂) and hence obtain from (2.21) that

v̂t = e−xvxx − e−xvx = (̂vxx + 2v̂x + v̂) − (̂vx + v̂) = v̂xx + v̂x in 
 × (0,∞)

(2.32)
and that

v̂x = 0 on ∂
 × (0,∞). (2.33)

Thanks to the latter, no nonzero boundary terms appear when we test (2.32) by −v̂xx
and integrate by parts to see that

1

2

d

dt

∫



v̂2x=
∫




v̂x v̂xt=−
∫




v̂xx v̂t=−
∫




v̂2xx−
∫




v̂x v̂xx=−
∫




v̂2xx for all t > 0.

(2.34)
As (2.33) moreover enables us to invoke a Poincaré inequality to find c1 > 0 fulfilling

∫



v̂2xx ≥ c1

∫



v̂2x for all t > 0,

this firstly implies that

d

dt

∫



v̂2x ≤ −2c1

∫



v̂2x for all t > 0

and that hence, upon integration, writing c2:=
∫



v̂2x (·, 0), we have
∫




v̂2x (·, t) ≤ c2e
−2c1t for all t > 0, (2.35)

from which (2.30) immediately follows by definition of v̂ and the fact that c2 is finite
due to (1.8). Secondly, a direct integration in (2.34) shows that

1

2

∫



v̂2x (·, t) +
∫ t

0

∫



v̂2xx ≤ c2
2

for all t > 0, (2.36)

where we once more use (2.32) to see that as a consequence of (2.35),

∫ t

0

∫



v̂2xx =
∫ t

0

∫



(̂vt − v̂x )
2

≥ 1

2

∫ t

0

∫



v̂2t −
∫ t

0

∫



v̂2x

≥ 1

2

∫ t

0

∫



v̂2t − c2

∫ t

0
e−2c1sds

= 1

2

∫ t

0

∫



v̂2t − c2
2c1

(1 − e−2c1t )
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≥ 1

2

∫ t

0

∫



v̂2t − c2
2c1

for all t > 0,

because (a − b)2 ≥ 1
2a

2 − b2 for all a, b ∈ R. In conclusion, (2.36) thus in particular
entails that

1

2e2L

∫ t

0

∫



v2t ≤ 1

2

∫ t

0

∫



e−2x v̂2t

= 1

2

∫ t

0

∫



v̂2t

≤
∫ t

0

∫



v̂2xx + c2
2c1

≤ c2
2

+ c2
2c1

for all t > 0

and thereby establishes (2.31). ��

Thanks to an evident mass conservation property of the second equation in (2.21),
the latter in conjunction with one of the higher-order regularity features asserted by
Lemma 2.7 already entails uniform stabilization of v toward one particular steady
state:

Lemma 2.9 Suppose that (1.8) holds. Then, there exists β > 0 such that the solution
of (2.21) satisfies

v(·, t) → β · exp in L∞(
) as t → ∞. (2.37)

Proof We let β:=
∫

 v0∫


 ex dx
and note that then β is positive by (1.8), and assuming (2.37)

to be false, we could find (tk)k∈N ⊂ (1,∞) and c1 > 0 such that tk → ∞ as k → ∞
and

‖v(·, tk) − β · exp ‖L∞(
) ≥ c1 for all k ∈ N. (2.38)

Now since (v(·, t))t>1 is bounded inC1(
) and hence relatively compact inC0(
) by
Lemma 2.7 and theArzelà-Ascoli theorem, upon passing to a subsequence if necessary
we may assume that

v(·, tk) → v∞ in L∞(
) as k → ∞ (2.39)

with some nonnegative v∞ ∈ C0(
). Since therefore v̂k(x):=e−xv(x, tk), x ∈ 
,
k ∈ N, and v̂∞(x):=e−xv∞(x), x ∈ 
, satisfy

v̂k → v̂∞ in L∞(
) as k → ∞,

we may rely on Lemma 2.8 to infer the existence of c2 > 0 such that

123



Journal of Nonlinear Science (2020) 30:1809–1847 1827

v̂∞(x) = c2 for all x ∈ 
, (2.40)

because (2.30) warrants that v̂kx → 0 in L2(
) and k → ∞. By definition of v̂∞, in
view of (2.39), this means that

v(·, tk) → c2 · exp in L∞(
) as k → ∞, (2.41)

whence in particular

∫



v(·, tk) → c2

∫



exdx as k → ∞.

Since, on the other hand, a direct integration in (2.21) shows that

d

dt

∫



v =
∫




(vxx − vx ) = 0 for all t > 0,

this identifies c2 according to c2 =
∫

 v0∫


 ex dx
= β, so that (2.41) contradicts the hypoth-

esis (2.38), thus altogether implying that actually (2.37) must have been valid. ��
Constituting the apparently most substantial part of this section, the following lemma
turns the L2 integrability property of vt contained in Lemma 2.8 into a first, though
yet rather weak, information on stabilization in the first solution component.

Lemma 2.10 If (1.8) holds, then the solution of (2.21) has the property that

∫



(e−vw)2x → 0 as t → ∞. (2.42)

Proof We substitute ŵ(x, t):=e−v(x,t)w(x, t), x ∈ 
, t ≥ 0 and use the identity
wx = ev(ŵx + vx ŵ), as thereby implied, to see that

ŵx = 0 on ∂
 × (0,∞) (2.43)

and that

ŵt = e−vwt − e−vwvt

= e−v(wx − wvx )x − e−vwvt

= e−v · (evŵx )x − e−vwvt in 
 × (0,∞) (2.44)

because of (2.21). Thanks to (2.43), an integration by parts in (2.44) shows that

d

dt

∫


evŵ2

x = 2
∫


evŵx ŵxt +

∫


evŵ2

xvt

= −2
∫



(evŵx )x ŵt +
∫


evŵ2

xvt
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= −2
∫


e−v · (evŵx )

2
x + 2

∫


e−v · (evŵx )xvt +

∫


evŵ2

xvt for all t > 0,

(2.45)

in which we prepare an appropriate estimation of the two last summands by going
back to Lemma 2.7 to find positive constants ci , i ∈ {1, ..., 5}, such that

w ≤ c1 and |wx | ≤ c2 in 
 × (1,∞) (2.46)

as well as
v ≤ c3 and |vx | ≤ c4 in 
 × (1,∞) (2.47)

and
|vt | ≤ c5 in 
 × (1,∞), (2.48)

and by moreover relying on (2.43) in employing the Poincaré inequality to fix c6 > 0
satisfying ∫




(evŵx )
2 ≤ c6

∫



(evŵx )
2
x for all t > 0. (2.49)

Therefore, namely, by utilizing Young’s inequality, we can estimate

∫



evŵ2
xvt ≤ ‖ŵx‖L∞(
)

∫



ev|ŵx | · |vt |

= ‖e−vwx − e−vwvx‖L∞(
)

∫



ev|ŵx | · |vt |

≤ (c2 + c1c4)
∫




ev|ŵx | · |vt |

≤ 1

2c6ec3

∫



(evŵx )
2 + c2 + c1c4)2c6ec3

2

∫



v2t

≤ 1

2ec3

∫



(evŵx )
2
x + c2 + c1c4)2c6ec3

2

∫



v2t

≤ 1

2

∫



e−v(evŵx )
2
x + c2 + c1c4)2c6ec3

2

∫



v2t for all t > 1.

(2.50)

Since furthermore, again due to Young’s inequality,

2
∫




e−v(evŵx )xvt ≤ 1

2

∫



e−v(evŵx )
2
x + 2

∫



e−vv2t

≤ 1

2

∫



e−v(evŵx )
2
x + 2

∫



v2t for all t > 0,
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and since another application of (2.49) shows that

∫



evŵ2
x =

∫



e−v · (evŵx )
2

≤
∫




(evŵx )
2

≤ c6

∫



(evŵx )
2
x

≤ c6e
c3

∫



e−v(evŵx )
2
x for all t > 1,

from (2.45) we all in all obtain that y(t):= ∫


ev(·,t)ŵ2

x (·, t) and h(t):= ∫



v2t (·, t),
t ≥ 1, satisfy

y′(t) + c7y(t) ≤ c8h(t) for all t > 1 (2.51)

with c7:= 1
c6ec3

and c8:= (c2+c1c4)2c6ec3
2 + 2. By straightforward integration, we thus

infer that for all t > 2,

y(t) ≤ y(1)e−c7(t−1) + c8

∫ t
2

1
e−c7(t−s)h(s)ds + c8

∫ t

t
2

e−c7(t−s)h(s)ds

≤ y(1)e−c7(t−1) + c8 · c25L
∫ t

2

1
e−c7(t−s)ds + c8

∫ t

t
2

∫



v2t

= y(1)e−c7(t−1) + c25c8L

c7
· (e− c7 t

2 − e−c7(t−1)) + c8

∫ t

t
2

∫



v2t

≤ y(1)e−c7(t−1) + c25c8L

c7
e− c7 t

2 + c8

∫ t

t
2

∫



v2t ,

because h(t) ≤ c25L for all t > 1 according to (2.48). Now since Lemma 2.8 ensures
that

∫ t

t
2

∫



v2t → 0 as t → ∞,

this shows that

∫



evŵ2
x → 0 as t → ∞,

which by definition of ŵ yields (2.42) due to the fact that ev ≥ 1. ��

Again relying on Lemma 2.7, this can be seen to imply convergence to some equilib-
rium also in the first solution component:
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Lemma 2.11 Assume (1.8). Then, there exists γ > 0 such that with β > 0 taken from
Lemma 2.9, for the solution of (2.21), we have

w(·, t) → γ · exp ◦(β · exp) in L∞(
) as t → ∞. (2.52)

Proof Defining the number γ according to

γ :=
∫



w0∫


eβex dx

,

positive due to (1.8), we proceed as in Lemma 2.9 by firstly relying on Lemma 2.7
and the Arzelà-Ascoli theorem to see that (e−v(·,t)w(·, t))t>1 is relatively compact
in C0(
), and by secondly identifying all corresponding ω-limits: Indeed, whenever
(tk)k∈N ⊂ (1,∞) and ϕ ∈ C0(
) are such that tk → ∞ and e−v(·,tk )w(·, tk) → ϕ in
L∞(
) as k → ∞, in view of Lemma 2.10 we have ϕ ≡ c1 in 
 with some c1 ≥ 0,
while Lemma 2.9 asserts that e−v(·,tk ) → exp ◦(−β · exp) in L∞(
) as k → ∞.
Therefore,

w(·, tk) → c1 · exp ◦(β · exp) in L∞(
) as k → ∞,

so that since independently we obtain from (2.21) that d
dt w = 0 for all t > 0, we must

have

∫



w0 = c1

∫



eβex dx

and hence c1 = γ . As (tk)k∈N was an arbitrary sequence having the indicated stabi-
lization properties, by a standard reasoning in the style of that from Lemma 2.9, we
readily infer (2.52). ��

2.3 Approaching (2.21) for Small Values of " in (1.7)

Our next goal consists in establishing a link between our solutions to (2.17) and those
of (2.21) through an appropriate statement on convergence in the limit ε ↘ 0. The
key ingredient toward this will be provided by the following outcome of a Moser-type
iteration applied to the first equation in (2.17) on the basis of the taxic gradient estimate
from (2.20).

Lemma 2.12 If (1.8) holds and T > 0, and if εdown(T ) > 0 is taken from Lemma 2.4,
then one can find C(T ) > 0 such that the solution of (2.17) from Corollary 2.5 has
the property that

‖wε(·, t)‖L∞(
) ≤ C(T ) for all t ∈ (0, T ) and any ε ∈ (0, εdown(T )). (2.53)
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Proof For fixed T > 0 and nonnegative integers k, we let pk :=2k and estimate

Mk := sup
ε∈(0,εdown(T ))

sup
t∈(0,T )

∫



w pk
ε (·, t) ∈ [0,∞]

by testing the first equation in (2.17) againstw pk−1
ε for k ≥ 1 to see that due to Young’s

inequality,

1

pk

d

dt

∫



w pk
ε + (pk − 1)

∫



w pk−2
ε w2

εx = (pk − 1)
∫




w pk−1
ε (1 − εwε)

λ−1vεxwεx

+(pk − 1)εκ−1
∫




w pk+κ−2
ε wεx

≤ pk − 1

4

∫



w pk−2
ε w2

εx + (pk − 1)
∫




w pk
ε v2εx

+ pk − 1

4

∫



w pk−2
ε w2

εx + (pk − 1)ε2κ−2
∫




w pk+2κ−2
ε

for all t > 0. Since herein εwε ≤ 1 by (2.19), and since pk
2 ≤ pk − 1 ≤ pk for any

such k, this shows that

d

dt

∫



w pk
ε +

∫



(w
pk
2

ε )2x ≤ p2k

∫



w pk
ε v2εx + p2k

∫



w pk
ε for all t ∈ (0, T ). (2.54)

Now an application of Corollary 2.5 to q:=4 yields c1 = c1(T ) > 0 such that

∫



v4εx ≤ c1 for all t ∈ (0, T ) and any ε ∈ (0, εdown(T )),

whence on the right-hand side of (2.54), we can use the Cauchy–Schwarz inequality
to estimate

p2k

∫



w pk
ε v2εx + p2k

∫



w pk
ε ≤ p2k ·

{ ∫



v4εx

} 1
2 ·

{ ∫



w2pk
ε

} 1
2 + p2k L

1
2 ·

{ ∫



w2pk
ε

} 1
2

≤ c2 p
2
k ·

{ ∫



w2pk
ε

} 1
2

for all t ∈ (0, T ) and ε ∈ (0, εdown(T ))

(2.55)

with c2 ≡ c2(T ):=c
1
2
1 + L

1
2 . Here, by means of the Gagliardo–Nirenberg inequality,

we can find c3 = c3(T ) > 0 such that due to our definition of (Mj ) j≥0 and Young’s
inequality,

c2 p
2
k ·

{ ∫



w2pk
ε

} 1
2 = c2 p

2
k‖w

pk
2

ε ‖4L4(
)

≤ c3 p
2
k‖(w

pk
2

ε )x‖L2(
)‖w
pk
2

ε ‖L1(
) + c3 p
2
k‖w

pk
2

ε ‖2L1(
)
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≤ c3 p
2
k Mk−1‖(w

pk
2

ε )x‖L2(
) + c3 p
2
k M

2
k−1

≤ 1

2
‖(w

pk
2

ε )x‖2L2(
)
+

(c23 p4k
2

+ c3 p
2
k

)
M2

k−1 (2.56)

for all t ∈ (0, T ) and ε ∈ (0, εdown(T )). As furthermore, for similar reasons, there
exist c4 > 0 and c5 > 0 such that

∫



w pk
ε ≤ c4‖(w

pk
2

ε )x‖
2
3
L2(
)

‖w
pk
2

ε ‖
4
3
L1(
)

+ c4‖w
pk
2

ε ‖2L1(
)

≤ c4M
4
3
k−1‖(w

pk
2

ε )x‖
2
3
L2(
)

+ c4M
2
k−1

≤ 1

2
‖(w

pk
2

ε )x‖2L2(
)
+ c5M

2
k−1 for all t ∈ (0, T ) and ε ∈ (0, εdown(T )),

by combining (2.54) with (2.55) and (2.56) and noting that 1 ≤ p2k ≤ p4k , we readily
infer the existence of c6 = c6(T ) > 0 satisfying

d

dt

∫



w pk
ε +

∫



w pk
ε ≤ c6M

2
k−1 for allt ∈ (0, T ) and each ε ∈ (0, εdown(T )).

Through an ODE comparison argument, this entails that

∫



w pk
ε (·, t) ≤ max

{ ∫



w
pk
0 , c6M

2
k−1

}
for all t ∈ (0, T ) and ε ∈ (0, εdown(T )),

and that thus, as the right-hand side herein neither depends on t ∈ (0, T ) nor on
ε ∈ (0, εdown),

Mk ≤ max

{∫



w
pk
0 , c6M

2
k−1

}
. (2.57)

The remainder of the argument is quite standard: If incidentally Mk ≤ ∫



w
pk
0 for

infinitely many k ∈ N, then it immediately follows that whenever ε ∈ (0, εdown(T )),

‖wε(·, t)‖L∞(
) ≤ lim inf
k→∞ M

1
pk
k ≤ lim inf

k→∞ ‖w0‖L pk (
) = ‖w0‖L∞(
)

for all t ∈ (0, T ).

Otherwise, however, using that M0 is finite according to (2.18), one can easily verify
that (2.57) ensures finiteness of Mk for all k ≥ 1 and that with some b > 1 we have

Mk ≤ bkM2
k−1 for all k ≥ 1.

By straightforward induction, this shows that

Mk ≤ b2
k+1−k−2M2k

0 for all k ≥ 1
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and therefore entails that

‖wε(·, t)‖L∞(
) ≤ lim inf
k→∞ M

1
2k

k ≤ b
2k+1−k−2

2k M0 ≤ b2M0 for all t ∈ (0, T )

and ε ∈ (0, εdown(T )),

thus implying (2.53) also in this case. ��
Indeed, thanks to a known result from scalar parabolic theory, the latter, once more
in conjunction with (2.20), ensures bounds for both solution components in (2.17) in
appropriate Hölder spaces.

Lemma 2.13 Suppose that (1.8) holds and that T > 0, and let εdown(T ) > 0 be as in
Lemma 2.4. Then, there exist θ = θ(T ) ∈ (0, 1) and C(T ) > 0 such that the solution
of (2.17) from Corollary 2.5 satisfies

‖wε‖
Cθ, θ

2 (
×[0,T ]) ≤ C(T ) for all ε ∈ (0, εdown(T )) (2.58)

and
‖vε‖

Cθ, θ
2 (
×[0,T ]) ≤ C(T ) for all ε ∈ (0, εdown(T )). (2.59)

Proof In view of Corollary 2.5, Lemma 2.12 and (1.8), the estimate in (2.58) is a
direct consequence of well-known theory on Hölder regularity in scalar parabolic
equations under no-flux boundary conditions (Porzio and Vespri 1993). Likewise,
(2.59) is ensured by the uniform bounds resulting from (2.19) and (2.20). ��
As a consequence of the latter, two successive applications of interior parabolic
Schauder estimates provide higher-order regularity features:

Lemma 2.14 Assume (1.8) and that T > 0, and let εdown(T ) > 0 be as in Lemma 2.4.
Then, for all τ ∈ (0, T ), one can find θ = θ(τ, T ) ∈ (0, 1) and C(τ, T ) > 0 such
that for the solution of (2.17), we have

‖wε‖
C2+θ,1+ θ

2 (
×[τ,T ]) ≤ C(T ) for all ε ∈ (0, εdown(T )) (2.60)

and
‖vε‖

C2+θ,1+ θ
2 (
×[τ,T ]) ≤ C(T ) for all ε ∈ (0, εdown(T )). (2.61)

Proof Firstly, (2.61) results from Lemma 2.13 through standard parabolic Schauder
theory (Ladyzenskaja et al. 1968) applied to the second equation in (2.17). Relying
on the fact that τ ∈ (0, T ) in (2.61) is arbitrary, we may thereafter apply the same tool
to the first subproblem contained in (2.17) to readily infer from (2.61) that, possibly
upon diminishing θ(τ, T ) and enlarging C(τ, T ), also (2.60) can be achieved. ��
In quite a straightforward manner, the compactness features gathered above, along
with the uniqueness statement contained in Lemma 2.6, enable us to take ε ↘ 0 in
(2.17) with the desired result.
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Lemma 2.15 Suppose that (1.8) is valid, and for T > 0 let εdown(T ) > 0 be as given
by Lemma 2.4. Then the solutions of (2.17) gained in Corollary 2.5 have the properties
that

wε → w in C0(
 × [0, T ]) ∩ C2,1
loc (
 × (0, T ]), (2.62)

vε → v in C0(
 × [0, T ]) ∩ C2,1
loc (
 × (0, T ]) and (2.63)

vεx
�

⇀ vx in L∞((0, T ); L2(
)) (2.64)

as ε ↘ 0, where (w, v) denotes the unique classical solution of (2.21) satisfying
(2.22).

Proof In view of the uniqueness statement in Lemma 2.6, according to a standard
argument, it is sufficient to make sure that with εdown(T ) > 0 taken from Lemma 2.4,
each sequence (ε j ) j∈N ⊂ (0, εdown(T )) such that ε j ↘ 0 as j → ∞ contains a
subsequence (ε jk )k∈N such that (2.62)–(2.64) hold as ε = ε jk ↘ 0,with some classical
solution (w, v) of (2.21) fulfilling (2.22). To verify this, given any such (ε j ) j∈N, we
may rely on the bounds provided by Lemmas 2.13, 2.14 andCorollary 2.5 to see upon a
straightforward extraction procedure involving the Arzelà–Ascoli theorem that in fact
it is possible to find a subsequence (ε jk )k∈N and functions w and v for which (2.62)–
(2.64) hold as ε = ε jk ↘ 0. Since from (2.62) and (2.63), it is an evident consequence
of the inequality κ > 1 that the validity of (2.21) for these functions results in taking
ε = ε jk ↘ 0 in each of the summands in (2.17) in the classical pointwise sense, we
furthermore conclude that (w, v) indeed forms a classical solution of (2.21), having
the additional feature (2.22) due to (2.64), whereby the proof becomes complete. ��

2.4 Proof of Theorem 1.1

We are now prepared to derive our main result on preferred downstream migration in
the presence of suitably small population densities by simply combining Lemma 2.15
with Lemma 2.11.

proof of Theorem 1.1 Given δ > 0, bymeans of Lemma2.11,we first choose T (δ) > 0
large enough such that the solution of (2.21) satisfies

∣∣∣w(x, t) − γ · eβex
∣∣∣ ≤ δ

2
for all x ∈ 
 and t ≥ T (δ). (2.65)

We then fix any T > T (δ) and take εdown(T ) > 0 as accordingly provided by
Lemma 2.4, and noting that then classical solvability of (1.7) in 
 × (0, T ) within
the desired class is asserted by Lemma 2.4, we may rely on Lemma 2.15 to find some
ε0(δ, T ) ∈ (0, εdown(T )) such that for the correspondingly obtained classical solution,
we have

∥∥∥uε(·, t)
ε

− w(·, t)
∥∥∥
L∞(
)

≤ δ

2
for all t ∈ [0, T ] whenever ε ∈ (0, ε0(δ, T )).

(2.66)
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A simple combination of (2.65) and (2.66) thereupon directly yields (1.10) for any
such ε. ��

3 Dominance of UpstreamMigration for Large u: Proof of
Theorem 1.2

In order to verify Theorem 1.2, following essentially the same basic approach as
pursued in the previous part, we rescale (1.11) by substituting uε = 1− εzε, which in
fact transforms (1.11) to the problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zεt − κ(1 − εzε)κ−1zεx = zεxx + ελ−1
(
zλε (1 − εzε)vεx

)
x
, x ∈ 
, t > 0,

vεt + vεx = vεxx + uε(1 − vε), x ∈ 
, t > 0,
zε = 0, vεx − vε = 0, x ∈ ∂
, t > 0,
zε(x, 0) = z0(x), vε(x, 0) = v0(x), x ∈ 
,

(3.1)
that again turns out to be solvable in a convenient sense, now even globally in time,
provided that the parameter ε > 0 therein is suitably small:

Lemma 3.1 Assume (1.12). Then, there exists εup > 0 such that for each ε ∈ (0, εup)
the problem (3.1) possesses a global classical solution (zε, vε) with

{
zε ∈ C0(
 × [0,∞)) ∩ C2,1(
 × (0,∞)) and
vε ∈ ⋂

q>1 C
0([0,∞);W 1,q(
)) ∩ C2,1(
 × (0,∞)),

which is such that zε ≥ 0 and vε ≥ 0 in 
 × (0,∞) and that moreover

∫



zε(x, t)dx ≤
∫




z0(x)dx for all t > 0 (3.2)

and

zε(x, t) ≤ 1

ε
for allx ∈ 
 and t > 0. (3.3)

Apart from that, given any q > 1 and T > 0, one can find C(q, T ) > 0 fulfilling

‖vε(·, t)‖W 1,q (
) ≤ C(q, T ) for allt ∈ (0, T ) and any ε ∈ (0, εup). (3.4)

Proof We fix any εup > 0 such that εup‖z0‖L∞(
) < 1 and then readily obtain, again
by following standard arguments (Horstmann and Winkler 2005; Amann 1989), that
for each ε ∈ (0, εup), the auxiliary problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

zεt − κ(1 − εzε)
κ−1+ zεx = zεxx + ελ−1

(
zλε (1 − εzε)vεx

)
x
, x ∈ 
, t > 0,

vεt + vεx = vεxx + uε(1 − vε), x ∈ 
, t > 0,
zε = 0, vεx − vε = 0, x ∈ ∂
, t > 0,
zε(x, 0) = z0(x), vε(x, 0) = v0(x), x ∈ 
,

(3.5)
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possesses a nonnegative classical solution enjoying the claimed regularity properties
and being extensible up to a maximal time Tmax ∈ (0,∞] fulfilling

either Tmax = ∞, or lim sup
t↗Tmax

{
‖zε(·, t)‖L∞(
) + ‖vε(·, t)‖W 1,q (
)

}
= ∞ for all q > 1.

(3.6)
But since z(x, t):= 1

ε
, x ∈ 
, t ≥ 0, defines a supersolution of the considered homoge-

neousDirichlet problem for the first equation in (3.5), it follows that zε ≤ 1
ε
throughout


 × (0, Tmax) and that hence (zε, vε) actually solves (3.1) in 
 × (0, Tmax). As this
uniform upper bound together with standard parabolic estimates also warrants that
(vε(·, t))t∈(min{1, 12 Tmax},min{T ,Tmax}) is bounded in W 1,q(
) for all T > 0 and q > 1,
from (3.6) we conclude that indeed Tmax = ∞ and that hence (zε, vε) is global and
satisfies (3.3). Finally, the mass control feature (3.2) can be obtained by direct inte-
gration in the first equation from (3.1) by observing that zεx (0, t) ≥ 0 ≥ zεx (L, t) for
all t > 0 by nonnegativity of zε and the boundary condition in (3.1), and the estimate
(3.4) can be derived by straightforward adaptation and simplification of the reasoning
in Lemma 2.2. ��

3.1 Asymptotic Behavior in a Limit Problem

In comparison with that from Sect. 2, here the limit problem that is formally associated
with (3.1) actually reduces, in its first component, to the Dirichlet problem for a scalar
transport–diffusion equation, as given by

⎧⎨
⎩
zt = zxx + κzx , x ∈ 
, t > 0,
z = 0, x ∈ ∂
, t > 0,
z(x, 0) = z0(x). x ∈ 
.

(3.7)

This problem is well-understood and can in fact be reduced to the Dirichlet problem
for the heat equation:

Lemma 3.2 Let κ ∈ R and z0 ∈ C0(
) be nonnegative with z0 = 0 on ∂
. Then,
there exists precisely one classical solution z ∈ C0(
 × [0,∞)) ∩C2,1(
 × (0,∞))

of (3.7), namely the function given by

z(x, t):=e− κ2
4 t e− κ

2 x ẑ(x, t), x ∈ 
 t ≥ 0, (3.8)

with ẑ ∈ C0(
 × [0,∞)) ∩ C2,1(
 × (0,∞)) denoting the classical solution of

⎧⎨
⎩
ẑt = ẑxx , x ∈ 
, t > 0,
ẑ = 0, x ∈ ∂
, t > 0,
ẑ(x, 0) = e

κ
2 x z0(x), x ∈ 
.

(3.9)
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Proof Since classical solutions of (3.7) in the indicated class are unique by the maxi-
mum principle, we only need to note that if z is as defined by (3.8), then

zt = e− κ2
4 t e− κ

2 x ·
(̂
zt − κ2

4
ẑ
)

in 
 × (0,∞)

as well as

zx = e− κ2
4 t e− κ

2 x ·
(̂
zx − κ

2
ẑ
)

and zxx = e− κ2
4 t e− κ

2 x ·
(̂
zxx − κ ẑx + κ2

4
ẑ
)

in 
 × (0, ∞),

and that therefore z indeed solves (3.7) due to the observation that thus

e
κ2
4 t e

κ
2 x · (zt−zxx−κzx ) = ẑt−κ2

4
ẑ−

(̂
zxx − κ ẑx+κ2

4
ẑ
)
−κ ·

(̂
zx − κ

2
ẑ
)

= 0

in
 × (0,∞)

by (3.9). ��
Indeed, the asymptotic behavior in (3.7) can therefore be described quite exhaustively.

Lemma 3.3 Under the assumptions of Lemma 3.2, the classical solution ẑ ∈ C0(
 ×
[0,∞)) ∩ C2,1(
 × (0,∞)) of (3.9) satisfies

∥∥∥∥e
π2

L2
t ẑ(·, t) − α sin

π(·)
L

∥∥∥∥
L∞(
)

→ 0 as t → ∞, (3.10)

where

α:=
∫


e

κ
2 x sin πx

L z0(x)dx∫


sin2 πx

L dx
> 0. (3.11)

Proof We let μ1:=π2

L denote the principal Dirichlet eigenvalue of −(·)xx on 
 and
take �(x):= sin πx

L , x ∈ [0, L], as a corresponding eigenfunction. Then, abbreviating
z̃(x, t):=eμ1t ẑ(x, t) for x ∈ 
 and t ≥ 0, using (3.9) we see that

⎧⎨
⎩
z̃t = z̃xx + μ1̃z, x ∈ 
, t > 0,
z̃ = 0, x ∈ ∂
, t > 0,
z̃(x, 0) = e

κ
2 x z0(x), x ∈ 
,

(3.12)

where we note that due to our assumptions that z0 ∈ W 1,∞(
) and z0|∂
 = 0, we can
fix c1 > 0 large enough such that e

κ
2 x z0(x) ≤ c1�(x) for all x ∈ 
. As our choice of

� ensures that (c1�)t − (c1�)xx −μ1 · (c1�) = μ1c1�−μ1c1� = 0 in
× (0,∞),
the classical comparison principle asserts that z̃(x, t) ≤ c1�(x) ≤ c1 for all x ∈ 


and t > 0, so that parabolic Schauder theory (Ladyzenskaja et al. 1968) together with
the Arzelà-Ascoli theorem warrants that

z̃t is uniformly continuous in 
 × (1,∞) (3.13)
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and that
(̃z(·, t))t>1 is relatively compact in C2(
). (3.14)

In order to identify all elements of the corresponding ω-limit set, we first test (3.12)
by z̃t to see that due to the variational characterization of μ1, we have

∫ t

1

∫



z̃2t = − 1

2

∫ t

1

d

dt

∫



z̃2x + μ1

2

∫ t

1

d

dt

∫



z̃2

= − 1

2

∫



z̃2x (·, t) + μ1

2

∫



z̃2(·, t) + 1

2

∫



z̃2x (·, 1) − μ1

2

∫



z̃2(·, 1)

≤ c2:=1

2

∫



z̃2x (·, 1) for all t > 1,

which according to (3.13) and an elementary argument ensures that in fact

z̃(·, t) → 0 in L∞(
) as t → ∞. (3.15)

Now if (tk)k∈N ⊂ (1,∞) and z̃∞ ∈ C2(
) are such that tk → ∞ and t z(·, tk) → z̃∞
in C2(
) as k → ∞, then (3.15) together with (3.12) implies that z̃∞xx − μ1̃z∞ = 0
and that thus there must exist α̃ ≥ 0 such that z̃∞ ≡ α̃�, because the principal
eigenspace of −(·)xx is one-dimensional. But since testing (3.12) against � shows
that d

dt

∫


z̃� = 0 for all t > 0 and that thus

∫


z̃(·, t)� = ∫



z̃(·, 0)� for all t > 0,

we necessarily must have α̃
∫



�2 ≡ ∫


(̃α̃z∞)� = ∫



(e

κ
2 x z0)�. As thus z̃∞ ≡ α�

in 
 according to (3.11), this establishes (3.10). ��

3.2 Approximation of (3.7) by Solutions to (3.1): Proof of Theorem 1.2

Again, the key observation that will finally enable us to safely take ε ↘ 0 in (3.1)
consists in a uniform bound on the respective first solution component, to be achieved
once more by means of a Moser-type recursive argument.

Lemma 3.4 Assume (1.12), and let εup > 0 be as provided by Lemma 3.1. Then, for
all T > 0, there exists C(T ) > 0 such that whenever ε ∈ (0, εup), the solution of (3.1)
from Lemma 3.1 satisfies

‖zε(·, t)‖L∞(
) ≤ C(T ) for allt ∈ (0, T ). (3.16)

Proof Pursuing the same basic approach as in Lemma 2.12, fixing T > 0, we let
pk :=2k and

Mk := sup
ε∈(0,εup)

sup
t∈(0,T )

∫



z pkε (·, t)

for integers k ≥ 0, and noting that M0 ≤ ∫


z0 by (3.2), we proceed to recursively

establish bounds on Mk for k ≥ 1 by differentiation and integration by parts on the
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basis of (3.1). Since zεx (0, t) ≥ 0 ≥ zεx (L, t) for all t > 0, namely we thereby obtain
that

d

dt

∫



z pkε + pk(pk − 1)
∫




z pk−2
ε z2εx ≤ −pk(pk − 1)ελ−1

∫



z pk+λ−2
ε (1 − εzε)vεx zεx

+pkκ
∫




(1 − εzε)
κ−1z pk−1

ε zεx for all t > 0,

(3.17)

where by Young’s inequality,

− pk(pk − 1)ελ−1
∫




z pk+λ−2
ε (1 − εzε)vεx zεx ≤ pk(pk − 1)

2

∫



z pk−2
ε z2εx

+ pk(pk − 1)ε2λ−2

2

∫



z pk+2λ−2
ε (1 − εzε)

2v2εx

≤ pk(pk − 1)

2

∫



z pk−2
ε z2εx

+ pk(pk − 1)

2

∫



z pkε v2εx for all t > 0

(3.18)

due to (3.3). Here, using theHölder inequality, (3.4), theGagliardo–Nirenberg inequal-
ity and Young’s inequality, we can find c1 = c1(T ) > 0, c2 = c2(T ) > 0 and
c3 = c3(T ) > 0 such that

pk(pk − 1)

2

∫



z pkε v2εx +
∫




z pkε ≤ pk(pk − 1)

2
‖z

pk
2

ε ‖2L4(
)
·
{
‖vεx‖2L4(
)

+ 1
}

≤ c1 pk(pk − 1)‖z
pk
2

ε ‖2L4(
)

≤ c2 pk(pk − 1)‖(z
pk
2

ε )x‖L2(
)‖z
pk
2

ε ‖L1(
)

≤ pk(pk − 1)

2

∫



z pk−2
ε z2εx + c3 p

4
k‖z

pk
2

ε ‖2L1(
)

≤ pk(pk − 1)

2

∫



z pk−2
ε z2εx + c3 p

4
k M

2
k−1 for all t ∈ (0, T )

(3.19)

whenever k ≥ 1 and ε ∈ (0, εup). Since furthermore, letting ρ(s):=pkκ
∫ s
0 (1 −

εσ )κ−1σ pk−1dσ , s ∈ [0, 1
ε
], ε ∈ (0, εup), we can compute

pkκ
∫




(1 − εzε)
κ−1z pk−1

ε zεx =
∫




(ρ(zε))x = ρ(zε(L, t)) − ρ(zε(0, t)) = 0 for all t > 0

due to the fact that zε(0, t) = zε(L, t) = 0 for all t > 0, from (3.17) to (3.19), we
altogether obtain that for all k ≥ 1 and ε ∈ (0, εup),
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d

dt

∫



z pkε +
∫




z pkε ≤ c3 p
4
k M

2
k−1 for all t ∈ (0, T )

and that thus

Km ≤ max

{∫



z pk0 , c3 p
4
k M

2
k−1

}
for all k ≥ 1 and ε ∈ (0, εup).

In much the same manner as detailed in Lemma 2.12, this can be seen to imply (3.16)
with some suitably large C(T ) > 0. ��
In quite the same fashion as in Sect. 2, this can be seen to entail further estimates
involving Hölder spaces.

Lemma 3.5 Suppose that (1.12) holds, and let εup > 0 be as in Lemma 3.1. Then,
for all τ > 0 and any T > τ , one can find θ(T ) ∈ (0, 1) and C(T ) > 0 as well
as θ(τ, T ) ∈ (0, 1) and C(τ, T ) > 0 such that for the solutions of (3.1) obtained in
Lemma 3.1, we have

‖zε‖
Cθ(T ),

θ(T )
2 (
×[0,T ])

+ ‖vε‖
Cθ(T ),

θ(T )
2 (
×[0,T ])

≤ C(T ) for all ε ∈ (0, εup)

(3.20)
and

‖zε‖
C2+θ(τ ,T ),1+ θ(τ ,T )

2 (
×[τ ,T ])
+‖vε‖

C2+θ(τ ,T ),1+ θ(τ,T )
2 (
×[τ ,T ])

≤ C(τ ,T ) for all ε ∈ (0,εup).

(3.21)

Proof These statements can be derived from Lemmas 3.1 and 3.4 along exactly
the same lines as Lemmas 2.13 and 2.14 were deduced from Corollary 2.5 and
Lemma 2.12. ��
Passing to the limit thereby becomes possible even throughout the entire positive half
of the time axis.

Lemma 3.6 Suppose that (1.12) holds and that εup > 0 is as in Lemma 3.1. Then, the
solutions of (3.1) from Lemma 3.1 have the property that

zε → z in C0
loc(
 × [0,∞)) ∩ C2,1(
 × (0,∞)) as (0, εup) � ε ↘ 0, (3.22)

where z denotes the unique solution in C0(
 × [0,∞)) ∩C2,1(
 × (0,∞)) of (3.7).

Proof Thanks to the Arzelà–Ascoli theorem, the estimates from Lemma 3.5 ensure
that (zε)ε∈(0,εup) and (vε)ε∈(0,εup) are relatively compact in X :=C0

loc(
 × [0,∞)) ∩
C2,1(
×(0,∞)). Since taking limits in (3.1) shows that any accumulation point (z, v)

in X × X of ((zε j , vε j )) j∈N, with arbitrary sequences (ε j ) j∈N ⊂ (0, εup) fulfilling
ε j ↘ 0 as j → ∞, necessarily forms a classical solution of

⎧⎪⎪⎨
⎪⎪⎩

zt = zxx + κzx , x ∈ 
, t > 0,
vt = vxx − vx , x ∈ 
, t > 0,
z = 0, vx = v, x ∈ ∂
, t > 0,
z(x, 0) = z0(x), v(x, 0) = v0(x), x ∈ 
,

(3.23)
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and since another application of the maximum principle warrants uniqueness of clas-
sical solutions from X × X to these actually decoupled scalar transport–diffusion
problems, this already implies the convergence property (zε, vε) → (z, v) along the
entire net (0, εup) � ε ↘ 0, with (z, v) solving (3.23). The claim of the lemma is an
evident by-product thereof. ��

As a consequence, we infer that the behavior of solutions to (1.11) is essentially
determined by that of solutions to (3.7) in the sense specified in our main statement
on dominance of upstream migration:

proof of Theorem 1.2 Proceeding as in the proof of Theorem 1.1, for fixed δ > 0, we
first invoke Lemmas 3.3 and 3.2 to pick T (δ) > 0 such that for the solution of the
limit problem (3.7), abbreviating β:= κ2

4 + π2

L2 and taking α > 0 from (3.11), we have

∣∣∣eβt e
κ
2 x z(·, t) − α sin

πx

L

∣∣∣ ≤ δ

2
for all x ∈ 
 and t ≥ T (δ),

which in particular entails that

∣∣∣eβt z(x, t) − αe− κ
2 x sin

πx

L

∣∣∣ ≤ δ

2
for all x ∈ 
 and t ≥ T (δ). (3.24)

Then, letting T > T (δ) be given, we can thereafter rely on Lemma 3.6 in choosing
ε0(δ, T ) ∈ (0, εup) small enough such that

∣∣∣eβt zε(x, t) − eβt z(x, t)
∣∣∣ ≤ δ

2
for all x ∈ 
 and t ∈ [0, T ], (3.25)

which when combined with (3.24) yields (1.13) with γ :=α. ��

4 Numerical Investigations

Wewould like to carry out some numerical investigations that can illustrate the essence
of Theorems 1.1 and 1.2. For that purpose we replace the model (1.5) by a discrete
approximation. We refer to “Appendix A” for details.

For the parameters in (1.6), we set κ = 2 = λ. Then, we get f (u) = u2, h(u) =
uψ(u) = u(1 − u)2 with ψ(u) = (1 − u)2, and g(u) = ∫ u 1

h(s) ds = − log | u−1
u | +

1
1−u +C . The function g(u) is introduced to rewrite (1.5) in a form convenient for the
discretization presented in “Appendix A.”

4.1 Case 1: Sparsely Distributed Cell Population

As initial data w0(x) and v0(x) to be used in (1.7), the following functions are
specified
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Fig. 4 Sparsely distributed cell population. The case with ε = 0.5. Top: T = 0.1. The solutions wε and w

(left figure) are close to each other but rather far from the steady state w. Bottom: T = 0.5. The solution w

of the limit problem is close to the steady state w; however, there is a certain discrepancy between wε and
the steady state w, which is natural to be attributed to the relatively large ε > 0

w0(x) = 1

2
exp(− 200(x − 1/2)2), v0(x) = 25 exp(− 100(x − 1/2)2).

(4.1)

We recall that the analytical steady-state solutions v(x) and w(x) of the limit prob-
lem (2.21) are found to be, see (2.37) and (2.52),

v(x) = β exp(x), w(x) = γ exp(β exp(x)), β =
∫ 1
0 v0(x) dx∫ 1
0 exp(x) dx

,

γ =
∫ 1
0 w0(x) dx∫ 1

0 exp(β exp(x)) dx
. (4.2)

We consider a numerical grid with N = 100 grid cells on the spatial domain [0, 1].
We are interested in an illustration of the result of Theorem 1.1. We set ε = 0.5.
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Fig. 5 Sparsely distributed cell population. The case with ε = 0.1. Top: T = 0.1. Bottom: T = 0.5. We
see that for this choice of ε > 0, the discrepancy between wε and the steady state w seen in Fig. 4 has
essentially been eliminated

We compute numerical approximations of the solution (uε, vε) of the initial boundary
value problem (1.7) at a specified time T . We visualize wε(x, T ) = ε−1uε(x, T )

and vε(x, T ), which naturally allow us to compare with numerical approximations
to w(x, T ) and v(x, T ), i.e., the solution of the limit problem (2.21), as well as the
analytically computed steady states w(x) and v(x). The results are shown in Fig. 4.
Focusing on wε, the main observation is that for this choice of ε, there is a visible
difference betweenwε and the steady statew that remains. According to Theorem 1.1,
this difference is controlled by ε. To test this, we reduce it by setting ε = 0.1. The
results are shown inFig. 5 and clearly illustrate the essence ofTheorem1.1 as expressed
by the precise estimate in (1.10): For a sufficiently small ε > 0, we can ensure that
the solution wε = uε/ε is as close to the steady state w as we want, subject to the
condition that t is sufficiently large.
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Fig. 6 Densely distributed cell population. T = 0.1 The case with ε = 0.5 (left) and ε = 0.1 (right). We

see that the discrepancy between eβt zε and the analytical steady state αe−
κ
2 x sin πx is controlled by ε

4.2 Case 2: Densely Distributed Cell Population

We are interested in an illustration of the result of Theorem 1.2. For that purpose,
we compute numerical approximations of the solution (uε, vε) of the initial boundary
value problem (1.11) at a specified time T = 0.1, but now with initial data uε(x, t =
0) = 1 − εw0. First, we set ε = 0.5, i.e., our initial data are close to 1 apart from a
local region in the center of the domain. We compute the corresponding solution uε

by using the numerical scheme for (1.5) specified in “Appendix A” and then compute
the corresponding zε using the relation uε = 1 − εzε. This allows us to compare
eβt zε(x, T ) and the steady-state expression αe− κ

2 x sin πx where α is given by (3.11),
β = κ2

4 + π2, and we use that L = 1. We want to show that we can control this
discrepancy by the choice of ε, consistent with estimates (3.24) and (3.25). In Fig. 6,
results are shown for ε = 0.5 (left) and ε = 0.1 (right). The numerical simulations
indicate in accordance with Theorem 1.2 that by choosing ε sufficiently small and
time T sufficiently large, we ensure that the solution uε is as close as we want to an
analytical steady-state solution that is skewed in the upstream direction.
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Appendix: A Discrete Scheme for theModel (1.5)

We may write model (1.5) in the following form:
{
ut +

(
− f (u) + h(u)[vx − 1

h(u)
ux ]

)
x

= 0,

vt + vεx = vxx + u(1 − v).
(4.3)

We introduce the notation g(u) = ∫ u
a

1
h(s) ds for some constant a and write the first

equation as

ut +
(
− f (u) + h(u)[v − g(u)]x

)
x

= 0 (4.4)

and the second as
vt +

(
v[1 − ln(v)x ]

)
x

= u(1 − v). (4.5)

Based on (4.4) and (4.5), we consider a full discrete scheme where we have divided
the spatial domain [0, L] into N grid cells of length �x such that N�x = L and with
cell centers x j = ( j − 1/2)�x for j = 1, . . . , N and cell interfaces x j+1/2 = j�x
for j = 0, 1, . . . , N . The time period we consider is [0, T ] with different time lines
tn = n�t where the number of time steps is M such that M�t = T . The scheme
which allows us to compute discrete approximations {unj } and {vnj } takes the form

⎧⎨
⎩

un+1
j −unj

�t + 1
�x (Fn

j+1/2 − Fn
j−1/2) + 1

�x (Gn
j+1/2 − Gn

j−1/2) = 0,
vn+1
j −vnj

�t + 1
�x (Hn

j+1/2 − Hn
j−1/2) = unj (1 − vnj ).

(4.6)
with ⎧⎪⎨

⎪⎩
Fn
j+1/2 = − f (unj+1)

Gn
j+1/2 = hnj+1/2

1
�x ([v − g(u)]nj+1 − [v − g(u)]nj )

Hn
j+1/2 = vnj+1/2(1 − D+[ln v]nj ).

(4.7)

where D+a j = a j+1−a j
�x and

hnj+1/2:=
{
unjψ(unj+1) when ([v − g(u)]nj+1 − [v − g(u)]nj ) ≥ 0

unj+1ψ(unj ) when ([v − g(u)]nj+1 − [v − g(u)]nj ) < 0.
(4.8)

and

vnj+1/2:=
{

vnj when (1 − D+[ln v]nj ) ≥ 0

vnj+1 when (1 − D+[ln v]nj ) < 0.
(4.9)

A similar discrete scheme can be defined for the limit problem (2.21) which allows
us to compute discrete approximations {wn

j } and {vnj }.
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