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1 Introduction

The analysis of the learning process properties of a multilayer artificial neural net-
work (ANN), also called a perceptron after the name of the first multi-layer ANN
implemented by Rosenblatt (1961), is a classical example of an application of dy-
namical systems theory to the analysis of neural networks properties—see for in-
stance Bielecki (2001), Bielecki and Ombach (2004), Hertz et al. (1991), Wu and Xu
(2002). The most natural approach is to consider a cascade, generated by a numerical
process, which is used for an ANN learning process realization. Gradient one-step
methods are commonly used in engineering computation of neural networks as learn-
ing algorithms of perceptrons. According to the mentioned methodology we consider
both the problem of topological conjugacy and shadowing. In Sect. 2 basic defini-
tions and theorems on topological conjugacy, shadowing, and inverse shadowing are
recalled, whereas in Sect. 3 a formal approach to a perceptron learning process analy-
sis is presented.

This paper is a continuation of studies presented in Bielecki (2001) and Bielecki
and Ombach (2004) where, based on results obtained in Bielecki (2002), the stability
of a learning process of a neuron having two-componental input was proved (Bielecki
2001), and a bishadowing property (robustness) of a perceptron learning process in
the case when a Runge–Kutta method of order at least two was established (Bi-
elecki and Ombach 2004). For the Euler method, the most common one used for
perceptron learning and also called the gradient descent method, which is the Runge–
Kutta method of order one, the robustness and stability analysis of a learning process
of only a two-componental input single neuron were considered (Bielecki 2001;
Bielecki and Ombach 2004). It was related to the fact that the theorem about topo-
logical conjugacy, on which the analysis was based, had been proved only for a
two-dimensional manifold. Considering the fact that Runge–Kutta methods of or-
der greater than two are not used at all as ANN learning algorithms, and those of
order two are used rarely whereas of order one widely, the analysis was very incom-
plete. Furthermore, the applied method based on compactification via stereographic
projection has one additional disadvantage: the obtained results cannot be applied
directly to cascades on R

n. Therefore, in this paper a different method of compacti-
fication is introduced; see Sect. 3. The analysis described here is based on the result
obtained by Li (1999), who proved topological conjugacy for any finite-dimensional
compact manifold, but the result has a slightly different form than commonly used
ones in this context. See Theorem 2.5, (3) and Remark 2. However, this result allows
us to fill the mentioned gap concerning applications. The main result of this paper,
Theorem 3.1, states that the perceptron learning process is, generically, both stable
under numerics and robust according to every Runge–Kutta method, including the
gradient descent method, which is widely used as a perceptron training algorithm. In
order to apply theorems concerning cascade properties on a manifold, a special man-
ifold, resembling (in a three-dimensional case) a round mattress laying on a plane, is
constructed—see Step 1 of Theorem 3.1 and Fig. 1.
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2 Mathematical Foundations

Throughout the paper cascades on a compact, smooth, Riemannian manifold M
without boundaries are considered. Let us denote by � the Riemannian metric on M.
In Sect. 2.1 definitions and theorems concerning topological conjugacy of cascades
generated by a flow are presented. Foundations of shadowing and inverse shadowing
theory are recalled in Sect. 2.2.

2.1 Topological Conjugacy

As has been mentioned, if one considers mathematical models of an ANN training
process, the basic question is whether the qualitative properties of a continuous sys-
tem are preserved under an implementation. Topological conjugacy is a standard tool
for investigating the equivalence of dynamical systems according to their dynamics.
For cascades defined by diffeomorphisms, topological conjugacy is defined in the
following way.

Definition 2.1 We say that diffeomorphisms f,g : M → M are topologically con-
jugate if there exists a homeomorphism α : M → M such that

f ◦ α = α ◦ g. (1)

In the sequel Morse–Smale dynamical systems are considered. Let us recall the
basic definitions (for the details, refer to the standard books on dynamical systems,
for example, Palis and de Melo 1982; Pilyugin 1999).

Definition 2.2 A mapping f ∈ Diff(M), or a cascade generated by this mapping, is
said to be a Morse–Smale mapping provided that its nonwandering set is a finite set
of periodic orbits and fixed points, each of which is hyperbolic and whose stable and
unstable manifolds are all transversal to each other.

Given a C1 vector field F on M we have a corresponding continuous-time dy-
namical system (flow) generated by the equation ẋ = F(x).

Definition 2.3 A flow is said to be a Morse–Smale flow provided that its nonwan-
dering set is a finite union of periodic orbits and equilibrium points, each of which
is hyperbolic and whose stable and unstable manifolds are all transversal to each
other; i.e., the strong transversality condition is satisfied. Furthermore, there are no
saddle–saddle connections. A vector field F is called a Morse–Smale vector field if
it generates a Morse–Smale flow.

Definition 2.4 A dynamical system, both a cascade and a flow, is said to be Morse–
Smale gradient-like provided that it is a Morse–Smale system having no periodic
orbits.

Remark 1 Since a gradient dynamical system has no periodic orbits, each gradient
system that is a Morse–Smale one is a Morse–Smale gradient-like system.



582 J Nonlinear Sci (2011) 21:579–593

Recall the theorem proposed by Li (1999, Theorem 3).

Theorem 2.5 Let M be a finite-dimensional compact smooth manifold without a
boundary and let

φ : M × R → M

be a Morse–Smale gradient-like flow, and denote it by (M, φ), generated by a differ-
ential equation on the manifold M

ẋ = F(x), (2)

where F is a C 2 vector field on M. Denote by φh : M → M the time-h-map of
the system φ, i.e., φh(x) := φ(x,h), and by ψh the diffeomorphism generated by the
Euler method of the step size h applied to (2).

Let T > 0 be given. Then, for sufficiently large m, there is a homeomorphism
αm : M → M conjugating discrete-time dynamical systems generated by φT and
the mth iteration ψm

T
m

of the operator ψ T
m

; i.e., the following formula holds—compare

with (1):

ψm
T
m

◦ αm = αm ◦ φT . (3)

Furthermore, limm→∞ �(αm(x), x) = 0.

Remark 2

1. The above theorem for numerical methods of order at least two (i.e., k ≥ 2) was
proved by Li (1997) and also by Garay (1994) in a classical form, i.e., m = 1,
T = h, where h > 0 is sufficiently small and α depends on h. In the method used
there the conjugating homeomorphism was obtained by solving a certain func-
tional equation. Note that the case of a manifold with a boundary is also consid-
ered in this paper. The proof for the Euler method on a two-dimensional compact
manifold without a boundary for a gradient system, based on the estimation of
accuracy of the Euler method on a Riemannian manifold (see Bielecki 2002), was
presented in Bielecki (2002), also in a classical form. Local conjugacies were con-
structed using the basic domain method, and then they were glued. We stress that
using the basic domain method allowed one to prove that stability under numerics
also exists in a very particular case of saddle–saddle connection presence (Bielecki
2002, Lemma 5.2.1).

2. Let us notice that a classical form implies (3). Indeed, let us assume that there
exists h0 > 0 such that for each 0 < h < h0 the conjugating formula is satisfied:

ψh ◦ αh = αh ◦ φh.

This implies

ψm
h ◦ αh = αh ◦ φm

h

for any natural m. But φm
h = φ(·,mh), thus we obtain

ψm
h ◦ αh = αh ◦ φ(·,mh).
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Let T > 0 be given. Set T = mh, 0 < h < h0. Then α becomes a function of m

and we have

ψm
T
m

◦ αm = αm ◦ φ(·, T ).

Based on Li (1997, 1999), and point 2 of Remark 2, we can sum up the results by
Li in the following form.

Theorem 2.6 Let all assumptions concerning M and φ specified in Theorem 2.5 be
satisfied. Denote by ψh,p the diffeomorphism generated by a Runge–Kutta method of
the step size h and order p applied to (2). Then, for sufficiently large m and each
p ∈ {1,2, . . .}, there is a homeomorphism αm : M → M such that

ψm
T
m

,p
◦ αm = αm ◦ φT .

Furthermore, limm→∞ �(αm(x), x) = 0.

A flow is stable according to a numerical method if cascades generated by this
method and time discretization have the same dynamical properties. Formally, it is
defined in the following way.

Definition 2.7 Let a numerical method applied to the flow generated by (2) be given
by the operator Ψ : M → M. A flow φ is stable under numerics with respect to the
operator Ψ if cascades generated by the time discretization of the flow φ and the
operator Ψ are topologically conjugate.

In the theory of topological dynamical systems the word “typical” refers to the
property which is shared by systems from a large set, most often from what is called
a residual set. Here, we will use the word “typical” in an even stronger meaning.
It turns out that systems satisfying the assumptions of Theorem 2.5 are typical in
the space of gradient dynamical systems (see Sect. 3) in the strongest meaning; i.e.,
assumptions are generic according to the following definition.

Definition 2.8 A given property is said to be generic in a topological space X if there
exists an open and dense set in X having this property.

Theorem 2.6 implies that on a finite-dimensional compact manifold M a gradient
dynamical system is, under some natural assumptions, correctly reproduced by the
Runge–Kutta method for a sufficiently small time step. This fact with a few implica-
tions can be used as the formal foundations of a perceptron learning process analysis.
Section 3 presents an analysis of a perceptron learning process stability under numer-
ics that is based, among other things, on Theorem 2.6.

2.2 Shadowing

This section contains basic definitions and some results needed in the sequel concern-
ing both the shadowing and the inverse shadowing properties. We refer to Pilyugin’s
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book (Pilyugin 1999) for more details on the subject and on the theory of dynamical
systems.

Let f : M → M be a diffeomorphism, f ∈ Diff(M). By Of (x) we denote the
orbit of a point x ∈ M, i.e., the sequence {xk}k∈Z ⊂ M such that x0 = x and xk+1 =
f (xk) for all k ∈ Z. Since f is invertible, Of (x) = {f k(x)}k∈Z.

Definition 2.9 A sequence {yk}k∈Z ⊂ M is called a δ-pseudo-orbit of f if

�
(
f (yk), yk+1

) ≤ δ,

for all k ∈ Z.

Definition 2.10 The discrete-time dynamical system generated by f is shadowing,
if for every ε > 0 there exists δ > 0 such that any δ-pseudo-orbit {yk}k∈Z of the
diffeomorphism f is ε-traced by the orbit of some point x ∈ M, i.e.,

�
(
yk, f

k(x)
) ≤ ε,

for all k ∈ Z.

Let MZ denote the family of all sequences of elements of M indexed by Z. Let
us recall the concept of δ-method introduced by Kloeden and Ombach (1997).

Definition 2.11 A map μf : M → MZ is called a δ-method of the diffeomor-
phism f , if the following conditions hold:

1. μf (y)0 = y, for all y ∈ M.
2. μf (y) is a δ-pseudo-orbit of the map f .

There are various approaches to introduce the concept of inverse shadowing. Let us
define it in the most general way. Denote by T = T (f ) a collection of δ-methods of
f satisfying the following condition: for any positive δ there is a δ-method μf ∈ T .

Such T will be called a class. The set of all δ-methods is then a class. Examples of
some other classes and their properties can be found in Bielecki and Ombach (2004).

Let T be a class of δ-methods.

Definition 2.12 The discrete-time dynamical system generated by f (or just f ) is T
inverse shadowing, if for any ε > 0 there is δ > 0 such that for any orbit {xk}k∈Z and
any δ-method μf ∈ T there is y ∈ M such that

�
(
xk,μf (y)k

)
< ε,

for all k ∈ Z.

Definition 2.13 The discrete-time dynamical system generated by f (or just f ) is T
robust (or bishadowing), if it is both shadowing and T inverse shadowing.

Remark 3 It is clear that the above defined robustness with respect to Z implies ro-
bustness with respect to N.
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In this paper we will use a class of methods that seems to be the largest one for
which some results on inverse shadowing have been established until now. It is the
union of two classes: Θ = Θc ∪ Θs. The class Θc consists of methods of the form

μf (y) = {
χk(y)

}
k∈Z

, for all y ∈ M,

where χk : M → M, k ∈ Z, is a family of continuous maps such that χ0 = idM and,
for all k, D∞(f ◦ χk,χk+1) ≤ δ. The class Θs consists of methods of the form

μf (y) = {yk}k∈Z such that y0 = y, yk+1 = χk(yk) for all y ∈ M,

where χk : M → M, k ∈ Z is a family of continuous maps such that χ0 = idM and,
for all k, D∞(f ◦ χk,χk+1) ≤ δ. Here D∞(g,h) := supx∈M d(g(x),h(x)).

Robustness is a topological conjugacy invariant. In particular, we immediately
have the following.

Theorem 2.14 Let f , g : M → M be topologically conjugate diffeomorphisms. For
the class T = Θ , T (f ) robustness of f is equivalent to T (g) robustness of g.

In order to prove Theorem 3.1, the following lemma, proved in Bielecki and Om-
bach (2004), will be used.

Lemma 2.15 For the class T = Θ any Morse–Smale diffeomorphism is T robust.

3 Learning Process of a Perceptron

In this section we summarize some basic concepts and results on the learning process
of multilayer artificial neural networks (ANNs). These kinds of ANNs are organized
in such a way that the set of all neurons of which the perceptron is built can be de-
composed into a finite family of disjoint finite sets A1, . . . ,AU (layers), such that the
output signal of each neuron belonging to the layer Au is given to inputs of all neu-
rons of the layer Au+1, where u ∈ {1, . . . ,U − 1}. A neuron is a unit transforming
an input signal 
x into the output signal y = f (s), where f : R → R is an activa-
tion function of a neuron, and s(i) := x1 · w

(i)
1 + · · · + xl · w

(i)
l and w

(i)
1 , . . . ,w

(i)
l

are weights (synapses) of the ith neuron. We refer to the book (Hertz et al. 1991) for
more information on the subject of neuron models, perceptrons, and network learning
processes. The mathematical theory which can be used as the basis of the analysis of
perceptron gradient training methods is to some extent related to the concept of topo-
logical conjugacy and shadowing (see previous section) of discretizations generated
by a differential equation.

There are several methods of ANN learning, and most of them are iterative
processes. One of the possible approaches to analyze these processes is to consider
differential equations such that the actual iterative procedure is a numerical method
applied to this equation.
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Considering the differential model of a learning process, let us notice that the
gradient descent method leads to the iterative variation of synapses,


w(k + 1) = 
w(k) − h · gradE
( 
w(k)

)
, (4)

where 
w = [w1, . . . ,wn] is a vector of all weights of a perceptron, whereas k numer-
ates a step of the learning process. The formula (4) describes the iterative process
generated by the Euler method for the differential equation

.


w= −gradE( 
w). (5)

An output deviation function E, also called a criterial function, plays the role of the
potential E in the gradient equation (5). Equation (5) generates the gradient flow
(Rn,φ).

In order to explain in detail a perceptron learning process and, consequently,
the meaning of the function E, assume that a finite sequence ((
x(1), 
z(1)), . . . ,

(
x(J ), 
z(J ))), called the learning sequence, is given, where 
z(j) is a desired response
of the perceptron if the vector 
x(j) is put to its input and J is the number of in-
put vectors used in the learning process. Since the real function E is a criterion of
how correctly all weights of the perceptron are set, it should have nonnegative val-
ues and exactly one global minimum with a value equal to zero at the point 
w0 such
that 
y(j)( 
w0) = 
z(j) for each j ∈ {1, . . . , J }. Furthermore, the greater the differences
between responses 
y(j) of the perceptron and the proper responses 
z(j), the greater
the value of the function E. Assuming that the perceptron has n weights, the func-
tion E : R

n → R and, therefore, (5) generates a flow on the n-dimensional Euclidean
space R

n.

Most often the square criterial function is used, which is defined by the formula

E( 
w) = 1

2

J∑

j=1

[
y(j)( 
w) − 
z(j)
]2

, (6)

where 
y(j)( 
w) is the output signal of the perceptron if the vector 
x(j) is put to its
input. Assuming that the activation function of each neuron is a mapping of the
class C 2(R,R)—most types of activation functions used in practice, e.g., bipolar
and unipolar sigmoid functions and most radial functions, satisfy this assumption—
the criterial function E is also of the class C 2(Rn,R). The formula (4) describes
a process of finding a local minimum of the function E using the Euler method,
which is a Runge–Kutta method of order k = 1. The Runge–Kutta methods of or-
ders k = 2 are also sometimes considered as learning processes (Hertz et al. 1991).
Moreover, although the gradient system (5) and its discretizations are defined for-
mally on the space R

n with an appropriate n, we can study the learning process on the
n-dimensional compact manifold, say Mn

S , which is homeomorphic to the sphere S n,
applying the compactification procedure. In this paper the procedure is an alternative
to the one presented in Bielecki (2001) and Bielecki and Ombach (2004) because of
its disadvantage mentioned in the introduction. The construction of the manifold Mn

S

is described in detail in Step 1 of the proof of Theorem 3.1.
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Let us consider the problem of the potential regularization. Denote by Bn(0, r)

a closed, n-dimensional ball in R
n, where 0 denotes zero in R

n. In applications
both the discrete and continuous models of a perceptron learning process (4) and
(5) are considered in R

n. In order to apply Theorem 2.6, the dynamical systems de-
scribing the learning process must be transformed onto a compact, smooth mani-
fold without a boundary. In order to transform the learning process model (5) from
R

n onto Mn
S let us modify the criterial function in such a way that on a certain

ball, say Bn(0, r1) ⊂ R
n, the potential is not modified—the radius r1 can be as

large as we need—and a ball Bn(0,2r1) will be an invariant set. Let, furthermore,
E( 
w) = E(r), r = ‖ 
w‖2 (the square dependence is established because of the clarity
of calculations; see Step 2 of the proof of Theorem 3.1) for r large but less than 2r1.
In this way a flow (Bn(0,2r1), φ̃) is obtained. This procedure of the potential E reg-
ularization is described in detail below as the second step of Theorem 3.1.

Remark 4 Let us notice that this method of criterial function modification is well
based on the properties on the modeled realities. Note first that the range of numbers
which can be represented in a computer is bounded. Also, in a biological neural cell,
neurotransmitters are liberated in tiny amounts from vesicles, about 10−17 mol per
impulse (Hess 2009, Sect. 2.5, and Tadeusiewicz 1994, pp. 39–40). Thus, in both
biological and artificial neural networks, the norms of vectors 
w and 
x are bounded;
therefore, in modeling a neuron numerically we can consider only bounded vectors 
w
and 
x. It means that we are interested in the dynamics restricted to some set, possibly
large but bounded. Let us assume this set to be a ball Bn(0, r1) with the radius r1
sufficiently large.

Recapitulating, the criterial function (6) is unchanged on the above ball Bn(0, r1),
and the resulting system (Bn(0,2r1), φ̃) generated by the equation

.


w= −grad Ẽ( 
w), 
w ∈ Bn(0,R) ⊂ R
n (7)

is good for modeling of the learning process.
Denote by Γ the set of all C1 vector fields on M equipped with the C1 topology,

and let G ⊂ Γ be formed by all vector fields of the form −gradE, where E : M → R

is a C2 function. With any vector field in G we associate its discretizations: φT

and Runge–Kutta methods ψ T
m

,p
. Let Ψ = ψm

T
m

,p
(see Definition 2.7) and T = Θ

(see Sect. 2.2). The dynamic properties of a learning process of a perceptron with n

weights can be specified in the following way.

Theorem 3.1 Fix a real number T > 0. Let a learning process of a perceptron having
n weights be modeled by a flow φ̃ on Bn(0,2r1) ⊂ R

n; see formula (7). Then there
exists a compact, smooth, n-dimensional manifold Mn

S without a boundary and a

flow (Mn
S, φ̂) such that Bn(0,2r1) ⊂ Mn

S , (Mn
S |Bn(0,2r1), φ̂) = (Bn(0,2r1), φ̃),

and the flow (Mn
S, φ̂) is, generically, stable under numerics with respect to the oper-

ator Ψ , which means that cascades (Mn
S, φ̂T ) and (Mn

S,Ψ ) are topologically conju-

gate. Furthermore, both the mentioned cascades φ̂T and Ψ are T generically robust
as well.
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Fig. 1 Construction of the manifold Mn
S

Proof

Step 1. Construction of the Manifold Mn
S Fix a closed ball Bn(0, r1) ⊂ R

n, where
the radius r1 is as large as we need (see Remark 4) and set R = 3r1. Let us construct a
manifold Mn

S ∈ R
n ×R in such a way that it has a radial symmetry with respect to ro-

tations around the real axis which is orthogonal to the Euclidean hyperplane, denoted
by Eucn, in which the mentioned ball Bn(0,R) is contained. See Fig. 1. Because
of the radial symmetry, the construction can be described for each two-dimensional
section. Thus, let us glue the line segment [−R,R] with two hemicircles of a circle
of radius rs in the points (−R,0) and (R,0), respectively. Then glue the obtained
curve with the line segment (see Fig. 1). The obtained manifold is compact, as it
is homeomorphic to Sn. It is also of class C 1. The lack of C∞ smoothness in the
points A,B,C,D on a two-dimensional section can be counterbalanced by a molli-
fier function, denoted by f[a,b](x) ∈ C∞(R). Let f[a,b] be of the form: f[a,b](x) = 0
for x ∈ (−∞, a], f[a,b](x) = 1 for x ∈ [b,∞) and f[a,b] is increasing on [a, b]. This
type of function is called a cutoff function, and its construction is described, for in-
stance, in Lee (2003, Lemma 2.21, p. 50). From the symmetry of the two-dimensional
section, it is sufficient to describe the smoothing procedure only at the point A. We
can treat the quarter of the section as the function fsec : [0,R + rs] → [0, rs] of the
form

fsec(x) :=
{

0 for r ∈ [0,R),

rs − √
r2
s − (x − R)2 for [R,R + rs].

Then A = (R,0). Cut the domain of f[R,R+ rs
2 ] to the interval [0,R + rs] and set

fsmooth(x) := fsec(x) · f[R,R+ rs
2 ](x). It is easy to check that fsmooth ∈ C∞(0,R + rs).

The manifold Mn
S is obtained by rotation of the two-dimensional section smoothed

at the points A,B,C, and D around the real axis (see Fig. 1).
Denote by Base the part of Mn

S belonging to Eucn, i.e., Base := Bn(0,R) and let
Cap := Mn

S \ Base. Notice that Bn(0,2r1) ⊂ Eucn, on which the dynamical system
φ̃ is founded, is a subset of Base.

Step 2. Compactification The training process will be considered on a closed ball
Bn(0, r1), and the potential outside Bn(0, r1) will be modified and completed in or-
der to apply theorems concerning properties of cascades considered on a compact
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manifold without boundaries. Thus, let us modify the potential E using a function g

defined as follows:

g( 
w) :=
{

1 for r ∈ [0, r1),

e(r−r1)
a

for r ≥ r1,

where r := ‖ 
w‖2 (a square dependence is chosen for clarity because then ∂r
∂wi

= 2wi

provided that ‖ · ‖ is the Euclidean norm) and a natural number a is selected depend-
ing on the potential E and radius r1 in the way specified below. The function g is of
a class C 2(Rn,R) for a > 2. Define a potential Ẽ : R

n → R as Ẽ( 
w) := E( 
w) ·g( 
w).

For a sufficiently large a, solutions of the equation
.


w= −grad Ẽ( 
w), generating a
flow φ̃, cut the (n − 1)-dimensional sphere S n−1(0,2r1) ⊂ Base transversally, en-
tering the interior of the ball Bn(0,2r1); that is, the scalar product −grad Ẽ( 
w) ◦ 
w
has negative values for r = 2r1. This means that the ball Bn(0,2r1) is an invari-
ant set of the flow φ̃. Indeed, calculating the ith component of the scalar product
−grad Ẽ( 
w) ◦ 
w we obtain

−wi · ∂Ẽ( 
w)

∂wi

= −wi · ∂

∂wi

(
E( 
w) · g( 
w)

)

= −wi

(
E( 
w) · ∂g( 
w)

∂wi

+ g( 
w) · ∂E( 
w)

∂wi

)
= · · · .

Because

∂g( 
w)

∂wi

:=
{

2 · wi · a · (r − r1)
a−1 · e(r−r1)

a
for r > r1,

0 for r ∈ [0, r1],
then, continuing the calculation, we obtain for r = 2r1

· · · =
(

−2w2
i a(r − r1)

a−1E( 
w) − wi

∂E( 
w)

∂wi

)
e(r−r1)

a

=
(

−2w2
i ara−1

1 E( 
w) − wi

∂E( 
w)

∂wi

)
era

1 .

Thus, as on S n−1(0,2r1) we have
∑

i w
2
i := ‖ 
w‖2 = 2r1, so

−grad Ẽ( 
w) ◦ 
w = era
1

(
−4ara

1 E( 
w) −
∑

i

wi

∂E( 
w)

∂wi

)
.

Since the problem is considered on the compact set S n−1(0,2r1), all variables,
functions, and derivatives are bounded. In particular, the term −∑

i wi
∂E( 
w)
∂wi

can be
positive, but is upper bounded. The potential E is nonnegative, and the flow (5) has
only a finite number of singularities, which implies that E has only a finite number
of zeros. Therefore, r1 can be chosen so that E( 
w) > 0 for each 
w such that ‖ 
w‖2 =
2r1 > 0. Because the term

∑
i wi

∂E( 
w)
∂wi

does not depend on a and r1 is large, the

number a can be chosen sufficiently large that 4ara
1 E( 
w) > |∑i wi

∂E( 
w)
∂wi

|.
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Cut the domain of Ẽ to Bn(0,2r1) ⊂ Base and complete the potential on Mn
S

so that in the north pole xnp (see Fig. 1) there is a hyperbolic fixed point which
is a repeller on Mn

S \ Bn(0,2r1), which means that all points in Mn
S \ Bn(0,2r1)

are attracted to the north pole in negative time. Then glue the potential C2 regu-
larly on the border of Bn(0,2r1). This can be done in the following way. Define the
potential on Cap ∪ ∂Base as V ( 
w) := c · �(xsp, 
w), where c > 0 is chosen so that
the minimal value of V on the border of Base is greater than the maximal value of
Ẽ on Bn(0,2r1). On each geodesic line γ , connecting the south pole xsp and the
north pole xnp , define a cutoff function gγ such that gγ ( 
w) = Ẽ(γ ∩ Bn(0,2r1)) if
�(xsp, 
w) ≤ 2r1 and gγ ( 
w) = V (γ ∩ ∂Cap) if �(xsp, 
w) ≥ R = 3r1. Define

Ê( 
w) :=
⎧
⎨

⎩

Ẽ( 
w) on int Bn(0,2r1),

gγ ( 
w) on Base \ int Bn(0,2r1),

V ( 
w) on Cap.

Thus we have obtained a potential Ê ∈ C 2(Mn
S) and, consequently, a dynamical

system (Mn
S, φ̂), generated by the gradient equation on Mn

S

.


w= −grad Ê( 
w) (8)

has been obtained. By fixation of the time step and applying a Runge–Kutta method,
cascades (Bn(0,2r1), φ̃T ), (Bn(0,2r1), ψ̃ T

m
), (Mn

S, φ̂T ), and (Mn
S, ψ̂ T

m
) are gener-

ated. By the fact shown above that −grad Ẽ( 
w) is nonzero on the border of the ball
Bn(0,2r1) and points inward, the ball Bn(0,2r1) is an invariant set of the cascade φ̃T

and, for a sufficiently large m, of the cascade ψ̃ T
m

as well. This also implies invariance

of Bn(0,2r1) for φ̂T and ψ̂ T
m

.

Step 3. Genericity As is known, Axiom A and the strong transversality condition
are equivalent to structural stability of a dynamical system (see Palis and de Melo
1982, p. 171). On the other hand, for gradient dynamical systems, Axiom A implies
that the system has only a finite number of singularities, all hyperbolic, whereas the
strong transversality condition implies that the gradient system has no saddle–saddle
connections. Thus, structural stability of the dynamical system (Mn

S, φ̂), modeling a
perceptron training process, implies the assumptions of Theorem 2.6. Moreover, the
set of structurally stable systems is open and dense in the space of gradient dynamical
systems G (see Palis and de Melo 1982, p. 116), which ensures that the properties
specified in the assumptions of Theorem 2.6 are generic.

Step 4. Stability Under Numerics If a dynamical system generated by (2) has in
the ball Bn(0,R) ⊂ Eucn a finite number of singularities, all hyperbolic, then the
dynamical system modeling a perceptron learning process (after compactification),
generated by (8) on the manifold Mn

S satisfies the assumptions of Theorem 2.6 as
well. This implies that Theorem 2.6 can be applied to the cascades (Mn

S, φ̂T ) and
(Mn

S, ψ̂ T
m

,p
) generated by (8). Thus, it is shown that a perceptron training process is,

after compactification, generically stable under numerics with respect to the operator
Ψ = ψ̂m

T
m

,p
according to every Runge–Kutta method ψ̂ T

m
,p

.
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Step 5. Robustness In this step we want to prove the fact that a typical (generic)
learning process is robust; i.e., it is both shadowing and inverse shadowing with re-
spect to a broad class of δ-methods. It will be shown that robustness is shared by
learning processes resulting from vector fields belonging to some open and dense set
in an appropriate space.

Lemma 3.2 There exists an open and dense set of vector fields contained in G such
that the cascade φT is T robust. Furthermore, for each p ∈ {1,2, . . .} and a suffi-
ciently large m, the cascade Ψ := ψm

T
n
,p

is T robust as well, where ψh,p is the diffeo-

morphism generated by a Runge–Kutta method of step size h and order p applied to
the equation generating the flow φ.

Proof Denote by MSG the set of all Morse–Smale vector fields contained in G and re-
call that G ⊂ Γ is formed by all vector fields of the form −gradE, where E : M → R

is a C2 function. The classical result is that the set MSG is open and dense in G ; see
for example Palis and de Melo (1982), p. 153.

On the other hand, if −gradE belongs to MSG , then the critical points of φ coin-
cide with the fixed points of φT , and neither φT nor φ does admit other periodic orbits.
Besides, stable and unstable manifolds of φ and φT at their (common) fixed points
are the same. Hence, φT is a Morse–Smale diffeomorphism and, by Lemma 2.15, is
T robust.

Also, one can easily see that for −gradE ∈ MSG all the assumptions of Theo-
rem 2.6 are satisfied. Thus, φT and Ψ are topologically conjugate to each other if
m is large enough; hence, by Theorem 2.14, we have also proved robustness of Ψ.

This completes the proof of Lemma 3.2; consequently, the proof of Theorem 3.1 is
completed as well. �

4 Practical Implications

The cascade Ψ describing a perceptron training process is a multi-step operator
(note that the term multi-step should not be confused with a multi-step discretiza-
tion method). This means that the m-fold iteration of the operator defined by a cer-
tain Runge–Kutta method is considered as a single unit of the theoretical analysis. It
produces no limitations in practice since, during implementations, we can check the
results of the training process after each m-step stage.

Theorems which were applied to the presented analysis describe certain properties
of cascades on compact manifolds without boundaries. However, the numerical pro-
cedure, being the realization of the learning algorithm, is performed in R

n. Therefore,
we need conclusions concerning a set, say A ⊂ R

n, such that Bn(0, r1) ⊂ A ⊂ Base
and αm(A) ⊂ Base—see Steps 1 and 2 of the proof of Theorem 3.1.

Let us consider the set αm(Bn(0,2r1)). We have αm(Bn(0, r1)) ⊂ αm(Bn(0,2r1))

and, according to the fact that the conjugating homeomorphism αm converges to iden-
tity for m converging to infinity (see Theorem 2.6), we also have αm(Bn(0,2r1)) ⊂
Base for a sufficiently large m. This means that topological conjugacy exists on the
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set A = Bn(0,2r1). Thus, the considered cascades are also topologically conjugate
on the subset of R

n on which the perceptron training process is implemented.
Although robustness is theoretically considered for k ∈ Z, in implementations it is

of interest for us only for k ∈ N. The ball Bn(0,2r1) is positively invariant accord-
ing to φ̂T , and robustness is a topological conjugacy invariant (see Theorem 2.14).
Therefore, according to the above conclusion concerning topological conjugacy, the
robustness with respect to N takes place on the set A (see Remark 3).

Finally, we have to admit that the above result has a certain practical disadvantage.
Namely, the classes T of δ-methods considered above, although quite large, do not
contain real computer methods, as the latter are only piecewise continuous. To be
more specific, we would like to know that the learning process described above as φT

or ψ T
m

,p
is inverse shadowing with respect to the class generated by real numerical

methods like
{
ψ T

m
,p,b

, b ∈ {1,2, . . .}},
where the subscript b is responsible for the round-off with set up, say 2−b , accuracy.
Such methods are piecewise constant and thus admit points of discontinuity, and our
framework does not work.

5 Concluding Remarks

In this paper we apply the fact that, on a certain n-dimensional manifold Mn
S , home-

omorphic to the sphere S n, a gradient dynamical system is, under some natural as-
sumptions, correctly reproduced by its Runge–Kutta method of each order if only a
single step of the numerical method is sufficiently small. The manifold Mn

S is con-
structed in such a way that the ball Bn(0,R) is a part of it. Therefore, the dynamical
system (Bn(0,2r1), φ̃), modeling a perceptron learning process, remains unchanged
after transforming of the problem onto the manifold in order to apply Theorem 2.6
for a perceptron learning process analysis. As the dynamics of gradient systems is
very regular—in particular, the dynamics cannot be chaotic and there are no periodic
orbits—Theorem 2.6 implies asymptotic stability of the learning process using every
Runge–Kutta method, including the widely applied gradient descent method, which
is simply the Euler method for (7). These properties are preserved under discretiza-
tion and, due to the global topological conjugacy, when a Runge–Kutta method is
applied. This implies T robustness of the learning process as well.

To sum up, the dynamics of learning processes of some artificial, nonlinear neural
networks can be understood using dynamical systems theory, and in many situations
the gradient dynamical systems are a good tool for that. It appears that, generically,
for perceptrons such processes are convergent to equilibrium states and are both shad-
owing and inverse shadowing. This means that they are robust, and there may be good
enough accuracy when they are performed by a computer. However, further studies
on inverse shadowing with respect to a class of piecewise continuous methods are
welcome.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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