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Abstract
Wave–current interaction (WCI) dynamics energizes andmixes the ocean thermocline
by producing a combination of Langmuir circulation, internal waves and turbulent
shear flows, which interact over a wide range of time scales. Two complementary
approaches exist for approximating different aspects of WCI dynamics. These are
the Generalized Lagrangian Mean (GLM) approach and the Gent–McWilliams (GM)
approach. Their complementarity is evident in their Kelvin circulation theorems. GLM
introduces a wave pseudomomentum per unit mass into its Kelvin circulation inte-
grand, while GM introduces an additional ‘bolus velocity’ to transport its Kelvin
circulation loop. The GLM approach models Eulerian momentum, while the GM
approach models Lagrangian transport. In principle, both GLM and GM are based on
the Euler–Boussinesq (EB) equations for an incompressible, stratified, rotating flow.
The differences in their Kelvin theorems arise from differences in how they model
the flow map in the Lagrangian for the Hamilton variational principle underlying the
EB equations. A recently developed approach for uncertainty quantification in fluid
dynamics constrains fluid variational principles to require that Lagrangian trajectories
undergo Stochastic Advection by Lie Transport (SALT). Here, we introduce stochastic
closure strategies for quantifying uncertainty in WCI by adapting the SALT approach
to both the GLM and GM approximations of the EB variational principle. In the GLM
framework, we introduce a stochastic group velocity for transport of wave properties,
relative to the frame of motion of the Lagrangian mean flow velocity and a stochastic
pressure contribution from the fluctuating kinetic energy. In the GM framework, we
introduce a stochastic bolus velocity in addition to the mean drift velocity by imposing
the SALT constraint in the GM variational principle.
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1 Introduction

The wind drives gravity waves on the ocean surface. Over time, the collective action
of these wind-driven gravity waves on the ocean surface generates Langmuir circu-
lations (LC) which transport heat and mix material properties deeper into the ocean.
The presence of LC is seen as ‘lines on the sea surface’ marked by flotsam trapped
between roughly parallel, horizontally counter-circulating pairs of Langmuir vortex
rolls. Eventually, these wave–current interactions energize and mix the ocean surface
boundary layers (OSBLs) which occupy the upper few hundred meters of the ocean.
In turn, the well-mixed region at the top of the OSBLs comprises the thermocline. Just
below it, the stratified regions propagate internal waves which further transmit and
disperse wave activity.

The turbulent wave–current mixing by Langmuir circulation seen in the OSBL is
important in climatemodeling, because it controls the exchange of heat and trace gases
between the atmosphere and ocean through the mix layer. However, a difficulty arises
in numerically simulating the regional effects of Langmuir circulation on turbulent
mixing in OSBL, because of the huge disparities among length and times scales of the
waves, currents, regional flows and their effects on climate. Such huge disparitiesmake
direct numerical simulations (DNS) of turbulent mixing by wave, current interaction
intractable for any existing or projected computer for decades to come.

For comprehensive reviews of modern approaches for quantifying the dynamics of
Lagrangian flows such as Langmuir circulations coupled to surface and internal waves,
see, e.g., Sullivan and McWilliams (2010), Phillips (2003), Fujiwara et al. (2018) as
well as references therein.

Current parameterizations of turbulent mixing in numerical simulations of the
OSBL lead to substantial systematic errors, for example, in predicting the depth of
the OSBL for a given wind stress. These errors, in turn, lead to further uncertainty
in predictions of sea surface temperature and rate of exchange of gases such as CO2
between the ocean and the atmosphere, (Belcher et al. 2012).

Because of the computational intractability due to the enormous scale disparity
and the space–time distributed nature of wave–current interactions with weather and
climate dynamics, simulations of turbulent mixing in OSBL are always carried out in
regions of parameter space which are far from the observed values, either with: (a)
an unphysical lack of scale separation between the energy-containing, inertial, and
dissipative scales while parameterizing the missing physics, or with (b) a study of the
processes at much smaller length scales, often with periodic boundaries (unphysical
at large scales but used under the hypothesis of spatial homogeneity of the flows).
Moreover, because of the nonlinear nature of turbulent flows and the ensuing multi-
scale, space–time distributed interactions, the physics of the unresolvable, rapid, small
scales may differ significantly from the properties (e.g., statistics) of the resolvable
large scales. For example, the regime of asymptotic expansions for the large-scale
computational models occurs at small Rossby number, which enforces hydrostatic
and geostrophic balances. However, for wave–current interaction (WCI) at the subme-
soscale length scales below the Rossby radius where Langmuir circulations develop,
the Rossby number is order O(1) and neither of these large-scale balances is enforced.
This imbalance requires another model.
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Given this situation, there is clearly a need for enhancedmethods for parameterizing
the effects on the resolvable scales of the unresolvable small scales in space and time.
Two main parameterization approaches have been developed over the years to model
the effects of the unresolvable small scales in turbulence on the scales resolved in the
simulations.

The first parameterization approach is primarily computational, via Large Eddy
Simulations (LES). LES is widely used in engineering, in atmospheric sciences, and to
a lesser extent in astrophysics.However, in theLESapproach,many important physical
parameters for the Langmuir circulations are not scale-appropriate. For example, in
the LES approach, the Reynolds number Re is not known at the Langmuir scale.
Instead, one may attempt modeling the behavior of the Langmuir flow in the limit
that Re is very large. LES is an important tool for phenomenological discovery and
quantification in wave–current interactions. However, it is known to be vulnerable to
significant uncertainty in its subgrid-scale modeling (Sullivan and McWilliams 2010;
Pearson et al. 2017). For a comprehensive review of parameterization in computational
ocean modeling, see Haidvogel et al. (2017). For considerations of LES design for
computational studies of global ocean circulation, see Hecht et al. (2008).

The second parameterization approach is primarily theoretical. The theory is tradi-
tionally based on the work of Craik and Leibovich (1976); Craik (1982a, b, 1985) with
later extensions by Leibovich (1977, 1980, 1983), Leibovich and Tandon (1993). In
the Craik–Leibovich (CL) model of Langmuir circulation, wave-induced fluid motion
affects the OSBL at local scales via the ‘Stokes mean drift velocity’ through a ‘vor-
tex force’ as well as material advection. These two effects combine to produce the
instability which creates the Langmuir circulation.

In WCI, the waves are propagating through the moving fluid at a speed comparable
to the fluid velocity itself. This means that the wave frequency is Doppler shifted by
the fluid motion. However, the wave interaction is by no means frozen into the fluid
motion. Instead, the wave–current interaction (WCI) is distributed along the path of
the wave through the comparably moving fluid. In particular, the Eulerian mean group
velocity of the wave is defined relative to the frame moving with fluid Holm (1996),
and the Eulerian mean WCI dynamics at a given fixed point in space depends on the
history of wave interaction all along the entire Lagrangian path of the fluid parcel
currently occupying that point. Mathematically, this implies that the description of
WCI must be formulated in terms of the Eulerian mean of the pull-back of the fluid
properties by the Lagrange-to-Euler map, which is assumed to be a smooth invertible
map. This is a hybrid description in which the wave activity takes place in the frame
of motion of the fluid.

The WCI situation is addressed directly by the Generalized Lagrangian Mean
(GLM) approach formulated in Andrews and McIntyre (1978a, b). GLM generalizes
the CL approach by decomposing the flow into its fast and slow components, then tak-
ing various types of time-averages, phase-averages and asymptotic approximations of
the wave–current interaction dynamics at which the Rossby number is order O(1).
In GLM, another dynamical variable is introduced, called the pseudomomentum, in
addition to the Stokes mean drift velocity appearing in the CL approach. Thus, in
GLM, the fast-slow split in time is performed at a single spatial scale. No differences
in spatial scale of the waves and mean flow need to be assumed. References relevant to
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our purposes here are Andrews andMcIntyre (1978a), Gjaja and Holm (1996), Gilbert
and Vanneste (2018).

Aims of the Paper This paper aims to lay down a mathematical foundation which has
the potential for both quantifying and reducing the uncertainties in the numerical sim-
ulation of ocean–atmosphere mixing layer dynamics, by developing new methods of
enhanced modeling of subgrid-scale (SGS) circulation effects in the OSBL produced
by wave–current interactions (WCI). Our approach is based on structure-preserving
approaches in data-driven stochastic modeling for quantifying these uncertainties,
combined with data assimilation methods for reducing uncertainty. Recent applica-
tions of this approach for data analysis and simulation for two-dimensional confined
fluid flows are reported in Cotter et al. (2018a, b). Specifically, we lay foundations
for extending the approach of Holm (2015, 2018), Crisan et al. (2018), Cotter et al.
(2018a, b) from incompressible flows in fixed domains to incompressible rotating strat-
ified flows driven by subgrid-scale dynamics represented by stochastic processes in
three dimensions. Our approach via averaged variational principles is designed to pre-
serve the fundamental nonlinear structure of fluid dynamics. Above all, it introduces
stochasticity while preserving the nature of fluid transport, the Kelvin circulation
theorem and the geometric structure of fluid dynamics, including its Lie–Poisson
Hamiltonian structure. In particular, our approach takes advantage of the recent devel-
opments in stochastic fluid dynamics based on geometric mechanics in Holm (2015,
2018), Bethencourt de Léon et al. (2019), Drivas and Holm (2019) to introduce a
stochastic closure procedure which preserves the geometrical structure of GLM.

The present paper also provides the derivation of a certain stochastic wave–current
interaction (SWCI) model. The SWCI model is based on a stochastic closure of the
well-known GLM description of the Euler–Boussinesq (EB) equations for a rotating,
stratified, incompressible fluid flow. Its derivation is based on GLM averaging of a
constrained Hamilton’s principle for the EB equations in the Eulerian representation,
leading toEuler–Poincaré variational equations for theGLMdescription, coupled to an
Eulerian mean description of the fluctuation dynamics. This formulation is developed
via a Legendre transformation into a Lie–Poisson Hamiltonian description (Holm and
Kupershmidt 1983; Holm et al. 1998).

In this Hamiltonian setting, two natural stochastic closures of the GLM theory
present themselves. The first closure assumes that the unknown GLM group velocity
and the GLM kinematic pressure in the Hamiltonian are each temporally stochastic
in the Stratonovich sense, with separate stationary spatial correlations. This closure
amounts to a stochastic parameterization of the GLM group velocity and the GLM
kinematic pressure whose spatial correlations must be calibrated from observed or
simulated data. However, these data for the GLM stochastic closure appear to be
rather inaccessible.

The elusiveness of data for the two GLM wave closures suggests the formulation
of an alternative closure which directly separates the time scales of the fluid transport
velocity into its slow fluid and fast wave parts. This approach is reminiscent of the
introduction of the bolus velocity in the celebrated Gent–McWilliams (GM) parame-
terization of subgrid-scale transport (Gent 2011; Gent and McWilliams 1990, 1996),
which is generally used in computational simulations of ocean circulation.
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After discovering the elusiveness of the data required in formulating the stochastic
WCI closure for GLM, in the second part of the paper, we propose an alternative
stochastic closure forWCI. The alternative stochastic closure proposed here is a variant
of the existing theory in Gay-Balmaz and Holm (2018) of Stochastic Advection by
Lie Transport (SALT) (Holm 2015, 2018; Cotter et al. 2017; Crisan et al. 2018)
which introducesHamiltonian stochastic transport into thematerial fluid evolution as a
constraint in Hamilton’s variational principle for fluid dynamics. The SALT approach
separates the slow and fast time scales of the fluid transport velocity into drift and
stochastic parts. Implementation of this closure has already been tested in Cotter
et al. (2018a, b) and found to be quite accessible for calibration by observational data
from both high-resolution computational simulations. Because it deals with enhanced
transport, the SALT approach is naturally compatible with formulating a data-driven
stochastic version of GM parameterization of transport by unresolved time scales.

Stochastic parameterizations have been commonly used in both atmosphere and
ocean sciences, ever since the break-through results of Buizza et al. (1999). Indeed,
other stochastic versions of the GM already exist, as reviewed in Grooms and Kleiber
(2019), and the future comparisons of these approaches with the two stochastic
approaches presented here for GLM and GM are bound to be interesting.
Plan In Sect. 2, we will review some background information from the GLM theory
relevant to the remainder of the paper. We refer to Appendix A for the details in
deriving the deterministic GLM equations for the Euler–Boussinesq equations in the
Euler-Poincaré variational framework Holm et al. (1998), and the passage to the Lie–
Poisson Hamiltonian side as an arena for seeking a natural stochastic closure.

Section 3 introduces stochastic closures for the GLM equations.
By way of preparation, Sect. 3.1 provides a summary of the Kunita–Itô–Wentzell

(KIW) theorem, which proves the key formula in stochastic transport. Section 3 then
uses the KIW formula to investigate stochastic closures of the GLMEuler–Boussinesq
equations due to both pressure and displacement fluctuations. Section 3 also advocates
an alternative closure based on taking Stochastic Advection by Lie Transport (SALT)
as a general strategy, rather than proliferating the possible sources of stochasticity for
the various types of subgrid-scale physics for which our knowledge is incomplete.

In Sect. 4, the Gent–McWilliams (GM) transport scheme is reviewed and adapted
to the variational SALT strategy in Gay-Balmaz and Holm (2018).

Section 5 summarizes our conclusions and outlook for open problems.

2 Brief Review of GLM Theory for Euler–Boussinesq Fluids

The Generalized LagrangianMean (GLM) theory of nonlinear waves on a Lagrangian
mean flow is formulated in two consecutive papers of Andrews and McIntyre
(1978a, b). The present section reviews what we shall need later from the rather com-
plete description given in these papers. See also the textbook by Bühler (2014) for
an accessible update on the GLM theory. Even now, these fundamental papers still
make worthwhile reading and they are taught in many atmospheric science depart-
ments, because they represent an exceptional accomplishment in formulating averaged
motion equations for fluid dynamics.
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2.1 Relevant Information from the GLMTheory

2.1.1 Defining Relations for Lagrangian Mean and Stokes Correction in Terms of
Eulerian Mean

The GLM equations are based on defining fluid quantities at a displaced fluctuating
position xξ := x + ξ(x, t). In the GLM description, χ denotes the Eulerian mean
of a fluid quantity χ = χ + χ ′ while χ L denotes the Lagrangian mean of the same
quantity, defined by

χ L(x) ≡ χξ (x), with χξ (x) ≡ χ(x + ξ(x, t)). (2.1)

Here, xξ ≡ x + ξ(x, t) is the current position of a Lagrangian fluid trajectory whose
current mean position is x. Thus, ξ(x, t) with vanishing Eulerian mean ξ = 0 denotes
the fluctuating displacement of a Lagrangian particle trajectory about its current mean
position x.

Remark 2.1 Fortunately, this GLM notation is also standard in the stability analysis
of fluid equilibria in the Lagrangian picture. See, e.g., the classic works of Bernstein
et al. (1958); Frieman and Rotenberg (1960) and Newcomb (1962). See Jeffrey and
Taniuti (2000) for a collection of reprints showing applications of this approach in con-
trolled thermonuclear fusion research. For insightful reviews, see Bernstein (1983);
Chandrasekhar (1987) and, more recently, Hameiri (1998). Rather than causing con-
fusion, this confluence of notation encourages the transfer of ideas between traditional
Lagrangian stability analysis for fluids and GLM theory.

In GLM theory, the difference χξ − χ L = χ� is called the Lagrangian distur-
bance of the quantity χ . One finds χ� = 0, since the Eulerian mean possesses the
projection property χ = χ for any quantity χ (and, in particular, it possesses that
property for χξ ).1 Andrews and McIntyre (1978a) show that, provided the smooth
map x → x + ξ(x, t) is invertible (that is, provided the vector field ξ(x, t) generates
a diffeomorphism), then the Lagrangian disturbance velocity u� may be expressed in
terms of ξ by

u� = uξ − uL = DLξ

Dt
, where

DLξ

Dt
≡ ∂ξ

∂t
+ uL · ∇ξ. (2.2)

Consequently, the Lagrangian disturbance velocity u� is a genuine fluctuation quantity

satisfying u� = 0, since uξ − uL = uξ − uξ = 0, by the projection property.
Alternatively, u� = DLξ/Dt = 0 also follows, since the Eulerian mean commutes
with DL/Dt and ξ(x, t) has mean zero.

1 Note that spatial filtering in general does not possess the projection property.
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To summarize, GLM sets uξ (x, t) := u(x + ξ(x, t)) where x is evaluated as the
current position on a Lagrangian mean path and

uξ := DL

Dt

(
x + ξ(x, t)

)
= uL(x, t) + u�(x, t) with

DL

Dt
= ∂

∂t
+ uL · ∂

∂x
and

u� := DLξ

Dt
. (2.3)

One then defines the Lagrangian mean velocity as uξ (x, t) = uL(x, t), where ( · ) is a
time, or phase average at fixed Eulerian coordinate x.

2.1.2 The Pull-Back Representation of Fluctuations in Fluid Motion

Here, we briefly explain the GLM approach from the viewpoint of Cotter et al. (2017),
whose multi-time homogenization analysis led to a stochastic formulation of the type
proposed in the present paper. We will use the slightly expanded notation of Cotter
et al. (2017) in this remark and then revert later to GLM notation. For this purpose,
we will need to employ the action on functions f , k-forms α and vector fields X of
smooth maps φ via pull-back, denoted φ∗ and defined as the composition of functional
dependence from the right. For example, the expression

φ∗ f := f ◦ φ,

is called the pull-back of the function f by the smooth map φ. This notation will
also be applied to k-forms and vector fields. The inverse of the pull-back is called the
push-forward. It is the pull-back by the inverse map.

The GLM theory can be described (Cotter et al. 2017) as the Eulerian mean with
respect to fast time dependence of the pull-back of the fluid properties by an evolu-
tionary fluid flow map gt = g̃t/ε ◦ gt with two time scales, one slow and one fast.
This map is defined as the composition of a mean flow map gt depending on slow
time t and a rapidly fluctuating flow map g̃t/ε associated with the evolution of the fast
time scales t/ε, with ε � 1. The GLM notation is recovered by defining the flow map
associated with the fast scales as the (spatially) smooth invertible map with smooth
inverse (i.e., a diffeomorphism, or diffeo for short) given by the sum,

g̃t/ε = Id+ ζt/ε where ε � 1 . (2.4)

The full flow map is taken to be the composition of gt and g̃t/ε, as

gt = g̃t/ε ◦ gt = gt + ζt/ε ◦ gt . (2.5)

The Lagrangian trajectory of a fluid parcel is then given by q(x0, t) = gtx0, so that

q(x0, t) = gtx0 	⇒ q(x0, t) = q(x0, t) + ζt/ε ◦ q(x0, t), (2.6)

where the vector x0 denotes the fluid label, e.g., the initial condition of a fluid parcel.
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Equation (2.6) is equivalent to the displaced fluctuating position denoted as xξ :=
x + ξ(x, t), in the GLM notation. That is, the rapidly fluctuating vector displacement
field

ζ (q(x0, t), t/ε) := ζt/ε ◦ q(x0, t) (2.7)

is defined along the slow, large-scale, resolved trajectory, q. At this point, (2.6) may
be taken as exact, since it follows directly from the definition of the map ζt/ε in (2.4).
Thus, we have

q(x0, t) = q(x0, t) + ζ (q(x0, t), t/ε). (2.8)

The tangent to the composite flow map gt in (2.5) at q(x0, t) along the Lagrangian
trajectory (2.6) defines the Eulerian velocity vector field u, written as

ġtx0 = q̇(x0, t) = u(q(x0, t), t) . (2.9)

Differentiation of the Lagrangian trajectory (2.8) including the assumed fluctuating
displacement field (2.7) yields

u(q(x0, t), t) = u(q + ζt/ε ◦ q, t) (2.10)

= q̇(x0, t) = q̇ + (q̇ · ∇q) ζ (q(x0, t), t/ε) + 1

ε
∂t/εζ . (2.11)

This is equivalent to the definition of uξ in Eq. (2.3), in the GLM notation. See Cotter
et al. (2017) for more discussion of the pull-back representation of fluctuations in
fluid dynamics, including results of multi-time homogenization leading to a stochastic
representation of the Lagrangian trajectory in the limit that the ratio of slow and fast
time scales diverges. In this case, the decomposition (2.5) becomes a composition of
a stochastic map and a deterministic map.

2.1.3 Summary of Natural Operations on Differential k-Forms (3k )

Differential forms are objects you can integrate. Manifolds are spaces on which the
rules of calculus apply. A k-form α ∈ 
k on a smooth manifold M is defined by the
antisymmetric wedge product of k differential basis elements, as

α = αi1...ik (x)dx
i1 ∧ · · · ∧ dxik ∈ 
k(M),

in which the function αi1...ik (x) is totally antisymmetric under exchange of any two
neighboring indices. Three basic operations are commonly applied to differential forms
defined on a smooth manifold, M . The three operations are: exterior derivative (d),
contraction ( ) and Lie derivative (£X ) in the direction of a vector field X . These
three operations act as follows.

• Exterior derivative (dα) raises the degree: d
k 
→ 
k+1.
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• Contraction (X α) with a vector field X lowers the degree: X 
k 
→ 
k−1.
• Lie derivative (£Xα) by vector field X preserves the degree, £X
k 
→ 
k .

Remark 2.2 For a k-form α ∈ 
k , the Lie derivative £Xα is defined geometrically by

£Xα = X dα + d(X α).

This geometric definition of the Lie derivative is called Cartan’s formula.
Note that the Lie derivative commutes with the exterior derivative. That is,

d(£Xα) = £Xdα, for α ∈ 
k(M) and X ∈ X(M).

This useful propertymaybeprovedvia a direct calculationwhichusesCartan’s formula
and the property of the exterior derivative d that d2 = 0.

2.1.4 How Pull-Back Dynamics Leads to Lie Derivatives

The pull-back φ∗
t of a spatially smooth flow φt on a smooth manifold M generated

by a smooth vector field X ∈ X(M) commutes with the exterior derivative d, wedge
product ∧ and contraction . For an introduction to geometric fluid mechanics based
on these standard concepts, see Holm (2008).

A smooth time-dependent invertible map with a smooth inverse (i.e., a diffeo-
morphism) φt ∈ Diff(M) acting on a smooth manifold M may be generated by
integration along the characteristic curves of a smooth vector field X(x, t) ∈ X(M)

via dφt/dt = Xt ◦φt . Under the action of such a smooth invertible map φt on k-forms
α, β ∈ 
k(M), at a point x ∈ M , the pull-back φ∗

t is natural for the three operations
d, ∧ and . That is,

d(φ∗
t α) = φ∗

t dα,

φ∗
t (α ∧ β) = φ∗

t α ∧ φ∗
t β,

φ∗
t (X α) = φ∗

t X φ∗
t α.

In addition, the Lie derivative £Xα of a k-form α ∈ 
k(M) by the vector field X
tangent to the flow φt on M with φt |t=0 = I d may be defined either dynamically or
geometrically (by Cartan’s formula) as

£Xα = d

dt

∣∣∣∣
t=0

(φ∗
t α) = X dα + d(X α), (2.12)

in which the last equality in (2.12) is Cartan’s geometric formula for the Lie derivative.
The equivalence of the dynamic and geometric definitions of the Lie derivative in the
last equality may be proved directly. This equivalence can be quite informative. For
example, in the case α(x) = ui (x)dxi for x ∈ R

3, i = 1, 2, 3, this equivalence implies
a well-known vector calculus identity, namely
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£X (ui (x)dx
i ) := d

dt

∣∣∣∣
t=0

φ∗
t (ui (x)dx

i ) =
[
∂ui (φt (x))

∂φ
j
t (x)

dφ
j
t

dt

]

t=0
dxi

+ ui (x)d

[
d

dt
φ
j
t (x)

]

t=0

=
[
∂ui (x)

∂x j
X j + u j (x)

∂X j (x)

∂xi

]
dxi

= [
(X · ∇)u + u j∇X j ] · dx,

X d(u · dx) + d
(
X (u · dx)

) = [− X × curlu + ∇(X · u)
] · dx. (2.13)

The equality of these two expression, of course, yields the fundamental vector calculus
identity of fluid dynamics. This calculation turns out to be the basis of the Kelvin
circulation theorem.

Definition 2.3 (Pull-back and push-forward Lie derivative formulas)
Themathematical basis for analysis of fluid transport is the following textbook formula
(Marsden and Hughes 1983) which relates the pull-back to the Lie derivative:

d

dt
(φ∗

t α) = φ∗
t

(
∂tα + £Xα

)
. (2.14)

In words, the tangent to the pull-back φ∗
t α of a time-dependent differential k-form

α ∈ 
k(M) by a smooth invertible flowmapφt is the pull-backφ∗
t of the Lie derivative

of the k-form α with respect to the vector field X that generates the flow, φt .
Likewise, for the push-forward, which is the pull-back by the inverse, (φt )∗ =

(φ−1
t )∗, we have

d

dt
((φ−1

t )∗α0) = −(φ−1
t )∗

(
£Xα0

)
,

or, equivalently,

d

dt
((φt )∗α0) = − (φt )∗

(
£Xα0

)
. (2.15)

Equation (2.15) is the push-forward Lie derivative formula. Note the opposite sign
from the pull-back formula in (2.14).

Definition 2.4 (Advected quantity)
An advected quantity is invariant along a flow trajectory. Thus, an advected quantity
satisfies the pull-back relation

α0(x0) = αt (xt ) = (φ∗
t αt )(x0),

which implies the transport formula,

0 = d

dt
α0(x0) = d

dt
(φ∗

t αt )(x0) = φ∗
t (∂t + £X )αt (x0) = (∂t + £X )αt (xt ), (2.16)
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where the vector field X = φ̇tφ
−1
t generates the flow map φt .

Equivalently, via the push-forward relation,

αt (xt ) = (α0 ◦ φ−1
t )(xt ) = ((φt )∗α0)(xt ),

an advected quantity satisfies

d

dt
αt (xt ) = d

dt
(φt )∗α0 = −(£Xαt )(xt ). (2.17)

2.1.5 Pull-Backs, Push-Forwards and Lie Derivatives for GLM

The GLM theory introduces a composition of maps, in which φt,t/ε = g̃t/ε ◦ gt and
whose pull-back satisfies the relation,

(
g̃t/ε ◦ gt

)∗ = gt
∗ g̃ ∗

t/ε.

Advection by the composition of maps φt,t/ε = g̃t/ε ◦ gt with vector fields X :=
φ̇t,t/εφ

−1
t,t/ε and X := ġt g

−1
t satisfies the pull-back formula for the action of the

composite transformation

φt,t/ε = g̃t/ε ◦ gt

on a differential k-form or tensor field α,2

d

dt

(
(g̃ ◦ g)∗α

) = (g̃ ◦ g)∗
(
∂tα + £Xα

)
.

Equivalently, the pull-back of the composition satisfies the relation

d

dt

(
g ∗g̃ ∗α

) = g ∗g̃ ∗(∂tα + £Xα
)
.

Expanding out the time derivatives gives the following composite advective transport
equation

0 = (
∂t + LX

)
α = g̃∗g∗

d

dt

(
g ∗g̃ ∗α

) = g̃∗g∗g ∗(∂t (g̃ ∗α) + LX (g̃ ∗α)
)

= g̃∗
(
∂t (g̃

∗α) + LX (g̃ ∗α)
)
.

Recall that the pull-back, g̃∗, is the inverse of the push-forward, g̃∗. Hence, the pull-
back of the previous formula by g̃∗ implies the following version of the composite Lie
transport formula, cf. Gilbert and Vanneste (2018),

g̃ ∗((∂t + LX
)
α
)

= (
∂t + LX

)
(g̃ ∗α) = 0. (2.18)

2 The notation ( · ) and (̃ · ) signifies time scales t and t/ε, respectively. Hence, we can drop subscripts as
needed to simplify notation.
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2.2 GLM Advective Transport Relations for Euler–Boussinesq

For GLM, the smooth fast time flowmap on the manifold M is taken to be g̃t/ε(M) :=
I d + γ̃t/ε(M), where γ̃t/ε is a smooth invertible map parameterized by the fast time,
t/ε. This yields the familiar GLM fluctuation expression, g̃t/εx = x+ξ(x, t/ε) = xξ ,
when M is taken to be R

3. Consequently, formula (2.18) expands out in the GLM
notation, to become

((
∂t + LX

)
α
)
(x + ξ(x, t/ε), t) =

((
∂t + LX

)
α
)
(xξ , t) =

((
∂t + LX

)
α
)ξ

(x, t)

= (
∂t + LX

)
(g̃ ∗α)=

((
∂t+LX

)
α
)
(x+ξ(x, t/ε), t)

= (
∂t + LX

)
α(xξ , t) = 0.

Thus, the expansion of the composite advective Lie transport formula (2.18) implies
the following advective transport formula for a k form α,

((
∂t + LX

)
α
)ξ

(x, t) = (
∂t + LX

)
αξ (x, t) = 0. (2.19)

By a final transformation of variables, we will write the advection law (2.19) as
(
∂t + LX

)(̃
a(x, t) · de(x)

) = 0. (2.20)

This can be done bymaking the following chain rule calculation for the transformation
of the tensor basis of αξ (x, t) in (2.19),

αξ (x, t) =: aξ (x, t) · deξ (x, t) =
(
aξ (x, t) · ∂eξ (x)

∂e(x)

)

· de(x) =: ã(x, t) · de(x) =: α̃(x, t). (2.21)

Here, de(x) is the basis of the advected differential form or tensor, the quantity ã(x, t)
is its tensor coefficient in Eulerian coordinates and the centered dot denotes contraction
of tensor indices.

Equation (2.21) implies that if αξ (x, t) is advected by uξ , then α̃(x, t) will be
advected by uL . This is because the fluctuating quantity α̃(x, t) defined above is
merely a change of variables of αξ (x, t) from xξ to x via the chain rule. Moreover, the
Eulerian mean of the relation (2.21) yields

(
aξ (x, t) · ∂eξ (x)

∂e(x)

)
= α̃ = α̃. (2.22)

In taking this Eulerian mean, we keep in mind that x is an average quantity, so the
right-hand side is already an average quantity. Thus, α̃ satisfies α̃ = α̃ in (2.22) and
we note that α̃ �= αL , in general, except for the case that αξ is a scalar. The difference
is that the tensor basis must be transformed to fixed Eulerian variables before applying
the Eulerian time average, and a scalar function has no tensor basis.
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Remark 2.5 (Road map for the remainder of the paper.) In principle, the fast-slow
time mean considerations underlying GLM described above could be generalized to
the class of stochastic perturbations in Holm (2015, 2018) whose analytical properties
were examined in Crisan et al. (2018) by using the method of multi-time homogeniza-
tion (Gottwald and Melbourne 2013a, b) and by invoking the procedure for transition
from a fast-slow description to the stochastic description for fluid dynamics developed
in Cotter et al. (2017). However, instead of launching into such an investigation by
starting over from a stochastic viewpoint, we will build on the deterministic theory
described in the Appendix to reach the point of introducing stochastic closures for the
deterministic GLM description in Sect. 3.

In Sect. 3.1, we will take advantage of the result of Bethencourt de Léon et al.
(2019) which proves the stochastic version of the pull-back formula (2.14) for the Lie
derivative with respect to a stochastic vector field. This result will allow us to introduce
a class of stochastic closures of GLM in Sect. 3.2, each of which preserves its transport
structure and fits into earlier work on stochastic fluid dynamics (Holm 2015, 2018;
Drivas and Holm 2019). In Sects. 3.3 and 3.4, we will suggest a simplified version of
one of the closure models which we expect will be convenient in potential applications
for analysis of GLM investigations of WCI elsewhere.

The GM approach is adapted to the SALT framework in Sect. 4. Unlike the GLM
model, which requires some development to cast it into the SALT framework, once the
Gent–McWilliams (GM) approach is derived froma variational principle in Sect. 4.1, it
rather easily adapts to the SALT framework for uncertainty quantification in Sect. 4.2.

2.3 GLM Circulation Transport

Asanexample,we shall apply the compositeLie transport formula in (2.18) to calculate
the composite rate of change of the Kelvin circulation integral for the case α =
u(x, t) · dx, as follows

d

dt

∮

gt,t/εγ (x0)
u(x, t) · dx =

∮

γ (x0)

d

dt

(
g∗
t,t/ε

(
u(x, t) · dx

))

=
∮

γ (x0)

d

dt

(
g ∗g̃ ∗(u(x, t) · dx

))

=
∮

γ (x0)
g ∗g̃ ∗((∂t + £X )

(
u(x, t) · dx

))

=
∮

γ (x)

g̃ ∗((∂t + £X )
(
u(x, t) · dx

))

By (2.18) =
∮

γ (x)

(∂t + £X )
(
g̃ ∗(u(x, t) · dx

))
. (2.23)

Now, if g̃t/ε := I d + γ̃t/ε, then g̃t/εx = x + ξ(x, t/ε) = xξ , and the previous formula
expands out in the GLM notation, to become
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d

dt

∮

gt,t/εγ (x0)
u(x, t) · dx =

∮

γ (x)

(
∂t + £X

)(
uξ
i (x, t)J ij (x, t) dx j ), (2.24)

where J ij is the GLM fluctuating Jacobian matrix

J ij = ∂xξ i

∂x j
=
(
δij + ∂ξ i

∂x j

)
. (2.25)

Consequently, the 1-form in the integrand of (2.24) becomes, upon assuming that
X := ġt g

−1
t = uL ,

ũi dx
i := uξ

i (x, t)J ij (x, t) dx j = (
uLi + u�

i

)(
δij + ∂ξ i

∂x j

)
dx j (2.26)

whose Eulerian time average is

ũi dx
i =

(
uLi + u�

j ∂i ξ
j
)

· dxi . (2.27)

Thus, we may conclude the following formula for the rate of change of the fast time
average of the Kelvin circulation integral,

d

dt

∮

γ (xξ )

uξ (x, t) · dxξ =
∮

γ (x)

(
∂t + £uL

)((
uL
i + u�

j ∇ ξ j
) · dx

)
. (2.28)

As we shall see, formula (2.28) is the basis for the definition of the pseudomomentum
in the GLM theory.

GLM Scalar Advection Relations

Nowthatwehave explainedhow thepull-back formula (2.18) implies theLie derivative
description of advective transport for GLM, we may return to the classic notation of
GLM to discuss examples.

At fixed position x the GLM velocity decomposition uξ = uL + u� is the sum of
the Lagrangian mean velocity uL and the Lagrangian disturbance velocity u�. Thus,

uξ = DLxξ

Dt

and for any scalar field χ(x, t) one has,

(Dχ

Dt

)ξ = DL

Dt
(χξ ).

Because uL appearing in the advection operator DL/Dt = ∂t + uL · ∇ is a mean

quantity, one then finds, as expected, that the Lagrangian mean ( · )L commutes with
the original material time derivative D/Dt for a scalar function. That is,
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(Dχ

Dt

)L
= DL

Dt
(χ L), and

(Dχ

Dt

)� = DL

Dt
χ�,

where χ� = χξ − χ L is the Lagrangian disturbance of χ satisfying χ� = 0. Hence,
one finds several equivalence relations for scalars, cf. formulas (2.20) and (2.21),

(Dχ

Dt

)ξ = DL

Dt
(χξ ) =

(Dχ

Dt

)L
+
(Dχ

Dt

)� = DL

Dt
(χ L) + DL

Dt
χ�. (2.29)

For example, in the Euler–Boussinesq stratified incompressible flow, consider the
buoyancy b = (ρref − ρ)/ρref relative to a reference density ρref . In this case, the
buoyancy b is advected as a scalar function. That is, it satisfies Db/Dt = 0 and, by the

relations (2.29), the average yields DLb
L
/Dt = 0, as well. Hence, bξ = b

L
follows,

by integration of DL(b
L − bξ )/Dt = 0 along mean trajectories and invertibility of

the map x → x + ξ(x, t).

Remark 2.6 Of course, this identification is also obvious physically for scalars, since

the Lagrangian mean b
L
and the current value bξ refer to the same Lagrangian fluid

label. That is, we initialize with ξ(x0, 0) = 0, for a Lagrangian coordinate x0 =
x(x0, 0).

Mass Conservation: The GLM Continuity Equation

The instantaneousmass conservation relation Dξ (x, t) d3xξ = D(x0)d3x0 transforms
into current Eulerian coordinates as follows, cf. Eq. (2.21),

Dξ d3xξ = DξJ d3x =: D̃ d3x = D(x0)d
3x0, (2.30)

where one defines the Jacobian,

J = det
(∇x(x + ξ)

) = det
(
δij + ∂ξ i

∂x j

)
, and D̃ := DξJ . (2.31)

As in the previous section, in taking the Eulerian mean of the relation DξJ d3x =
D̃ d3x , we keep in mind that x is an average quantity, so the right-hand side is already

an average quantity. Thus, D̃ = DξJ satisfies D̃ = D̃ and we note that D̃ �= D
L
, in

general.
The mean mass conservation relation for advection, D̃(x, t)d3x = D(x0)d3x0,

then implies the continuity equation for D̃,

(
∂t + LuL

)(
D̃ d3x

) = 0, 	⇒ ∂t D̃ + divD̃uL = 0, (2.32)

upon recalling that uL is the velocity tangent to the mean Lagrangian position x.
Consequently, the Lagrangian mean Dξ = D

L
is not the density advected in the GLM
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theory. Rather, it is the average density, DξJ = D̃. As discussed in the previous
section, except for scalars such as the buoyancy, b, this observation applies to all
advected quantities. That is, the basis of any differential form or tensor field evolves
under advection by the flow map, as well as its instantaneous coefficient.

Remark 2.7 For a fluid with constant density, Dξ = 1, the GLM theory gives

D̃ = DξJ = det
(∇x(x + ξ)

) = 1 − 1
2

(
ξ kξ�

)
, k� + O(|ξ |3).

Hence, for constant instantaneous density, the Lagrangian mean velocity uL has an
order O(|ξ |2) divergence,

div uL = − 1

D̃

DL D̃

Dt
= 1

2

DL

Dt

(
ξ kξ�

)
, k� + O(|ξ |3),

as shown in Andrews and McIntyre (1978a).

3 Stochastic Closures for the GLM Equations

3.1 Stochastic Transport via the Kunita–Itô–Wentzell Formula

The remainder of this section will introduce stochastic closure schemes for the GLM
and Gent–McWilliams (GM) models of mesoscale and submesoscale transport. The
key ingredient for these stochastic closure schemes will be the generalization to
stochastic processes of the pull-back formula for the Lie derivative in Eq. (2.14).
This stochastic generalization is given by

d

dt
(φ∗

t K ) = φ∗
t

(
∂t K + £Xt K

)
, (3.1)

where the time-dependent vector field Xt ∈ X(M) generates the flow map φt via
φ̇t = Xt ◦ φt and K ∈ 
k(M) is a spatially smooth k-form on a manifold M .

The corresponding pull-back formula for k-forms which are spatially smooth and
stochastic in time is proven in Bethencourt de Léon et al. (2019). Namely, in the
standard differential notation for stochastic flows, we have

d(φ∗
t K )(t, x) = φ∗

t

(
dK + Ldxt K

)
(t, x), (3.2)

where dxt is the stochastic spatially smooth vector field defined by

φ∗
t dxt (x) = dxt (φt (x)) = b(t, φt (x)) dt +

N∑
i=1

ξi (t, φt (x)) ◦ dBi
t , (3.3)

which generates the stochastic flow φt in Eq. (3.1).
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Equation (3.1) is the Kunita–Itô–Wentzell formula (Kunita 1981, 1984, 1997)
which determines the evolution of a k-form-valued stochastic process φ∗

t K . This result
generalizes the classic formula for a stochastic scalar function by allowing K to be any
smooth-in-space, stochastic-in-time k-form on R

n . Omitting the technical regularity
assumptions provided in the more detailed statement of the theorem in Bethencourt
de Léon et al. (2019) for our purposes here, we now state a simplified version of the
main theorem proved in that paper, as follows.

Theorem 3.1 (Kunita–Itô–Wentzell formula for k-forms, simplified version) Con-
sider a spatially smooth k-form K (t, x) which is a semimartingale in time

dK (t, x) = G(t, x) dt +
M∑
i=1

Hi (t, x) ◦ dWi
t , (3.4)

where Wi
t are i.i.d. Brownian motions. Let φt be a sufficiently smooth flow satisfying

the SDE

dφt (x) = X(t, φt (x)) dt +
N∑
i=1

ζi (t, φt (x)) ◦ dBi
t , (3.5)

in which Bi
t are i.i.d. Brownian motions. Then the pull-back φ∗

t K satisfies the formula

d(φ∗
t K )(t, x) = φ∗

t G(t, x) dt +
M∑
i=1

φ∗
t Hi (t, x) ◦ dWi

t

+ φ∗
t LX K (t, x) dt +

N∑
i=1

φ∗
t Lζi K (t, x) ◦ dBi

t . (3.6)

Formulas (3.4) and (3.6) are compact forms of the equations derived in Bethencourt
de Léon et al. (2019), where these equations are written in integral notation to make
the stochastic processes more explicit. However, the compact differential stochastic
notation used here will suffice to explain the main ideas in the next section. For more
details and proofs, see Bethencourt de Léon et al. (2019).

3.2 Stochastic Closures for GLM Approximation of the Euler–Boussinesq
Equations

So far, the WCI system in the GLM equation sets (A.36) and (A.42) has not been
closed. This is because the mean fluctuation quantities comprising the kinematic
pressure π� in (A.34) and the relative group velocity vG in (A.30) have not yet
been parameterized. In this section, following Holm (2015) and Gay-Balmaz and
Holm (2018), we consider two different classes of closure options for modeling these
unknown quantities stochastically. Simply put, the two different classes of closure
are either (1) data-driven, or (2) model-driven. In more detail, the options are: (1)
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apply prescribed noise which has been calibrated from observations and simula-
tions, or (2) postulate a theoretical model for the dynamics of the noise amplitude
depending on advected state variables, such as the buoyancy. In either case, the result
would provide an estimate of the uncertainty in the model computations, which in
turn would provide opportunities for reduction of uncertainty by using data assimila-
tion.

3.3 Stochastic GLM Closure #1a

A very interesting approximation of the kinematic fluctuation pressure is discussed in
Andrews and McIntyre (1978b); namely,

−π� = 1

2
|u�|2 + u� · R� ≈ pξ

, j K
j
i ξ i . (3.7)

Both this approximation and the relative group velocity v
j
G = (pξ K j

i ∂φξ i ) in (A.30)
involve the time mean correlations among the fluctuation displacements ξ i and the
corresponding fluctuating pressure pξ .

This observation suggests that one could close the WCI system by introducing a
stochastic parameterization of these undetermined time mean correlations among the
fluctuating degrees of freedom appropriate to the variable over which one is averaging.
For example, the stochastic parameterization could comprise a pair of Stratonovich
stochastic process,

vG → dvG = ζ (x) ◦ dWt , and �tot → d�tot = �
L
dt + π(x) ◦ dWt .

In turn, this idea suggests a new type of Hamiltonian stochastic closure which has been
studied recently for fluid dynamics in Holm (2015, 2018), Cotter et al. (2017), Crisan
et al. (2018), Cotter et al. (2018a, b). It amounts to changing the GLM Hamiltonian in
Eq. (A.32) into the following stochastic process,

dH(m, N , p, D̃, b
l;ω, k, vG) =

∫ [
1

2D̃

∣∣m + p − D̃R
L ∣∣2 + N (ω − k · uL)

+ D̃
(
pL + gzb

L + �
L
(x)
) ]

d3x dt

+
∫ [

(p − Nk) · ζ(x) − D̃π(x)

]
d3x ◦ dWt .

(3.8)

Hamiltonian properties The stochastic GLM Euler–Boussinesq equations may be
expressed in Hamiltonian Lie–Poisson matrix operator form as follows, in which
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the dynamics of the wave variables p and N acquires a stochastic component of its
transport velocity, as

d

⎡
⎣

p j

N

⎤
⎦ = −

⎡
⎣
pk∂ j + ∂k p j N∂ j

∂k N 0

⎤
⎦
⎡
⎣

δ(dH)/δ pk = uL kdt + ζ k(x) ◦ dWt

δ(dH)/δN = ωdt − ki (u
L i dt + ζ i (x) ◦ dWt )

⎤
⎦ .

(3.9)

The dynamics of the material variables m j , D̃ and b
L
acquires a stochastic com-

ponent of its pressure force, as

d

⎡
⎣
m j

D̃

b
L

⎤
⎦ = −

⎡
⎢⎣
mk∂ j + ∂km j D̃∂ j − b

L
, j

∂k D̃ 0 0

b
L
,k 0 0

⎤
⎥⎦

⎡
⎢⎣

δH/δmk = uLk dt

δH/δ D̃ =
(
pL + gzb

L + �
L
(x)
)
dt − π(x) ◦ dWt

δH/δb
L = D̃ gz dt

⎤
⎥⎦ . (3.10)

This stochastic pressure force does not affect the fluid circulation in Kelvin’s theorem
in Eq. (A.23).

In the stochastic representation of fluctuating wave effects in the GLM picture, the
stochastic pressurefluctuations in (3.10)might arguably bedroppedbecause they cause
no circulation. In that case, the stochasticity of the GLM group velocity in (3.9) would
coincide with the existing theory of Stochastic Advection by Lie Transport (SALT)
(Holm 2015, 2018; Cotter et al. 2017; Crisan et al. 2018; Cotter et al. 2018a, b) which
introduces the same type of Hamiltonian stochastic transport into the material fluid
evolution.

3.4 Stochastic GLM Closure #1b

Perhaps the straightest way toward the introduction of stochastic effects in WCI for
use in uncertainty quantification and future data assimilation would be to consoli-
date the stochasticity of the GLM group velocity with the known SALT approach of
adding a stochastic vector field to the Lagrangian mean transport drift velocity, uL dt ,
rather than proliferating the possible sources of uncertainty bymaking the GLMgroup
velocity independently stochastic. In the SALT procedure, one takes the noise to be a∑N

a=1 ζ a(x) ◦ dWa
t in which each stochastic spatial ‘mode’ ζ a(x) is associated with

a different Brownian motion dWa
t and must be calibrated, for example, by compari-

son of high-resolution data from either observation or computational simulation. To
simplify the notation in this section, we neglect the option to include modal spatial
structure in the noise by ignoring the sum over indices for the individual Brownian
motions.
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In the closure strategy #1b, both wave and fluid dynamics would acquire the same
fluctuating component in the GLM transport velocity, as

d

⎡
⎣

p j

N

⎤
⎦ = −

⎡
⎣
pk∂ j + ∂k p j N∂ j

∂k N 0

⎤
⎦
⎡
⎣

δ(dH)/δ pk = uL kdt + ζ k(x) ◦ dWt

δ(dH)/δN = ωdt − ki (u
L i dt + ζ i (x) ◦ dWt )

⎤
⎦ ,

(3.11)

for the waves, and

d

⎡
⎣
m j
D̃

b
L

⎤
⎦ = −

⎡
⎢⎣
mk∂ j + ∂km j D̃∂ j − b

L
, j

∂k D̃ 0 0

b
L
,k 0 0

⎤
⎥⎦

⎡
⎢⎣

δH/δmk = uL kdt + ζ k(x) ◦ dWt

δH/δ D̃ =
(
pL + gzb

L + �
L
(x)
)
dt

δH/δb
L = D̃ gz dt

⎤
⎥⎦ ,

(3.12)

for the fluid, where we recall that m + p = D̃(uL + R
L
) and p = D̃v.

This means the GLM Kelvin circulation theorem for Boussinesq incompressible
flow in Eq. (A.21) will become

d
∮

c(dxt )
D̃−1 m · dx = d

∮

c(dxt )

(
uL + R

L − v
)

· dx = −g
∮

c(dxt )
b
L
dz, (3.13)

in which the material loop moves along stochastic Lagrangian trajectories given by
the characteristics of the following stochastic vector field

dxt = uL(xt , t)dt +
N∑

a=1

ζ a(xt ) ◦ dWa
t . (3.14)

Adding the stochastic vector field into (3.14) amounts to modifying the final term in
the stochastic GLM Hamiltonian in Eq. (3.8), as follows,

dH(m, N , p, D̃, b
l;ω, k, vG) =

∫ [
1

2D̃

∣∣m + p − D̃R
L ∣∣2 + N (ω − k · uL)

+ D̃
(
pL + gzb

L + �
L
(x)
) ]

d3x dt

+
∫ [

(m + p − Nk) ·
N∑

a=1

ζ a(x)

]
d3x ◦ dWa

t .

(3.15)

Remark 3.2 In the class of closures #1a and #1b, with prescribed noise, it still remains
to determine the set of vectors {ζ a(xt )} in the stochastic part of the Lagrangian tra-
jectory given by dxt in Eq. (3.14). For this, it may be advisable to model the effects
of wave fluctuations in the GLM equations (3.13) and (3.14) the same way as for any
other high frequency transport effect in the SALT modeling approach of Cotter et al.
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(2017), Holm (2015, 2018). This approach would also simplify the calibration proce-
dure for the correlation eigenvectors in ζ (x)◦dWt , which is required in the application
of SALT, because it would consolidate the stochastic effects of the wave transport with
those of the material transport. Distinguishing between these two types of stochastic
effects in the total transport by using observation data might be problematic, to say the
least. For recent developments using the SALT approach to material transport and the
description of the use of data assimilation in determining the stochastic amplitudes in
two-dimensional flows, see Cotter et al. (2018a, b).

4 The Gent–McWilliams (GM) Approach

4.1 Brief Review of the Deterministic GM Approach

The SALT approach could be regarded as a data-driven stochastic version of the Gent–
McWilliams (GM) parameterization of subgrid-scale transport (Gent 2011; Gent and
McWilliams 1990, 1996), which is commonly used in both ocean and atmospheric
sciences. In a landmark paper, Gent and McWilliams (1990) modified passive tracer
advection by adding a term meant to model eddy transport. The GM term introduced
an anisotropic model of fluid transport which depends on the local gradients of the
buoyancy. This term is still used today in the large majority of ocean models. Since
the wave component of the GLM theory fundamentally depends on buoyancy, one
can imagine that the two approaches could interact with each other synergistically.
For this purpose, we will first briefly review the GM approach in the present notation.
Then, we will discuss how Model 3 in Gay-Balmaz and Holm (2018) enables one to
build on the GM approach and construct a stochastic closure of the motion equation
in which the spatial correlations of the stochasticity depend on the quantities advected
by the flow.

Geometry of the GM approach Let u(x, t) be a fluid velocity variable, and let a(x, t)
be an advected variable. The GM approach begins by introducing a modified transport
equation for advection, as

∂t a + LUa = 0 with U = u + u∗(a), (4.1)

where LUa is the Lie derivative of the advected variable a with respect to the vec-
tor field U , and the GM model bolus velocity u∗(a, a, j , a, jk) is a prescribed vector
function of a and its first two spatial derivatives. In particular, the GM model takes
the advected quantity a to be the buoyancy, b, which is a scalar function.

To find the effect on the motion equation of modifying the advection law in (4.1),
one may use a Lagrange multiplier to constrain Hamilton’s variational principle for
ideal fluids δS = 0 with S = ∫

�(u, a) dt to satisfy the modified auxiliary advection
equation (4.1). Before taking variations, one defines the following useful notational
constructs.

1. Define V (M) a vector space defined on the domain of flow, M , as well as X(M)

the space of smooth vector fields defined on M .
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2. Define real, non-degenerate L2 pairings between the spaces V (M) andX(M)with
their dual spaces, V ∗(M) and X∗(M)

〈 · , · 〉V : V ∗ × V → R,
〈 · , · 〉

X
: X∗ × X → R.

3. Define the diamond operator (�) in terms of these two pairings and the Lie deriva-
tive, as

〈
π , Lδua

〉
V = −〈π � a , δu

〉
X

,

for a ∈ V , π ∈ V ∗ and δu ∈ X(M). Thus, Lδua is the Lie derivative of the
advected quantity a in the direction of the velocity variation δu.

To determine the effect on the motion equation of modifying the advection law in
(4.1), we apply the auxiliary equation (4.1) as a constraint in Hamilton’s principle
for ideal fluids. Namely, we constrain Hamilton’s variational principle δS = 0 with
S = ∫

�(u, a) dt to advect the quantity a by a totalU = u+u∗(a), by pairing Eq. (4.1)
with a Lagrange multiplier, π . Thus, we set

0 = δS = δ

∫ [
�(u, a) +

〈
π , ∂t a + LUa

〉
V

]
dt . (4.2)

We then take variations to find,3

δu : δ�

δu
= π � a,

δπ : ∂t a = −LUa,

δa : ∂tπ = L T
U π + δ�

δa
− γ with γ :=

(
δu∗

δa
· δ�

δu

)
, (4.3)

and manipulate further to obtain the following Euler–Poincaré equations (Holm 2015;
Holm and Maddison 2019; Holm et al. 1998),

∂t
δ�

δu
+ LU

δ�

δu
=
( δ�

δa
− γ

)
� a with γ :=

(
δu∗

δa
· δ�

δu

)
,

∂t a + LUa = 0 with U = u + u∗(a). (4.4)

The variation δu∗/δa of the prescribed bolus velocity u∗(a) with respect to the
advected variable a results in a differential operator in the γ -term, which arises from
integration by parts in the δa-variations, contracted with the variation δ�/δui , for
example, as

(
δu∗(a, a, j , a, jk)

δa

)
· δ�

δu
:= ∂u∗ i

∂a

δ�

δui
− ∂ j

(
∂u∗ i

∂a, j

δ�

δui

)
+ ∂2jk

(
∂u∗ i

∂a,k j

δ�

δui

)
.

(4.5)

3 When performing integration by parts in the variational principle, one assumes homogeneous boundary
conditions.
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The GM choice for u∗(b) in terms of the advected buoyancy b(x, t) is linearly pro-
portional to the local isopycnal slope s = −(∇Hb)/bz , namely,

u∗(b, b, j , b, jk) = curl( ẑ × κs ) = −̂z · ∇(κs) = ∂z

(
κ∇Hb

bz

)
, (4.6)

where ∇H is the horizontal gradient. Note that divu∗(b) = 0. Consequently, the pres-
sure is determined by taking the divergence of the motion equation for incompressible
flow, as usual. Upon denoting δ�/δu = m, one evaluates the operator in Eq. (4.5) for
constant scalar κ as

δu∗(b)
δb

· m = − ∂z

(
κ

b2z
∇b · ∂zm

)
+ ∇ ·

(
κ

bz
∂zm

)
. (4.7)

The scalar advection U · ∇ δ�
δu part of the momentum transport LU

δ�
δu in Eq. (4.4)

appeared in Eqs. (8) and (9) of Gent andMcWilliams (1996), where its magnitude was
estimated as order the Rossby number, ε, so that U = u + εu∗(b). Thus, according
to Gent (2011), this term would make little difference in computational simulations at
non-eddy-resolving resolution; so, it has never been implemented in an ocean climate
computation. However, it could make a difference in ageostrophic situations, where
finer resolution is required. See, e.g., Fox-Kemper et al. (2008),Haidvogel et al. (2017),
Grooms and Kleiber (2019) for the latest investigations of this point.

Remark 4.1 (Outlook)We are startingwith theGMmodification in the transport veloc-
ity and deriving its consequences via the variational principle for ideal fluid dynamics.
The resulting variational Gent–McWilliams model (VGM) will differ from the orig-
inal GM equations (Gent and McWilliams 1990, 1996) in its momentum balance,
energetics, Kelvin’s circulation theorem and potential vorticity conservation on fluid
particles. Then, we will introduce stochastic transport in the VGM setting.

4.1.1 Example: Euler–Boussinesq Equations

For a = (b, D) ∈ V × V ∗ for scalar buoyancy b ∈ 
0 and mass density D ∈ 
3 in
3D, the diamond operations in these equations may be expressed as follows

〈
γ � b , η

〉 =
∫

γ (−η · ∇b) d3x = −
∫

(γ∇b) · η d3x = −〈γ db ⊗ d3x , η
〉
,

〈 δ�

δD
� D , η

〉
= −

∫
δ�

δD
div(Dη) d3x =

∫
D∇ δ�

δD
· η d3x =

〈
Dd

δ�

δD
⊗ d3x , η

〉
.

(4.8)

The Lagrangian in Hamilton’s principle for the Euler–Boussinesq equations is

�(u, D, b) =
∫

D

(
1

2
|u|2 + u · R(x) − gbz − p(1 − D−1)

)
d3x
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+
∫ 〈

π , ∂t b + U · ∇b
〉
V
dt, (4.9)

with rotation vector potential R(x) satisfying curlR(x) = 2�(x). This formula pro-
vides the variational derivatives which go into the motion equations in (4.17).

For this case, the general equations in (4.4) become, e.g., for the Euler–Boussinesq
equations,witha = (b, D),we choose tomodify only the advected buoyancy equation,
as in Gent and McWilliams (1990, 1996). Consequently, one finds

∂t
δ�

δu
+ LU

δ�

δu
= Dd

δ�

δD
− δ�

δb
db +

(
δu∗

δb
· δ�

δu

)
db,

∂t b + U · ∇b = 0 and ∂t D + div(DU) = 0,

with U = u + u∗(b). (4.10)

Thus, the particle momentum density, mass density and buoyancy are all transported
by the sum U = u + u∗(b) of the flow velocity and the bolus velocity.

Note that the quantity δ�
δu = δ�

δu · dx ⊗ d3x is a 1-form density, while γ ∈ V ∗
introduced in Eq. (4.3) lies in the dual space of the advected quantity a ∈ V . The
pressure p in Eq. (4.9) is a Lagrange multiplier which enforces D − 1 = 0. This
constraint leads via the continuity equation to incompressibility of the augmented
velocity U = u + u∗(b). Because the GM choice for u∗(b) in Eq. (4.6) is already
divergence-free, the pressure p can then be determined from the motion equation
by preservation of the divergence-free condition divu = 0, in the usual way, for
appropriate boundary conditions. The divergence-free condition for a bolus velocity
u∗(a) depending on any other advected quantities besides the buoyancy would also
be required for the theory to close.

Useful formulas for putting the general equations (4.4) into familiar calculus form
for this example are,

LU (v · dx) =
(

− U × curlv + ∇(U · v)
)

· dx =
(
(U · ∇)v + v j∇U j

)
· dx,

LU (D d3x) = div(DU) d3x, LUb = U · ∇b and v = u + R(x). (4.11)

These formulas allow one to write the VGM EBmotion equation in (4.10) in standard
hydrodynamics form as

∂tu + (u · ∇)u − u × 2� + ∇ p + gb∇z

= u∗(b) × curlv − ∇(u∗(b) · v) +
(

δu∗(b)
δb

· v
)

∇b, (4.12)

withGMbolus velocity in (4.6).On the right-hand side of (4.12) three additional forces
appear, all of which are bi-linear in the bolus velocity and the total circulation velocity,
v. First, a Lorentz-type force appears, which is reminiscent of the Craik–Leibovich
‘vortex force’ in the study of Langmuir circulations. Here, the bolus velocity plays
the role of the particle velocity in the Lorentz force. Second, a kinetic pressure force
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appears depending on higher order gradients of the buoyancy. Third, the action of the
differential operator in (4.7) on the total circulation velocity, v = m/D contributes a
force along the buoyancy gradient.

The first two terms on the right-hand side of Eq. (4.12) can be combined as we did
in Eq. (A.17) of Remark A.1 to compare the Stokes drift uS in the Craik–Leibovich
(CL) theory with the pseudovelocity p/D̃ in GLM. Namely, we compare

(
ξ j∂ ju� + u�

j∇ξ j
) · dx = Lξ

(
u� · dx

) ⇐⇒ (
(u∗(b) · ∇)v + v j∇u∗ j (b)

) · dx

= Lu∗(b)
(
v · dx

)
. (4.13)

This relation affords a comparison among the Kelvin circulation theorems for the CL,
GLM and VGM theories. In the CL and GLM theories, the Lagrangian mean velocity
transports the corresponding Kelvin circulation integrands which contain additional
contributions from the fluctuations. However, in the VGM theory the circulation loop
is transported by the sum U = u + u∗(b) of the flow velocity and the bolus velocity.

Thus, the GM model contribution is in the Kelvin loop velocity, while the model
contributions in CL and GLM are in the corresponding Kelvin circulation integrands.

Next, we survey the solution properties of the class of EB VGM equations.

4.1.2 Kelvin Circulation Theorem

The Kelvin circulation theorem for these equations is

d

dt

∮

c(U)

1

D

δ�

δu
= −

∮

c(U)

1

D

δ�

δb
db +

∮

c(U)

1

D

(
δu∗

δb
· δ�

δu

)
db. (4.14)

Here, the circulation loop moves with the sum of the fluid velocity and the bolus
velocity, U = u + u∗(b).
Proof Relation (4.14) appears, upon substituting the right-hand side of the motion
equation in (4.10) into the following relation

d

dt

∮

c(U)

1

D

δ�

δu
=
∮

c(U)

(∂t + LU )
1

D

δ�

δu
. (4.15)

The integration of the pressure gradient(s) in (4.10) around the circulation loop van-
ishes, and the remainder recovers Eq. (4.14). ��
4.1.3 PV Conservation

Potential vorticity (PV) is conserved, since

∂t q + U · ∇q = 0 with q := D−1∇b · curlv and v = 1

D

δ�

δu
. (4.16)

That is, the PV is conserved along characteristic curves (Lagrangian advection paths)
of the sum of the fluid velocity and the bolus velocity.

123



3012 Journal of Nonlinear Science (2019) 29:2987–3031

Proof The proof can be accomplished either by using the Stokes theorem in the Kelvin
theorem (4.14), or perhaps more explicitly, by first casting the EB-type equations in
(4.10) into a convenient form for taking differentials, as

(∂t + LU )(v · dx) = d
δ�

δD
− 1

D

(
δ�

δb
− γ

)
db and (∂t + LU )db = 0, (4.17)

where we have used commutation of differential d and Lie derivative LU in taking
the differential of the b-equation.

Now taking the differential of the (v ·dx)-equation and using d(v ·dx) = curlv ·dS
yields

(∂t + LU )
(
d(v · dx) ∧ db

)
= 0. (4.18)

Then, using the D-equation as (∂t + LU )(Dd3x) = 0 yields the PV conservation
equation in (4.16). ��
4.1.4 Energetics in the Hamiltonian Formulation

The Legendre transform of the constrained Lagrangian produces an extra term in the
Hamiltonian

hGM (m, a) = h(m, a) +
∫

m · u∗(a) d3x with

m := δ�

δu
= D

(
u(x, t) + R(x)

) = Dv,

with a = (D, b) for the Euler–Boussinesq Hamiltonian

h(m, a) = h(m, D, b) =
∫

1

2D
|m − R(x)|2 + Dgbz + p(D − 1) d3x .

The semidirect-product Lie–Poisson bracket for the Euler–Boussinesq equations
remains the same. Hence, the following Hamiltonian formulation of the GM transport
scheme results, for the choice that the bolus velocity depends only on the advected
buoyancy variable b and its derivatives, as follows

∂

∂t

⎡
⎣
m j

D
b

⎤
⎦ = −

⎡
⎣
mk∂ j + ∂km j D∂ j − b, j

∂k D 0 0
b,k 0 0

⎤
⎦
⎡
⎢⎣

δhGM/δmk = uk + u∗k(b)
δhGM/δD = 1

2 |u|2 + p + gzb

δhGM/δb = D gz −
(

δu∗
δb · m

)

⎤
⎥⎦ .

(4.19)

The Poisson bracket for this Hamiltonian formulation of the GM transport scheme
may be expressed as

d f

dt
= {

f , hGM
}
(m, D, b)
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= −
∫ ⎡
⎣

δ f /δmk

δ f /δD
δ f /δb

⎤
⎦
T ⎡
⎣
mk∂ j + ∂km j D∂ j − b, j

∂k D 0 0
b,k 0 0

⎤
⎦
⎡
⎣

δhGM/δmk

δhGM/δD
δhGM/δb

⎤
⎦ d3x . (4.20)

For f = hGM , we find energy conservation, dhGM/dt = 0, by antisymmetry of the
Lie–Poisson bracket in (4.20).

4.2 Stochastic Closure 2: Variational Formulation of GMTransport

4.2.1 Stochastic VGM Equations

This section makes a stochastic modification of the variational Gent–McWilliams
equations (4.4), by taking the bolus velocity to be stochastic in the Stratonovich sense.
Namely,

d
δ�

δu
+ LU

δ�

δu
= δ�

δa
� a dt −

(
δu∗

δa
· δ�

δu

)
� a ◦ dWt ,

da + LUa = 0 with U → dxt := u(t, xt ) dt + u∗(a(xt )) ◦ dWt . (4.21)

Here, the differential notation dxt refers to stochastic evolution of the Lagrangian
trajectory xt = φt (x0) with φt=0 = I d. This stochastic version of the VGM transport
scheme also appears in Model 3 of Gay-Balmaz and Holm (2018), although that paper
did not explicitly allow the bolus velocity to depend on gradients of the advected
quantities. The difference between the present scheme and the strategy of simply
taking the bolus velocity to be stochastic appears in the stochastic term of the motion
equation in (4.21). Otherwise, the modeling assumptions agree with those in Gent and
McWilliams (1996), although they are implemented stochastically and variationally.

4.2.2 Stochastic Hamiltonian Formulation for the GM Transport Scheme

The Legendre transform of the constrained Lagrangian produces an extra term in the
Hamiltonian

h(m, a) → dh(m, a) = h(m, a) dt +
∫

m · u∗(a) d3x ◦ dWt (4.22)

with

m := δ�

δu
= D

(
u(x, t) + R(x)

) =: Dv.

The semidirect-product Lie–Poisson bracket remains the same. However, now the
transport velocity vector field is stochastic,

δ dh

δm
= dxt := u dt + u∗(a) ◦ dWt .

123



3014 Journal of Nonlinear Science (2019) 29:2987–3031

Consequently,wefind the following stochasticVGMtransport equations for theEuler–
Boussinesq equations, when the advected quantity is chosen to be the buoyancy, b, as
for Gent and McWilliams (1990, 1996),

d

⎡
⎣
m j

D
b

⎤
⎦ = −

⎡
⎣
mk∂ j + ∂km j D∂ j − b, j

∂k D 0 0
b,k 0 0

⎤
⎦

⎡
⎢⎢⎣

δ dh/δmk = dxkt := ukdt + u∗k(b) ◦ dWt

δ dh/δD =
(
1
2 |u|2 + p + gzb

)
dt

δ dh/δb = D gz dt −
(

δu∗
δb · m

)
◦ dWt

⎤
⎥⎥⎦ . (4.23)

As in the deterministic VGM transport scheme in the previous section, the constraint
D − 1 = 0 enforces div(u dt + u∗(b) ◦ dWt ) = 0 in the stochastic case, as well. This
implies divu = 0, since we already have divu∗(b) = 0 by (4.6). This result makes the
determination of the pressure p systematic and straightforward for stochastic VGM,
as well.

Remark 4.2 (Noether’s theorem) The presence of explicit time and space dependence
in the stochastic part of the Hamiltonian dh(m, a) in (4.22) precludes conservation
of energy and momentum in the VGM transport scheme, respectively. However, the
Kelvin circulation theorem in Eq. (4.14) and the PV conservation in Eq. (4.16) both
still persist in the presence of the stochastic transport, modulo replacement of the
deterministic advective transport velocity by its stochastic counterpart. These two
conservation laws result from Noether’s theorem for invariance under relabeling of
Lagrangian particles and conservation of advected quantities alongLagrangian particle
trajectories. To the extent that the initial spatial distributions of the advected quantities
reduce the relabeling symmetry to the isotropy subgroup of the diffeomorphismswhich
preserves the initial distributions of advected quantities, the Kelvin circulation integral
is not preserved in time. The Kelvin–Noether theorem for the Euler–Poincaré equation
developed in Holm et al. (1998) represents the evolution of the Kelvin circulation
resulting from breaking the relabeling symmetry. This is the converse of the Noether
theorem for fluid dynamics with advected quantities.

TheLegendre transformof the constrainedLagrangian (4.9) inHamilton’s principle
for the Euler–Boussinesq equations, for example, produces the extra term in theHamil-
tonian in (4.22). Thus, the additional transport velocity introduced in the advective
constraint on the variations in Hamilton’s principle (4.9) is responsible for the choice
of the Hamiltonian in Eq. (4.22). This extra transport velocity is also responsible for
the additional forcing of the circulation in Eq. (4.14).

5 Conclusion

Motivated by the challenge to create consistent theories of mesoscale and subme-
soscalewave–current interaction (WCI) discussed in the Introduction, the investigation
here began by reviewing GLM, as guided by its WKB formulation in Gjaja and Holm
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(1996) for wave packets, in which GLM may be closed at various asymptotic orders.
These basic results were reviewed from the viewpoint of geometric mechanics, partic-
ularly via the Euler–Poincaré formulation of Lagrangian reduction by the symmetry
of particle relabeling for continuum mechanics in Holm et al. (1998). In the geomet-
ric mechanics framework, the Lie–Poisson structure of GLM emerges as a classical
Hamiltonian field theory with particle relabeling symmetry. However, the theory is
not closed until further assumptions have been made about the group velocity of the
waves and the solution for the pressure due to fluctuations.

Several closure procedures have been introduced previously. In the WKB repre-
sentation of WCI interaction in Euler–Boussinesq fluids (Gjaja and Holm 1996), the
closurewas supplied at various asymptotic orders via the dispersion relation and phase-
averaged pressure contributions of the waves. By applying slow manifold reduction
(MacKay 2004) to dynamics in the space of loops, a broader class of variational non-
linear WKB closures for WCI in plasmas was derived in Burby and Ruiz (2019),
and expressed in the standard Eulerian frame, rather than the displaced GLM Eule-
rian frame. In previous work, similar ideas were applied in both turbulence modeling
(Holm and Tronci 2012a, b) and in shape analysis (Bruveris et al. 2011). In earlier
work on fluid turbulence modeling, a similar type of closure was based on invoking
the Taylor hypothesis, that fluctuating quantities would be carried along in the fluid,
e.g., Holm (2002a, b).

In the geometricmechanics setting here, we have added considerations of stochastic
modeling of the indeterminate quantities inGLM, based on recent advances in stochas-
tic transport (Bethencourt de Léon et al. 2019), stochastic variational principles and the
Hamiltonian formulations of their results (Holm 2015, 2018; Gay-Balmaz and Holm
2018). This variational stochastic formulation seems to promise many future oppor-
tunities for the combination of stochastic variational modeling and data assimilation,
which in this setting has already had promising results, both in mathematical analysis
(Crisan et al. 2018) and in uncertainty quantification (Cotter et al. 2018a, b). In par-
ticular, the analysis in Crisan et al. (2018) showed that the presence of the stochastic
transport inEuler’s fluid equation preserves its analytical properties in the deterministic
case. Namely, the stochastic transport version of Euler’s fluid equation has local-in-
time existence and uniqueness, while also satisfying the Beale–Kato–Majda criterion
for blow-up of the solution.

Section 3 considers data-driven and model-driven classes of stochastic closure
options for GLM. The purpose of these stochastic closures would be to provide an
estimate of the uncertainty in the model computations, which in turn would provide
opportunities for reduction of uncertainty by using data assimilation. The data-driven
closure option invokes the SALT method of Cotter et al. (2018a, b), while the model-
driven closure option invokes the familiar Gent–McWilliams approach, as generalized
to the stochastic case in Gay-Balmaz and Holm (2018).

Because of the close relation of wave propagation to buoyancy dynamics, we chose
the stochastic Gent–McWilliams approach in Sect. 3 to illustrate the example of
stochastic transport in the Euler–Boussinesq equations, rather than taking the full
GLM equations. One may regard the GM discussion as a first step toward making the
buoyancy dynamics in the wave components of GLM fully stochastic, in the sense of
making the noise–mean flow interaction dynamical.
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TheGMstep also opens the opportunity to quantify the uncertainty of theGM trans-
port scheme, itself. The GM scheme is widely used in computational ocean science
(Gent 2011). Here, we note that applying either the deterministic or stochastic GM
advective transport scheme in the buoyancy equation in computational simulations
while neglecting both its contributions in the motion equation and in the modified
incompressibility condition imposed via the continuity equation could be expected to
produce errors in the momentum balance. In turn, these errors will cascade into errors
in the circulation and PV transport. It would be interesting to quantify the effects of
those types of uncertainties, as well.

Finally, the introduction of stochastic channels into WCI may provide a means of
parameterizing wave breaking. For example, in the GLM setting, under wave forc-
ing at the surface, one could introduce a jump process which would stochastically
transfer a certain amount of pseudomomentum p to material momentum m while
keeping the sum of the two momenta p + m constant at a given point. For example,
this sort of bursting event in momentum transfer could be triggered by a threshold in
wavenumber steepness (̂z · ∇k)2/|̂z×∇k|2 > 1, where k = |k| = |p|/N . GLMwave
breaking has not been widely considered, and this approach to it has not been tried
in applications yet. Likewise, in the stochastic GM setting, since the bolus velocity
u∗(b) figures dynamically in both the buoyancy equation and the momentum equa-
tion in (4.23), one might consider jump processes which induce stochastic impulses
into the momentum balance which are triggered by the steepness of the local isopy-
cnal slope s = −(∇Hb)/bz . Thus, the loss of momentum conservation due to the
spatial dependence of the noise would be regarded as stochastic forcing. These are
only preliminary thoughts which must continue to develop and be investigated else-
where.
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A Survey of Results for the GLM Euler–Boussinesq Stratified Fluid

The GLM decomposition of the standard Lagrangian in Hamilton’s principle for an
Euler–Boussinesq stratified fluid is given by

�(uξ , Dξ , bξ , ξ, ∂tξ) =
∫ {

Dξ

[
1

2

∣∣uξ
∣∣2 + Rξ · uξ − �(xξ ) − g z bξ

]

− pξ

(
Dξ − 1

)}
d3xξ , (A.1)
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where �(xξ ) is a potential for external or centrifugal forces. If desired, the rotation
frequency can be allowed to depend on position along the fluctuating path xξ as
2�(xξ ) = (curlR)ξ . The corresponding rotation potential is decomposed in standard

GLM fashion as Rξ = R(xξ ) = R
L
(x) + R�(x).

Upon substituting the defining relation

uξ := uL + DLξ

Dt
= uL + u�, (A.2)

into (A.2), the definition of D̃ in (2.30) allows one to write the corresponding Eulerian
mean expression of the averaged Lagrangian for the Euler–Boussinesq stratified fluid
as

�(uL , D̃, b
L
, ξ, ∂tξ) =

∫ {
D̃

[
1

2

∣∣uL + u�
∣∣2 + (R

L + R�) ·
(

uL + u�
)

− �(xξ ) − g z b
L
]

− pξ
(
D̃ − J

)
+
(
� · (∂tξ + (uL · ∇)ξ − u�)

)}
d3x

=
∫ {

D̃

[
1

2
|uL |2 + uL · R

L + 1

2
|u�|2 + u� · R�

− �
L
(x) − g z b

L − pL
]

+
(
pξJ

)
+
(
� · (∂tξ + (uL · ∇)ξ − u�)

)}
d3x . (A.3)

Here, the last term introduces the Lagrange multiplier � to impose the constraint that
the fluctuation velocity u� must satisfy its definition via the material derivative of the
fluctuation vector displacement field ξ in Eq. (A.2).

The relative buoyancy defined by the mass density ratio bξ = (ρref − ρξ )/ρref is
advected as a scalar in the Boussinesq approximation,

∂t b
ξ + uξ · ∇bξ = 0,

so we have already substituted bξ = b
L
into the Lagrangian in (A.3). Finally, the pres-

sure pξ in (A.1) is a Lagrange multiplier that imposes volume preservation inherited
from (A.1) via the transformations leading to the Eulerian average of the constraint
relation (2.31) defining the conserved GLM density D̃d3x = Dξ d3xξ = DξJ d3x ,
in the case that Dξ = 1.

Most of the important properties of the GLM equations are discussed in Andrews
and McIntyre (1978a, b). Many of these properties arise from general mathematical
structures that are shared by all exact nonlinear ideal fluid theories; namely, as an
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Euler–Poincaré (EP) equation (Holm et al. 1998),

∂

∂t

δ�

δuLi
+ ∂

∂xk

( δ�

δuLi
uLk

)
+ δ�

δuLk

∂uLk
∂xi

= D̃
∂

∂xi

δ�

δ D̃
− δ�

δb
L

∂b
L

∂xi
, (A.4)

which is expressed in terms of variational derivatives of an averaged Lagrangian,

�(uL , D̃, b
L
) and obtained from Hamilton’s principle for the Lagrangian mean vari-

ables,

0 = δS = δ

∫ T

0
�(uL , D̃, b

L
) dt .

See Holm et al. (1998) for an exposition of the mathematical structures which arise
in the EP theory of ideal fluids which possess advected quantities, such as buoyancy,
entropy and magnetic field. In Eq. (A.4), for example, the right-hand side is the usual
baroclinic source term.

In particular, the EP equation (A.4) for GLM implies the following Kelvin circula-
tion theorem for the GLM Euler–Boussinesq flow,

d

dt

∮

γ L (t)

1

D̃

δ�

δuL
· dx =

∮

γ L (t)

(
∇ δ�

δ D̃
· dx − 1

D̃

δ�

δb
L
db

L

)
, (A.5)

for any closed loop γ L(t) moving with the Lagrangian mean flow velocity uL .
The proof of (A.5) follows immediately by noting that

d

dt

∮

γ L (t)

1

D̃

δ�

δuL
· dx =

∮

γ L (t)

(
∂t + LuL

)( 1

D̃

δ�

δuL
· dx

)
(A.6)

and that the GLM EP equation (A.4) may be written as

(
∂t + LuL

)( 1

D̃

δ�

δuL
· dx

)
= ∇ δ�

δ D̃
· dx − 1

D̃

δ�

δb
L
db

L
, (A.7)

after using the advection law for D̃ in Eq. (2.32).

Variational Derivatives and the EP Equation for GLM Euler–Boussinesq Stratified
Fluid

The mean Lagrangian

� ≡
∫

L (uL , D̃, b
L
, ξ, ∂tξ)d3x
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in Eq. (A.3) has been derived via a straight transcription from the standard Lagrangian
for Euler–Boussinesq fluids into the GLM formalism, followed by taking the Eulerian
mean. Its variational derivatives are given by

δ�(uL , D̃, b
L
, ξ, ∂t ξ) =

∫ [(
D̃
(
uL + R

L )+ (�k∇ξk
) ) · δuL − D̃ gz δb

L − �B δ D̃

+
(
D̃
(
u� + R�

)− �
)

· δu� +
(
δ� · (∂t ξ + (uL · ∇)ξ − u�)

)

−
((

∂t�k + div(�kuL ) + ∂ j (pξ K j
k )
)

δξk
) ]

d3x . (A.8)

The last term in the �k equation arises from a spatial integration by parts of the
variation pξ δJ in which δJ = K j

k (∂ δξ k/∂x j ) with cofactor

K j
k := J (J −1)

j
k with J k

j := ∂
(
xk + ξ k(x, t)

)

∂ x j
, whose determinant isJ .

Thus, the variations in the fluctuating quantities imply the following quasilinear
equations with vanishing mean,

δu� : D̃
(
u� + R�

)− � = 0 ;
δ� : ∂tξ + (uL · ∇)ξ − u� = 0 ;
δξ k : ∂t�k + div(�kuL) + ∂ j (p

ξ K j
k ) = 0. (A.9)

The variations with respect to δuL and δu� each provides a momentum map. Com-
bining them yields,

(�k∇ξ k) = D̃ (u�
k + R�

k)∇ξ k =: − p, (A.10)

in which the last step defines the pseudomomentum density, p. The average of a com-
bination of the second and third equation in (A.9) will provide the dynamical equation
we need for the pseudomomentum density in order to close the equations. We may
also refer to the ratio

v := p/D̃ := − (u�
j + R�

j )∇ξ j (A.11)

as the pseudovelocity, v, see formula (2.28).
The Boussinesq potential �B arising in (A.8) under the variation of � with respect

to D̃ is defined by

�B = π B + gz b
L − 1

2
|uL |2 − uL · R

L
, (A.12)

where

π B = pL + �
L
(x) − 1

2
|u�|2 − u� · R�, (A.13)

and, finally, pL = pξ is the Lagrangian mean pressure.

123



3020 Journal of Nonlinear Science (2019) 29:2987–3031

Upon substituting these variational derivatives into the Euler–Poincaré (EP) equa-
tion (A.4), one finds the following GLMmotion equation governing uL for a stratified
Boussinesq fluid in Cartesian coordinates,

[DL

Dt

(
uL − v

)+ (uLk − vk
)∇uLk

]
− uL × curlR

L + ∇π B + gb
L
ẑ = 0. (A.14)

One could alsowrite this equation tomimic a ‘vortex force’ in Lorentz formE+uL×B
as

DL

Dt
uL + 1

2
∇|uL |2−uL ×curlR

L +∇ π B +gb
L
ẑ =

(
∂tv+∇(uL ·v)

)
−uL ×curlv.

(A.15)
For convenience, the equations for the advected quantities b

L
and D̃ are recalled from

above as

∂t b
L + uL · ∇b

L = 0 and ∂t D̃ + div(D̃uL). (A.16)

Remark A.1 (Comparison of GLM pseudomomentum dynamics with the Craik–
Leibovich theory) Without the ‘E-field’ term on its right side, Eq. (A.15) would
seem to have the same form as the Craik–Leibovich theory, except that the Stokes
mean drift velocity ūS would have been replaced by the pseudovelocity v. Formally,
then, the GLM Euler–Boussinesq stratified fluid equations might appear to comprise
a dynamical version of the Craik–Leibovich theory. However, the pseudovelocity v
is by no means the same as the Stokes mean drift velocity, uS . In fact, their differ-
ence has nonzero circulation. This is because the pseudovelocity, v = p/D̃, and the
Stokes mean drift velocity, uS , are complementary quantities in the Eulerian mean of
Lξ (u� · dx), which is the Lie derivative of the fluctuating circulation 1-form u� · dx
with respect to the fluctuation vector field, ξ . Namely,

(
uS − p/D̃

) · dx = (
ξ j∂ ju� + u�

j∇ξ j
) · dx = ( − ξ × curlu� + ∇(ξ · u�)

) · dx

= Lξ

(
u� · dx

)
. � (A.17)

So the two ‘velocities’ meet here in the Lie derivative. They are so different that
their difference means something. The Stokes mean drift velocity, uS , is the rate of
distortion of the fluctuating velocity covector by the fluctuating disturbance in the
Lagrangian path away from its mean, as if the covector were an array of scalars. The
pseudovelocity v is (minus) the corresponding rate of distortion of its covector basis.
The place where all this comes together is in the GLM Kelvin’s theorem when we
bring in the Eulerianmean velocity uE to transform fromLagrangianmean to Eulerian
mean quantities in the integrand as

∮

c(uL )

(uL − v) · dx =
∮

c(uL )

(uE + uS − v) · dx =
∮

c(uL )

uE · dx + Lξ

(
u� · dx

)
.

(A.18)
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For further discussion of the geometric and Hamiltonian properties of the Craik–
Leibovich theory, see Holm (1996).

Remark A.2 Westill need an equation for the pseudomomentumdensityp in Eq. (A.10)
in order to close the GLM Euler–Boussinesq motion equation in (A.14). However,
before deriving that equation, let us make a few remarks about the properties of the
(as yet unclosed) GLM equations for the Euler–Boussinesq stratified fluid which have
been obtained, so far.

Relation to the EP Kelvin Circulation Theorem for GLM Boussinesq Stratified Fluid

The GLM average of Kelvin’s circulation integral is defined as,

I (t) =
∮

γ ξ (t)

(
uξ + R(xξ )

) · dxξ =
∮

γ ξ (t)

(
uL + R

L + u� + R�
) · (dx + dξ)

=
∮

γ̄ L (t)

(
uL + R

L + (u�
k + R�

k)∇ξ k
) · dx

=
∮

γ̄ L (t)
(uL + R

L − v) · dx, (A.19)

where the contour γ̄ L(t) moves with velocity uL , since it follows the fluid parcels as
the average is taken. Thus, the Lagrangianmean leaves invariant the form of the Kelvin
integral, while averaging the velocity of its contour. In addition, the pseudovelocity
covector v defined in (A.10) appears in the integrand of the GLM averaged Kelvin
integral I (t).

The time derivative of the GLM averaged Kelvin circulation integral is, cf. for-
mula (2.28),

d

dt
I (t) =

∮

c(uL )

(
∂t + LuL

)((
uL + R

L − v
)) · dx

)

=
∮

γ̄ L (t)

[
(∂t + uL · ∇)(uL − v) + (uLk − vk)∇uL k + 2�×uL + ∇(uL · R

L
(x)
)]·dx.

(A.20)

where curlR
L
(x) = 2�(x). The combination of terms in the integrand defines the

transport structure of the GLM theory under the Lie derivative LuL along the mean
velocity vector, uL . From the GLM motion equation (A.14) one now finds the GLM
Kelvin circulation theorem for Boussinesq incompressible flow,

d

dt
I (t) = d

dt

∮

c(uL )

(
uL + R

L − v
)

· dx = −g
∮

c(uL )

b
L
dz. (A.21)

Remark A.3 Thus, the Lagrangianmean averages the velocity of the fluid parcels on the
Kelvin circulation loop,while it adds themean contribution of the velocity fluctuations
to the integrand of the Kelvin circulation.
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Equation (A.4) in the EP framework provides the Kelvin–Noether theorem for
Boussinesq stratified fluid, in the form

d

dt

∮

c(uL )

1

D̃

δ�

δuL
· dx = −

∮

c(uL )

1

D̃

δ�

δb
L
db

L
. (A.22)

Evaluating this for the GLM Boussinesq stratified fluid with � given in (A.3) yields,

d

dt

∮

c(uL )

(
uL + R

L
(x) − v

)
· dx =

∮

c(uL )

gz db
L
, (A.23)

which agrees with the result of the direct calculation in (A.21).
If the loop c(uL) moving with the Lagrangian mean flow lies entirely on a level

surface of b
L
, then the right-hand side vanishes, and one recovers for this case the

‘generalized Charney–Drazin theorem’ for transient Boussinesq internal waves, in
analogy to the discussion in Andrews and McIntyre (1978a) for the adiabatic com-
pressible case.

Total vorticity. Finally, upon defining the total vorticity as

ωtot := curl
(

uL + R
L − v

)
(A.24)

and applying the Stokes theorem to the GLM Kelvin theorem in Eq. (A.21), one finds

d

dt
I (t) =

∮

c(uL )

(
∂t + LuL

)(
ωtot · dS

) = −
∮

c(uL )

g∇b
L × ẑ · dS. (A.25)

Since this equation holds for any loop, we have

∂tωtot − curl
(
uL × ωtot

) = −g∇b
L × ẑ. (A.26)

Remark A.4 Thus, the EB vorticity equation keeps its form in the GLM theory, while
it adds the mean contribution of the velocity fluctuations to the total vorticity defined
in (A.24).

Local Potential Vorticity Conservation for GLM Boussinesq Stratified Fluid

Invariance of the Lagrangian under diffeomorphisms (interpreted physically as
Lagrangian particle relabeling) implies the local conservation law for EP potential
vorticity,

DL

Dt
qL = 0, where qL = 1

D̃
∇b

L · curl
( 1

D̃

δ�

δuL

)
.
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For the GLM case, the potential vorticity is given explicitly as

qL = 1

D̃
∇b

L · curl
(

uL − v + R
L
(x)
)
.

The EP framework explains the relation of the potential vorticity to the Kelvin
circulation theorem. However, there remains the question of the evolution of the pseu-
dovelocity, v.

Fluctuation Equations

Hamilton’s principle for the Lagrangian mean variables {uL , D̃, b
L} has already been

calculated in Eq. (A.8).We now apply Hamilton’s principle for the fluctuation variable
ξ k using the original Lagrangian �(uξ , Dξ , bξ , ξ, ∂tξ) in Eq. (A.1).

0 = δS = δ

∫ T

0
�(uL , D̃, b

L
, ξ, ∂tξ) dt .

The result for the momentum density �k canonically conjugate to ξ k is

�k := δ�

δ(∂tξ k)
= D̃

(DLξk

Dt
+ Rk(xξ )

)
= D̃

(
u�
k + Rξ

k

)
. (A.27)

Wave action density To introduce the wave action density N and explain how it is
related to the GLM pseudomomentum density, p, we take the Eulerian mean of the
following pre-canonical transformation,

p · dx = −�k∇ξ k · dx = −� · dξ .

If ξ and π are averaged over a phase parameter, φ, we may write the phase-averaged
differential relation as

p · dx = −� · dξ = −�k∂φξ k dφ = Ndφ = Nk · dx,

where the wavevector k is defined by dφ = ∇φ · dx = k · dx and the wave action
density N is given by

N = −�k∂φξ k .

Thus, the wave action density N = −�k∂φξ k is related to the GLM pseudomo-
mentum by p = Nk.

For the WKB wavepacket

ξ(x, t) = 1
2 (a(x, t)eiφ(x,t)/ε + a∗(x, t)e−iφ(x,t)/ε),
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one finds the formula for constant Coriolis parameter 2�, (Gjaja and Holm 1996),

N

D̃
= −

[DLξ

Dt
+ (� × ξ)

]
· ∂φξ = −

[
(u� + R�)

]
· ∂φξ

= 2ω̃|a|2 + 2i� · a × a∗ + 2�
(

a · D
La∗

Dt

)
, (A.28)

in which the quantity

ω̃ = −DLφ/Dt = ω − k · uL

is the Doppler-shifted wave frequency. As a result of the symmetry under translations
in φ induced by phase-averaging the Lagrangian, the corresponding Euler–Lagrange
equation implies the conservation law,

0 = − ∂

∂t

∂L

∂(∂tφ)
− div

∂L

∂(∇φ)
= ∂

∂t

∂L

∂ω
− div

∂L

∂k
= ∂N

∂t

+ ∂

∂x j

(
N
(
uL j + (pξ K j

i ∂φξ i
)) )

, (A.29)

upon using the variational derivatives in equation (A.8). Andrews and McIntyre
(1978b) obtain the same conservation law by directly manipulating the GLM motion
equation. This is also Noether’s theorem for symmetry of the Lagrangian under phase
shifts. For more discussion from a variational viewpoint in the case that the fluctua-
tions are single-frequency wave packets with slowly varying envelopes, see also Gjaja
and Holm (1996). Of course, Noether’s theorem always applies in averaging Hamil-
ton’s principle, since such averaging always produces a continuous symmetry of the
Lagrangian. In general, Noether’s theorem implies the following about the relation
of averaging to local conservation laws, (Hayes 1970; Andrews and McIntyre 1978b;
Holm 2002a, b).

Lemma A.5 When Lagrangian averaging introduces an ignorable coordinate in fluid
dynamics, the average of the corresponding canonically conjugate momentum is
locally conserved; that is, the corresponding quantity is conserved in a shifted frame
of motion relative to Lagrangian fluid parcels.

In this case, the locally conserved quantity is the wave action density N in (A.28),
which is the phase-averaged quantity (momentum map) whose canonical Poisson
bracket generates phase shifts. The spatial integral over the domain of. flow

∫
D N d3x

is conserved globally, for appropriate boundary conditions.

We interpret Eq. (A.29) as local conservation of wave action N , as transported by
the sum of the mean material velocity and the relative group velocity vG , defined by

v
j
G := (pξ K j

i ∂φξ i ) (A.30)

so that
∂N

∂t
+ div

(
N (uL + vG)

) = 0. (A.31)
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Pseudomomentum dynamics: Hamiltonian formulation It remains to determine the
dynamical equation for the pseudomomentum p. For this, we shall pass to the Hamil-
tonian side via the following Legendre transform,

H(m, N , p, D̃, b
L ;ω, k, vG)

=
∫

m · uL + Nω + (p − Nk) · (uL + vG) d3x − �(uL , D̃, b
L
, ξ, ∂tξ)

=
∫ [

1

2D̃

∣∣m + p − D̃R
L ∣∣2 + p · vG + N

(
ω − k · (uL + vG)

)

+ D̃
(
pL + gzb

L + �
L
(x)
)

− D̃
(1
2
|u�|2 + u� · R�

)

−
(
pξJ

)
−
(
� · (∂tξ + (uL · ∇)ξ − u�)

) ]
d3x (A.32)

We do not vary H with respect to the parameters ω, k and vG . The term (p−Nk) ·vG
vanishes for arbitrary vG , as a consequence of the variation in uL . Moreover, the
expected ‘wave conservation relation’ ∂tk = −∇ω will follow as a result of the other
dynamical equations. We note that the constraints on the averaged Lagrangian � will
still apply for the Hamiltonian, since they are not Legendre transformed. We may now
compute the variations of the Hamiltonian as

δH =
∫

uL · δm + (D̃ gz) δb
L + �tot δ D̃ + δN

(
ω − k · (uL + vG)

)

+ δp · (uL + vG) + (p − Nk) · δuL d3x, (A.33)

where �tot is given by

�tot = δH

δ D̃
=
(
pL + gzb

L + �
L
(x)
)

−
(1
2
|u�|2 + u� · R�

)
=: �

L + π�.

(A.34)

Vanishing of the other variations of the averaged Lagrangian � in (A.32) still enforces
the constraints (A.9) since the corresponding variableswere not Legendre transformed.

Wave component We now write the equations of motion for the pseudomomentum
density and wave action density in Lie–Poisson form, following the lead of Gjaja and
Holm (1996)

∂ p j

∂t
= {

p j , H
} = − (pk∂ j + ∂k p j )

δH

δ pk
− N∂ j

δH

δN

= − (pk∂ j + ∂k p j )
(
uL k + vkG

)− N∂ j
(
ω − k · (uL + vG)

)
,

∂N

∂t
= {

N , H
} = − ∂k

(
N

δH

δ pk

)
= − ∂k

(
N
(
uL k + vkG

))
, (A.35)
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in which we have used the relations,

δH

δ p j
= uL j + v

j
G ,

δH

δN
= ω − ki (u

L i + viG),

and we can may choose v
j
G = (pξ K j

i ∂φξ i
i
) to agree with the definition in (A.30).

Remark A.6 (Wave conservation) Note that Eq. (A.35) and the relation p = Nk imply
the wave conservation relation ∂tk = −∇ω.

Lie–Poisson Hamiltonian structure The wave field’s semidirect-product Lie–
PoissonHamiltonian structuremay be revealed by its Poisson operator, given inmatrix
form by

∂t

[
p j
N

]
= −

[
pk∂ j + ∂k p j N∂ j

∂k N 0

] [
δH/δ pk = uL k + vkG

δH/δN = ω − ki (uL i + viG)

]
. (A.36)

Expanding out the matrix product yields the Lie–Poisson bracket between two func-
tionals F and H as,

d

dt
F(p, N ) =

{
F, H

}
= −

∫ [
δF/δ p j
δF/δN

]T [pk∂ j + ∂k p j N∂ j

∂k N 0

] [
δH/δ pk
δH/δN

]
d3x

= −
∫

δF

δ p j

(
(pk∂ j + ∂k p j )

δH

δ pk
+ N∂ j

δH

δN

)

+ δF

δN

(
∂k N

) δH

δ pk
d3x . (A.37)

The Lie-Poisson bracket in Eq. (A.37) is defined on the dual of the semidirect-
product Lie algebra X�
0 of vector fields X ∈ X(M) and functions f ∈ 
0(M) on
the domain of flow, M . The corresponding Lie algebra commutator is given by

[
(X , f ), (X , f )

] = ([X , X ], X( f ) − X( f )
)
, (A.38)

where [X , X ] is the commutator of vector fields and X( f ) is the Lie derivative of
vector fields acting on functions. The dual coordinates are: the pseudomomentum 1-
form density, p = p · dx ⊗ d3x , dual to vector fields; and the wave action density,
Nd3x , dual to functions. Thus, the Lie–Poisson bracket in Eq. (A.37) may be written
as

{
F, H

}
(p, N ) =

〈
(p, N ) ,

[(
δF

δ p
,

δF

δN

)
,

(
δH

δ p
,

δH

δN

)]〉

X,V

=
〈
p ,

[
δF

δ p
,

δH

δ p

]〉

X

+
〈
L δF

δ p
N ,

δH

δN

〉

V
−
〈
L δH

δ p
N ,

δF

δN

〉

V
.

(A.39)
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In other standard notation (Holm et al. 1998), this is

{
F, H

}
(p, N ) = −

〈
p , ad δH

δ p

δF

δ p

〉

X

+
〈
L δF

δ p
N ,

δH

δN

〉

V
−
〈
L δH

δ p
N ,

δF

δN

〉

V

= −
〈
ad∗

δH
δ p

p ,
δF

δ p

〉

X

−
〈
δH

δN
� N ,

δF

δ p

〉

X

−
〈
L δH

δ p
N ,

δF

δN

〉

V
.

(A.40)

The corresponding forms of their equations of motion in (A.35) when written in
terms of Lie derivatives are

(
∂t + L(uL+vG )

)(
p · dx ⊗ d3x

) = −(N d3x
)
d
(
ω − ki (u

L i + viG)
)
,

(
∂t + L(uL+vG )

)(
N d3x

) = 0. (A.41)

Thus, the pseudomomentum density and the wave action density are both transported
by the sum of the Lagrangian mean velocity and the group velocity.

Material componentThe semidirect-product Lie–Poisson bracket for the fluidmate-
rial component of the flow is also revealed by the matrix form of its Poisson operator,

∂t

⎡
⎣
m j

D̃

b
L

⎤
⎦ = −

⎡
⎢⎣
mk∂ j + ∂km j D̃∂ j − b

L
, j

∂k D̃ 0 0

b
L
,k 0 0

⎤
⎥⎦

⎡
⎢⎣

δH/δmk = uLk

δH/δ D̃ = �tot

δH/δb
L = D̃ gz

⎤
⎥⎦ . (A.42)

The corresponding Lie–Poisson bracket between two functionals F and H of

{m, D̃, b
L} may be expanded and written in analogy to Eq. (A.37). The Lie–Poisson

bracket for the motion equations of the fluid component in (A.42) is defined on the
dual of the semidirect-product Lie algebraX�(
0 ⊗
3) of vector fields, X ∈ X(M),
acting on the direct sum of functions f ∈ 
0(M) and densities D ∈ 
3(M) on the
three=dimensional domain of flow, M , The dual coordinates are: the 1-form density,
m = m · dx ⊗ d3x , dual to vector fields; the advected density, a1 = D̃ d3x , dual to

functions; and the advected scalar function, a2 = b
L
, dual to densities.

This means that the Lie-Poisson bracket in Eq. (A.42) may be written as

{
F, H

}
(m, a1, a2) =

2∑
i=1

〈
(m, ai ) ,

[(
δF

δm
,

δF

δai

)
,

(
δH

δm
,

δH

δai

)]〉

X,V

=
〈
m ,

[
δF

δm
,

δH

δm

]〉

X

+
2∑

i=1

(〈
L δF

δm
ai ,

δH

δai

〉

V
−
〈
L δH

δm
ai ,

δF

δai

〉

V

)
. (A.43)
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The corresponding forms of the fluid equations in (A.42) may then be written in terms
of Lie derivatives are

(
∂t + LuL

)(
m · dx ⊗ d3x

) = −(D̃ d3x
)
d�tot +

(
D̃ d3x

)
gz db

L
,(

∂t + LuL
)(
D̃ d3x

) = 0,
(
∂t + LuL

)
b
L = 0. (A.44)

Thus, the particle momentum density, mass density and buoyancy are all transported
by the same Lagrangian mean velocity.

The geometric similarities pervading the equations for the dynamics of the wave
and material components of the WCI system argues that it should be treated as a two-
fluid system, e.g., as for HeII. If so, then one should note that, just as for HeII, the two
fluids interpenetrate one another, since thewave andmaterial properties are transported
at different velocities. The material component of the GLM fluid is transported at
the Lagrangian mean velocity, uL , while the wave component of the GLM fluid is
transported at the sum of velocities, uL + vG .

The Lie–Poisson bracket for the WCI system is the sum of two Lie–Poisson brack-
ets. That is, the Lie–Poisson bracket for WWCI is dual to the direct-sum Lie algebra

G = X�
0 ⊕ X�(
0 ⊗ 
3), (A.45)

whose dual coordinates have been identified in detail above.Thedirect-sumLie algebra
structure in (A.45) means that the Lie–Poisson brackets among the wave quantities in
(A.37) and material quantities in (A.42) all vanish. However, as we saw in Eq. (A.15),

the fluidmotion equation for the combinedmomentum densitym = D̃(uL+R
L
(x))−

pwill also be affected by the wave pseudomomentum p equation, via a type of Lorentz
force reminiscent of the ‘vortex force’ in the Craik–Leibovich theory, except that the
Stokes mean drift velocity uS in the CL theory will be replaced by the pseudovelocity
v = p/D̃ in Eq. (A.11). The corresponding Lie–Poisson structure can be obtained by
a linear change of variables.
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