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Abstract
Wecompare one-dimensional representations for the isotopy stable dynamics of home-
omorphisms in two dimensions. We consider the skeleton graph representative, which
captures periodic behaviour, and the homotopy graph representative which captures
homo-/heteroclinic behaviour. The main result of this paper is to show that the dual to
the skeleton graph representative is the homotopy graph representative of the inverse
map. This gives a strong link between different methods for computing the dynamics.

Keywords Homoclinic/heteroclinic tangles · Train tracks · Symbolic dynamics ·
Homotopy lobe dynamics · Dual graph · Fixed-point theory

Mathematics Subject Classification 37E30 · 37B10 · 37C27 · 37E25

1 Introduction

Homoclinic tangles were first observed by Poincaré (1890) in his treatise on celes-
tial mechanics, from which he concluded that the dynamics was non-integrable and
extremely complicated. For low-dimensional (such as two-dimensional discrete-time)
systems, it turns out that detailed information about the behaviour in terms of sym-
bolic dynamics and topological entropy can be calculated. This information is useful
in studying properties of fluid mixing (Boyland et al. 2000, 2003; Finn et al. 2006;
Finn and Thiffeault 2011; Stremler et al. 2011; Sattari et al. 2016), ionisation of
hydrogen (Mitchell et al. 2004a, b; Mitchell and Delos 2007; Mitchell 2012a), opti-
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cally injected semiconductor lasers (Collins and Krauskopf 2002), and many other
applications.

In this paper we study the topological dynamics of surface diffeomorphisms with
homoclinic and heteroclinic tangles. Since tangles contain an infinite amount of combi-
natorial information, we study finite pieces of the stable and unstablemanifolds, which
together form a trellis for the diffeomorphism. Other approaches consider homoclinic
orbits as the fundamental starting point, such as Hulme (2000) and Boyland and Hall
(1999).

The topological approximation method of Rom-Kedar constructed symbolic
dynamics in the form of rectangular strips in the trellis (Rom-Kedar 1990; Rom-Kedar
and Wiggins 1990; Wiggins et al. 1990; Rom-Kedar 1994). The theory of homotopic
lobe dynamics (Mitchell et al. 2003; Mitchell and Delos 2006; Mitchell 2009, 2012b),
which was developed independently, refines the information obtained by the topolog-
ical approximation method by obtaining a minimal symbolic description for networks
of tangles of arbitrary complexity.

In an alternative approach, the theory of trellises (Collins 2004, 2005) finds optimal
bounds for the topological entropy and symbolic dynamics by finding periodic orbits
using a form of Nielsen periodic point theory. The main step is to compute a one-
dimensional representation of the dynamics, called the skeleton graph map.

The main aim of this paper is to show that the “homotopy dynamics” approach
based on curves (or strips) is dual to the approach based on skeleton graphs. The
main contribution of the paper is to formalise the duality relationship between the
homotopy graph and the skeleton graph of the inverse map. This gives a new algorithm
for computing the skeleton graph by first computing homotopy graphs, which avoids
the use of the Bestvina–Handel algorithm.We illustrate the concepts by two examples,
both of which occur in the Hénon family.

The paper is organised as follows. In Sect. 2, we introduce trellises, and technical
preliminaries on homotopies and surface-embedded graphs. In Sect. 3 we introduce
the homotopy dynamics and skeleton dynamics, two ways of describing the dynamics
forced by a trellis. In Sect. 4, we describe the duality relationships between the skeleton
and homotopy dynamics. We give some conclusions in Sect. 5.

2 Preliminaries

2.1 Trellises

Let f be a diffeomorphism of a two-dimensional surface M and P an invariant set
of periodic saddle points of f . Then by the stable manifold theorem (Katok and
Hasselblatt 1995), the unstable and stablemanifoldsWU andWS of P are each disjoint
unions of immersed curves in M . An intersection of WU and WS is a homoclinic or
heteroclinic point to P , depending on whether the intersection connects the same or
different points in P . Since the curves WU and WS are immersed curves, typically of
infinite length, they cannot be numerically computed in their entirety and are difficult
to analyse completely. Instead, we consider finite length pieces of WU and WS .
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Fig. 1 The trellis T3. The point
p is a saddle fixed point, and the
bold (blue) and thin (red) curves
are the stable and unstable
manifolds, respectively. The
points qi (exes) are homoclinic
intersection points on the same
orbit. The points r and r ′ are
pseudoneighbours (open dots)
and are the vertices of a shaded
inner bigon. The regions R0 and
R1 must contain chaotic
dynamics (Color figure online)
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Following Collins (2004), we say that a pair T = (TU , T S) with TU ⊂ WU and
T S ⊂ WS is a trellis for f if TU and T S are of finite length and if f (TU ) ⊃ TU and
f (T S) ⊂ T S . Figure 1 shows an example trellis. A point q ∈ TU ∩ T S is a (trellis)
intersection of T . If T = (TU , T S) is a trellis for f , then T−1 = (T S, TU ) is a trellis
for f −1. A closed interval TU [q1, q2] in TU with endpoints, but no interior points, in
T S is called a segment of TU ; segments of T S are defined analogously. The closure
of a connected component of M \ (TU ∪ T S) is a region of T . A region is a bigon
if its boundary consists of one unstable and one stable segment, and a rectangle if its
boundary consists of two unstable and two stable segments, with interior angles less
than 180◦. We define X to be the set

⋃
n∈Z f n(TU ∩T S). An inner bigon is a bigon B

such that #(B ∩ X) = 2. The vertices of an inner bigon are called pseudoneighbours.
Given a trellis T = (TU , T S), we can cut along the unstable curve(s) to obtain a

new surfaceCUM . Formally, cutting consists of removing each component of TU inM
and replacing it by a topological circle. This circle is topologically partitioned into two
arcs, each of which is a copy of the component of TU that was removed. Informally,
the result is what one would obtain by cutting along an arc drawn on a piece of paper.
Topological details of the construction are discussed in Collins (2004). The stable
curve(s) T S in M lift to the arcs CUT S ⊂ CUM . (An arc is a non-self-intersecting
curve that begins and ends on the boundary, but otherwise does not intersect the
boundary.) The surface diffeomorphism f lifts to a map CU f : CUM → CUM .
Since T S is forward-invariant under f , the lifted stable arcs are invariant under the
lift of f , i.e. CU f (CUT S) ⊂ CUT S . Alternatively, we can cut along the stable curves
to obtain CSM with unstable arcs CSTU ⊂ CSM . The inverse map f −1 lifts to the
map CS f −1 : CSM → CSM , which leaves the lifted unstable arcs invariant, i.e.
CS f −1(CSTU ) ⊂ CSTU .

Wehenceforthmake the following assumptions onour trellises,which shall simplify
the duality result Theorem 4.4.

Assumption 2.1 (i) The surface M is the 2-sphere S2.1

(ii) The trellis T is connected, i.e. TU ∪ T S is a connected set.

1 In applications M is often a topological disc; assuming the boundary of the disc maps to itself with trivial
winding, this case reduces to the case M = S2 via a one-point compactification.
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(iii) The endpoints of TU and T S are trellis intersections, ∂TU ∪ ∂T S ⊂ TU ∩ T S .
(iv) The curves TU and T S are (topologically) transverse at all intersections except

the endpoints ∂TU ∪ ∂T S .
(v) The preimage of ∂TU and the image of ∂T S are trellis intersections, equivalently

∂T S ⊂ f −1(TU ) and ∂TU ⊂ f (T S).

2.2 Curves and Homotopies

Our main way of studying trellises is via curves embedded in the surfaces M , CSM ,
and CUM . A (directed) curve in a general surface X is a continuous map γ : I → X ,
where I = [0, 1] is the unit interval. The initial and final endpoints of γ are the points
γ (0) and γ (1), respectively. A curve in X rel Y , where Y ⊂ X is one-dimensional, is
a continuous map α : I → X such that α({0, 1}) ⊂ Y . A multicurve in X rel Y is a
list of curves {α1, . . . , αm} rel Y . A curve in X rel Y is exact, denoted α : I � X rel
Y , if the curve only intersects Y at its endpoints, i.e. α(I \ {0, 1}) ⊂ X \ Y . The exact
version rel Y of a curve α : I → X is the multicurve {α1, . . . , αm}, where each exact
αi : I → X rel Y is obtained by cutting α along the set Y , and the concatenation of
the αi ’s returns the curve α.

For two curves α0 and α1 in a surface X rel Y , a homotopy rel Y between α0 and
α1 is a continuous map α∗ : I × I → X such that, for all s ∈ I , α∗(s, 0) = α0(s)
and α∗(s, 1) = α1(s), and such that, for all t ∈ I , α∗(0, t), α∗(1, t) ∈ Y . We typically
denote such a homotopy as αt defined by αt (s) = α∗(s, t). The equivalence class, or
homotopy class, of all curves I → X homotopic to α rel Y is denoted [α].

As usual, assuming Y is simply connected, we define the product of homotopy
classes in X rel Y in terms of the catenation of curves. For two curves α : I → X and
β : I → X , for which α(1) and β(0) lie on the same pathwise-connected component
of Y , the product [α] · [β] is the homotopy class [γ ] of the curve γ : I → X obtained
by concatenating α, δ, and β, where δ is an arbitrary curve within Y joining α(1) to
β(0). An explicit parameterisation of γ is given by:

γ (s) =

⎧
⎪⎨

⎪⎩

α(3s) 0 ≤ s ≤ 1/3,

δ(3s − 1) 1/3 ≤ s ≤ 2/3,

β(3s − 2) 2/3 ≤ s ≤ 1.

(1)

In general, the collection � of all homotopy classes [α] rel Y forms a groupoid
(Mackenzie 1987) under the homotopy product.

An arc α in a surface X is an injective curve with endpoints, but no other points,
in ∂X , i.e. α is an injective, exact curve in X rel ∂X . A homotopy between arcs is an
isotopy if each curve αt is injective, i.e. an arc. If arcs α0 and α1 are homotopic in S2

or D2, then α0 and α1 are isotopic (Feustel 1966).
We recall that an isotopy of a topological space X is a function h : X× I → X such

that each ht = h(·, t) is a homeomorphism, and an isotopy of the identity is an isotopy
such that h0 = id.We say arcsα0 andα1 in X are ambient isotopic if there is an isotopy
of the identity h : X × I → X such that αt = ht ◦ α0 is a homotopy between α0
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Fig. 2 Pulling tight a multiarc (Color figure online)

and α1. Clearly, arcs which are ambient isotopic are isotopic. By the isotopy extension
theorem (Hirsch 1976), any isotopy αt extends to an ambient isotopy.

A multiarc in X is a list of mutually disjoint arcs {α1, . . . , αm}. The above results
on isotopies of arcs extend easily to multiarcs.

Definition 2.2 (Minimal position/tight) Let X be a surface with boundary and
{α1, . . . , αm} and {β1, . . . , βn} multiarcs in X . Then ({αi }, {β j }) are in minimal posi-
tion, or tight, if all intersections of any αi with any β j are topologically transverse and
form no bigons, i.e. topological discs bounded by a sub-arc of some αi and a sub-arc
of some β j .

We now give some results about homotopies and minimal position of multiarcs.
Similar results can be found in Collins (2004) and Farb and Margalit (2011). The case
where X is a topological disc is straightforward, and the case where X has higher
genus can be proved by passing to the universal cover.

Lemma 2.3 (Pulling tight)Let {α1, . . . , αm} and {β1, . . . , βn} bemultiarcs in a surface
X with boundary ∂X. Then {αi } is ambient isotopic to a multiarc {α̃i } in minimal
position with {β j }.
Proof We directly construct the isotopy h : X × I → X of the identity such that
αi,t = ht ◦ αi satisfies αi,0 = αi and αi,1 = α̃i for all i = 1, . . . ,m. Over the interval
0 ≤ t ≤ 1/2, we employ local isotopies near non-transverse crossings to ensure that
all crossings of {αi,t } with the {β j } are transverse when t = 1/2. Over the interval
1/2 ≤ t ≤ 1, we then successively reduce the number of intersections by isotopies
supported in small neighbourhoods of discs bounded by a sub-arc of some αi,t and
some β j . In this manner, all bigons are removed, and the multiarcs {αi,1} and {β j } are
tight. �
An example of pulling tight is shown in Fig. 2

The following lemma shows that if the multiarcs {αi } and {β j } are in minimal
position, then the number of intersections of any αi with the β j is minimal, and the
relative ordering of the intersections is well defined.

Lemma 2.4 (Essentialness of the intersections of tight multiarcs) Suppose {α1, . . . ,

αm} and {β1, . . . , βn} are multiarcs in minimal position. Consider an arbitrary i ,
and suppose there are � intersections between αi and the {β1, . . . , βn}. Let si,1 <

si,2 < · · · < si,� denote the parameters of the intersection points, i.e. for each k =
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1, . . . , �, αi (si,k) ∈ β jk (I ), for some jk and αi (s) /∈ β j (I ) for all s �= s1, . . . , s�
and j = 1, . . . , n. Suppose α̃i is homotopic to αi . Then there exist parameters s̃i,1 <

s̃i,2 < · · · < s̃i,� such that α̃i (s̃i,k) ∈ β jk (I ) for all k. That is, there is a subset of the
intersections between α̃i and {β1, . . . , βn} that occur in the same order and with the
same β j ’s as αi .

Proof The proof is a modification of that for Lemma 2.3. After the initial phase of
making all intersections non-degenerate, the pulling-tight procedure can be performed
by successively removing adjacent pairs of intersections and without introducing new
intersections. Since all pulling tight removes bigons, the remaining intersections retain
the same relative ordering regardless of how the pulling tight is performed. �
We say the intersections of a tight multiarc of {[α1], . . . , [αm]} with {β1, . . . , βn} are
the essential or forced intersections of the [αi ] with the β j .

Finally, we show that the minimal position is unique up to topological conjugacy.

Lemma 2.5 (Topological conjugacy of tight multiarcs) Suppose ({α1, . . . , αm},
{β1, . . . , βn}) and ({α̃1, . . . , α̃m}, {β̃1, . . . , β̃n}) are both tight multiarc representa-
tives of the same homotopy classes. Then there is a homeomorphism h of X such that
h ◦ αi equals α̃i , up to reparameterisation of the multiarcs, for all i = 1, . . . ,m and
h ◦ β j equals β̃ j , up to reparameterisation, for all j = 1, . . . , n.

Proof We first define a homeomorphism h1 taking the β j to β̃ j , for all j = 1, . . . , n.
We then define a homeomorphism h2 that preserves the multiarcs β̃ j and that takes
intersections of the h1 ◦ αi with the β̃ j to those of the α̃i with β̃ j , for all i and j ;
the homeomorphism h2 exists since the ordering of the intersections between β̃ j and
h1 ◦ αi is the same as those between β̃ j and α̃i (Lemma 2.4). We finally define a
homeomorphism h3 that leaves all points in the multiarcs β̃ j invariant and also takes
h2 ◦h1 ◦αi to α̃i ; the homeomorphism h3 exists since the two multiarcs are homotopic
in the surface obtained by cutting along the β̃ j ’s. The homeomorphism h = h3◦h2◦h1
then satisfies the requirements of the lemma. �

Similar to the case above, we now define the notion of a multiarc being in minimal
position, or tight, with respect to a collection of mutually disjoint trees. We say a
multitree is a collection {t1, . . . , tn} of mutually disjoint trees embedded in X with
endpoints attached to the boundary of X .

Definition 2.6 (Minimal position/tight for trees) Let X be a surface with boundary,
and {t1, . . . , tn} a multitree in X . Let {α1, . . . , αm} be a multiarc in X . Then the {αi }
are in minimal position, or tight, with respect to the t j ’s if all intersections of any αi

with any t j are topologically transverse and if there are no discs bounded by a sub-arc
of some αi and a sub-arc of

⋃n
j=1 t j .

Unlike the prior case in Definition 2.2, it is not always possible to pull the arcs αi tight
with respect to the t j ’s. Figure 3 shows both the cases in which an arc cannot be pulled
tight and in which an arc can. However, if each αi can be pulled tight with respect to
each tree t j (which on the disc is equivalent to αi crossing each t j at most once), then
the natural extension of Lemmas 2.3 and 2.5 hold.
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(b)(a)

α

α̃

α1

α0

Fig. 3 Pulling tight arcs relative to a tree. a The homotopic arcs α0 and α1 cannot be pulled tight. b The
arc α can be pulled tight into α̃ (Color figure online)

Lemma 2.7 Let X be a surface with boundary, {t1, . . . , tn} a multitree in X, and
{α1, . . . , αm} a multiarc in X. Suppose each αi is homotopic to an arc which is in
minimal position with respect to each tree t j . Then {αi } is ambient isotopic to a
multiarc {α̃i } in minimal position with {t j }.
Proof Notice that pulling tight either involves removing apair of adjacent intersections,
or combining a pair of intersections by pushing them over a vertex. This can be
performed successively as in the proof of Lemma 2.3. �
Lemma 2.8 Suppose {α1, . . . , αm} and {α̃1, . . . , α̃m}, are both tight multiarc repre-
sentatives of the same homotopy classes with respect to the multitree {t1, . . . , tn}. Then
there is a homeomorphism h of X such that h ◦αi equals α̃i , up to reparameterisation
of the multiarcs, for all i = 1, . . . ,m.

Proof The relative ordering of the intersections of the {αi } with the {t j } in minimal
position is unique, following a similar argument to that used for Lemma 2.4. Existence
of the homeomorphism then follows from the argument for Lemma 2.5. �

2.3 Surface-embedded graphs

We now give a brief overview of the use of graphmaps in surface dynamics. Self-maps
of surface-embedded graphs with a differentiable structure (known as train-tracks)
were used in Thurston (1988) to represent the dynamics of pseudo-Anosov surface
homeomorphisms, and in the proof of Thurston’s classification theorem by Bestvina
and Handel (1995). We will view a graph both as a combinatorial object and as a
topological object.

Combinatorially, a graphG is a pair (V , E), where V is a finite set of vertices and E
is a finite set of undirected edges, each of which has two directed versions. The reverse
of a directed edge e is denoted ē. The initial vertex of a directed edge e is denoted ı(e).
An edge-path ε is a list of directed edges e1e2 · · · ek such that ı(ēi ) = ı(ei+1) for all
i = 1, . . . , k − 1. The reverse of the edge-path ε is ε̄ = ēk ēk−1 · · · ē1. The edge-path
ε is a loop if ı(e1) = ı(ēk). The edge-path ε is said to back-track if it has a sub-string
· · · eē · · · for some directed edge e.

Topologically, a graph is a one-dimensional CW (closure-finite in the weak topol-
ogy) complex, and maps between graphs are continuous functions mapping vertices
to vertices. We will be interested in graphs embedded in an oriented surface M , which
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Fig. 4 A skeleton graph G of
the cut surface CU M (Color
figure online)
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may have punctures or boundary components. A face of a graph G embedded in a
surface M is a component of M \ G.

We say a surface-embedded graphG is a skeleton graph ifG is a deformation-retract
of M via a deformation retraction r : M → G, or equivalently, if every component of
M \ G is a topological annulus with one boundary component in G and one in ∂M .
(See Fig. 4.) If G is a skeleton graph in M , then any closed curve α in M is homotopic
to a closed edge-path in G, and this path is unique (up to cyclic permutation of edges)
if it does not back-track.

For a surface-embedded graph G, a surface embedding of a self-map g : G → G
is an embedding ĝ : G → Ĝ, where Ĝ is a neighbourhood of G which deformation-
retracts onto G via a deformation retraction r : Ĝ → G such that g = r ◦ ĝ. (See
Fig. 5.) If G is a skeleton graph in M , f is a homeomorphism of M , and r : M → G
is a deformation-retraction, then g = r ◦ f |G is a self-map of G which is surface-
embeddable via the embedding f |G .

The embedding structure of a surface-embedded graph is given by the relation
� describing the (anticlockwise) cyclic ordering of outgoing-directed edges around
a vertex. We say that an edge-path ε = e1e2 · · · ek is peripheral if either for all i ,
ēi � ei+1 or for all i , ei+1 � ēi . The faces F of a surface-embedded graph correspond
to peripheral loops.

The dual of a surface-embedded graphG is a surface-embedded graphG∗ with one
vertex for each face of G, and one edge for each edge of G. For each directed edge
e of G, the dual (directed) edge e∗ crosses e once, transversely and such that (e, e∗)
defines a positively oriented frame. The cyclic ordering of outgoing-directed edges
around a vertex of G∗ is given by e∗

i �e∗
j if ē j �ei . The dual G∗∗ of G∗ is canonically

isomorphic to G.
If G is the skeleton graph of a surface M with boundary, then each face of G is an

annulus and the vertex of G∗ corresponding to the face may be identified with that
part of the boundary of the annulus formed by ∂M . In this case, the edges of G∗ may
be realised as mutually disjoint arcs in M .
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g(b1)

g(z0) g(a)

g(v)
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Fig. 5 aA surface-embedded graph, which is a sub-graph of the graph of Fig. 4. The ordering at vertexw is
given by b̄1� b̄2� b̄3� b̄1. bA surface embedding of the graph map g is also shown, with g(z0) = g(z2) =
z0, g(z4) = z2, g(z6) = g(z8) = z4, g(a) = az̄8z6b1b̄2, g(b1) = b2, g(b2) = b3 and g(b3) = az̄8z6b.
The vertex w is fixed, g(w) = w, and g is not locally injective at vertex v (Color figure online)

Combinatorially, a graph map is a self-map of G specified by mapping each vertex
v to a vertex g(v), and each directed edge e to an edge-path g(e) such that ı(g(e)) =
g(ı(e)). Such a combinatorial graph map g is efficient if gn(e) does not back-track for
any edge e and any n > 0.

For a graph map g, the transition matrix A of g has components Ai j that count the
number of times g(e j ) contains the edge ei (in either direction). Since the matrix A
consists of positive integer elements, its maximal eigenvalue λ is strictly positive and
has positive left and right eigenvectors; log λ is the entropy of g. The left eigenvector l
gives the length of each edge, and the right eigenvectorw gives thewidth of each edge.
An edge is infinitesimal if it has zero length or width. We say g is weakly irreducible
if w is the only positive (right) eigenvector of A whose eigenvalue is not 1.

We often wish to simplify the representation of a graph map. The most important
way of doing this is by combining edges. Suppose there are edges e1 and e2 such
that ē1 and e2 are the only incident edges at some vertex v. Suppose further that no
other vertex maps to v. Then whenever e1 or e2 occurs in an edge-path α = g(a),
they occur together, either as e1e2 or as ē2ē1. We can then simplify the graph map
by eliminating vertex v and combining e1 and e2 into a single edge e. We denote this
transformation symbolically by e = e1e2. It is easy to show that if g1 and g2 are
related by combining edges, then the entropy of g1 and g2 are equal. We will also need
the inverse transformation, that of splitting edges. Finally, we can also simplify the
transition matrix by identifying and relabelling the edges. Suppose g(e1) = g(e2).
Then we can label both e1 and e2 by e, which we denote symbolically by e = e1 = e2.

2.4 Controlled graphs

In the following, we assume that T is a trellis of a map f : M → M , satisfying
Assumptions 2.1.

Definition 2.9 (Controlled graph) Let G be a graph embedded in M . Call the edges
of G that cross T control edges and those that do not cross T free edges. Then G is
a stable (unstable) controlled graph, relative to T , if there is a pairing between the
control edges of G and the unstable (stable) edges of T such that (i) Each control edge
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of G intersects T at exactly one unstable (stable) edge of T . (ii) Each unstable (stable)
edge of T intersects exactly one control edge of G. The free edges of G are said to be
of stable (unstable) type.

The tree in Fig. 3 and the skeleton graph in Fig. 4 are examples of controlled graphs
that we have already encountered.

Recall the construction of the dual of a surface-embedded graph from Sect. 2.3.
For the case of a controlled graph, such as the homotopy graph of a trellis, we make
some adjustments to the construction.

Definition 2.10 (Controlled dual graph) Let GU be an unstable controlled graph with
control edges CU crossing segments of T S and free edges EU . Then the controlled
dual graph (GU )

∗
is the standard dual graph of the graphwhose edges are the segments

of TU and the free edges EU and which is embedded in the surface M \ (T S ∪ CU ).
The controlled dual graph is a stable controlled graph whose control edges are those
crossing TU and whose free edges are those crossing EU . An analogous definition
applies for the dual (GS)∗ of a stable controlled graph GS .

An example of a controlled graph and its controlled dual is given in Fig. 12, which
will be discussed in detail in Sect. 3.3. The following algorithm explicitly constructs
the controlled dual.

Algorithm 2.11 The controlled dual graph (GU )∗ of GU is constructed by the fol-
lowing steps. The construction of the dual to a stable controlled graph GS is entirely
analogous.

(i) Assign a vertex for each component of M \ (TU ∪ T S ∪ GU ).
(ii) For every segmentU of TU , place a control edge z acrossU , joining the vertices

in the components of M \ (TU ∪ T S ∪ G) separated by U .
(iii) For every free edge eu of GU , place a free edge across eu , joining the vertices in

the components of M \ (TU ∪ T S ∪ G) separated by eu .

The following lemma shows that the construction merits the name “dual”.

Lemma 2.12 If G is a stable or unstable controlled graph, then (G∗)∗ is canonically
isomorphic to G.

Proof Immediate from the construction, since the control edges of (G∗)∗ are precisely
those of G and the free edges are the usual duals of the dual edges. �

We use the terminology spanning graph for a controlled graph all of whose vertices
are the endpoints of control edges. The following lemma shows that spanning graphs
and skeleton graphs are mutual duals.

Lemma 2.13 Suppose T is a trellis satisfying Assumptions 2.1 and G is either a stable
or unstable controlled graph.

(i) If G is a spanning graph, then G∗ is a skeleton graph.
(ii) If G is a skeleton graph, then G∗ is a spanning graph.

Proof (i) Assume G is spanning. In each region R of T , the restriction of G∗ to R
is simply connected, and hence a skeleton graph, since every vertex of G has a
controlled edge that prevents loops in G∗.
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(ii) Assume G is a skeleton graph. If G is of unstable type, then every component
F of M \ (TU ∪ T S ∪ G) contains a segment U of TU on its boundary. So the
vertex of G∗ within F is the endpoint of a control edge crossing U . The case of
a stable-type graph is analogous.

�
Definition 2.14 (Controlled graphmap) For an unstable controlled graphG, a surface-
embedded graph map g acting on G is called a controlled graph map if each control
edge z of G maps to a control edge g(z) such that if z crosses segment S of T S , then
g(z) crosses the segment S′ that contains f (S). A controlled graph map for a stable
controlled graph is defined analogously using the inverse map f −1.

Definition 2.15 (Optimal controlled graph map) A controlled graph map g : G → G
is said to be optimal if g is locally injective on the set of free edges.

3 Homotopy and Skeleton Dynamics

In this section we study trellises based on homotopy classes of curves joining stable
segments. This approach corresponds to the homotopic lobe dynamics of Mitchell
et al. (2003), Mitchell and Delos (2006), and Mitchell (2009, 2012b) and the strips
of Rom-Kedar (1994).

3.1 Dynamics on the Fundamental Groupoid

Given a trellis T in M , an unstable-type curve is a curve α in CUM rel CUT S , i.e. a
continuous map α : I → CUM , where I = [0, 1] and α({0, 1}) ⊂ CUT S . (Recall
Sects. 2.1 and 2.2.) Typically, we draw an unstable-type curve as a curve in M \ TU ,
which has the same homotopy class as CUM . By definition, α is exact if α only
intersects CUT S at the endpoints of α. We say that an unstable-type curve α crosses
CUT S if there is a topologically transverse crossing of α with CUT S ; this crossing
need not be at a point, but may contain an interval. For simplicity, we shall also say
that α crosses T S , where the cutting by TU is implicit.

We say two unstable-type curves α0, α1 : I → CUM are U-homotopic, denoted
α0 ∼u α1, if they are homotopic in CUM rel CUT S .2 Any unstable-type curve α :
I → CUM is homotopic to a tight representative α′ : I → CUM that has a minimum
number of intersections with CUT S . As discussed in Sect. 2.2, since CUT S is simply
connected, the catenation of curves leads to a well-defined product between classes
[α]u and [β]u ifα(1) andβ(0) lie on the same component ofCUT S . Under this product,
the collection ofU -homotopy classes�U forms a groupoid (Mackenzie 1987).A curve
is trivial if it is homotopic to a curve lying entirely in T S , and a homotopy class is
trivial if it contains a trivial curve; trivial classes play the role of identity elements in
�U . We shall denote trivial classes by [•]. As in Sect. 2.3, we use an overbar to denote
the reverse ᾱ of a curve α. The reverse of a curve corresponds to the groupoid inverse

2 InMitchell et al. (2003),Mitchell and Delos (2006), andMitchell (2009, 2012b), an alternative homotopy
structure is used in which holes are punched near pseudoneighbours, rather than along the entirety of TU .
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Fig. 6 Unstable-type curves α0, α1, α2, β1, β2, β3, γ0, γ1, δ, and ε. The curves α0, β1, β2, γ0, γ1, and
δ represent homotopy elements. The curve ε represents a trivial homotopy element. The curves γ0 and γ1
areU -homotopic, since the initial endpoint of γt can pass through the point q3. The homotopy classes map
f ([αi ]) = [αi+1] for i = 0, 1 and f ([βi ]) = [βi+1] for i = 1, 2. Note that α2 has six intersections with
T S (including endpoints), since although α2 is homotopic to the homotopy class β3 with four intersections,
the intersections of α2 with T S(q1, q2) are forced by the intersections of α1 with T S(q0, q1) (Color figure
online)

of the homotopy class, which we also denote by an overbar, i.e. [ᾱ]u = [α]u , where
[α]u[α]u = [•]. See Fig. 6 for an illustration of these concepts.

Since T S is forward-invariant and TU is backward-invariant, the image of an
unstable-type curve α : I → CUM is also an unstable-type curve. We thus define the
homotopy image f ([α]u) = [ f ◦ α]u . Clearly, f (ab) = f (a) f (b) and f (ā) = f (a),
for any homotopy classes a and b. Thus, f is a groupoid homomorphism. However, f
is not a groupoid isomorphism, since f (a) may equal a trivial class, for some a. (See
discussion of inert classes below.)

An atomic class is the homotopy class of a non-trivial exact curve α : I � CUM .
An atomic class is a segment class if it contains a segment of TU . (Note that the
segment classes generate all of �U .) An atomic class is a bridge class if it contains an
interval of the full unstable manifoldWU ; note that this interval itself may intersect T S

multiple times. An atomic class is inert if it becomes trivial under a sufficient number
of iterations. The inert classes form sequences u0, u1, . . ., which begin with an initial
class u0 and for which ui maps to ui+1. Eventually, for some n, all subsequent inert
classes in the sequence are trivial, un, un+1, un+2, . . . = [•].

Any non-trivial homotopy class [α]u can be written as a product of atomic classes;
there is a unique such productwith theminimumnumber of atomic classes.We call this
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Fig. 7 The a unstable and b stable bridge classes for the trellis T3 (Color figure online)

the concise product. If [α]u has concise product a1 . . . an , then a tight representative α

of [α]u is the concatenation of exact curves αi : I � CUM , i = 1, . . . , n, for which
[αi ]u = ai . Hence, α has exactly n + 1 intersections with T S (including endpoints),
and an arbitrary α′ ∈ [α]u has at least n + 1 intersections with T S . Thus, the concise
product of a homotopy class reveals the essential intersections with T S of an arbitrary
unstable-type curve in the class.

Of special importance is the concise product representative of the image f ([α]u) of
a bridge class [α]u ; clearly, this product consists of only bridge classes. This forms a
canonical presentation of the image of f on�U , referred to as the (concise) homotopy
action.

Example 3.1 The bridge classes in Fig. 7a yield the following homotopy action. For
simplicity, we drop the u-subscript on the homotopy classes.

f ([αu]) = [αu] · [γ u] · [βu
1 ], f ([βu

1 ]) = [βu
2 ], f ([βu

2 ]) = [βu
3 ],

f ([βu
3 ]) = [αu] · [γ u] · [βu

1 ] f ([γ u]) = [•], f ([δu]) = [αu] · [γ u] · [βu
1 ],

f ([εu1 ]) = [•], f ([εu2 ]) = [εu1 ], f ([εu3 ]) = [ε̄u1 ]. (2)

The entire unstable homotopy formalism for f can be translated into a stable homo-
topy formalism by using the map f −1 and the trellis (T S, TU ). Thus, a stable-type
curve α : I → CSM is a curve inCSM relCSTU . Such a curve has a stable homotopy
class [αs]s , with an inverse homotopy image f −1([αs]s) = [ f −1 ◦ αs]s . For simplic-
ity, we shall drop the s/u subscript on a homotopy class [ ]s/u when the stability
type of the curve inside the brackets is clear, e.g. [αs]s = [αs] and [αu]u = [αu], as
we have already done in (2).

Example 3.2 As an example of the stable homotopy action, the stable-type bridge
classes in Fig. 7b map as
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Fig. 8 The trellis T4, with a valence-4 region, showing the bridge classes for a the reduced unstable action
and b the reduced stable action (Color figure online)

f −1([αs]) = [αs] · [δs] · [βs
1], f −1([βs

1]) = [βs
2], f −1([βs

2]) = [βs
3],

f −1([βs
3]) = [αs] · [δs] · [βs

1], f −1([γ s]) = [αs] · [δs] · [βs
1],

f −1([δs]) = [•], f −1([εs1]) = [•], f −1([εs2]) = [εs1], f −1([εs3]) = [ε̄s1].
(3)

Example 3.3 Figure 8 shows a more complicated example of the homotopy action. All
the bridge classes are segment classes, except for γ u

5 (Fig. 8a) and γ s
3 (Fig. 8b). Note

that γ s
3 ∼s γ̄ s

1 γ̄ s
2 and γ s

3 ∼s γ̄ s
5 γ̄ s

4 . The stable-type bridge classes depicted in 8b map
as

f −1([αs]]) = [αs] · [ῑs1] · [εs], f −1([βs]) = [αs] · [ῑs1] · [εs], f −1([εs]) = [γ̄ s
4 ],

f −1([γ s
1 ]) = [βs] · [ῑs1] · [δs3], f −1([γ s

2 ]) = [γ s
1 ] · [ῑs3] · [δs2] · [ιs2] · [β̄s],

f −1([γ s
3 ]) = [δs1] · [ῑs3] · [γ̄ s

1 ], f −1([γ s
4 ]) = [γ̄ s

2 ], f −1([γ s
5 ]) = [γ̄ s

3 ] · [ιs3] · [δ̄s1],
f −1([δs1]) = [γ̄ s

3 ] · [ιs3] · [δ̄s1], f −1([δs2]) = [δs1] · [ῑs3] · [γ̄ s
5 ], f −1([δs3]) = [γ̄ s

4 ].
(4)

The homotopic approach is summarised by the following algorithm, which gener-
ates the concise homotopy action induced by a trellis.

Algorithm 3.4 (Construction of the homotopy action) For a diffeomorphism f with
trellis T , satisfying Assumptions 2.1, the following construction returns a set of bridge
classes HU and the map hu that takes a bridge class a ∈ HU and returns the string
of bridge classes hu(a) ∈ (HU )∗ representing the concise product for f (a). [Here
(HU )∗ is the space of strings drawn from HU .]
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(i) Determine all segment classes of TU , i.e. the set of unstable bridge classes that
contain a segment of TU , assigning to each class an arbitrary orientation. (Note
that each unstable segment of TU gives rise to two unstable homotopy classes in
CUM , one on each side of the cut.) Call the resulting set HU .

(ii) Remove from HU all trivial bridge classes and all duplicate undirected bridge
classes. (Note that trivial homotopy classes are exactly those lying in a bigon,
and duplicate classes are exactly those lying in a common rectangle.)

(iii) For each bridge class [α] ∈ HU , construct hu([α]) by applying f to α and
expressing [ f (α)] as the concise product.

(iv) Insert any new non-trivial bridge classes from the above concise products into
HU .

(v) Repeat from (iii) until no additional bridge classes are added.

These first five steps construct the full homotopy action. The recurrent homotopy
action includes the following additional step.

R Recursively remove any homotopy elements from HU which have no preimages
under hu .

Alternatively, the collapsed homotopy action includes the following additional step.

C Remove all inert classes from HU , that is those bridge classes that map to a trivial
class. Then, identify those bridge classes that only differ by an inert class, i.e. for
a given bridge class a, if either au, va, or vau were also a bridge class, for inert
classes u and v, then that class would be identified with a.

Either of steps R or C can be applied by itself, or they can be applied in combina-
tion, forming the recurrent collapsed homotopy action, or what we call the reduced
homotopy action, for short.

Note that step C can be viewed as passing to the groupoid quotient under the kernel
of f n , for a sufficiently large n. The induced action of f on the quotient groupoid
is then injective. Step R ensures that the resulting action is surjective. Applying both
steps R and C guarantees that the resulting action of f is a groupoid automorphism.

The following proposition summarises the properties of the homotopy action hu .

Proposition 3.5 Algorithm 3.4 constructs a set of homotopy classes HU = {[αu
1 ], . . . ,[αu

m]} and the presentation of a map hu : HU → (HU )∗ such that

(i) HU , defined for the full homotopy action, contains every bridge class.
(ii) It is possible to find exact representatives αu

i : I � CUM of all the bridge classes
such that the αu

i ’s are mutually disjoint. Each representative αu
i thus lies entirely

within a region Ri , uniquely associated with [αu
i ].

Writing hu([αu
i ]) = [βu

i,1] · [βu
i,2] · · · [βu

i,ki
], then for all indices j = 1, . . . , ki

(iii) βu
i, j (1) lies in the same segment of CUT S as βu

i, j+1(0).
(iv) βu

i, j and βu
i, j+1 lie in different regions of T .

(v) No βu
i, j is trivial.

Proof Immediate from the construction. �
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Algorithm 3.4 is a constructive method for computing symbolic dynamics that does
not rely on a Bestvina–Handel pruning-type algorithm. The homotopy action can be
used to show the existence of orbits of f . The following result is similar to that of
Rom-Kedar (1994).

Theorem 3.6 Suppose there is an infinite sequence of homotopy elements ([αu
0 ],[αu

1 ], . . .) in HU such that hu([αu
i ]) contains [αu

i+1] for all i . Let Ri be the region
containing [αu

i ] for all i . Then there is an orbit (x0, x1, . . .) of f such that xi ∈ Ri for
all i .

Proof We recursively construct a sequence of curves βu
i such that for all i ≥ 0: (i)

[βu
i ] = [αu

i ], (ii)βu
i ([0, 1]) ⊂ Ri , and (iii) f (βu

i ([0, 1]))∩R◦
i+1 ⊃ βu

i+1([0, 1])∩R◦
i+1,

where R◦
i denotes the interior of Ri . By Prop. 3.5, part (ii), we choose βu

0 ∈ [αu
0 ] so

that βu
0 lies entirely in the region R0. For a given i , assume we have chosen βu

j , j ≤ i ,
satisfying (i) – (iii). Since [αu

i+1] is an element of the concise description of f ([βu
i ]),

there is a segment δi+1 of f ◦ βu
i such that δi+1(0), δi+1(1) ∈ T S and δi+1 ∼u αu

i+1.
Since each component of M \ (TU ∪ T S) is simply connected by Assumption 2.1(i),
there is a curve βu

i+1 in Ri+1 homotopic to δi+1 such that δi+1(s) = βu
i+1(s)whenever

βu
i+1(s) ∈ R◦

i+1. This completes the inductive proof for the existence of the βu
i ’s.

By conditions (ii) and (iii), for any k ≥ 0, any point in βu
k ([0, 1]) that does not

lie in T S must equal f k(x) for some x ∈ βu
0 ([0, 1]), and further, for any i < k,

f i (x) ∈ βu
i ([0, 1]) ⊂ Ri . Hence, the set Ak = {x ∈ R0| f i (x) ∈ Ri ,∀i � k} is

non-empty. Since the sets Ak are also compact and nested (Ak+1 ⊂ Ak), they have a
non-empty intersection, which contains a point x such that f i (x) ∈ Ri for all i . �

Since the regions form a topological partition, and since all points on the stable
region-boundaries are asymptotically forward stable to each other and all points on
the unstable region-boundaries are asymptotically backward stable, we can deduce the
following result on topological entropy. (See Rom-Kedar 1994; Collins 2004.)

Corollary 3.7 The topological entropy of f is at least the topological entropy of hu,
i.e. htop(hu) � htop( f ).

3.2 The Homotopy Graph

To clarify the organisation of the (unstable) bridge classes, we seek to represent these
homotopy classes as edges of a surface-embedded graph. Ideally, we would like a
graph whose edges correspond to the bridge classes and whose vertices correspond
to stable segments. In the simplest case (e.g. Fig. 7a), we may select the edges so
that they share common endpoints; if edge α and β both terminate on the same
component of CUT S , then they can be chosen to have the same endpoint. How-
ever, this procedure fails for more complex situations, such as the local topologies
in Fig. 9(a1), (a2). Consider the edges (thick red lines) shown in Fig. 9(b1). We
would like to distort the three on the right side so that they share a common endpoint
with the edge on the left, but this is impossible without at least one of the curves
passing through the cut along TU (thin red lines). A similar problem is evident in
Fig. 9(b2).
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(a2)

(a1)

(b2)

(b1)

(c2)

(c1)

Fig. 9 Two examples (top and bottom rows) of handling locally complex trellis topologies. a The local
trellis topology itself with unstable (red) and stable (blue) segments. b The homotopy edges (thick red
segments) terminate at vertices on the stable segment. Note that the vertices cannot be drawn together into a
single point without forcing the homotopy edges to cross over the unstable curves. c The termination vertices
are now replaced with control edges, which are “infinitesimally short” edges crossing stable segments. The
control edges form a single connected component joining all four homotopy edges (Color figure online)

To solve the above problem, we use the idea of a controlled graph, and in particular
the concept of control edges, introduced in Sect. 2.4 (Definition 2.9). Control edges
are “infinitesimally short” edges crossing stable segments. We see how they can be
used to connect up bridge classes in Figs. 9(c1), (c2).

Example 3.8 An example of a homotopy graph is shown in Fig. 10b. The control
edges are denoted ζi , where the i subscript orders them by their distance from the
fixed point p along T S . The free edges correspond to the bridge classes, with the edge
corresponding to exact curve αu in Fig. 10a being labelled α, etc.

The control edges are mapped to each other, with the image of the control edge
ζi crossing segment Si being the control edge ζ j crossing segment S j ⊃ f (Si ). The
image of the edge corresponding to an exact curve αu is based on the homotopy action,
but must now also include a control edge for every essential intersection of [ f ◦ αu]
with T S . The homotopy dynamics therefore induces the following action on the edges
of the homotopy graph.

ζ0, ζ1, ζ2 �→ ζ0, ζ3 �→ ζ1, ζ4 �→ ζ2, ζ5 �→ ζ3, ζ6, ζ7, ζ8 �→ ζ4ζ6,

α �→ αζ̄8γ ζ6β1, β1 �→ β2, β2 �→ β3, β3 �→ αζ̄8γ ζ6β1,

γ �→ •, δ �→ αζ̄8γ ζ6β1, ε1 �→ •, ε2 �→ ε1, ε3 �→ ε̄1, (5)

where • indicates that the edge maps to a single vertex.

The general construction proceeds as follows.

Algorithm 3.9 (Construction of the homotopy graph representative (HU
G , huG)) For a

trellis T of the map f , satisfying Assumptions 2.1, we construct the homotopy graph
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representative (HU
G , huG), consisting of the (unstable) homotopy graph HU

G , embedded
in M , and the homotopy (graph) map huG . The homotopy graph HU

G is constructed as
follows.

(i) In each region of T , construct one vertex of HU
G for each stable boundary arc.

(ii) For each segment S of T S , construct a control edge ζ crossing S transversely,
and joining the vertices from step (i) on either side of S.
Note that the endpoints of the control edges are disjoint, except in the case of two
stable segments separated by an endpoint of TU . (See Fig. 9.)

(iii) For each bridge class [αu], construct a homotopy edgeαu
G of H

U
G within the region

containing αu joining the vertices corresponding to the segments joined by αu .
The αu are chosen to be mutually disjoint from one another.

The homotopy graph map huG acts on HU
G as follows.

(iv) If ζ is the control edge crossing stable segment S, then huG(ζ ) is the control edge
crossing the segment S′ containing f (S).

(v) The image of the homotopy edge αu
G corresponding to [αu] is the edge-path in

HU
G corresponding to the concise homotopy action hu([αu]), including a control

edge whenever hu([αu]) has an essential intersection with T S .

Note that the G subscript distinguishes HU
G , which is a graph, from HU , which is

simply a set of homotopy classes, the elements of which are identified with the free
edges of HU

G . The first five steps construct the full homotopy graph representative.
The recurrent homotopy graph representative includes the following additional step.

R Recursively remove any control or free edge that has no preimage. Note that any
remaining homotopy edges must connect two non-removed control edges.

Alternatively, the collapsed homotopy graph representative includes the following
additional step.

C Collapse all inert homotopy edges, i.e. those homotopy edges that eventually map
to a single vertex. Then, in the event that multiple homotopy edges connect the
same two vertices, keep only one of these edges.

Either of steps R or C can be applied by itself, or they can be applied in combination,
forming the recurrent collapsed homotopy graph representatives or simply the reduced
homotopy graph representative, for short.

The recurrent and reduced homotopy graphs of the trellis T3 are shown in Fig. 10c,
d. A somewhat more involved example of the transition from the recurrent homotopy
graph to the reduced homotopy graph, by applying step C, is shown in Fig. 11 for the
trellis T3e.

It is clear from the construction and the properties of the homotopy action that the
image of any edge ε of HU

G is an edge-path which contains no two consecutive edges
in the same region.

Theorem 3.10 The homotopy graph constructed in Algorithm 3.9 is an unstable con-
trolled graph, which is also spanning, i.e. all vertices are endpoints of control edges.
The corresponding homotopy graph map is an optimal controlled graph map.
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Fig. 10 a The unstable homotopy elements of the trellis T3. b The corresponding full homotopy graph.
c The recurrent homotopy graph. d The reduced homotopy graph (Color figure online)

Proof Straightforward from the construction. The conciseness of the dynamics ensures
that the graph map is optimal. �

We can also construct the homotopy graph representative of ( f −1, (T S, TU )),
which we call the stable homotopy graph representative of ( f , (TU , T S)). The stable
homotopy graph and graph map are denoted HS

G and hsG .

Remark It will be noted that each 2n-gon in the complement of the trellis generically is
crossed by 2n−3 unstable bridge classes. The complements of these edges form either
strips along an unstable segment, or triangles bounded by three homotopy classes. For
a bigon, however, this formula suggests −1 edges, and indeed, the case of a bigon
is rather degenerate. For this paper, we consider a bigon to contain no non-trivial
homotopy element.
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Fig. 11 a The recurrent homotopy graph and b the reduced homotopy graph for the trellis T3e . This trellis
is similar to T3 except that the lobes inside the main square are extended such that they “overshoot”, or
transect, one another. (Compare with Fig. 10.) Despite this initial difference, the reduced homotopy graphs
and graph maps for T3 (Fig. 10d) and T3e (Fig. 11b) are the same (Color figure online)

3.3 The Skeleton Graph

The skeleton graph representative of a trellis was defined in Collins (2004) and gives
an alternative representative to the homotopy graph representative. It can be defined
by the axioms given in Definition 3.12 below and is the unique graph map satisfying
these axioms. The direct computation of the skeleton graph representative relies on an
algorithm similar to that of Bestvina and Handel (1995) for computing train-tracks. In
Sect. 4.2, we shall show that the dual of the recurrent homotopy graphmap is precisely
the skeleton graph representative, yielding an alternative computation.

Definition 3.11 For a trellis T of the map f , satisfying Assumptions 2.1, a compatible
skeleton graph KU

G and skeleton graph map kuG for (T , f ) satisfy:

(i) KU
G is an unstable controlled graph.

(ii) KU
G is a skeleton graph of M \ TU , i.e. KU

G restricted to any region is a tree.
(iii) kuG is a controlled graph map (Definition 2.14) such that the image of any unstable

arc α embedded in KU
G lies in the homotopy class of f (α).

There are many possible skeleton graphs compatible with a given trellis, as (for
example) a region with 4 unstable boundary segments may contain a valence-4 vertex
or two valence-3 vertices (in two possible configurations). Further, the image under
kuG of an arc in KU

G joining two stable segments need not be concise.

Definition 3.12 A skeleton graph map kuG compatible with (T , f ) is optimal if in
addition to the conditions of Definition 3.11, it satisfies:

(iv) The map kuG is locally injective when restricted to the free edges.

In Collins (2004), the following result was shown.
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Theorem 3.13 Properties (i)–(iv) of Definitions 3.11 and 3.12 yield a unique KU
G

and kuG. For every orbit (w0, w1, . . .) of kuG with wi in region Ri , there is an orbit
(x0, x1, . . .) of f with xi ∈ Ri , and if (w0, w1, . . .) is periodic, then so is (x0, x1, . . .).
The topological entropy of f is at least that of kuG.

From this point forward, whenever we mention the skeleton graph representative, we
mean the optimal compatible skeleton graph and map (KU

G , kuG).
Just as for the homotopy graph representative, we can remove and collapse edges. A

recurrent compatible skeleton graph is computed from a skeleton graph representative
by the following additional step.

R Recursively remove any skeleton edge that has no preimage, and then remove any
control edge that does not thereby share a vertex with any skeleton edge.

Alternatively, a collapsed skeleton graph representative includes the following addi-
tional step.

C Collapse all inert skeleton edges, i.e. those skeleton edges that eventually map to a
single vertex, and, in the event that multiple skeleton edges connect the same two
vertices, keep only one of these edges.

Either of steps R or C can be applied by itself, or they can be applied in combination,
forming a recurrent collapsed skeleton graph representative.

Note that conditions (i) are equivalent to saying that the topological pair (G,C) is
homotopy equivalent to the pair (M \ TU , T S \ TU ). The dynamical conditions (iii)
are equivalent to saying that the map g : (G,C) → (G,C) is homotopy equivalent
to f : (M \ TU , T S \ TU ) → (M \ TU , T S \ TU ). The optimality condition implies
that the graph map is efficient in the sense of Bestvina and Handel (1995) and Collins
(2004).

We note that the image of the skeleton graph restricted to any component of M \
(TU ∪ T S ∪ CS) is injective. This means that no image of an edge back-tracks, and
the incident edges at any vertex map to distinct edge-paths with distinct initial edges.
For example, in Example 4.2, at the vertex with incident edges c̄1, c̄2, c̄3, we have
c̄1 �→ c3c̄2, c̄2 �→ c4 and c̄3 �→ c5 z̄20z18d1, beginning, respectively, with edges
c̄3, c̄4, c̄5. In particular, any vertex maps to a vertex of equal or higher valence.

4 Duality

In this section, we consider duality relationships involving the homotopy dynamics
and the skeleton dynamics. We first define a duality relation on controlled graph maps
and show the main result of this paper that the dual of the (backward) homotopy graph
map is the skeleton graph map. We also show a duality relation between the unstable
and stable homotopy dynamics. We also show how the forward homotopy graph can
be projected onto the skeleton graph.
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Fig. 12 a The stable homotopy graph HS
G (dark blue) with control edges CS and free edges ES for the

trellis T3. b The dual graph KU
G (red), being the graph-theoretic dual of T S ∪ ES in the complement of

TU ∪ CS (Color figure online)

4.1 The Dual GraphMap

Example 4.1 For the trellis T3 we have the stable homotopy graph HS
G shown in

Fig. 12a. The controlled dual graph (Definition 2.10), denoted (HS
G)∗, is then as shown

in Fig. 12b. The control edges of the dual graph cross the stable segments of T3. The
free edges of (HS

G)∗ cross the edges of HS
G representing bridge classes. In the region

with edges β1, β2 and β3, there are therefore three edges of (HS
G)∗, labelled b1, b2,

and b3, meeting at a valence-3 vertex. Note that (HS
G)∗ is a skeleton graph, as defined

in Sect. 2.3.

Having constructed a dual skeleton graph (HS
G)∗ to the (stable) homotopy graph

HS
G , we now consider a dual map (hsG)∗ to the homotopy action hsG . This graph map

will be determined by the order in which the images of skeleton edges are forced to
cross stable bridge edges.

Example 4.2 For the trellis T4 in Fig. 8, we obtain the dual skeleton graph in Fig. 13
if we only focus on the “interior” region of the trellis. (Technically, Fig. 13 shows the
reduced skeleton graph; details will be given later.)

The skeleton edge a is homotopic to the curve αu (Fig. 8), and the image f ([αu]) =
[αu] · [βu] has essential crossings with αs and βs . Hence, the image f (a) is homotopic
to the curve az̄24z14b, where zi denotes a control edge, indexed by its position along
T S . Thus, (hsG)∗(a) = az̄24z14b. Similarly, the skeleton edge b is homotopic toβu , and
f ([βu]) = [γ u

1 ], which has essential crossings with γ s
1 and γ̄ s

2 , so (hsG)∗(b) = c1c̄2.
The skeleton edge c1 is not in any unstable bridge class. To compute its image, we

instead compute essential crossings of c1 with preimages of stable arcs (Fig. 14). We
note that f −1([γ s

2 ]) = [γ s
1 ] · [ιs3] · [δs2] · [ῑs2] · [β̄s] and f −1([γ s

3 ]) = [δs1] · [ῑs3] · [γ̄ s
1 ],
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Fig. 13 The reduced skeleton graph for the trellis T4. The labels for the stable bridge classes are shown in
Fig. 8b (Color figure online)

so (hsG)∗(c1) should contain both c2 and c̄3. This suggests that (hsG)∗(c1) = c2c̄3.
Since f −1([γ s

4 ]) = [γ s
2 ], we have (hsG)∗(c2) = c3. Since f −1([γ s

5 ]) = f −1([δs1]) =
[γ̄ s

3 ] · [ι3] · [δ̄s1], we have (hsG)∗(c3) = d̄1 z̄10z11c̄5. Similarly, (hsG)∗(c4) = d̄3 z̄9z12ē
and (hsG)∗(c5) = d̄2. It can be seen that the images so constructed yield a consistent
image for the end vertices of c3 (Fig. 14).

In summary, (hsG)∗ yields the following action on the skeleton graph,

a �→ az̄24z14b, b �→ c1c̄2, e �→ az̄24z14b,

c1 �→ c2c̄3, c2 �→ c̄4, c3 �→ d̄1 z̄18z20c̄5, c4 �→ d̄3 z̄16z22ē, c5 �→ d̄2,

d1 �→ d2d̄1 z̄18z20c̄5c3, d2 �→ c2, d3 �→ c1. (6)

This construction of the graph map on the skeleton graph given in Example 4.2
generalises. Given a stable homotopy arc [αs], the homotopy preimage h−1[αs] can
be written as the concise product [βs

1] · · · · · [βs
k ], where each [βs

i ] is a bridge class.
We identify each bridge class [βs

i ] with its edge βs
i in HS

G , so that the concise product
representation of h−1[αs] is identified with a multiarc in CSM . Since each βs

i is dual
to an edge bui of the skeleton graph, and since βs

i and βs
i+1 always lie in different

regions for each i = 1, . . . , k−1, the intersections of h−1[αs]with the tree (HS
G)

∗
are

tight (Definition 2.6). Further, by Lemma 2.7, the homotopy preimages h−1([αs]) of
all bridge classes [αs] can be simultaneously put in minimal position with respect to
(HS

G)
∗
by a common isotopy. In this tight configuration, each edge eu of (HS

G)
∗
crosses

the preimages of homotopy arcs in awell-defined order h−1([αs
1]), . . . , h−1([αs

l ])with
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Fig. 14 Preimages of stable homotopy elements crossing the unstable skeleton graph for the trellis T4
(Color figure online)

no back-tracking by Lemma 2.8. Finally, we define the dual graph map (hsG)∗ applied
to this edge eu to be the edge-path au1 , . . . , aul , where a

u
i is the edge of (HS

G)
∗
dual

to αs
i . This edge-path also contains the necessary control edges zuj between the free

edges aui . The dual graph map (hsG)∗ applied to a control edge zu of (HS
G)∗ maps to a

control edge zu ′ such that if zu crosses segment S of TU , then zu ′ crosses the segment
S that contains f −1(S). We have therefore shown:

Theorem 4.3 (Dual to homotopy graph map) There is a natural controlled graph
map (hsG)∗ acting on the dual graph (HS

G)
∗
to the stable homotopy graph HS

G, as
constructed above. This action forms a dual to the homotopy dynamics. In particular,
the dual skeleton edge au to the stable bridge class [αs] maps across edge bu if,
and only if, the corresponding dual bridge [βs] maps under hG to a concise product
containing [αs].

4.2 Duality Between the Homotopy and Skeleton Dynamics

We now state and prove the main theorem of the paper, which gives the relationship
between the homotopy dynamics and the skeleton dynamics.

Theorem 4.4 Let (HS
G , hsG) be the recurrent stable homotopy graph representative and

(KU
G , kuG) be the collapsed unstable skeleton graph representative. Then KU

G = (HS
G)

∗

and kuG = (hsG)∗.
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Proof The basic structure of this proof is to show that the dual to the homotopy
graph representative ((HS

G)∗, (hsG)∗) satisfies Definition 3.12 for the skeleton graph
representative. First, by construction of the dual (Definition 2.10), (HS

G)∗ is an unstable
controlled graph, which proves property (i) of Definition 3.11.

Second, by Lemma 2.13 we have already seen that the dual of any stable spanning
graph, such as HS

G , is a skeleton graph, thereby yielding property (ii).
Third, by the construction of the dualmap (Theorem4.3), (hsG)∗ is a controlled graph

map. Next, suppose a free edge e maps to an edge-path buzcu , where z ∈ (hsG)∗(C) is
a control edge and bu and cu are edge-paths. Then there is a control edge z′ ∈ C such
that z = (hsG)∗(z′). But this means that e must have a transverse intersection with T S ,
which is not true since e lies in a single region. Hence, e does not map to any control
edge in (hsG)∗(C). This completes the proof of property (iii).

Finally, we show that (hsG)∗ is locally injective on the free edges. Note, for an
arbitrary bridge class [αs], f −1 ◦ αs is homotopic to a tight edge-path that passes
through each region at most once (since CSM is simply connected) and hence crosses
any edge of the skeleton graph at most once. By the construction of the dual map in
Theorem 4.3, (hsG)∗ applied to any edge of (HS

G)∗ cannot map to two copies of the
same edge. Hence, (hsG)∗ restricted to any edge is injective.

By a similar argument, we show that (hsG)∗ is locally injective at a vertex con-
necting free edges in (HS

G)∗. Suppose (hsG)∗ were not locally injective at a vertex;
then, (HS

G)∗ would have two free edges au1 and au2 beginning at a common vertex
such that (hsG)∗ applied to either au1 or au2 would begin with the same initial edge bu .
Then, for a homotopy edge [αs], the concise description of hsG([αs]) would contain
two homotopy elements in the same region, one each intersecting au1 and au2 . But we
have already determined that there is a single homotopy element in each region for
the concise description. Hence, (hsG)∗ is locally injective at a vertex of free edges.
Combining this with the local injectivity along each free edge allows us to conclude
that (hsG)∗ is locally injective when restricted to the free edges, condition (iv) of
Definition 4.4

By step R of Algorithm 3.9, every free edge in the recurrent homotopy graph HS
G

has a preimage under hsG . Thus, none of the dual edges in (HS
G)∗ maps to a trivial

edge-path under (hsG)∗. �

We illustrate the construction by another example.

Example 4.5 Consider the trellis T3 in Fig. 12. The edges α, β1, β2, β3, γ, δ of the
stable homotopy graph HS are dual to (i.e. cross) the edges a, b1, b2, b3, c, d of the
skeleton graph KU

G . These homotopy elements map

α �→ α ζ̄8 δ ζ6 β3, β1 �→ α ζ̄8 δ ζ6 β3, β2 �→ β1 ζ̄6 δ̄ ζ8 ᾱ,

β3 �→ β2, γ �→ α ζ̄8 δ ζ6 β3, δ �→ [•],

where we have ignored the trivial dynamics on the free edges ε1, ε2, ε3. The corre-
sponding transition matrix (Sect. 2.3) is
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AH =

α β1 β2 β3 γ δ
⎡

⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎦

α 1 1 1 0 1 0
β1 0 0 1 0 0 0
β2 0 0 0 1 0 0
β3 1 1 0 0 1 0
γ 0 0 0 0 0 0
δ 1 1 1 0 1 0

, (7)

where we have only recorded transitions between the free edges.
The skeleton edges map

a �→ az̄8cz6b1b̄2, b1 �→ b2, b2 �→ b3,

b3 �→ az̄8cz6b1, c �→ [•], d �→ az̄8cz6b1b̄2,

with corresponding transition matrix

AS =

a b1 b2 b3 c d
⎡

⎢
⎢
⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎥
⎥
⎦

a 1 0 0 1 0 1
b1 1 0 0 1 0 1
b2 1 1 0 0 0 1
b3 0 0 1 0 0 0
c 1 0 0 1 0 1
d 0 0 0 0 0 0

. (8)

We see that AH = AT
S , illustrating that the stable homotopy graph map is dual to the

unstable skeleton graph map.
If we reduce the homotopy and skeleton graphs by recursively deleting edges with

no preimages (Step R), and also collapsing edges with trivial image (Step C), we see
that the edge c is collapsed and its dual counterpart γ is removed, whereas the edge d
is removed and its dual counterpart δ is collapsed. The resulting graphs are shown in
Fig. 15 and are again dual to each other, as are the graph maps

α �→ α ζ̄8 ζ6 β3, β1 �→ α ζ̄8 ζ6 β3, β2 �→ β1 ζ̄6 ζ8 ᾱ, β3 �→ β2

and

a �→ az̄8z6b1b̄2, b1 �→ b2, b2 �→ b3, b3 �→ az̄8z6b1.

The following result shows that applying the collapsing process applied to the dual
of the full stable homotopy graph map also yields the skeleton graph representative.

Proposition 4.6 The skeleton graph representative is obtained from the dual of the full
stable homotopy graph map by collapsing all inert skeleton edges.
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Fig. 15 The reduced homotopy graph and its dual skeleton graph for the trellis T3 (Color figure online)

Proof The collapsed edges are precisely those which cross elemental homotopy arcs
which are removed when constructing the recurrent homotopy graph. Removing an
edge from the homotopy graph induces a collapsing of the corresponding edge in the
dual graph. �

4.3 Time-Reversal Symmetry of the Homotopy Dynamics

We consider the intersections of unstable homotopy elements with stable homotopy
elements. We first construct a geometric figure such that the representatives of the
homotopy classes of HU and HS are tight, as shown in Fig. 16. The homotopy rep-
resentative αu crosses αs , and βu

1 crosses βs
3 and β̄s

2 in that order. The image f ◦ αu

belongs to homotopy class f ([αu]) = [αu] ·[γ u] ·[βu
1 ], so it has essential intersections

with αs , γ s , βs
3, and β̄s

2 in that order.
The following results directly from Lemma 2.3.

Theorem 4.7 (Time-reversal symmetry) For all [αu] ∈ HU and all [βs] ∈ HS (using
the full homotopy action), the number of essential intersections of f ([αu]) with βs is
equal to the number of essential intersections of f −1([βs]) with αu.

Proof First, note that if (TU , T S) is a trellis for f , and h is a homeomorphism such
that h(x) = x for all x ∈ TU ∪ f (T S), then (TU , T S) is a trellis for h ◦ f . Similarly, if
h is a homeomorphism such that h(x) = x for all x ∈ f −1(TU )∪ T S , then (TU , T S)

is a trellis for f ◦ h.
Now, suppose f ◦αu is homotopic to a path φu which intersects βs once. By pulling

tight (Lemma 2.3) there is an isotopy (gut )t∈[0,1] of M such that gu0 = id, gut (x) = x
for x ∈ TU ∪ f (T S), and gu1 ◦ ( f ◦ αu) = φu . Then gst = f −1 ◦ (gut )

−1 ◦ f is an
isotopy such that gs0 = id, gst (x) = x for x ∈ f −1(TU ) ∪ T S , and gs1 ◦ ( f −1 ◦ βs) =
f −1◦(gu1 )

−1◦ f ◦ f −1◦βs = f −1◦(gu1 )
−1◦βs . Hence, intersections of gs1◦( f −1◦βs)

with αu are conjugate to intersections of βs with gu1 ◦ f ◦ αu . In particular, if f ◦ αu

is homotopic to a curve with n intersections with βs , then f −1 ◦ βs is homotopic to a
curve with n intersections with αu . �
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Fig. 16 Minimal representatives of unstable and stable bridge classes for T3 (Color figure online)

Note that if each component of M \ (TU ∪ f (T S)) is simply connected, then f ([αu])
has at most one essential intersection with βs for any αu and βs .

4.4 Projection of the Homotopy Graph onto the Skeleton Graph

We notice that there is also a relationship between the unstable skeleton graph and the
unstable homotopy graph. Each homotopy graph element is homotopic to an edge-path
in the skeleton graph, and the concise description of the homotopy type of the image
of the homotopy graph element is equivalent to the image edge-path in the skeleton
graph. For example, comparing Fig. 8a, 9, 10, 11, 12, and 13, we have γ u

1 ∼ c1c̄2,
with c1c̄2 �→ c2c̄3c̄4 ∼u γ u

2 ∼u f ◦ γ u
1 .

We now describe this relationship between the (unstable) homotopy and skeleton
graphs.

Lemma 4.8 Let [αu]u be a homotopy element and a1 · · · ak the edge-path in the skele-
ton graph which is homotopic to αu. Then the concise description of [ f ◦αu]u crosses
the same stable homotopy arcs whose preimages contain αs

1, . . . , α
s
k , where each αs

i
is dual to ai , for all i = 1, . . . , k.

Proof The reduced skeleton graph map kuG is locally injective on each region, so the
representative of any non-trivial homotopy element maps to an edge-path that does not
back-track. This edge-path therefore crosses each stable homotopy arc at most once
and hence crosses the same arcs as the concise description of [ f ◦ αu]u . �
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Fig. 17 a Reduced homotopy graph for trellis T3 (Fig. 15). b Reduced skeleton graph for T3, obtained by
projecting the βi ’s in (a) onto the bi ’s (Color figure online)

We now show that the forward homotopy graph and skeleton graph can each be
easily computed from the other.

Theorem 4.9 The homotopy graph HU
G and map huG are related to the skeleton graph

KU
G and map kuG by an edge-splitting followed by an edge-identification.

Proof Each edge in the homotopy graph embeds as an edge-path in the skeleton graph.
Since each edge in the homotopy graph lies in a single region, the image of the edge
in the skeleton graph does not back-track, so equals the projected image under the
skeleton graph map. In other words, there is a projection puG : HU

G → KU
G such that

kuG(puG(α)) = puG(huG(α)) for all homotopy elements α.
We next construct the split graph H̃U

G of the homotopy graph HU
G . Since a given

edge α in HU
G projects to an edge-path a1 . . . al of length l in KU

G , we split α into l
pieces α1, α2, . . . , αl , i.e. α is represented by the edge-path α1α2 . . . αl . We extend
the projection puG to the split graph H̃U

G in the natural way, i.e. puG(αi ) is defined to be
ai . We next extend huG to a map h̃uG acting on H̃U

G . Since puG(huG(α)) = kuG(puG(α)), we
must require puG(h̃uG(α1α2 . . . αk)) = kuG(a1)kuG(a2) · · · kuG(al). Since each edge of the
split homotopy graph projects to exactly one edge of KU

G , we can take h̃uG(α1) to be
the initial arc of h̃uG(α) with length |kuG(a1)|, so that puG(h̃uG(α1)) = kuG(puG(α1)). We
construct the remaining h̃uG(α2), h̃uG(α3), . . . recursively.

We have therefore constructed a graph H̃U
G for which there is a surjective inclusion

iuG : HU
G → H̃U

G , and a projection puG : H̃U
G → KU

G mapping edges to edges. The
induced dynamics h̃uG on H̃U

G satisfies h̃uG ◦ iuG = iuG ◦ huG and puG ◦ h̃uG = kuG ◦ puG . �
By combining Theorems 4.4 and 4.9, we obtain the following result:

Corollary 4.10 (a) huG is related to hsG by an edge-splitting, duality, and edge-
identification.

(b) The transition matrix of huG is shift equivalent to the dual of the transition matrix
of hsG.

Example 4.11 Consider the homotopy and skeleton graphs shown in Fig. 17 for the
trellis T3 (Fig. 15).
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The control edges map z0, z2 �→ z0, z4 �→ z2, z6, z8 �→ z4, and homotopy graph
map huG and the skeleton graph map kuG take

huG(α) = αz̄8z6β1, huG(β1) = β2, huG(β2) = β3z6 z̄8ᾱ, huG(β3) = αz̄8z6β1;
(9)

kuG(a) = az̄8z6b1b̄2, kuG(b1) = b2, kuG(b2) = b3, kuG(b3) = az̄8z6b1. (10)

We take a projection of HU
G into K S

G given by

puG(α) = a, puG(β1) = b1b̄2, puG(β2) = b2b̄3, puG(β3) = b3b̄1.

We split β1, β2, and β3 each into two edges, e.g. β1 = β1,1β1,2, with

puG(β1,1) = b1, puG(β1,2) = b̄2,

puG(β2,1) = b2, puG(β2,2) = b̄3,

puG(β3,1) = b3, puG(β3,2) = b̄1.

Since huG(β1) = β2 we have puG(huG(β1)) = b2b̄3, and we verify kuG(puG(β1)) =
kuG(b1b̄2) = kuG(b1)kuG(b̄2) = b2b̄3. We take h̃uG(β1,1) = β2,1 since kuG(puG(β1,1)) =
b2 = puG(β2,1), and take h̃uG(β1,2) = β2,2. Since huG(β3) = αz̄8z6β1, and
kuG(puG(β3)) = kuG(b3)kuG(b̄1) = az̄8z6b1 b̄2, we take h̃uG(β3,1) = αz̄8z6β1,1 and
h̃uG(β3,2) = β1,2. The graph map h̃uG obtained by splitting is

h̃uG(α) = αz̄8z6β1,1β̄1,2, h̃uG(β1,1) = β2,1, h̃uG(β1,2) = β2,2,

h̃uG(β2,1) = β3,1, h̃uG(β2,2) = β3,2 z̄6z8ᾱ, h̃uG(β3,1) = αz̄8z6β1,1,

h̃uG(β3,2) = β2.

It is clear that this map h̃uG satisfies the projection conditions puG(h̃uG(ε)) = kuG(puG(ε))

for every split edge ε. For example, we have

puG(h̃uG(β̄2,2)) = puG(αz̄8z6β̄3,2) = az̄8z6b1 = kuG(b3) = kuG(puG(β̄2,2),

puG(h̃uG(β3,1) = puG(αz̄8z6β̄1,1) = az̄8z6b1 = kuG(b3) = kuG(puG(β3,1).

Note that Theorem 4.4 implies that the skeleton graph shows how to partition the
state space into regions bounded by stable curves such that the chaotic dynamics
is contained in rectangles. This is similar to the construction of “strips” in Rom-
Kedar (1994), and of uniformly hyperbolic representatives in Collins (2005). For at
every vertex of valence greater than two of the skeleton graph, we can introduce new
homotopy curves dual to the edges at that vertex. Since the vertices are invariant,
these homotopy curves can be made to map into themselves. Further, since every
homotopy element maps to a sequence of homotopy elements, these curves are never
crossed by T S under backward iteration. The elements of the new trellis are rectangles,
each corresponding to a stable homotopy element. A similar decomposition can be
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Fig. 18 The effect on the forward skeleton graph of adding new homotopy elements to the trellis (Color
figure online)

performed for unstable homotopy elements using the forward skeleton graph. The
effect of introducing new stable and unstable arcs on the forward skeleton graph is
shown in Fig. 18.

5 Conclusions

In this paper, we have considered the relationship between the approach to studying
homoclinic dynamics by the use of skeleton graphs of trellises, and of homotopy lobe
dynamics. We have shown that the two approaches are dual to each other, in the sense
that the “bridge classes” of the homotopy lobe dynamics of the inverse map are dual to
the “free edges” of the skeleton graph representative. The homotopy dynamics can be
directly constructed by considering iteration of elemental homotopy classes under the
diffeomorphism, yielding a canonical construction of the skeleton graph representative
by duality, as opposed to constructing an initial skeleton graph simplifying by folding
and pulling tight. In both cases, we have shown how to represent the dynamics via a
combinatorial graph embedded in the surface. The two approaches are complementary
in the sense that the homotopy dynamics more directly captures the structure of the
homoclinic orbits forced by the trellis, whereas the skeleton graph provides a direct
proof of existence of periodic orbits via the Nielsen fixed point theory.

We note that a similar theory could be developed for periodic orbits, with the skele-
ton graph corresponding to train-tracks and the homotopy dynamics corresponding to
iteration of arcs joining periodic points. However, the theory of finite developments of
homoclinic tangles is in some sense actually easier than the theory for periodic orbits.
In particular, the skeleton graph and homotopy graphs are unique, while a train-track
for a pseudo-Anosov mapping class is not unique, but is related by zipping.

Although in the exposition we have used examples of planar horseshoe trellises,
the results generalise in a straightforward way to arbitrary irreducible trellis types in
surfaces of higher genus.

An interesting project for further work would be to automatically extract the trellis
topology from a computation of a geometric trellis and hence compute the homotopy
and skeleton graph representatives.
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