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Abstract We present a general method how to prove convergence of a sequence
of random variables generated by a nonautonomous scheme of the form Xt =
Tt (Xt−1, Yt ), where Yt represents randomness, used as an approximation of the set
of solutions of the global optimization problem with a continuous cost function. We
show some of its applications.
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One of the most common problems in applied mathematics is finding approximations
of optimal solutions of many specific cases. There exist a lot of numerical optimiza-
tion procedures, and recent years have witnessed an explosion of heuristic stochastic
algorithms. While the performance of some of these at specific instances looks good
and is experimentally confirmed, theoretical background definitely lags behind. This
is one of a few papers suggesting a theoretical framework to handle the problem.
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Many iterative optimization schemes can, in general, be described by an au-
tonomous difference equation xt = T (xt−1), where xt are successive approximation
of the solution and T represents the method used. If we use a stochastic scheme,
then the above equation takes another form: xt = T (xt−1, yt ), where yt represents
some random factor. The simplest example is the pure random search (PRS): one
draws a point yt and if it is better (in the sense of the cost function) than xt−1, then
set xt := yt ; otherwise xt := xt−1 and t is increased. In Ombach (2007, 2008) we
established some general sufficient conditions for stochastic convergence of the au-
tonomous stochastic scheme for the global optimization problem and we discussed
some special cases. The essential assumption there was that

∫
f (T (x, y))dy < f (x),

where f is the cost function to be minimized (note that dy means integration with
respect to some probability measure).

Still, in more advanced schemes, the operator T itself is changing in time and we
get a nonautonomous difference equation, xt = Tt (xt−1, yt ). For example, the method
T may depend on some parameters that can be adjusted in time. Also, the distribu-
tions used for generating points yt may change. Besides, the above strong inequality
is not always easy to verify or just does not hold in some cases, while the weak
inequality

∫
f (T (x, y))dy ≤ f (x) is an immediate consequence of the inequality

f (T (x, y)) ≤ f (x), which is natural in many instances. A good illustration of such
a case is the accelerated random search (ARS), established in Appel et al. (2003), or
the grenade explosion method (GEM), established in Ahrari and Atai (2010), Ahrari
et al. (2009).

We mention that the specific case, when the distribution for generating points yt is
constant over time but the methods T belong to a finite set and are changed cyclically,
was analyzed in Radwański (2007). In this paper we extend the results of Ombach
(2007, 2008), Radwański (2007) to cover some of the situations mentioned above.
However, the main tool remains the same. We express the problem of convergence in
terms of a sequence of Foias operators defined on the space of measures and apply an
appropriate Lyapunov function to it. We believe that this approach may be useful in
further proofs of convergence of various stochastic schemes, like particle swarm opti-
mization (PS0) see Poli et al. (2007) for example, the simulated annealing algorithm
(SA) (Yang 2000), or in the study of the convergence rates of stochastic optimization
schemes. Foias operators have proved to be very useful in the theory of iterated func-
tion systems (IFS), see Lasota and Mackey (1994) and references in there, and we
believe that they are also a good framework for examining stochastic optimization
algorithms.

Since most stochastic search methods actually result in non-homogeneous Markov
Chains, we just note that the Markov Chains and the Markov Operators have been al-
ready widely used while explaining some optimization procedures or for studying
random iterative functions (iterated function systems, IFS) in various contexts, in-
cluding fractals. We refer to Borovkov and Yurinsky (1998) and Meyn and Twedie
(1993) for an extensive review of Markov Chains and Processes and their appli-
cations in exploring processes generated by autonomous equations of the form
xt = Tt (xt−1, yt ). In Lasota and Mackey (1994) the authors used the Foias Opera-
tor for studying IFS and fractals. More direct use of Markov Chains in fractals and
other applications might be found in Diaconis and Freedman (1999). As an optimiza-
tion tool, nonautonomous Markov Chains are discussed in Ljung et al. (1992). The
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above references discuss problems that in fact reduce to the classical question: how to
prove the existence and stability of the unique stationary state. That goal is achieved
by various methods, including the Lyapunov function method. We, however, consider
a different situation. Namely, optimization problems naturally led to Markov opera-
tors for which we want to prove the existence of an attractor, which is uncountable
when the cost function attains its global minimum at many points.

Our main result, Theorem 1, is established in Sect. 1. In Sects. 2 and 3 we prepare
necessary tools from the theory of dynamical systems and the theory of Foias oper-
ators. Section 4 consists of the proof of Theorem 1. In Sect. 5 we apply Theorem 1
to a simple example and we mention the possibility of repeating the proof for some
more advanced algorithms with a similar mechanism, like GEM. Section 6 shows an
application of Theorem 1 to establish general criteria for the convergence of a broad
family of stochastic algorithms. In Sect. 7 we mention the possibility of the IFS-type
approach to the minimization problem, as it seems to fit nicely into our framework.

1

Let (A,d) be a compact metric space and let f : A −→ R be a continuous function.
Let A� ⊂ A be the set of all the solutions of the global minimization problem, i.e.

A� = arg minf = {
a ∈ A : f (a) ≤ f (x), for all x ∈ A

}
.

A vast amount of stochastic algorithms used for finding a solution of the global
optimization problem have the following global form:

Xt = Tt (Xt−1, Yt ), for t = 1,2,3, . . . , (1)

where Tt : A × B −→ A are operators chosen from an available class of operators
identifying the algorithm and Yt are random vectors. We are interested in convergence
of Xt to the set A� of solutions of the global optimization problem.

Remark 1 Often, in practice there is no real need for finding an exact solution
from A�, but rather one needs to find some x such that f (x) ≤ α, where α > minf is
known. This is, nevertheless, equivalent to the problem of finding a global minimum
of the continuous function fα , defined by fα(x) = max(f (x),α).

Let (Ω,Σ,Prob) be a probability space. Let μ0 be a probability measure defined
on B(A)—the family of Borel subsets of the space A—and let X0 : Ω −→ A be a
random variable with distribution μ0. Let B be a Polish (separable and complete)
metric space and Yt : Ω −→ B be a sequence of independent random variables dis-
tributed according to some distributions νt . If the Tt are measurable, then the Xt ,
defined by (1), are random variables.

Let T be a family of all measurable operators T : A × B −→ A equipped with
the uniform convergence topology. For any T ∈ T let DT ⊂ A × B be the set of
all discontinuities of T . Let M denote the space of all Borel probability measures
defined on A and let N denote the family of all Borel probability measures on B ,
both equipped with the weak convergence topology; see Sect. 3 for the details. We
consider the space T × N as equipped with the product topology.
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As usual, for μ ∈ M and ν ∈ N , μ × ν denotes the Cartesian product of measures
μ and ν, which is uniquely characterized by (μ × ν)(C × D) = μ(C) · ν(D), for all
C ∈ B(A), D ∈ B(B). By B(a, r) we denote a closed ball of radius r centered in a. If
Pt is a sequence of Borel probability measures on some metric space, then the weak
convergence of the sequence to some Borel probability measure P will be simply
denoted by Pt −→ P .

The following theorem, to be proved in Sects. 2–4, provides general sufficient
conditions for the stochastic convergence of Xt to the set A�.

Theorem 1 Let U ⊂ T × N be a compact set. Assume that for any u = (T , ν) ∈ U :

(A) For any x0 ∈ A, there is a Borel set DT (x0) ⊂ B with ν(DT (x0)) = 0, such that
T is continuous in (x0, y), for any y /∈ DT (x0).

(B) For any x ∈ A� and y ∈ B , T (x, y) ∈ A�.
(C1) For any x ∈ A \ A�:

∫

B

f
(
T (x, y)

)
ν(dy) ≤ f (x). (2)

(C2) There is a closed set U0 ⊂ U such that for any (T , ν) ∈ U0 and x ∈ A \ A�:
∫

B

f
(
T (x, y)

)
ν(dy) < f (x). (3)

Let {ut = (Tt , νt ) : t ≥ 1} ⊂ U satisfy the following:

(U0) There is t0 ≥ 1 such that for any t ≥ 1 there is s ≤ t0 with ut+s ∈ U0.

Then, for every ε > 0:

lim
t→∞ Prob

(
dist

(
Xt,A

�
)
< ε

) = 1. (4)

Assume additionally the following:

(D) For any t ≥ 1, x ∈ A and y ∈ B: f (Tt (x, y)) ≤ f (x).

Then

Prob
(
Xt −→ A�, as t −→ ∞) = 1, (5)

i.e.

Prob
({

ω ∈ Ω: d
(
Xt(ω),A�

) −→ 0, as t −→ ∞}) = 1.

Remark 2 One can release the assumption of compactness of the set A assum-
ing (D):

(E) There exists r > minf such that set Ar := {x ∈ A : f (x) ≤ r} is compact and
suppμ0 ⊂ Ar .

In fact, by (D) Tt (Ar × B) ⊂ Ar . Clearly, μ0 is a probability measure on Ar and
A� ⊂ Ar . Hence, we may apply Theorem 1 to set Ar .

In Sects. 2–4 we present a detailed proof of Theorem 1. Its main idea is to view the
algorithm as the nonautonomous semidynamical system defined on the space of all
probability measures on the set A. The system is determined by a family of so-called
Foias operators, which transport the probability measures by the pairs (Tt , νt ) ∈ U . Its
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trajectories {μt : t = 0,1, . . .} are just sequences of the distributions of the algorithm
Xt , t = 0,1, . . ., and weakly converge to the set of all measures supported on the
set A�. This implies stochastic convergence (4). The convergence with probability
one (5) is a consequence of (4) and the monotonicity of f (Xt ).

2

Recall some definitions and concepts from the theory of dynamical systems. Let X

be a metric space with a distance 	X . Let ϕ : X −→ X be a continuous map. For any
x ∈ X, o(x) denotes the orbit of ϕ, i.e. o(x) = {ϕtx : t ≥ 0}. Here ϕt denotes the t th
iterates of ϕ, i.e. ϕ0 = IdX and ϕt = ϕ ◦ ϕt−1, for t = 1,2,3, . . . . In other words,
o(x) = {xt : x0 = x, and xt+1 = ϕxt , for t = 0,1,2, . . .}. A compact set ∅ 
= K ⊂ X

is invariant if ϕ(K) ⊂ K . For any x ∈ X, ω(x) denotes the ω-limit set of x: ω(x) =
{y ∈ X : ∃ ti −→ ∞, ϕti x −→ y}. It is easy to see that, if X is compact, then any
ω-limit set is nonempty, compact and invariant. Also, for any invariant set K ⊂ X

and x ∈ X: 	X(ϕtx,K) −→ 0 for t −→ ∞, if and only if ω(x) ⊂ K .
The following theorem is a version of the well-known Lyapunov stability theo-

rem. However, it is simpler than its classical counterpart, as we are not interested in
stability here but in attractiveness. On the other hand, we do not assume strong mono-
tonicity of the Lyapunov function along trajectories, but we use a weaker assumption
instead which is quite natural in our context.

Theorem 2 Let (X,	X) be a compact metric space, ∅ 
= K ⊂ X a compact and in-
variant set, ϕ : X −→ X a continuous map. Let W : X −→ R be a Lyapunov function,
i.e.:

1. W is continuous.
2. W(x) = 0, for x ∈ K .
3. W(x) > 0, for x ∈ X \ K .
4. For every x ∈ X \ K

W(ϕx) ≤ W(x) (6)

and there exists s ≥ 1 such that

W
(
ϕsx

)
< W(x). (7)

Then, for every x ∈ X,

	X

(
ϕtx,K

) −→ 0, as t −→ ∞. (8)

Proof Let x ∈ X. As noted above, ω(x) 
= ∅. We will show that W is constant on
ω(x). In fact, choose two points y, z ∈ ω(x) and corresponding sequences {si} and
{ti} tending to infinity such that ϕsi (x) −→ y and ϕti (x) −→ z. Taking subsequences,
if necessary, one can assume that for any i: si < ti < si+1 < ti+1. Hence

W
(
ϕsi (x)

) ≤ W
(
ϕti (x)

) ≤ W
(
ϕsi+1(x)

) ≤ W
(
ϕti+1(x)

)
.

Letting i −→ ∞, by continuity of W , we have

W(y) ≤ W(z) ≤ W(y) ≤ W(z).
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Therefore, as we have claimed, W(y) = W(z). As ω(x) is invariant, then o(y) ⊂
ω(x) for any y ∈ ω(x). Hence, for any y ∈ ω(x), W(ϕt (y)) = W(y) for all t ≥ 1.
Using the assumption (7) we see that y ∈ K . Finally, ω(x) ⊂ K and x is attracted
to K , as required. �

Let (U , 	U ) be a compact metric space and let Π : U ×M � (u,m) −→ Πum ∈ M

and θ : U −→ U be given continuous maps. For t ≥ 1, denote by Π [u,t] the composi-
tion Π [u,t] = Πθt−1u ◦ · · · ◦ Πθu ◦ Πu.

The main result of this section is stated in the following theorem.

Theorem 3 Let ∅ 
= K ⊂ M be an invariant set for any Πu, u ∈ U . Let V : M −→ R

be a Lyapunov function for any Πu, u ∈ U , i.e.

1. V is continuous.
2. V (m) = 0, for m ∈ K .
3. V (m) > 0, for m ∈ M \ K .
4. For every m ∈ M \ K and u ∈ U

V (Πum) ≤ V (m) (9)

and there exists s ≥ 1 such that

V
(
Π [u.s]m

)
< V (m). (10)

Then, for each m ∈ M and u ∈ U ,

	M

(
Π [u,t]m,K

) −→ 0, as t −→ ∞. (11)

Proof Let X = U ×M and 	X((u1,m1), (u2,m2)) = 	U (u1, u2)+ 	M(m1,m2). Let
ϕ : X −→ X be given by

ϕ(u,m) = (θu,Πum). (12)

Note first that for any (u,m) ∈ U × M and t ≥ 1, by simple induction,

ϕt (u,m) = (
θ tu,Π [u,t]m

)
. (13)

Now consider the set K ′ = U × K ⊂ X and the function W : X � (u,m) −→
V (m). It is obvious that K ′ is invariant under ϕ and the function W fulfils
all the assumptions of Theorem 2. Then, for any u ∈ U and m ∈ M, we have
	X(ϕt (u,m),K ′) −→ 0, as t −→ ∞. Hence 	M(Π [u,t]m,K) −→ 0, as t −→ ∞,
as required. �

3

In this section we will use the notation from Sect. 1. Recall that M and N denote the
spaces of all Borel probability measures on A and B, respectively. On both spaces
we consider the topologies of weak convergence of measures. Let us recall then
some facts about the weak convergence; for more details one may refer to Billingsley
(1999) or Parthasarathy (2005). Let (S, d) be a Polish space and M(S) be the family
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of Borel probability measures on S. The sequence μn ∈ M(S) weakly converges to
μ ∈ M(S) if and only if for all continuous and bounded functions h : S −→ R we
have

∫

S

hdμn −→
∫

S

hdμ, as n −→ ∞. (14)

Another, equivalent condition for weak convergence is

μn(C) −→ μ(C), (15)

as n −→ ∞, for any C ∈ B(S) such that μ(∂C) = 0, where ∂C is the boundary of C.
As S is a Polish space, M(S) can be metrized as a complete space and several metrics
can be used. One of them is the Fortet–Mourier metric:

	M(μ1,μ2) = sup
g∈G

∣
∣
∣
∣

∫

S

g dμ1 −
∫

S

g dμ2

∣
∣
∣
∣,

where G = {g : S −→ R; |g(x) − g(y)| ≤ |x − y|, |g(x)| ≤ 1, for all x, y ∈ S}.
If S is compact, so is M(S). We have assumed that A is compact, thus M = M(A)

is compact. In this case any continuous function h : A −→ R is bounded, which
makes the condition (14) easy to verify.

For any T ∈ T and ν ∈ M the Foias operator P(T,ν) : M −→ M is defined as
follows:

P(T,ν)μ(C) = (μ × ν)
(
T −1(C)

)
, for μ ∈ M, C ∈ B(A), (16)

where T −1(C) = {(x, y) ∈ A × B : T (x, y) ∈ C} is the preimage of C. We will also
write P(T,ν)μ =: (μ × ν)T −1.

Definition (16) yields immediately:

Lemma 1 Let X : Ω −→ A and Y : Ω −→ B be independent random variables with
distributions μ and ν, respectively. Then T (X,Y ) is distributed according to P(T,ν)μ.
Furthermore, for any continuous function h : A −→ R, by change of variables,

∫

A

hdP(T,ν)μ =
∫

Ω

h
(
T (X,Y )

)
dP =

∫

A×B

(h ◦ T )d(μ × ν). (17)

We will take advantage of the following general result; see Theorems 2.8 and 2.7
in Billingsley (1999).

Lemma 2

1. Let μn, νn be sequences of Borel probability measures on separable metric spaces
S1, S2, respectively, with μn −→ μ and νn −→ ν for some Borel probability mea-
sures μ on S1 and ν on S2. Then μn × νn −→ μ × ν.

2. Assume that S1, S2 are metric spaces, μ is a Borel probability measure on S1 and
T :S1 −→ S2 is measurable with μ(DT ) = 0, where DT is the set of all discon-
tinuities of T . Then, for any sequence μn of Borel probability measures on S1, if
μn −→ μ, then μnT

−1 −→ μT −1.

Lemma 2 leads to the following.
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Proposition 1 Assume that U ⊂ T × M satisfy the assumption (A) of Theorem 1.
Then the function P : U ×M � (u,μ) −→ Puμ ∈ M is continuous, where Pu denotes
the Foias operator.

Proof Let U ×M � (Tn,μn, νn) −→ (T ,μ, ν) ∈ U ×M. We would like to show that
(μn × νn)T

−1
n −→ (μ× ν)T −1. First note that A is separable, being compact, and B

is separable, as assumed. Hence, by statement 1. of Lemma 2, μn ×νn −→ μ×ν. By
Fubini’s theorem, we have (μ × ν)(DT ) = ∫

A
ν(DT (x))μ(dx), where B ⊃ DT (x)

is the set of y ∈ B such that (x, y) are discontinuities of T . By assumption (A),
ν(DT (x)) = 0 and (μ×ν)(DT ) = 0. By statement 2. of Lemma 2, (μn×νn)T

−1 −→
(μ × ν)T −1. Equivalently, for any continuous function h :A −→ R

∫

A×B

(h ◦ T )d(μn × νn) −→
∫

A×B

(h ◦ T )d(μ × ν). (18)

We want to show
∫

A×B

(h ◦ Tn)d(μn × νn) −→
∫

A×B

(h ◦ T )d(μ × ν),

for any continuous h :A −→ R. In fact, we have
∫

A×B

(h ◦ Tn)d(μn × νn) −
∫

A×B

(h ◦ T )d(μ × ν)

=
(∫

A×B

(h ◦ Tn)d(μn × νn) −
∫

A×B

(h ◦ T )d(μn × νn)

)

+
(∫

A×B

(h ◦ T )d(μn × νn) −
∫

A×B

(h ◦ T )d(μ × ν)

)

.

The second component tends to 0 by (18), while the first one satisfies
∣
∣
∣
∣

∫

A×B

(h ◦ Tn)d(μn × νn) −
∫

A×B

(h ◦ T )d(μn × νn)

∣
∣
∣
∣

≤ sup
(a,b)∈A×B

∣
∣h

(
Tn(a, b)

) − h
(
T (a, b)

)∣
∣,

and tends to 0 as Tn −→ T uniformly on A × B and h is uniformly continuous
on A. �

Define

M� = {
μ ∈ M : suppμ ⊂ A�

}
.

Note that μ ∈ M� if and only if μ(A�) = 1. It is easy to see that M� is a compact
subset of M as A� is a compact subset of A. Also, it is obvious that condition (B)
yields invariance of M� under each P(T,ν), T ∈ T and ν ∈ N .

As a consequence of Theorem 3 we will prove the following.

Theorem 4 Assume the conditions (A), (B), (C1), (C2) and (U0) of Theorem 1. Let
μt = P(Tt ,νt )μt−1, t = 1,2,3, . . . . Then

	M

(
μt ,M

�
) −→ 0, as t −→ ∞.
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Proof As mentioned above the compactness of A implies compactness of M . Define
the shift space Σ on the alphabet U , i.e.

Σ = {
(u1, u2, u3, . . .) : ui ∈ U, i = 1,2,3, . . .

}
,

and the shift map θ : Σ −→ Σ ,

θ(u1, u2, u3, . . .) = (u2, u3, u4, . . .).

Let U0 and t0 ≥ 1 be such as in Theorem 1. Define

U = {u ∈ Σ : for any i there exists 0 ≤ j ≤ t0 : ui+j ∈ U0}. (19)

Consider the distance d on Σ defined by

d(u, v) =
∞∑

i=1

2−idU (ui, vi), (20)

where dU is a metric on U compatible with the product topology endowed from
the topology of uniform convergence of T and the topology of weak convergence
of N . As U was assumed to be compact, Σ is compact. Clearly θ is continu-
ous; actually it is Lipschitz. Also it is evident that U is invariant under θ . More-
over, as a closed subset of Σ , U is compact. In fact, let un −→ u, as n −→ ∞
and un ∈ U . Fix i0 ≥ 1. Fix ε > 0 and choose n such that d(un,u) ≤ ε2−(i0+t0),
where t0 is to satisfy assumption (U0) of Theorem 1. Then, for any j ≤ t0, we have
2−(i0+j) dU(un

i0+j , ui0+j ) ≤ d(un,u) ≤ ε2−(i0+t0), and hence dU(un
i0+j , ui0+j ) ≤

ε2−(i0+t0)2−(i0+j) ≤ ε. Assumption (U0) means that for some j ≤ t0, un
i0+j ∈ U0 and

consequently d(ui0+j ,U0) ≤ d(ui0+j , u
n
i0+j ) ≤ ε. We have just proved that for any

ε > 0 there exists j ≤ t0 with d(ui0+j ,U0) ≤ ε. This means that there exists j0 ≤ t0
such that d(ui0+j0,U0) = 0. As U0 is closed, ui0+j0 ∈ U0. Thus, u ∈ U , and so U is
closed and then compact, as required.

As the projection Σ � u −→ u1 ∈ U is continuous, by Proposition 1 the map
Π : U × M � ((u1, u2, u3, . . .),μ) −→ Pu1μ ∈ M is continuous.

Define the function V : M −→ R:

V (μ) =
∫

A

(f − minf )dμ =
∫

A

f dμ − minf

to be a Lyapunov function. We are going to show that the assumptions of Theorem 3
are satisfied with K = M�.

The continuity of V is an immediate consequence of the definition of the topology
on M . Let μn −→ μ. We put h = f − minf in (14) to get

V (μn) =
∫

A

hdμn −→
∫

A

hdμ = V (μ).

Clearly V (μ) ≥ 0 for all μ ∈ M and V (μ) = 0 for all μ ∈ M�. Let V (μ) = 0 for
some μ ∈ M . Then we have 0 = V (μ) = ∫

A
(f − minf )dμ = ∫

A�(f − minf )dμ +∫
A\A�(f − minf )dμ = ∫

A\A�(f − minf )dμ. As f − minf is strictly positive on
A \ A� and supp μ ⊂ A�, we have μ ∈ M�.

We need to verify condition 4 of Theorem 3. Let μ ∈ M \ M� and u =
((T1, ν1), (T2, ν2), (T3, ν3), . . .) ∈ U . Condition (C1) says that for any x ∈ A \ A�

we have
∫
B

f (T1(x, y))ν1(dy) ≤ f (x). Hence, by (17) and Fubini’s theorem,
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V (Πuμ) = V (Pu1μ) =
∫

A

f dPu1μ − minf =
∫

A×B

(f ◦ T1)d(μ × ν1) − minf

=
∫

A

(∫

B

f
(
T1(x, y)

)
ν1(dy)

)

μ(dx) − minf

≤
∫

A

f dμ − minf = V (μ). (21)

To prove the second assertion in 4, note first that Π [u,t] = Πθt−1u ◦ · · · ◦ Πu =
Put ◦ · · · ◦ Pu1 = Put ◦ Π [u,t−1], as θ t−1u = (ut , ut+1, ut+2, . . .). By what we have
just proved, we get a sequence of inequalities: V (Π [u,t]μ) ≤ V (Π [u,t−1]μ) ≤ · · · ≤
V (Π [u,1]μ) = V (Pu1μ) ≤ V (μ). Just note here that if some Π [u,s]μ ∈ M�, then also
Pus+1 ◦ Π [u,s]μ ∈ M� and the appropriate inequality is still clearly satisfied. Let j be
such that u1+j ∈ U0. Then V (Π [u,j+1]μ) = V (Puj+1 ◦ Π [u,j ]μ) = V (Puj+1μ̄), with
μ̄ = Π [u,j ]μ. If μ̄ ∈ M�, then V (μ̄) = 0 < V (μ), as we have assumed μ ∈ M \ M�.
Then V (Π [u,j+1]μ) < V (μ). Assume now that μ̄ ∈ M \ M�. We then have

V
(
Π [u,j+1]μ

) = V (Puj+1μ̄) =
∫

A

f dPu1+j
μ̄ − minf

=
∫

A

(∫

B

f
(
T1+j (x, y)

)
ν1+j (dy)

)

μ̄(dx) − minf

<

∫

A

f dμ̄ − minf = V (μ̄) ≤ V (μ).

Theorem 3 completes the proof, as the sequence {ut } specified in Theorem 1 be-
longs to U defined by (19) and μt = Π [u,t]μ0. �

4

Proof of Theorem 1 We interpret the above Theorem 4 in terms ofs random vari-
ables Xt . Note first that for any measure μ� ∈ M� and any set C ∈ B(A) such that
A� ⊂ intC we have μ�(δC) = 0 and μ�(C) = 1. Thus, the condition (15) implies that
for any sequence of measures μn ∈ M such that μn −→ μ� we have

μn(C) −→ 1, as n −→ ∞.

Note now that the measures μt , defined by μt = P(Tt ,μt )μt−1, t = 1,2,3, . . . are, by
Lemma 1, the distributions of the random variables Xt .

Let B(A�, ε) = {a ∈ A : dist(a,A�) < ε}. By Theorem 4 the sequence μt of the
distributions of Xt tends to the compact set M�. Hence, the set of partial limits of {μt }
is nonempty and is contained in M�. Then, for any sequence tn −→ ∞, there exists
a subsequence tni

−→ ∞ and a measure μ� ∈ M� such that μtni
−→ μ�. Hence

μtni
(B(A�, ε)) −→ μ�(B(A�, ε)) = 1. But this means that μt(B(A�, ε)) −→ 1, as

t −→ ∞. As μt is the distribution of Xt , we have μt(B(A�, ε)) = Prob(Xt ∈
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B(A�, ε)). We have thus proved the condition (4), i.e. for every ε > 0:

lim
t→∞ Prob

(
dist

(
Xt,A

�
)
< ε

) = 1, (22)

which completes the proof of the first part of Theorem 1.
We will prove the second part. First we prove the following.

Lemma 3 For every ε > 0:

lim
t→∞ Prob

(
f (Xt ) < minf + ε

) = 1. (23)

Proof Fix ε > 0. As A is compact, f is uniformly continuous and one can find δ > 0
such that dist (x,A�) < δ implies f (x) < minf + ε. Now we can use the condition
(4), with ε = δ. �

Proposition 2 (Folklore) Let ξn : Ω −→ R be a nonincreasing sequence of non-
negative random variables stochastically convergent to 0. Then ξn tends to 0 with
probability 1.

Proof Fix ε > 0. For any natural N let CN = {ξN < ε}. By monotonicity of ξn,
CN = {ξn ≤ ε,n ≥ N}. Let Dε = ⋃

N {ξn ≤ ε,n ≥ N}. As CN ⊂ CN+1 and
Prob(CN) −→ 1, we have Prob (Dε) = Prob (

⋃
N Cn) = limN−→∞ Prob(CN) = 1.

On the other hand, {ξn −→ 0} = ⋂∞
m=1 D 1

m
, hence Prob ({ξn −→ 0}) = 1. �

Now, one can see that the sequence ξt = f (Xt ) − minf satisfies the assumptions
of the above proposition. Hence, it tends to 0 with probability 1. The compactness of
A and the continuity of f imply

{
ω : f (

Xt(ω)
) − minf −→ 0, as −→ ∞} ⊂ {

ω : Xt(ω) −→ A�, as −→ ∞}
.

The proof of Theorem 1 is thus completed. �

Remark 3 If we assume (A), (B) and replace (C1), (C2), (U0) with:

(C) For any x ∈ A \ A�:
∫

B

f
(
T (x, y)

)
ν(dy) < f (x), (24)

then the statements of Theorem 1 remain true.

5

In this section we illustrate the functionality of Theorem 1 by analyzing the following
example.

Let A = [0,1]n ⊂ R
n and {rt : t = 1,2,3, . . .} ⊂ [ε,1] for some 0 < ε < 1.



180 J Nonlinear Sci (2012) 22:169–185

Algorithm

0. Set t = 0. Sample X0 uniformly from A.
1. Given Xt ∈ A, generate Qt+1 from the uniform distribution on B(Xt , rt+1), where

B(x, r) = {y ∈ A: |xi − yi | ≤ r, i = 1,2, . . . , n}.
2. If f (Qt+1) < f (Xt ), then let Xt+1 = Qt+1.

Else if f (Qt+1) ≥ f (Xt ), then let Xt+1 = Xt .
Increment t := t + 1 and go to Step 1.

Let d denote the maximum metric on A and let A′ denote the set of local mini-
mums a ∈ A \ A∗ of the function f . For any a ∈ A let

Af (a) := {
x ∈ A :f (x) < f (a)

}
.

Theorem 5 Let R ∈ (0,1) be such that for any a ∈ A′ d(a,Af (a)) < R. Assume that
there exists t0 ≥ 1, such that for any t , rt+i ≥ R for some i ≤ t0. Assume, additionally,
that for any c ∈ R, the level curve lc = {x ∈ A : f (x) = c} has Lebesgue measure 0.
Then

Prob
(
Xt −→ A� as t −→ ∞) = 1. (25)

Proof Note that for any x ∈ A, B(x, rt ) = ∏n
i=1[ai(x, rt ), b

i(x, rt )], where
ai(x, r) = max{xi − r,0}, bi(x, r) = min{xi + r,1}. Define B = [ε,1] × A. Let

Q :A × B � (
x, (r, y)

) −→ a(x, r) + y ⊗ (
b(x, r) − a(x, r)

) ∈ A,

where ⊗ : A2 � [(x1, . . . , xn), (y1, . . . , yn)] −→ (x1y1, . . . , xnyn) ∈ A.
It is easy to see that if Z: Ω −→ [0,1]n is uniformly distributed on [0,1]n,

then Q(x, r,Z) is uniformly distributed on B(x, r). Let Zt : Ω −→ [0,1]n be i.i.d.
sequence of uniformly distributed random variables. We define Yt : Ω −→ B as
Yt = (rt ,Zt ). Obviously, for any t , Q(x,Yt ) is uniformly distributed on B(x, rt ).

Let T̃ :A × A −→ A satisfy

T̃ (x, y) =
{

x, if f (y) ≥ f (x),

y, if f (y) < f (x).

Define

T :A × B � (x, r, y) −→ T̃
(
x,Q(x, r, y)

)

and

Xt+1 := T̃
(
Xt,Q(Xt ,Yt )

) = T (Xt ,Yt ).

Let ν denote the uniform distribution on [0,1]n. We consider U as the set {T } ×
{νr , r ∈ [ε,1]}, where νr = δr × ν is a distribution on B and δr denotes the Dirac
measure on [ε,1] for r ∈ [ε,1]. Obviously, for any t , νrt is the distribution of Yt . Let
U0 := {T } × {νr , r ∈ [R,1]}. It is clear that U is compact and U0 ⊂ U is closed. To
check (A), fix x0 ∈ A and (T , νr0) ∈ U . Recall that T (x0, r, u) = T̃ (x0,Q(x0, r, u)).
Note that since Q is continuous, then to verify that

νr0

({
(r, y) ∈ B: T is not continuous in (x0, r, y)

}) = 0,
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it is enough to show that

νr0

({
(r, y) ∈ [0,1] × [0,1]n : T̃ is not continuous in

(
x0,Q(x0, r, y)

)}) = 0.

Equivalently ν({y ∈ [0,1]n : T̃ is not continuous in (x0,Q(x0, r0, y))}) = 0. But
the discontinuities (x, y) of the function T̃ must satisfy f (x) = f (y), and conse-
quently, it is enough to show that ν({y: Q(x0, r0, y) ∈ lf (x0)}) = 0. Equivalently,
P(Q(x0, r0,Z) ∈ lf (x0)) = 0, where Z is distributed according to ν—but this is clear,
since lf (x0) has Lebesgue measure 0 and Q(x0, r0,Z) is uniformly distributed on
B(x0, r0).

By the definition of T , (D) is satisfied, and hence (B) and (C1) are.
To prove (C2), note that by the definition of T̃ , it is enough to show that for any

r0 ∈ [R,1] and x ∈ A \ A∗,
∫

A

min
{
f (x), f

(
Q(x, r0, y)

)}
ν(dy) < f (x).

We need ν({y :Q(x, r0, y) ∈ Af (x)}) > 0. Equivalently, ν(B(x, r0) ∩ Af (x)) > 0—
this is satisfied immediately for all x besides the set A′ ∪ A∗ by the continuity of f ,
while for x ∈ A′ it follows from d(x,Af (x)) < R ≤ r0 and again by the continuity
of f .

Condition (U0) follows from the description of the algorithm. �

Remark 4 For any continuous function f with ν(lc) = 0, c ∈ R, there exists R < 1
such that d(a,Af (a)) < R, a ∈ A′. Furthermore, if A′ = ∅, then for any sequence
{rt }∞t=0 ⊂ [ε,1] the algorithm converges, since the assumptions of Theorem 5 are
satisfied for R = ε.

Remark 5 Let the assumptions of Theorem 5 hold true. Assume that some algo-
rithm X̃t satisfies the condition (A) of Theorem 1 and takes the following form:
X̃t = T̃ (X̃t−1, Q̃(X̃t−1, Yt )), where for any x ∈ A, the distribution of a random vari-
able Q(x,Yt ) is absolutely continuous according to Lebesgue measure and its density
is positive on B(x, rt ). Then the algorithm X̃t converges, since the conditions (D) and
(C2) are satisfied for reasons analogous to the above. For an interesting example of
such an algorithm X̃t , see the GEM algorithm established in Ahrari and Atai (2010),
Ahrari et al. (2009).

Remark 6 The assumption that the level curves have zero Lebesgue measure is a
technical one, and perhaps it is not necessary. We need it here to get condition (A) in
Theorem 1. On the other hand, in most practical cases this assumption is fulfilled.

6

Now we show an application of Theorem 1 to a broad class of numerical methods
used for an approximation of the set A�, which are sometimes called multistart algo-
rithms, and which can be described as follows.

A map ϕ : A −→ A will be called a local method if f (ϕ(x)) ≤ f (x), for all x ∈ A,
where f is the cost function to be minimized.
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Let μ0 ∈ M and let k, m be natural numbers. Let Φ denote the set of local methods,
let N ⊂ M be compact and let N0 be a closed subset of N , such that for any ν ∈ N0,
ν(G) > 0 for any open neighborhood G of the set A�.

Algorithm

1. Let t = 0. Choose an initial population, i.e. a simple sample of points from A

distributed according to μ0:

x = (
x1, . . . , xm

) ∈ Am.

2. Let t = t + 1.
3. Draw independently k points yi ∈ A according to a distribution νti ∈ N each,

i = 1, . . . , k. Let y = (y1, . . . , yk) ∈ Ak .
4. Apply ϕti ∈ Φ to xi , i = 1, . . . ,m.
5. Sort the sequence

(
ϕti

(
x1), . . . , ϕtm

(
xm

)
, y1, . . . , yk

)

using f as a criterion to get
(
x̄1, . . . , x̄m+k

)
with f

(
x̄1) ≤ · · · ≤ f

(
x̄m+k

)
.

6. Form the next population with the first m points

x̄ = (
x̄1, . . . , x̄m

)

and go to point 2 with x = x̄.

Repeat 2–6 according to a stopping rule.

There is a number of local methods available. For example, a classical one is the
gradient method. It requires differentiability of the objective function f and still it is
quite effective in finding local minima attained at interior points of the set A. If f is
not a smooth function or its local minimum point is at the boundary of A, then more
sophisticated methods can be used, see Robert and Casella (2004) and for a survey
Wright (2005). The algorithm above admits use of various methods at the same time
or just one method with various parameters (like a step size or a number of steps
taken). Obviously, the identity map is a local method.

For t = 1,2,3, . . . define the map

Tϕ1,...,ϕm : Am × Ak −→ A as Tϕ1,...,ϕm(x, y) = x̄.

Let f̂ : Am −→ R be defined as f̂ (x) = f (x1). Let us note that Â� = A� × Am−1 is
the set of global minima of f̂ .

The following theorem gives sufficient conditions for almost sure convergence of
the above algorithm to the set of solutions of the global minimization problem.

Theorem 6 Let {Xt : t = 1,2,3, . . .} be the sequence generated by (1), where
X0 = (X1

0, . . . ,X
m
0 ) is a random vector with distribution (μ0)

m. Let for each t =
1,2,3, . . . , Yt = (Y 1

t , . . . , Y k
t ) be independent random vectors, and independent of

X0, distributed according to νt1 × · · · × νtk with νti ∈ N . Assume that:
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(z1) For any c ∈ R and ν ∈ N , ν(lc) = 0.
(z2) There exists t0 such that for any t ≥ 1 there is 0 ≤ s ≤ t0 and some 1 ≤ j ≤ k

with ν(t+s)j ∈ N0.

Then

Prob
(
Xt −→ Â�, as t −→ ∞) = 1. (26)

Proof

Step 1. Define the algorithm X̃t :Ω −→ A as

X̃0 := X1
0 and X̃t = T

(
X̃t−1, Y

1
t , . . . , Y k

t

)
,

where T (x1, . . . , xk+1) = xi with f (xi) = minj=1,...,k+1 f (xj ). We now apply The-
orem 1 to X̃t . Here, B = Ak and U = {(T , ν) : ν ∈ Nk}, U0 = {(T , ν) ∈ U : νj ∈ N0

for some j ≤ k}. Note that U is compact and U0 is its closed subset.
Now, since the condition (D) implies (B) and (C1), it is enough to show that
the conditions (z1), (z2) imply all the conditions (A), (C2), (U0) and (D). Let
u = (T , ν) ∈ U be fixed.
We prove (A). Fix x0 ∈ A. Let

D′
T (x0) :=

{

y ∈ Ak : ∀i yi /∈
(

lf (x0) ∪
⋃

j 
=i

lf (yi )

)}

and

DT (x0) := Ak \ D′
T (x0).

We will show ν(D′
T (x0)) = 1. For k = 1 it is immediate by (z1). For k > 1, let

D′
T (x0, y

1, . . . , yk−1) := A \ (lf (x0) ∪ ⋃
j=1,...,k−1 lf (yj )). The condition (z1) im-

plies that νk(D′
T (x0, y

1, . . . , yk−1)) = 1 for any y1, . . . , yk−1, and consequently, by
Fubini’s theorem, (ν1 × · · · × νk)(D′

T (x0)) = 1. Fix y0 ∈ D′
T (x0). Let A × Ak �

(xn, yn) −→ (x0, y0). By the continuity of f , there is n0 > 0, such that for all
n > n0, in the vector (xn, y

1
n, . . . , yk

n) ∈ Ak+1, the point with the smallest value of f

remains at the same position, as the point T (x0, y0) in the vector (x0, y
1
0 , . . . , yk

0).
Consequently, T (xn, yn) −→ T (x0, y0).
The condition (D) follows from the definition of T . We prove (C2). Recall that
U0 = {(T , ν) ∈ U : νj ∈ N0 for some 1 ≤ j ≤ k} is a closed subset of U . Let
(T , ν) ∈ U0 and x /∈ A∗. By continuity of f and compactness of A�, there is an
open neighborhood G of A∗ with f (z) < f (x) for all z ∈ G. By the definition of
U0, we have νj (G) > 0 for some j ≤ k. Recall that f (T (x, y)) ≤ f (x) for any
y ∈ Ak , and note that f (T (x, y)) < f (x) for any y from the set {y ∈ Ak: yj ∈ G}
of positive measure, since νj (G) > 0. Hence, (C2) is satisfied.
The condition (U0) follows immediately from (z2) and the definition of U0.
Hence, by Theorem 1,

Prob
(
X̃t −→ A�, t −→ ∞) = 1. (27)

Step 2. By simple induction, it is easy to see that

f̂ (Xt ) ≤ f (X̃t ), (28)
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for any t . By the compactness of A� and the continuity of f , (27) implies that
Prob(f (Xt ) ↘ 0) = 1. Hence, by (28), Prob(f̂ (Xt ) ↘ 0) = 1 and equivalently, by

the compactness of Am and the continuity of f̂ , Prob(Xt −→ Â�, t −→ ∞) = 1. �

7

In this section we suggest an algorithm working according to the iterated function
system scheme. The advantage is that we may also admit methods which do not
satisfy the condition (D), like mutations, but still the optimization process would be
stochastically convergent to A�. The proposed scheme might be as follows. Let U =
{(Ti, νi), i = 1, . . . ,m} ⊂ T × M be finite and let p1, . . . , pm, pi > 0,

∑m
i=1 pi = 1,

be a distribution on {1, . . . ,m}. Let μ0 be a probability measure on A:

1. Generate X0 from the distribution μ0. Let t = 1.
2. Draw i according to the distribution p1, . . . , pm.
3. Generate Zi from the distribution νi .
4. Put Xt = Ti(Xt−1,Zi).
5. Increase t , t := t + 1 and go to 2.

Theorem 7 Assume that for any u = (T , ν) ∈ U the conditions (A), (B) hold true
and

(C) for any x ∈ A \ A�:

m∑

i=1

pi

∫

B

f
(
Ti(x, y)

)
νi(dy) < f (x). (29)

Let {Xt } be the sequence defined by the above algorithm. Then, for every ε > 0:

lim
t→∞ Prob

(
dist

(
Xt,A

�
)
< ε

) = 1. (30)

Proof Define B̄ = {1, . . . ,m} × A,

T̄ :A × B̄ � (
x, (i, y)

) −→ Ti(x, y) ∈ A

and let ν̄ be the distribution on B̄ defined by ν̄(i,C) = pi · νi(C), for any i ∈
{1, . . . ,m} and any Borel set C ⊂ A. Let Ū = {(T̄ , ν̄)}. Now it is enough to note that
Ū satisfies conditions (A) and (B) of Theorem 1 and condition (C) of Remark 3. �

If one wants to use an algorithm like the one above, and one knows that some
operators T and measures ν satisfy the strong inequality

∫
A

f (T (x, y))ν(dy) < f (x)

for all x ∈ A \ A� (for example, the pure random search satisfies the inequality for
any continuous function), then one can take advantage of the fact that all the in-
tegrals

∫
A

f (T (x, y))ν(dy) are bounded from above by M0 = supA |f | and then
choose a distribution p1, . . . , pm in such a manner that (29) is satisfied, and so Xt

converges.
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Let us note that in the case that the Ti do not depend on y, i.e. we do not perform
Step 3 in the algorithm, then the condition (29) takes the form

m∑

i=1

pif
(
Ti(x)

)
< f (x),

which is even easier to interpret.
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