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Abstract We investigate the influence of periodic surface roughness in thin ferromag-
netic films on shape anisotropy and magnetization behavior inside the ferromagnet.
Starting from the full micromagnetic energy and using methods of homogenization
and �-convergence, we derive a two-dimensional local reduced model. Investigation
of this model provides an insight into the formation mechanism of perpendicular
magnetic anisotropy and uniaxial anisotropy with an arbitrary preferred direction of
magnetization.

Keywords Micromagnetics · �-convergence · Homogenization · Dimension
reduction

Mathematics Subject Classification 35B27 · 82D40 · 49S05

1 Introduction

Magnetic anisotropy is one of the fundamental properties of ferromagnetic materials.
It is responsible for defining preferred directions of magnetization inside the ferro-
magnet. The main sources of magnetic anisotropy are magnetocrystalline anisotropy,

Communicated by Irene Fonseca.

B V. Slastikov
Valeriy.Slastikov@bristol.ac.uk

M. Morini
massimiliano.morini@unipr.it

1 Università di Parma, Parma, Italy

2 School of Mathematics, University of Bristol, Bristol, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00332-017-9416-z&domain=pdf
http://orcid.org/0000-0003-4550-4301


514 J Nonlinear Sci (2018) 28:513–542

prescribed by the crystalline structure of thematerial, and shape anisotropy, induced by
the demagnetizing (or stray) field generated by the magnetization distribution inside
the ferromagnet. In bulk ferromagnets, the magnetocrystalline anisotropy provides
the leading contribution to magnetic anisotropy and the demagnetizing field is mainly
responsible for formation of multiple domains inside the magnetic sample. On the
other hand, in ferromagnetic nanostructures of reduced dimension (thin films, ribbons,
nanowires, nanodots) stray field effects may dominate magnetocrystalline anisotropy
and become the leading mechanism for choosing preferred magnetization direction.

The geometry of a ferromagnet plays a crucial role in defining the shape anisotropy.
It has been observed that in flat ferromagnetic thin films the magnetization vector
prefers to be constrained to the plane of the film and align tangentially to the boundary
of the film (Aharoni 2001; Gay and Richter 1986; Gioia and James 1997; Kohn and
Slastikov 2005). Recent micromagnetic studies of ferromagnetic thin layers, ribbons,
and shells with nontrivial curvature of the surface of the film indicate that surface
curvature has a significant effect on shape anisotropy, and in ferromagnetic thin struc-
tureswith nonzero curvaturemagnetization prefers to be tangent to the surface (Carbou
2001; Gaididei et al. 2017, 2014; Sheka et al. 2015; Streubel et al. 2016). Therefore,
the dominating effect of the shape anisotropy induced by the stray field is to align
magnetization direction tangentially to the surface of the ferromagnetic nanostruc-
ture. This general principle works very well when surface variations happen on a scale
larger than the thickness of the film (inverse surface curvature is larger than thickness).
However, in the case of rapidly modulated surface, when inverse curvature is of the
same order as the thickness of the film, the situation might be different and magnetic
anisotropy, dominated by surface curvature effects, may produce preferred directions
not tangential to the surface of the film (Bruno 1988; Chappert and Bruno 1988; Tre-
tiakov et al. 2017). This behavior might be observed in ultrathin ferromagnetic films
with the thickness reaching several monolayers, where the surface roughness can be
comparable in amplitude and modulation to the thickness of the film, effectively lead-
ing to the large curvature of the film surface.

In this paper,wewould like to understand the influence of the large surface curvature
(or surface roughness) of thin films on the shape anisotropy induced by magnetostatic
interaction.We consider the case of periodicallymodulated thin film surfacesmodeling
the surface roughness (see Fig. 1). In our study, we use the standard continuum model
ofmicromagnetics (Aharoni 2001;Hubert andSchäfer 1998). In this framework, stable
magnetization distributions inside a ferromagnet correspond to local minimizers of the
micromagnetic energy which after a suitable nondimensionalization has the following
form

E(M) = d2
∫

�

|∇M |2 + K
∫

�

φ(M) +
∫
R3

|∇u|2 − 2
∫

�

hext · M. (1.1)

Here � ⊂ R
3 is the region occupied by a ferromagnet, M : � → S

2 is the magne-
tization distribution, and the function u is defined on R

3 and satisfies the following
equation

div (∇u + Mχ(�)) = 0 in R3, (1.2)
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with χ(�) being the indicator of the set �. The applied field is defined by hext, and
φ is the internal anisotropy function. Material parameters d and K correspond to an
effective exchange and anisotropy constants, respectively. The four terms of the energy
are known as exchange, anisotropy, magnetostatic and Zeeman energies, respectively.
Due to the nonconvex and nonlocal nature this variational problem cannot be addressed
in its full generality by current analytical methods.

The standard route to analytically investigate micromagnetic energy (1.1) is to
consider a range of material and geometric parameters of a ferromagnet where the full
three-dimensional model can be reduced to a simpler energy functional, capturing the
essenceof themagnetizationbehavior in ferromagnetic sample (DeSimone et al. 2006).
The derivation and study of the reducedmicromagnetic models is by nomeans a trivial
task, but, in general, it is easier than investigation of the full three-dimensional model.
Reduced models have been successfully derived and implemented to explore many
magnetic phenomena in ferromagnetic nanostructures, including nanodots (Desimone
1995; Slastikov 2010), nanowires (Harutyunyan 2016; Kühn 2007; Sanchez 2009;
Slastikov and Sonnenberg 2012), thin films (Carbou 2001; DeSimone et al. 2006,
2002; Gioia and James 1997; Kohn and Slastikov 2005), and curved structures of
reduced dimensions (Carbou 2001; Gaididei et al. 2017, 2014; Sheka et al. 2015;
Slastikov 2005).

The main goal of this paper is to obtain a comprehensive reduced model to describe
the magnetization behavior in ferromagnetic thin films with periodic surface rough-
ness. We concentrate on a regime where the thickness of the film is comparable to the
amplitude and the period of thin film surface modulation and derive an effective local
two-dimensional model. This reducedmodel has been examined, both analytically and
numerically, in the recent paper (Tretiakov et al. 2017) and lead to some interesting
observations. In particular, it was shown that in the special case of parallel rough-
ness, when top and bottom surfaces of the layer are parallel, an extreme geometry is
responsible for creating a strong uniaxial shape anisotropy with an arbitrary preferred
direction depending on the surface roughness. This is a rather unexpected outcome
suggesting that in certain regimes a surface roughness in ultrathin ferromagnetic films
might lead to a perpendicular magnetic anisotropy (Chappert and Bruno 1988; John-
son et al. 1996; Vaz et al. 2008). In the case of more general roughness, when top
and bottom surfaces are different, several examples have been also considered where
instead the magnetization prefers to stay in-plane.

The dimension reduction problems for thin films with periodic surfaces or edges
have been extensively studied in the mathematical community in the case where the
energy functional has a local energy density, see, e.g., (Arrieta and Pereira 2011; Arri-
eta and Villanueva-Pesqueira 2017; Braides et al. 2000; Neukamm 2010; Neukamm
and Velčić 2013). The existing results are not directly applicable in our setting due
to the nonlocal nature of the stray field energy and one of the main difficulties in our
case comes from homogenizing the magnetostatic contribution. In order to treat the
magnetostatic energy, we first identify its leading contribution coming from dipolar
interaction of charges at the top and bottom surfaces of thin film. This leading contri-
bution can be represented as an integral with the kernel becoming singular in the limit
of vanishing thickness (Kohn and Slastikov 2005). We investigate the homogenized
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limit of this singular integral and show that the leading order contribution has a local
energy density [similar to the case of flat thin films, see (Gioia and James 1997)].

Using methods of �-convergence and two-scale convergence (Allaire 1992; Maso
1993), we obtain the limiting behavior of the full micromagnetic energy. Although
the treatment of the exchange energy could be done using the framework of Braides
et al. (2000), we cannot explicitly use their results due to the more general roughness
considered in our paper. Therefore, we adopt the two-scale convergence approach
adapted to dimension reduction problems as developed in Neukamm (2010) and pro-
vide a relatively simple self-contained proof of the �-convergence of the exchange
energy. Special care has to be taken due to the fact that the magnetization distribution
has values on a two-dimensional sphere.

The paper is organized as follows. In Sect. 2, we provide a rigorous mathematical
formulation of the problem and state our main results in Theorem 2.2. Section 3 is
devoted to the proof of Theorem 2.2. We begin our exposition in Sect. 3.1 by finding
the limiting behavior of the magnetostatic energy in the case of “parallel roughness,”
i.e., when the top and bottom surfaces of the film are exactly the same up to a shift in
the vertical direction. The limiting behavior of the magnetostatic energy in the general
case is treated in Sect. 3.2. After that, in Sect. 3.3 we identify the limiting behavior
of the exchange energy. Combining all of the above, we arrive at the �-convergence
result which completes the proof of Theorem 2.2 in Sect. 3.4.

2 Formulation of the Problem and Statement of the Main Results

In this section, we provide a rigorous mathematical setup of the problem and state
our main results in Theorem 2.2. We are interested in proving a �-convergence result
and deriving a simplified reduced micromagnetic model [see (2.5)]. Without loss of
generality, we are going to consider the case of zero anisotropy and external field,
K = 0 and hext = 0 since �-convergence is insensitive to continuous perturbations
of the energy functional.

In the following, in order to indicate the generic point x ∈ R
3 we will use the

notation x = (x ′, x3), with x ′ = (x1, x2) ∈ R
2 and x3 ∈ R. We also set Q :=

(0, 1) × (0, 1) and S
2 = ∂B(0, 1) = {ξ ∈ R

3 : |ξ | = 1}.
Let f1, f2 : R2 → (0,+∞) be Lipschitz continuous Q-periodic functions, with

periodic cell given by Q, with f1 < f2, andω ⊂ R
2 a bounded open set with Lipschitz

boundary.
We will consider three-dimensional thin film domains with oscillating profiles of

the form

Vε =
{
(x ′, x3) : x ′ ∈ ω , ε f1

(
x ′

ε

)
< x3 < ε f2

(
x ′

ε

)}
. (2.1)

We recall that given a magnetization M ∈ H1(Vε;S2), the corresponding micromag-
netic energy of the film is defined as

Eε(M) := d2
∫
Vε

|∇M |2 +
∫
R3

|∇u|2, (2.2)
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where d > 0 is a material parameter, the so-called exchange constant, and uε is
determined as the unique solution to


u = div(MχVε ) inR3 (2.3)

in Ḣ1(R3), that is, in the homogeneous Sobolev space obtained as a completion of
C∞
c (R3) with respect to the norm ‖u‖Ḣ1(R3) := ‖∇u‖L2(R3). In order to study the

limiting behavior of the energy as ε → 0+, it is convenient to consider the following
rescaled energies:

Eε(m) = d2
∫

�ε

(
|∇x ′m|2 + 1

ε2
|∂x3m|2

)
dx + 1

ε

∫
R3

|∇u|2, (2.4)

defined for all m ∈ H1(�ε;S2), where

�ε =
{
(x ′, x3) : x ′ ∈ ω , f1

(
x ′

ε

)
< x3 < f2

(
x ′

ε

)}

and u now solves (2.3) with M ∈ H1(Vε;S2) defined by

M(x ′, x3) := m(x ′, x3/ε) .

Note that

Eε(m) = 1

ε
Eε(M) .

We also set

Q f1, f2 := {(x ′, x3) ∈ R
3 : x ′ ∈ Q and f1(x

′) < x3 < f2(x
′)}

and denote by H1
# (Q f1, f2;R3) the space of functions ϕ ∈ H1(Q f1, f2;R3) that are

Q-periodic in the x ′-variable. We will show that the limiting energy is given by the
following functional E0 : H1(ω;S2) → [0,+∞) defined by

E0(m) := d2
∫

ω

ghom(∇m) dx ′ +
∫

ω

Ahom m · m dx ′ (2.5)

for every m ∈ H1(ω;S2), where ghom : M3×2 → R is given by

ghom(ξ) := inf
ϕ∈H1

# (Q f1, f2 ;R3)

∫
Q f1, f2

(
|ξ + ∇y′ϕ|2 + |∂y3ϕ|2

)
dy (2.6)

and constant matrix Ahom is defined as
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Fig. 1 Thin film with generic periodic roughness Vε (left) and parallel roughness (right) (Tretiakov et al.
2017)

Ahom :=
1

4π

∫
Q

∫
R2

(
n1(x ′) ⊗ n1(z′ + x ′)√

|z′|2 + | f1(z′ + x ′) − f1(x ′)|2
− n1(x ′) ⊗ n1(z′ + x ′)√|z′|2 + 1

)
dz′dx ′

+ 1

4π

∫
Q

∫
R2

(
n2(x ′) ⊗ n2(z′ + x ′)√

|z′|2 + | f2(z′ + x ′) − f2(x ′)|2
− n2(x ′) ⊗ n2(z′ + x ′)√|z′|2 + 1

)
dz′dx ′

− 1

2π

∫
Q

∫
R2

(
n1(x ′) ⊗ n2(z′ + x ′)√

|z′|2 + | f2(z′ + x ′) − f1(x ′)|2
− n1(x ′) ⊗ n2(z′ + x ′)√|z′|2 + 1

)
dz′dx ′

+ 1

4π

∫
Q

∫
R2

(
I − e3 ⊗ e3

(|z′|2 + 1)3/2
− 3(z′, 0) ⊗ (z′, 0)

(|z′|2 + 1)5/2

)

· ( f2(z
′ + x ′) − f1(z

′ + x ′))( f2(x ′) − f1(x
′)) dz′dx ′. (2.7)

In the above formula, we used the notation

ni (x
′) := (−∇ fi (x

′), 1) i = 1, 2 and e3 := (0, 0, 1) . (2.8)

We will also show below (see Sect. 3.1) that in the case of parallel profiles, that is
when f2 = f1 + a for a suitable constant a > 0 (see Fig. 1) the expression of Ahom
reduces to the following much simpler formula:

Ahom = 1

2π

∫
Q

∫
R2

[
n(x ′) ⊗ n(z′ + x ′)√

|z′|2 + | f (z′ + x ′) − f (x ′)|2

− n(x ′) ⊗ n(z′ + x ′)√
|z′|2 + |a + f (z′ + x ′) − f (x ′)|2

]
dz′dx ′, (2.9)

with

n(x ′) := (−∇ f (x ′), 1) .

Remark 2.1 We note that the geometry of the profiles, that is the shape of f1 and f2,
influences the properties of ghom and Ahom defined in (2.6) and (2.7). The general
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problem of analytically investigating the properties of Ahom and ghom turns out to be
quite challenging. For someheuristic and numerical observations,we refer toTretiakov
et al. (2017).

The link between (2.4) and (2.5) is made precise by the following compactness and
�-convergence type statement, which represents the main result of the paper.

Theorem 2.2 The following statements hold.

(i) (Compactness) Let {mε}ε be such that mε ∈ H1(�ε;S2) for every ε > 0 and

sup
ε

Eε(mε) < +∞.

Then, there exists m0 ∈ H1(ω;S2) and a (not relabeled) subsequence such that
∫

�ε

|mε(x) − m0(x
′)|2 dx → 0 (2.10)

as ε → 0+.
(ii) (�-liminf inequality) Let m0 ∈ H1(ω;S2) and let {mε}ε be such that mε ∈

H1(�ε;S2) for every ε > 0 and (2.10) holds. Then

E0(m0) ≤ lim inf
ε→0

Eε(mε) .

(iii) (�-limsup inequality) For any m0 ∈ H1(ω;S2), there exists {mε}ε, with mε ∈
H1(�ε;S2) for all ε > 0, such that (2.10) holds and

E0(m0) = lim
ε→0

Eε(mε) .

As a consequence of the above theorem, we will be able to establish the following
corollary about the asymptotic behavior of global minimizers.

Corollary 2.3 Let mε ∈ H1(�ε;S2) be a minimizer of Eε. Then, up to a (not rela-
beled) subsequence,

∫
�ε

|mε − e0|2 dx → 0

for a suitable e0 ∈ S
2 such that

Ahom e0 · e0 = min
e∈S2

Ahom e · e .
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3 Proofs of the Results

In this section, we collect the proofs of the main results. We treat separately the
magnetostatic and the exchange energies. We start with the study of the magnetostatic
energy, which represents the main novelty of the present analysis. In order to simplify
the exposition, in Sect. 3.1 we consider first the case of parallel profiles (see Fig. 1).
Then, in Sect. 3.2 we consider the case of general surface roughness, requiring a more
intricate analysis, and identify the limiting behavior of the magnetostatic energy in
Proposition 3.13. The �-limit of the exchange energy is investigated in Sect. 3.3 (see
Propositions 3.16, 3.21). Finally, combining the aforementioned results we provide
the proof of Theorem 2.2 in Sect. 3.4.

3.1 Study of the Magnetostatic Energy: The Case of Parallel Profiles

Following Kohn and Slastikov (2005), Slastikov (2005), in order to treat the magne-
tostatic energy we show that its limiting behavior can be reduced to that of the energy
of magnetic charges at the top and bottom surfaces of the thin layer (see Lemmas 3.1–
3.5). We utilize some results proven in Kohn and Slastikov (2005), see Lemma 3.1
and Lemma 3.2; however, due to the presence of the two scales, it is necessary to
provide self-contained proofs for Lemma 3.4 and Lemma 3.5. The core of the analysis
is then represented by the study of the leading order contribution of the magnetostatic
energy (see Proposition 3.9). The main new difficulties are related to the fact that there
is a nontrivial interaction between the homogenization and the dimension reduction
processes in the limiting singular behavior of the integral kernel coming from the
magnetostatic energy.

In what follows we set f1 = f and f2 = f + a, for some Q-periodic Lipschitz
continuous function f and a > 0, so that (2.1) becomes

Vε =
{
(x ′, x3) : x ′ ∈ ω , ε f

(
x ′

ε

)
< x3 < aε + ε f

(
x ′

ε

)}
(3.1)

and thus

�ε =
{
(x ′, x3) : x ′ ∈ ω , f

(
x ′

ε

)
< x3 < a + f

(
x ′

ε

)}
.

The typical examples that we might consider is

f (x ′) = sin2(πx1) sin
2(πx2) or f (x ′) = sin2(πx1) .

We start by recalling the following well-known useful representation formula for the
magnetostatic energy.
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Lemma 3.1 Let u solve (2.3). Then

4π
∫
R3

|∇u|2 dx =
∫
Vε

∫
Vε

1

|x − y|divM(x)divM(y) dxdy

+
∫

∂Vε

∫
∂Vε

1

|x − y| (M · νε)(x)(M · νε)(y) dH2(x)dH2(y)

(3.2)

− 2
∫

∂Vε

∫
Vε

1

|x − y|divM(y)(M · νε)(x) dydH2(x) ,

where νε denotes the outer unit normal to Vε.

Proof See [Kohn and Slastikov (2005), p 237]. ��

Notational warning In all the following results (and proofs)C will denote a positive
constant possibly depending only on f andω (and possibly changing from line to line).

The next lemma provides a simple estimate that will allow us to reduce to the case
of x3-independent magnetizations.

Lemma 3.2 Let M ∈ H1(Vε;S2). Set

M(x ′) := 1

aε

∫ εa+ε f (x ′/ε)

ε f (x ′/ε)
M(x ′, x3) dx3

and let ū be the solution to (2.3) with M replaced by M. Then,

∣∣∣∣
∫
R3

|∇u|2 dx −
∫
R3

|∇ū|2 dx
∣∣∣∣ ≤ Cε3/2

∥∥∥∥∂M

∂x3

∥∥∥∥
L2(Vε)

.

Proof The proof can be established arguing as in Kohn and Slastikov (2005), Lemma
3. ��

Remark 3.3 The previous lemma holds also in the general case (2.1) with the same
proof.

In the next two lemmas, we estimate the first and the third terms, respectively, of the
representation formula (3.2). We show that these terms vanish in the limit as ε → 0
and do not contribute to the reduced energy.

Lemma 3.4 Under the hypothesis and with the notation of the previous lemma, we
have

∣∣∣∣
∫
Vε

∫
Vε

1

|x − y|divM(x ′)divM(y′) dxdy
∣∣∣∣ ≤ Cε2‖div x ′M‖2L2(ω)

.
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Proof Using the fact that M is independent of x3, one immediately gets

∣∣∣∣
∫
Vε

∫
Vε

1

|x − y|divM(x ′)divM(y′) dxdy
∣∣∣∣

≤ a2ε2
∫

ω

∫
ω

1

|x ′ − y′| |div x ′M(x ′)| |div y′M(y′)| dx ′dy′ ≤ Cε2‖div x ′M‖2L2(ω)
,

where the last estimate follows from the generalized Young’s inequality (see Lieb and
Loss 2010). ��
Lemma 3.5 With the notation of the previous lemma, we have

∣∣∣∣
∫

∂Vε

∫
Vε

1

|x − y|divM(y′)(M · νε)(x
′) dydH2(x)

∣∣∣∣ ≤ Cε3/2‖div x ′M‖L2(ω) .

Proof Using the inequality

1√|x ′ − y′|2 + (x3 − y3)2
≤ 1√|x ′ − y′|√|x3 − y3|

(3.3)

and setting

A :=
∣∣∣∣
∫

ω

∫ aε+ε f (y′/ε)

ε f (y′/ε)

∫
ω

divM(y′)(M(x ′) · (−∇ f (x ′/ε), 1))√
(x ′ − y′)2 + (εa + ε f (x ′/ε) − y3)2

dx ′dy3dy′

+
∫

ω

∫ aε+ε f (y′/ε)

ε f (y′/ε)

∫
ω

divM(y′)(M(x ′) · (∇ f (x ′/ε),−1))√
(x ′ − y′)2 + (ε f (x ′/ε) − y3)2

dx ′dy3dy′
∣∣∣∣ ,

we have
∣∣∣∣
∫
∂Vε

∫
Vε

divM(y′)(M · νε)(x ′)
|x − y| dydH2(x)

∣∣∣∣

≤
∣∣∣∣
∫
ω

∫
∂ω

∫ εa+ε f (x ′/ε)

ε f (x ′/ε)

∫ εa+ε f (y′/ε)

ε f (y′/ε)

∫
divM(y′)(M · νε)(x ′)√
|x ′ − y′|2 + |x3 − y3|2

dy3dx3dH1(x ′)dy′
∣∣∣∣ + A

≤
∫
ω

∫
∂ω

|divM(y′)|√|x ′ − y′| dH
1(x ′)dy′

∫ εa+‖ f ‖∞ε

0

∫ εa+‖ f ‖∞ε

0

1√|x3 − y3|
dy3dx3 + A

≤ Cε3/2
∫
ω

∫
∂ω

|divM(y′)|√|x ′ − y′| dH
1(x ′)dy′ + A ≤ Cε3/2‖div x ′ M‖L2(ω) + A . (3.4)

Since for y3 ∈ (ε f (y′/ε), aε+ε f (y′/ε))wemay find L > 0 large enough (depending
only on f and a) so that

∣∣∣∣ 1√
(x ′ − y′)2 + (ε f (x ′/ε) − y3)2

− 1√
(x ′ − y′)2 + (aε + ε f (x ′/ε) − y3)2

∣∣∣∣
≤ 1

|x ′ − y′| − 1√
(x ′ − y′)2 + ε2L2

=: Kε(x
′ − y′) , (3.5)
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and we can estimate

A ≤ Cε

∫
ω

∫
ω

|divM(y′)|Kε(x
′ − y′) dx ′dy′ .

In turn, by the generalized Young’s inequality and using the fact that

∫
R2

Kε(z
′) dz′ = 2π

∫ +∞

0
r

(
1

r
− 1√

r2 + ε2L2

)
dr

= 2π
∫ +∞

0

ε2L2

√
r2 + ε2L2(

√
r2 + ε2L2 + r)

dr

≤ 2π
∫ ∞

0

ε2L2

r2 + L2ε2
dr = π2εL , (3.6)

we obtain

A ≤ Cε‖Kε‖L1(R2)‖divM‖L2(ω) ≤ Cε2‖divM‖L2(ω) .

Combining the last inequality with (3.4), we conclude the proof of the lemma. ��

The estimates provided by the next two lemmas will be useful in the computing the
limit of the second term in (3.2).

Lemma 3.6 With the same notation of the previous lemma, we have

∫
ω

∫
∂ω

∫ aε+ε f (x ′/ε)

ε f (x ′/ε)

∣∣∣∣ 1√|x ′ − y′|2 + (εa + ε f (x ′/ε) − y3)2

− 1√|x ′ − y′|2 + (ε f (x ′/ε) − y3)2

∣∣∣∣dy3dx ′dy′ ≤ Cε2

Proof We can estimate the integrand as in (3.5) and (3.6) to easily conclude. ��

Lemma 3.7 We have

∫
∂ω

∫
∂ω

∫ aε+ε f (x ′/ε)

ε f (x ′/ε)

∫ aε+ε f (y′/ε)

ε f (y′/ε)

1√|x ′ − y′|2 + (x3 − y3)2
dy3dx3dH1(y′)dH1(x ′) ≤ Cε3/2 .

Proof The proof is straightforward after recalling (3.3). ��

Wewill also need the following simple and rather standard result on the approximation
of the identity. It is a particular case of amore general statement; however,we formulate
it only in the form that serves our purposes.
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Lemma 3.8 Let (Kε) be a family of nonnegative kernels satisfying

sup
ε>0

∫
R2

Kε(z
′) dz′ =: M < +∞ and for any fixed δ > 0

∫
|z′|>δ

Kε(z
′)dz′ → 0 as ε → 0 . (3.7)

Let uε → u in L1(R2;R3). Then

∫
R2

∫
R2

Kε(x
′ − y′)|uε(x

′) − u(y′)| dx ′dy′ → 0

as ε → 0+.

Proof The proof is rather standard. Observe first that by (3.7) it easily follows that

w ∈ Cc(R
2;R3) ⇒ ∫

R2

∫
R2 Kε(x ′ − y′)|w(x ′) − w(y′)| dx ′dy′ → 0

as ε → 0+ . (3.8)

Fix δ > 0 and find w ∈ Cc(R
2;R3) and ε̄ > 0 such that ‖w − u‖1 ≤ δ and

‖uε − u‖1 ≤ δ for all ε ∈ (0, ε̄). Then for all such ε we have

∫
R2

∫
R2

Kε(x
′ − y′)|uε(x

′) − u(y′)| dx ′dy′

≤
∫
R2

∫
R2

Kε(x
′ − y′)|uε(x

′) − u(x ′)| dx ′dy′

+ 2
∫
R2

∫
R2

Kε(x
′ − y′)|u(x ′) − w(x ′)| dx ′dy′

+
∫
R2

∫
R2

Kε(x
′ − y′)|w(x ′) − w(y′)| dx ′dy′

= ‖Kε‖1 (‖uε − u‖1
+2‖w − u‖1) +

∫
R2

∫
R2

Kε(x
′ − y′)|w(x ′) − w(y′)| dx ′dy′

≤ 3Mδ +
∫
R2

∫
R2

Kε(x
′ − y′)|w(x ′) − w(y′)| dx ′dy′ ,

where in the last inequality we used the first assumption in (3.7). Recalling (3.8) we
deduce

lim sup
ε→0

∫
R2

∫
R2

Kε(x
′ − y′)|uε(x

′) − u(y′)| dx ′dy′ ≤ 3Mδ

and the conclusion follows by the arbitrariness of δ. ��
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The following proposition identifies the limit as ε → 0 of the second term in (3.2),
accounting for the interaction between the boundary charges, and represents the main
brick in the proof of Theorem 2.2.

Proposition 3.9 Let m0 ∈ L2(ω;S2) and let (Mε) ⊂ L2(ω;R3) be such that |Mε| ≤
1 for all ε and Mε → m0 in L2(ω;R3). Then

1

4πε

∫
∂Vε

∫
∂Vε

1

|x − y| (Mε(x
′) · νε(x))(Mε(y

′) · νε(y)) dH2(x)dH2(y)

→
∫

ω

Ahom m0 · m0 dx
′ ,

where Ahom is the constant matrix defined in (2.9).

Proof We start by decomposing ∂Vε as ∂Vε = �+
ε ∪ �−

ε ∪ �lat
ε , with �+

ε and �−
ε

denoting the top and the bottom part of ∂Vε, respectively, and �lat
ε being the lateral

boundary. Observe now that we may split the double integral
∫
∂Vε

∫
∂Vε

as

∫
∂Vε

∫
∂Vε

=
∫

�+
ε

∫
�+

ε

+
∫

�−
ε

∫
�−

ε

+2
∫

�+
ε

∫
�−

ε

+2
∫

�lat
ε

∫
�+

ε ∪�−
ε

+
∫

�lat
ε

∫
�lat

ε

= 2
∫

�+
ε

∫
�+

ε

+2
∫

�+
ε

∫
�−

ε

+2
∫

�lat
ε

∫
�+

ε ∪�−
ε

+
∫

�lat
ε

∫
�lat

ε

, (3.9)

where we used the obvious identity
∫
�+

ε

∫
�+

ε
= ∫

�−
ε

∫
�−

ε
, which follows from the fact

that �+
ε and �−

ε are parallel. By Lemma 3.6, we easily get

∫
�lat

ε

∫
�+

ε ∪�−
ε

1

|x − y| (Mε(x
′) · νε(x))(Mε(y

′) · νε(y)) dH2(x)dH2(y) ≤ Cε2 ,

(3.10)

while Lemma 3.7 yields

∫
�lat

ε

∫
�lat

ε

1

|x − y| (Mε(x
′) · νε(x))(Mε(y

′) · νε(y)) dH2(x)dH2(y) ≤ Cε3/2.

(3.11)

Thus, combining (3.9)–(3.11) we get

lim
ε→0

1

4πε

∫
∂Vε

∫
∂Vε

1

|x − y| (Mε(x
′) · νε(x))(Mε(y

′) · νε(y)) dH2(x)dH2(y)

= lim
ε→0

1

2πε

[∫
�+

ε

∫
�+

ε

1

|x − y| (Mε(x
′) · νε(x))(Mε(y

′) · νε(y)) dH2(x)dH2(y)

+
∫

�+
ε

∫
�−

ε

1

|x − y| (Mε(x
′) · νε(x))(Mε(y

′) · νε(y)) dH2(x)dH2(y)

]

= lim
ε→0

∫
ω

∫
ω

�ε(x
′, y′)Mε(x

′) · Mε(y
′) dx ′dy′ , (3.12)
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where

�ε(x
′, y′) :=

1

2πε

⎛
⎜⎜⎝

n(
y′
ε ) ⊗ n( x

′
ε )√

|x ′ − y′|2 + ε2
∣∣∣ f

(
x ′
ε

)
− f

(
y′
ε

)∣∣∣2
− n(

y′
ε ) ⊗ n( x

′
ε )√

|x ′ − y′|2 + ε2
∣∣∣a + f

(
x ′
ε

)
− f

(
y′
ε

)∣∣∣2

⎞
⎟⎟⎠ ,

with

n(x ′) := (−∇ f (x ′), 1
)

.

Observe now that there exists L sufficiently large such that

|�ε(x
′, y′)| ≤ L

2πε

(
1

|x ′ − ′y| − 1√|x ′ − y′|2 + ε2L2

)
=: L

2πε
Kε(x

′ − y′)

and note that, using also (3.6), we have

L

2πε

∫
R2

Kε(z
′) dz′ ≤ π

2
L2 and for any fixed δ > 0

L

2πε

∫
|z′|>δ

Kε(z
′)dz′ → 0 as ε → 0 . (3.13)

We define the Q-periodic function

G(x ′) := 1

2π

∫
R2

[
n(x ′) ⊗ n(z′ + x ′)√

|z′|2 + | f (z′ + x ′) − f (x ′)|2

− n(x ′) ⊗ n(z′ + x ′)√
|z′|2 + |a + f (z′ + x ′) − f (x ′)|2

]
dz′ .

By the change of variables z′ := (x ′ − y′)/ε, we obtain

G

(
y′

ε

)
=

∫
R2

�ε(x
′, y′) dx ′.

Thus,

∣∣∣∣
∫

ω

�ε(x
′, y′)Mε(x

′) dx ′ − G

(
y′

ε

)
m0(y

′)
∣∣∣∣

=
∣∣∣∣
∫
R2

�ε(x
′, y′)(Mε(x

′)χω(x ′) − m0(y
′)) dx ′

∣∣∣∣
≤ L

2πε

∫
R2

Kε(x
′ − y′)|Mε(x

′)χω(x ′) − m0(y
′)| dx ′
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so that

∫
ω

∣∣∣∣
∫

ω

�ε(x
′, y′)Mε(x

′) dx ′ − G

(
y′

ε

)
m0(y

′)
∣∣∣∣dy′

≤ L

2πε

∫
R2

∫
R2

Kε(x
′ − y′)|Mε(x

′)χω(x ′) − m0(y
′)χω(y′)| dx ′dy′ → 0 ,

where the last limit follows from Lemma 3.8. In turn, using |Mε(y′)| ≤ 1 we have

lim
ε→0

∫
ω

∫
ω

�ε(x
′, y′)Mε(x

′) · Mε(y
′) dx ′dy′

= lim
ε→0

∫
ω

G

(
y′

ε

)
m0(y

′) · Mε(y
′)dy′ =

∫
ω

Ahom m0 · m0 dx
′ ,

where the last equality follows from the Riemann–Lebesgue lemma and the definition
of G and Ahom. The conclusion of the lemma follows recalling (3.12). ��

Combining Lemma 3.1, Lemmas 3.4–3.7 and Proposition 3.9, we easily establish
the following asymptotic behavior of the magnetostatic energy.

Proposition 3.10 Let m0 ∈ H1(ω;S2) and let Mε ⇀ m0 weakly in H1(ω; B(0, 1)).
For every ε > 0 let ūε solve (2.3) with M replaced by Mε. Then

1

ε

∫
R3

|∇ūε|2 dx →
∫

ω

Ahom m0 · m0 dx
′ ,

as ε → 0+, where Ahom is the matrix defined in (2.9).

3.2 Study of the Magnetostatic Energy: The General Case

In this section, we study the magnetostatic energy in general domains of the form
(2.1). We note that Lemmas 3.2–3.7 can be directly transferred to the case of general
profiles f1, f2 and therefore, we will be referring to them without loss of generality.
As in the previous section, the core of the analysis is represented by the study of the
leading order contribution of the magnetostatic energy performed in Proposition 3.13.
We notice here that because of the general form of f1 and f2 some of the cancellations
we benefitted from in Proposition 3.9 do not occur anymore. This explains the presence
of additional terms in the limit and makes the analysis much more involved.

Lemma 3.11 Let M
′
ε → m′

0 in L2(ω;R2), with |M ′
ε| ≤ 1. Then

1

ε

∫
ω

∫
∂ω

∫ ε f2(x ′/ε)

ε f1(x ′/ε)

(M
′
ε(x

′) · νω(x ′))(M ′
ε(y

′) · ∇ fi (y′/ε))√|x ′ − y′|2 + (x3 − ε fi (y′/ε))2
dx3dH1(x ′)dy′ → 0

for i = 1, 2. Here νω denotes the outer unit normal to ∂ω.
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Proof Using a change of variable and interchanging integrals, we may rewrite the
above integral as

∫
∂ω

∫ f2(x ′/ε)

f1(x ′/ε)
(M

′
ε(x

′) · νω(x ′))
∫

ω

M
′
ε(y

′) · ∇ fi (y′/ε)√|x ′ − y′|2 + ε2(x3 − fi (y′/ε))2
dy′dx3dH1(x ′)

Since for all x = (x ′, x3)

M
′
ε√|x ′ − ·|2 + ε2(x3 − fi (·/ε))2

→ m′
0

|x ′ − ·| in L1(ω;R2)

and ∇ fi (·/ε) ∗
⇀ 0 weakly-∗ in L∞(ω;R2) (due to the periodicity of fi ), we deduce

that

∫
ω

M
′
ε(y

′) · ∇ fi (y′/ε)√|x ′ − y′|2 + ε2(x3 − fi (y′/ε))2
dy′ → 0 for all x .

Since the above integral is uniformly bounded with respect to x , the thesis of the
lemma follows by the dominated convergence theorem. ��
As a consequence of the previous lemma, we may now show the following

Lemma 3.12 Let Mε = (M
′
ε, M

3
ε) → m0 = (m′

0,m
3
0) in L2(ω;R3), with |Mε| ≤ 1.

Then

1

ε

∫
ω

∫
∂ω

∫ ε f2(x ′/ε)

ε f1(x ′/ε)

(M
′
ε(x

′) · νω(x ′))(Mε(y′) · n2(y′/ε))√|x ′ − y′|2 + (x3 − ε f2(y′/ε))2
dx3dH1(x ′)dy′

−1

ε

∫
ω

∫
∂ω

∫ ε f2(x ′/ε)

ε f1(x ′/ε)

(M
′
ε(x

′) · νω(x ′))(Mε(y′) · n1(y′/ε))√|x ′ − y′|2 + (x3 − ε f1(y′/ε))2
dx3dH1(x ′)dy′ → 0 .

Here n1 and n2 are the vectors defined in (2.8).

Proof Observe that the difference of the two integrals appearing in the statement can
be rewritten as

− 1

ε

∫
ω

∫
∂ω

∫ ε f2(x ′/ε)

ε f1(x ′/ε)

(M
′
ε(x

′) · νω(x ′))(M ′
ε(y

′) · ∇ f2(y′/ε))√|x ′ − y′|2 + (x3 − ε f2(y′/ε))2
dx3dH1(x ′)dy′

+ 1

ε

∫
ω

∫
∂ω

∫ ε f2(x ′/ε)

ε f1(x ′/ε)

(M
′
ε(x

′) · νω(x ′))(M ′
ε(y

′) · ∇ f1(y′/ε))√|x ′ − y′|2 + (x3 − ε f1(y′/ε))2
dx3dH1(x ′)dy′

+ 1

ε

∫
ω

∫
∂ω

∫ ε f2(x ′/ε)

ε f1(x ′/ε)
M

3
ε(y

′)(M ′
ε(x

′) · νω(x ′))
(

1√|x ′ − y′|2 + (x3 − ε f2(y′/ε))2

− 1√|x ′ − y′|2 + (x3 − ε f1(y′/ε))2

)
dx3dH1(x ′)dy′ .
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Now, the first two integrals in the above formula vanish thanks to Lemma 3.11, while
the convergence to zero of the last one can be shown as in Lemma 3.6. ��

We are ready to prove the main result, which establishes the limiting behavior of
the magnetostatic energy.

Proposition 3.13 Let Mε ⇀ m0 weakly in H1(ω;S2). Then
1

4πε

∫
∂Vε

∫
∂Vε

1

|x − y| (Mε(x
′) · νε(x))(Mε(y

′) · νε(y)) dH2(x)dH2(y)

→
∫

ω

Ahomm0 · m0 dx
′ ,

with Ahom defined in (2.7). We recall that νε stands for the outer unit normal to ∂Vε.

Proof We start by decomposing the double integral
∫
∂Vε

∫
∂Vε

similarly to (3.9) and
observing that by Lemmas 3.12 and 3.7 the terms involving lateral boundary ∂ω vanish
in the limit as ε → 0. Therefore, we have

lim
ε→0

1

4πε

∫
∂Vε

∫
∂Vε

1

|x − y| (Mε(x
′) · νε(x))(Mε(y

′) · νε(y)) dH2(x)dH2(y)

= lim
ε→0

(
1

4πε

∫
ω

∫
ω

(Mε(x ′) · n1(x ′/ε))(Mε(y′) · n1(y′/ε))√|x ′ − y′|2 + ε2( f1(x ′/ε) − f1(y′/ε))2
dx ′dy′

+ 1

4πε

∫
ω

∫
ω

(Mε(x ′) · n2(x ′/ε))(Mε(y′) · n2(y′/ε))√|x ′ − y′|2 + ε2( f2(x ′/ε) − f2(y′/ε))2
dx ′dy′

− 1

2πε

∫
ω

∫
ω

(Mε(x ′) · n1(x ′/ε))(Mε(y′) · n2(y′/ε))√|x ′ − y′|2 + ε2( f1(x ′/ε) − f2(y′/ε))2
dx ′dy′

)
(3.14)

=: lim
ε→0

Iε . (3.15)

Now, notice that

Iε = Iε

± 1

4πε

∫
ω

∫
ω

(Mε(x ′) · n2(x ′/ε) − Mε(x ′) · n1(x ′/ε))(Mε(y′) · n2(y′/ε) − Mε(y′) · n1(y′/ε))√|x ′ − y′|2 + ε2
dx ′dy′

= 1

4πε

∫
ω

∫
ω

(Mε(x
′) · n1(x ′/ε))(Mε(y

′) · n1(y′/ε))
(

1√|x ′ − y′|2 + ε2( f1(x ′/ε) − f1(y′/ε))2
− 1√|x ′ − y′|2 + ε2

)
dx ′dy′

+ 1

4πε

∫
ω

∫
ω

(Mε(x
′) · n2(x ′/ε))(Mε(y

′) · n2(y′/ε))
(

1√|x ′ − y′|2 + ε2( f2(x ′/ε) − f2(y′/ε))2
− 1√|x ′ − y′|2 + ε2

)
dx ′dy′
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− 1

2πε

∫
ω

∫
ω

(Mε(x
′) · n1(x ′/ε))(Mε(y

′) · n2(y′/ε))
(

1√|x ′ − y′|2 + ε2( f1(x ′/ε) − f2(y′/ε))2
− 1√|x ′ − y′|2 + ε2

)
dx ′dy′

+ 1

4πε

∫
ω

∫
ω

(M
′
ε(x

′) · ∇( f2 − f1)(x ′/ε))(M ′
ε(y

′) · ∇( f2 − f1)(y′/ε))√|x ′ − y′|2 + ε2
dx ′dy′

=: I 1ε + I 2ε + I 3ε + I 4ε . (3.16)

Here we used again the notation Mε = (M
′
ε, M

3
ε ). The limits of I 1ε , I

2
ε and I 3ε can be

computed arguing exactly as in the proof of Lemma 3.9. We obtain

I 1ε →
∫

ω

Ahom,1m0 · m0 dx
′ , I 2ε →

∫
ω

Ahom,2m0 · m0 dx
′ , and I 3ε

→
∫

ω

Ahom,3m0 · m0 dx
′ , (3.17)

where

Ahom,1 := 1

4π

∫
Q

∫
R2

(
n1(x ′) ⊗ n1(z′ + x ′)√

|z′|2 + | f1(z′ + x ′) − f1(x ′)|2
− n1(x ′) ⊗ n1(z′ + x ′)√|z′|2 + 1

)
dz′dx ′

Ahom,2 := 1

4π

∫
Q

∫
R2

(
n2(x ′) ⊗ n2(z′ + x ′)√

|z′|2 + | f2(z′ + x ′) − f2(x ′)|2
− n2(x ′) ⊗ n2(z′ + x ′)√|z′|2 + 1

)
dz′dx ′

Ahom,3 := − 1

2π

∫
Q

∫
R2

(
n1(x ′) ⊗ n2(z′ + x ′)√

|z′|2 + | f2(z′ + x ′) − f1(x ′)|2
− n1(x ′) ⊗ n2(z′ + x ′)√|z′|2 + 1

)
dz′dx ′ .

We are left with studying the behavior of I 4ε . In order to deal with such a term, we set
g := f2 − f1 and we note that integration by parts yields

4π I 4ε = ε

∫
ω

∫
ω

div y′
[
M

′
ε(y

′)div x ′
(

M
′
ε(x

′)√|x ′ − y′|2 + ε2

)]
g(x ′/ε)g(y′/ε)dx ′dy′

+
∫

∂ω

(M
′
ε · νω)(x ′)g(x ′/ε)

∫
ω

M
′
ε(y

′) · ∇g(y′/ε)√|x ′ − y′|2 + ε2
dy′dH1(x ′)

− ε

∫
∂ω

∫
ω

(M
′
ε · νω)(y′)div x ′

(
M

′
ε(x

′)√|x ′ − y′|2 + ε2

)
g(x ′/ε)g(y′/ε) dy′dH1(x ′)

=:J 1ε + J 2ε + J 3ε . (3.18)

Arguing exactly as in the proof of Lemma 3.11, the L∞ weak-∗ convergence to 0 of
∇g(·/ε) easily yields that

J 2ε → 0 . (3.19)
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Moreover, for a sufficiently large C > 0, we have

|J 3ε | ≤ ε‖g∞‖2∞
(∫

∂ω

∫
ω

|div x ′ M
′
ε|√|x ′ − y′|2 + ε2

dx ′dH1(y′) +
∫

∂ω

∫
ω

|x ′ − y′|
(|x ′ − y′|2 + ε2)3/2

dx ′dH1(y′)
)

≤ √
ε‖g∞‖2∞

∫
∂ω

∫
ω

|div x ′ M
′
ε|√|x ′ − y′| dx

′dH1(y′) + Cε

∫ C

0

r2

(r2 + ε2)3/2
dr

≤ C
√

ε + Cε

∫ C

0

r

(r2 + ε2)
dr → 0 , (3.20)

where the last convergence follows by explicit computation of the integral. Note that
in the last inequality we have also used the fact that div x ′M

′
ε is bounded in L2. In

order to deal with J 1ε , we expand the double divergence term to get

J 1ε = ε

∫
ω

∫
ω

div x ′M
′
ε(x

′)div y′M
′
ε(y

′)√|x ′ − y′|2 + ε2
g(x ′/ε)g(y′/ε)dx ′dy′

+ 2ε
∫

ω

∫
ω

div x ′M
′
ε(x

′)M ′
ε(y

′) · (x ′ − y′)
(|x ′ − y′|2 + ε2)3/2

g(x ′/ε)g(y′/ε)dx ′dy′

+ ε

∫
ω

∫
ω

M
′
ε(x

′) · M ′
ε(y

′)
(|x ′ − y′|2 + ε2)3/2

g(x ′/ε)g(y′/ε)dx ′dy′

− 3ε
∫

ω

∫
ω

[M ′
ε(x

′) · (x ′ − y′)][M ′
ε(y

′) · (x ′ − y′)]
(|x ′ − y′|2 + ε2)5/2

g(x ′/ε)g(y′/ε)dx ′dy′

=: J 1,1ε + J 1,2ε + J 1,3ε + J 1,4ε .

Note that

J 1,1ε ≤ ‖g‖2∞
∫

ω

∫
ω

Kε(x
′ − y′)|div x ′M

′
ε(x

′)| |div y′M
′
ε(y

′)| dx ′dy′ ,

where we set

Kε(z
′) := ε√|z′|2 + ε2

.

Using the fact that ‖Kε‖L1(B) ≤ Cε, where B is a sufficiently large ball containing
ω − ω, and that divMε is bounded in L2, we deduce from the generalized Young’s
inequality that J 1,1ε → 0. Analogously,

J 1,2ε ≤ 2‖g‖2∞
∫

ω

∫
ω

K ′
ε(x

′ − y′)|div x ′M
′
ε(x

′)| dx ′dy′ ,

with

K ′
ε(z

′) := ε|z′|
(|z′|2 + ε2)3/2

.
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Since ‖K ′
ε‖L1(B) → 0 (see (3.20)), we also have J 1,2ε → 0 using generalized Young’s

inequality. Thus,

lim
ε→0

J 1ε = lim
ε→0

(J 1,3ε + J 1,4ε ) .

The last limit can be now computed arguing as in the proof of Lemma 3.9 to get

lim
ε→0

J 1ε = lim
ε→0

(J 1,3ε + J 1,4ε ) = 4π
∫

ω

A′
hom,4m

′
0 · m′

0dx
′ , (3.21)

with

A′
hom,4 := 1

4π

∫
Q

∫
R2

(
I d

(|z′|2 + 1)3/2
− 3z ⊗ z′

(|z′|2 + 1)5/2

)
g(z′ + x ′)g(x ′) dz′dx ′ .

We reproduce here the argument for the reader’s convenience. First of all, note that
we can write

J 1,3ε + J 1,4ε =
∫

ω

∫
ω

�̂ε(x
′, y′)M ′

ε(x
′)M ′

ε(y
′) dx ′dy′ ,

where

�̂ε(x
′, y′) := ε

(
I d

(|x ′ − y′|2 + ε2)3/2
− 3(x ′ − y′) ⊗ (x ′ − y′)

(|x ′ − y′|2 + ε2)5/2

)
g(x ′/ε)g(y′/ε) ,

and note that

|�ε(x
′, y′)| ≤ ε‖g‖2∞

∣∣∣∣ I d

(|x ′ − y′|2 + ε2)3/2
− 3(x ′ − y′) ⊗ (x ′ − y′)

(|x ′ − y′|2 + ε2)5/2

∣∣∣∣ =: K̂ε(x
′ − y′) ,

with K̂ε satisfying (3.13) (with K̂ε in place of L
2πε

Kε).Moreover, a change of variables
shows that

Ĝ

(
y′

ε

)
=

∫
R2

�̂ε(x
′, y′) dx ′ ,

where

Ĝ(x ′) :=
∫
R2

(
I d

(|z′|2 + 1)3/2
− 3z ⊗ z′

(|z′|2 + 1)5/2

)
g(z′ + x ′)g(x ′) dz′ .

We can now proceed as in the last part of the proof of Lemma 3.9 to show that

∫
ω

∣∣∣∣
∫

ω

�̂ε(x
′, y′)M ′

ε(x
′) dx ′ − Ĝ

(
y′

ε

)
m′

0(y
′)
∣∣∣∣dy′ → 0
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and, in turn,

lim
ε→0

∫
ω

∫
ω

�̂ε(x
′, y′)M ′

ε(x
′) · M ′

ε(y
′) dx ′dy′

= lim
ε→0

∫
ω

Ĝ

(
y′

ε

)
m′

0(y
′) · M ′

ε(y
′)dy′ = 4π

∫
ω

A′
hom,4m

′
0 · m′

0 dx
′ .

This establishes (3.21). Collecting (3.17)–(3.21), we conclude the proof of the propo-
sition. ��

As at the end of Sect. 3.1, we can combine the previous results to obtain the fol-
lowing:

Proposition 3.14 Let m0 ∈ H1(ω;S2) and let Mε ⇀ m0 weakly in H1(ω; B(0, 1)).
For every ε > 0 let ūε solve (2.3) with M replaced by Mε. Then

1

ε

∫
R3

|∇ūε|2 dx →
∫

ω

Ahom m0 · m0 dx
′ ,

as ε → 0+, where Ahom is the matrix defined in (2.7).

3.3 Study of the Exchange Energy

In this section, we identify the limiting exchange energy. We start with the following
simple extension argument.

Lemma 3.15 Let M > max{‖ f1‖∞, ‖ f2‖∞} and set �M := ω × (0, M). Let {mε}
be such that mε ∈ H1(�ε;S2) for every ε > 0 and

sup
ε>0

∫
�ε

(
|∇x ′mε|2 + 1

ε2
|∂x3mε|2

)
dx < +∞. (3.22)

Then for every ε > 0 there exists m̃ε ∈ H1(QM ;S2) such that m̃ε = mε in �ε and

sup
ε

∫
�M

(
|∇x ′m̃ε|2 + 1

ε2
|∂x3m̃ε|2

)
dx < +∞. (3.23)

Proof The required extension is obtained through repeated vertical reflections with
respect to the graphs of f1 and f2. More precisely, for every k ∈ N, k ≥ 3, we set
fk := f2+(k−2)( f2− f1) and for k ∈ Z, with k ≤ 0, set fk := f1+(k−1)( f2− f1).
Moreover, for every ε > 0 and k ∈ Z denote

�k
ε :=

{
(x ′, x3) : x ′ ∈ ω, fk

(
x ′

ε

)
< x3 < fk+1

(
x ′

ε

)}
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In particular, note that �1
ε = �ε. Set m1

ε := mε on �ε and inductively define mk
ε on

�k
ε as

mk
ε(x

′, x3) :=
⎧⎨
⎩
mk−1

ε

(
x ′, 2 fk

(
x ′
ε

)
− x3

)
if k ≥ 2 ,

mk+1
ε

(
x ′, 2 fk+1

(
x ′
ε

)
− x3

)
if k ≤ 0 .

Finally, we let m̃ε : ω × R → S
2 be defined as m̃ε := mk

ε on �k
ε . In order to proof

(3.23), it clearly suffices to show that for every k ∈ Z we have

sup
ε

∫
�k

ε

(
|∇x ′mk

ε |2 + 1

ε2
|∂x3mk

ε |2
)

dx < +∞ . (3.24)

To this aim, observe that for k ≥ 2 we have

∇mk
ε(x

′, x3) =
(

∇x ′mk−1
ε

(
x ′, 2 fk

(
x ′
ε

)
− x3

)

+ 2
ε
∂x3m

k−1
ε

(
x ′, 2 fk

(
x ′
ε

)
− x3

)
∇ fk

(
x ′
ε

)
,

−∂x3m
k−1
ε

(
x ′, 2 fk

(
x ′
ε

)
− x3

))
.

Thus, (3.24) follows easily by induction for k ≥ 2 recalling that by (3.22) we have

sup
ε

∥∥∥∥
(
∇x ′m1

ε,
1

ε
∂x3m

1
ε

)∥∥∥∥
L2(�1

ε;M3×3)

< +∞ .

The proof for k ≤ 0 is analogous. ��
We are now ready to proof the �-liminf inequality for the exchange energy.

Proposition 3.16 Let m0 ∈ H1(ω;S2) and let {mε}ε be such that mε ∈ H1(�ε;S2)
for every ε > 0 and

∫
�ε

|mε(x) − m0(x
′)|2 dx → 0 (3.25)

as ε → 0+. Then
∫

ω

ghom(∇x ′m0) dx
′ ≤ lim inf

ε→0

∫
�ε

(
|∇x ′mε|2 + 1

ε2
|∂x3mε|2

)
dx , (3.26)

where ghom is the homogenized exchange energy density defined in (2.6).

When f2 = − f1 + a for some a > 0, the above result is proven in Braides et al.
(2000). It is also clear that the methods of Braides et al. (2000) could be adapted
to deal with thin films of the form (2.1). However, for the reader’s convenience we
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prefer to give here a simple self-contained proof based on the two-scale approach
developed in Neukamm (2010). Following Neukamm (2010) (see also Neukamm and
Velčić 2013), we consider the following notion of two-scale convergence adapted to
the 3D–2D dimension reduction framework with the purpose of capturing the in-plane
oscillations.

Definition 3.17 Let �M be as in Lemma 3.15, let H be a finite-dimensional Hilbert
space, and let {gε} ⊂ L2(�M ; H) be L2-bounded. For any subsequence εn ↘ 0, we
say that {gεn } two-scale converges to g, with g ∈ L2

(
�M ; L2(Q; H)

)
, and we write

gεn

2-s
⇀ g, if

lim
n

∫
�M

〈
gεn (x), ψ

(
x,

x ′

εn

)〉
dx =

∫
�M

∫
Q
〈g(x, y′), ψ(x, y′)〉 dy′ dx

for allψ ∈ L2(�M ;C#(Q; H)). Here,C#(Q; H) denotes the space of the Q-periodic
continuous functions fromR

2 to H , endowed with the sup norm on Q, and 〈·, ·〉 stands
for the scalar product of H .

Definition 3.18 Any function ψ ∈ L2(�M ;C#(Q; H)) will be called an admissible
test function for the two-scale convergence defined in Definition 3.17.

Proof of Proposition 3.16 Without loss of generality, we may assume that (3.22)
holds. Let {m̃ε} be the family of extensions provided by Lemma 3.15. In par-
ticular, (3.23) holds and m̃ε ⇀ m0 weakly in H1(�M ;S2). Fix a subsequence
εn along which the liminf in (3.26) is achieved. Thus, denoting by Y the sub-
space of H1((0, M) × Q;R3) of functions m = m(x3, y′) that are Q-periodic
in the y′-variable, we may thus apply (Neukamm 2010, Theorem 6.3.3) and find
m1 = m1(x ′, x3, y′) ∈ L2(ω;Y) and a (not relabeled) subsequence such that

(
∇x ′m̃εn ,

1

εn
∂x3m̃εn

) 2-s
⇀ (∇x ′m0 + ∇y′m1, ∂x3m1) (3.27)

in the sense of Definition 3.17, that is,

lim
n

∫
�M

〈(
∇x ′m̃εn (x),

1

εn
∂x3m̃εn (x)

)
, ψ

(
x,

x ′

εn

)〉
dx

=
∫

�M

∫
Q

〈(
∇x ′m0(x

′) + ∇y′m1(x, y
′), ∂x3m1(x, y

′)
)
, ψ(x, y′)

〉
dy′ dx

for all ψ ∈ L2(�M ;C#(Q;M3×3)). For η > 0 we can define

mη
1(x

′, x3, y′) :=
∫
R2

ρη(y
′ − z′)m1(x

′, x3, z′) dz′

for almost every (x ′, x3) ∈ �M and for all y′ ∈ Q, where (ρη)η stands for the standard
family of mollifiers onR2. Note that in particular∇x3,y′mη

1 ∈ L2(�M ;C#(Q;M3×3))
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for every η > 0 and thus it can be used as a test function for the two-scale convergence,
see Definition 3.18.

For every k ∈ N, x3 ∈ (0, M), and y′ ∈ R
2 set

gk(x3, y
′) := inf{χ( f1(z′), f2(z′))(t) + k|(t, z′) − (x3, y

′)| : t ∈ (0, M), z′ ∈ R
2} ,

so that 0 ≤ gk ≤ 1

gk(x3, y
′) ↗ g(x3, y

′) := χ( f1(y′), f2(y′))(x3) (3.28)

as k → ∞. Note also that by construction gk is k-Lipschitz continuous and Q-
periodic in the y′-variable. Therefore, it is an admissible test function for the two-scale
convergence. Notice that for every n, k ∈ N and η > 0 we have

∫
�εn

(
|∇x ′mεn |2 + 1

ε2n
|∂x3mεn |2

)
dx ≥

∫
�M

gk
(
x3,

x ′

εn

)(
|∇x ′ m̃εn |2 + 1

ε2n
|∂x3 m̃εn |2

)
dx

≥ −
∫

�M
gk

(
x3,

x ′

εn

)∣∣∣∇x ′m0(x
′) + ∇y′mη

1

(
x,

x ′

εn

)∣∣∣2 dx

+ 2
∫

�M
gk

(
x3,

x ′

εn

)〈
∇x ′m0(x

′) + ∇y′mη
1

(
x,

x ′

εn

)
,∇x ′ m̃εn (x)

〉
dx

−
∫

�M
gk

(
x3,

x ′

εn

)∣∣∣∂x3mη
1

(
x,

x ′

εn

)∣∣∣2 dx

+ 2
∫

�M
gk

(
x3,

x ′

εn

)〈 1
εn

∂x3 m̃εn (x), ∂x3m
η
1

(
x,

x ′

εn

)〉
dx

Recalling that gk
(
·, ·

εn

) 2-s
⇀ gk as n → ∞, using (3.27) and the admissibility of

∇x3,y′mη
1, gk as test functions for the two-scale convergence, we deduce that

lim inf
n

∫
�εn

(
|∇x ′mεn |2 + 1

ε2n
|∂x3mεn |2

)
dx

≥
∫

�M

∫
Q
gk(x3, y

′)
[
−|∇x ′m0(x

′) + ∇y′mη
1(x, y

′)|2

+ 2〈∇x ′m0(x
′) + ∇y′mη

1(x, y
′),∇x ′m0(x

′) + ∇y′m1(x, y
′)〉

− |∂x3mη
1(x, y

′)|2 + 2〈∂x3m1(x, y
′), ∂x3m

η
1(x, y

′)〉
]
dy′dx .

In turn, recalling (3.28) and that ∇x3,y′mη
1 → ∇x3,y′m1 in L2(�M ; L2(Q;M3×3) as

η → 0+, we may conclude

lim inf
n

∫
�εn

(
|∇x ′mεn |2 + 1

ε2n
|∂x3mεn |2

)
dx

≥
∫

�M

∫
Q
g(x3, y

′)
[
|∇x ′m0(x

′) + ∇y′m1(x, y
′)|2 + |∂x3m1(x, y

′)|2
]
dy′dx
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=
∫

ω

∫
Q f1, f2

[
|∇x ′m0(x

′) + ∇y′m1(x
′, x3, y′)|2 + |∂x3m1(x

′, x3, , y′)|2
]
dy′dx3dx ′

≥
∫

ω

ghom(∇x ′m0) dx
′ ,

where the last inequality follows from the very definition (2.6) of ghom, recalling that
for a.e. x ′ ∈ ω we have m1(x ′, ·, ·) ∈ H1

# (Q f1, f2; R3). This concludes the proof of
the proposition. ��

We now seek to prove the upper bound. We start with the following remark.

Remark 3.19 (Cell formula revisited) Since ghom is defined by minimizing a nonneg-
ative quadratic form on a linear function space, standard arguments show that ghom
is in turn a nonnegative quadratic form, and thus continuous. Moreover, using the
periodicity condition in the definition of the function space it is easy to see that ghom
is positive definite. Also, by strict convexity, the minimizer ϕξ of (2.6) is unique up to
adding constant vectors. Let now s ∈ S

2 be such that ξ t s = 0 (that is, s is orthogonal
to both columns of ξ ). Then, setting ψξ := ϕξ − (ϕξ · s)s we can argue as in [Alouges
and Fratta (2015) page 10] to show that

|ξ + ∇y′ϕξ |2 + |∂y3ϕξ |2 ≥ |ξ + ∇y′ψξ |2 + |∂y3ψξ |2 + |∇(ϕξ · s)|2
≥ |ξ + ∇y′ψξ |2 + |∂y3ψξ |2 .

It follows that ψξ is also a solution and thus ∇(ϕξ · s) ≡ 0, that is, ϕξ · s is constant.
Therefore, upon adding a suitable constant vector, we may assume that the solution
ϕξ to (2.6) satisfies

{∫
Q f1, f2

ϕξ dx = 0 ,

ϕξ · s = 0 in Q f1, f2 .

The above conditions determineϕξ uniquely. Finally, choosingϕ = 0 as a test function
in (2.6) we immediately get ghom(ξ) ≤ |ξ |2 for all ξ ∈ M

3×2.

Lemma 3.20 Let M > 0 be as in Lemma 3.15 and denote by Y the subspace of
H1(Q × (0, M);R3) of functions m = m(y) that are Q-periodic in the y′-variable.
Let m0 ∈ C1(ω;S2) then, for ghom defined in (2.6), the following identity holds:

∫
ω

ghom(∇x ′m0) dx
′

= inf

{∫
ω

∫
Q f1, f2

[
|∇x ′m0(x

′) + ∇y′m(x ′, y)|2 + |∂y3m(x ′, y)|2
]
dydx ′

: m ∈ C1(ω;Y) s.t. m(x ′, y) · m0(x
′)

≡ 0 for a.e. (x ′, y) ∈ ω × [Q × (0, M)]
}

. (3.29)
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Proof Without loss of generality, we may assume that m0 ∈ C1(R2;S2). Now for
every x ′ ∈ R

2 let m(x ′, ·) ∈ H1
# (Q f1, f2; R3) be the unique solution to

⎧⎪⎨
⎪⎩
m(x ′, ·) solves re f ghom with ξ replaced by ∇x ′m0(x ′) ,∫
Q f1, f2

m(x ′, y)dy = 0 ,

m(x ′, ·) · m0(x ′) = 0 in Q f1, f2 .

(3.30)

The solution to the above problem exists and is unique, thanks to Remark 3.19, since
m0 is S2-valued and thus ∇m0(x ′)tm0(x ′) = 0 for all x ′. By repeated reflections of
m(x ′, ·) with respect to the y3-variable (as in the proof of Lemma 3.15), we may in
fact assume thatm(x ′, ·) ∈ Y and that the third equation in (3.30) holds in Q×(0, M).
Due to uniqueness, it is easy to see that m ∈ C0(R2;Y). In particular, m and ∇ym are
globally measurable and

∫
ω

ghom(∇x ′m0) dx
′ =

∫
ω

∫
Q f1, f2

[
|∇x ′m0(x

′) + ∇y′m(x ′, y)|2 + |∂y3m(x ′, y)|2
]
dydx ′.

(3.31)

Let (ρη)η>0 be a family of standard mollifiers on R
2 and for every y ∈ Q × (0, M)

set mη(·, y) := ρη ∗ m(·, y), that is, mη is defined by taking the convolution of
m with respect to the x ′-variable. Note that by the properties of convolutions we
have mη ∈ C∞(R2;Y) and mη → m in C0(ω;Y), as η → 0+. In turn, setting
m̂η := mη − (mη · m0)m0, we have m̂η ∈ C1(R2;Y) and m̂η(x ′, ·) · m0(x ′) ≡
0 for all x ′. Moreover, using the third equation in (3.30) in Q × (0, M) one sees that
m̂η → m−(m ·m0)m0 = m inC0(ω;Y) as η → 0+. Owing to the latter convergence
property and recalling (3.31), we easily deduce

∫
ω
ghom(∇x ′m0) dx

′ =
∫
ω

∫
Q f1, f2

[
|∇x ′m0(x

′) + ∇y′m(x ′, y)|2 + |∂y3m(x ′, y)|2
]
dydx ′

= lim
η→0+

∫
ω

∫
Q f1, f2

[
|∇x ′m0(x

′) + ∇y′ m̂η(x ′, y)|2 + |∂y3 m̂η(x ′, y)|2
]
dydx ′

≥ inf

{∫
ω

∫
Q f1, f2

[
|∇x ′m0(x

′) + ∇y′m(x ′, y)|2 + |∂y3m(x ′, y)|2
]
dydx ′ :

m ∈ C1(ω;Y) s.t. m(x ′, ·) · m0(x
′) ≡ 0 for all x ′ ∈ ω

}
.

Since the other inequality is trivial, this concludes the proof of the lemma. ��
We are now ready to establish the upper bound for the limiting exchange energy.

Proposition 3.21 Let m0 ∈ H1(ω;S2). Then, there exists {mε}ε>0 such that mε ∈
H1(�ε;S2) for every ε > 0, (3.25) holds and

lim sup
ε→0

∫
�ε

(
|∇x ′mε|2 + 1

ε2
|∂x3mε|2

)
dx ≤

∫
ω

ghom(∇x ′m0) dx
′ .
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Proof We start by assuming that m0 ∈ C1(ω;S2). Fix η > 0. Then, by Lemma 3.20
we may find m ∈ C1(ω;Y) such that

m(x ′, ·) · m0(x
′) = 0 inQ × (0, M) for all x ′ ∈ ω (3.32)

and

∫
ω

∫
Q f1, f2

[
|∇x ′m0(x

′) + ∇y′m(x ′, y)|2 + |∂y3m(x ′, y)|2
]
dydx ′

≤
∫

ω

ghom(∇x ′m0) dx
′ + η . (3.33)

For every ε > 0 and for x ∈ �M := ω × (0, M), we set

m̂ε(x) := m0(x
′) + εm

(
x ′, x

′

ε
, x3

)
and mε := m̂ε

|m̂ε| . (3.34)

Clearly {mε} ⊂ H1(�M ;S2) and satisfies (3.25). Since by (3.32) we have |m̂ε| ≥ 1,
it is immediately checked that

|∇x ′mε|2 + 1

ε2
|∂x3mε|2 ≤ |∇x ′m̂ε|2 + 1

ε2
|∂x3m̂ε|2 .

Thus, setting g(x3, y′) := χ( f1(y′), f2(y′))(x3), we may estimate

lim sup
ε→0

∫
�ε

(
|∇x ′mε|2 + 1

ε2
|∂x3mε|2

)
dx

≤ lim
ε→0

∫
�M

g
(
x3,

x ′

ε

)(
|∇x ′ m̂ε|2 + 1

ε2
|∂x3 m̂ε|2

)
dx

= lim
ε→0

∫
�M

g
(
x3,

x ′

ε

)(∣∣∣∇x ′m0(x
′) + ∇y′m

(
x ′, x

′

ε
, x3

)∣∣∣2+
∣∣∣∂y3m

(
x ′, x

′

ε
, x3

)∣∣∣2
)

dx

=
∫

�M

∫
Q
g(x3, y)

(
|∇x ′m0(x

′) + ∇y′m(x ′, y′, x3)|2 + |∂y3m(x ′, y′, x3)|2
)
dy′dx

≤
∫

ω

ghom(∇x ′m0) dx
′ + η

where the last equality has been obtained by passing to the two-scale limit, while
the last inequality is (3.33). By the arbitrariness of η and a standard diagonalization
argument the thesis of the proposition is established when m0 ∈ C1(ω;S2).

Let now m0 ∈ H1(ω;S2). Then there exists {mk} ⊂ C1(ω;S2) such that mk →
m0 in H1(ω;S2) as k → ∞. In particular, recalling that ghom is continuous and
ghom(ξ) ≤ |ξ |2 (see Remark 3.19), we have

∫
ω

ghom(∇x ′mk) dx
′ →

∫
ω

ghom(∇x ′m0) dx
′ .
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The thesis follows by applying the first part of the proof to each mk and using diago-
nalization argument. ��

3.4 �-Convergence

In this section, we prove the main compactness and �-convergence theorem by com-
bining all the previous results.

Proof of Theorem 2.2 We start by showing part (i). Let {mε} be as in the statement
and for every ε > 0 let Mε be the function in H1(ω;R3), with |Mε| ≤ 1 defined by

Mε(x
′) := −

∫ f2(x ′/ε)

f1(x ′/ε)
mε(x

′, x3) dx3 = −
∫ ε f2(x ′/ε)

ε f1(x/ε′)
Mε(x

′, x3) dx3 ,

where, we recall, Mε(x ′, x3) := mε(x ′, x3/ε). Note that, in particular, (3.22) holds.
Using (3.22), it is straightforward to check that {Mε} is bounded in H1(ω;R3). Thus,
up to a (not relabeled) subsequence there existsm0 ∈ H1(ω;R3) such that Mε ⇀ m0
weakly in H1(ω;R3). Observe now that by the one-dimensional Poincaré-Wirtinger’s
inequality we have

∫
�ε

|mε − Mε|2 dx =
∫

ω

∫ f2(x ′/ε)

f1(x ′/ε)

∣∣∣∣mε(x
′, x3) − −

∫ f2(x ′/ε)

f1(x ′/ε)
mε(x

′, x3) dx3
∣∣∣∣
2

dx ′

≤
∫

ω

( f2(x ′/ε) − f1(x ′/ε))2

π2

∫ f2(x ′/ε)

f1(x ′/ε)
|∂x3mε|2 dx3dx ′ ≤ Cε2 ,

thanks to (3.22), for some constant C > 0 independent of ε. We deduce that

∫
�ε

|mε − m0|2 dx → 0 .

For part (ii), we may assume without loss of generality that

lim inf
ε

Eε(mε) = lim
ε

Eε(mε) < +∞ ,

In particular, (3.22) holds. Thus, defining Mε as before, we deduce that {Mε} is
bounded in H1. By (2.10) it readily follows that

Mε ⇀ m0 weakly in H1(ω;R3). (3.35)

In turn, by Lemma 3.2 (and Remark 3.3) and Proposition 3.14 we get

1

ε

∫
R3

|∇uε|2 dx →
∫

ω

Ahom m0 · m0 dx
′ , (3.36)

which together with Proposition 3.16 yields the conclusion of part (ii).
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Part (iii) easily follows fromProposition 3.21 and the fact that (3.36) holdswhenever
(2.10) and (3.22) hold. ��
Proof of Corollary 2.3 By Theorem 2.2 and standard �-convergence arguments, we
infer that there exists a global minimizer m0 of E0 in H1(ω;S2) such that, up to a
(not relabeled) subsequence, (2.10) holds. It is now easy to see that m0 is a global
minimizer if and only if it is constant and minimizes the quadratic form associated to
the matrix Ahom. This concludes the proof of the corollary. ��
Remark 3.22 The result of Corollary 2.3, together with the proof of the upper bound
(see (3.34)), suggests the following two-scale expansion for the minimizers mε:

mε(x) ≈ e0 + εm
(
x ′, x

′

ε
, x3

)

for suitable function m, Q-periodic in the second variable.
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Neukamm, S., Velčić, I.: Derivation of a homogenized von-kármán plate theory from 3d nonlinear elasticity.

Math. Models Methods Appl. Sci. 23, 2701–2748 (2013)
Sanchez, D.: Behavior of Landau-Lifshitz equation in a ferromagnetic wire. Math. Models Methods Appl.

Sci. 32, 167–205 (2009)
Sheka, D.D., Kravchuk, V.P., Gaididei, Y.: Curvature effects in statics and dynamics of low dimensional

magnets. J. Phys. A: Math. Theor. 48, 125202 (2015)
Slastikov, V.V.: Micromagnetics of thin shells. Math. Models Methods Appl. Sci. 15, 1469–1487 (2005)
Slastikov, V.V.: A note on configurational anisotropy. Proc. R. Soc. Lond. Ser. A 466, 3167–3179 (2010)
Slastikov, V.V., Sonnenberg, C.: Reduced models for ferromagnetic nanowires. IMA J. Appl. Math. 77,

220–235 (2012)
Streubel, R., Fischer, P., Kronast, F., Kravchuk, V.P., Sheka, D.D., Gaididei, Y., Schmidt, O.G., Makarov,

D.: Magnetism in curved geometries. J. Phys. D: Appl. Phys. 49, 363001 (2016)
Tretiakov, O., Morini, M., Vasylkevych, S., Slastikov, V.: Engineering curvature induced anisotropy in thin

ferromagnetic films. Phys. Rev. Lett. 119, 077203 (2017)
Vaz, C.A.F., Bland, J.A.C., Lauhoff, G.: Magnetism in ultrathin film structures. Rep. Prog. Phys. 71, 056501

(2008)

123


	Reduced Models for Ferromagnetic Thin Films  with Periodic Surface Roughness
	Abstract
	1 Introduction
	2 Formulation of the Problem and Statement of the Main Results
	3 Proofs of the Results
	3.1 Study of the Magnetostatic Energy: The Case of Parallel Profiles
	3.2 Study of the Magnetostatic Energy: The General Case
	3.3 Study of the Exchange Energy
	3.4 Γ-Convergence

	Acknowledgements
	References




