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Abstract Persistence and bifurcations of Lyapunov manifolds can be studied by a
combination of averaging-normalization and numerical bifurcation methods. This
can be extended to infinite-dimensional cases when using suitable averaging theo-
rems. The theory is applied to the case of a parametrically excited wave equation. We
find fast dynamics in a finite, resonant part of the spectrum and slow dynamics else-
where. The resonant part corresponds with an almost-invariant manifold and displays
bifurcations into a wide variety of phenomena among which are 2- and 3-tori.
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1 Introduction

The periodic solutions, found in linear ODEs and linear evolution equations (PDEs)
play a basic role in the analysis of natural phenomena. Classical examples are the
harmonic equation and the linear wave equation in one or more space dimensions.
Complications in the analysis arise when coupling such equations and even more so
if nonlinear terms are taken into account. A natural approach is to identify periodic
solutions in the uncoupled and linearized system and to look for the changes caused
by coupling and nonlinear terms by continuation and bifurcation techniques. These
periodic solutions from linearized systems are located on normal mode manifolds,
also called Lyapunov manifolds.

A well known but already nontrivial example is the case of two nonlinearly cou-
pled anharmonic equations of the form

ẍi + ω2
i xi = εfi(x, ẋ), x = (x1, x2), i = 1,2.

In the limit ε = 0, the system is decoupled and two (harmonic) one degree of freedom
systems exist with solutions filling up two two-dimensional (normal mode) Lyapunov
manifolds. A basic question is then whether these manifolds can be continued for
small ε > 0. If this is the case, they will be located in a neighborhood of the exact
ε = 0 Lyapunov manifolds that shrinks to zero with ε → 0. In a neighborhood of the
origin of phase space and as ε → 0, they are tangent to the ε = 0 normal mode man-
ifolds. In the case of the two coupled harmonic equations, this question was solved a
long time ago.

A second basic and largely unsolved question is whether the Lyapunov manifolds
persist for increasing ε and other changes of relevant parameters. Possible tools to
study these questions are averaging-normalization and numerical bifurcation theory.
As we will show, the combination of both techniques is very powerful. For ODEs,
these questions are difficult enough, but we will be especially interested in bifurca-
tions of Lyapunov manifolds in the case of infinite-dimensional systems. Extension
of averaging to infinite-dimensional problems is possible and was carried out during
the last decade, but it raises special difficulties, depending on the choice of operator
and the type of problem formulation (parabolic or hyperbolic, infinite or bounded
spatial domains); for references see Sect. 2.

In the next section, we will describe two theorems that can be used in an infinite-
dimensional setting. It is remarkable that these theorems are not widely known. It
will be seen in the next section that the technique of averaging-normalization pro-
duces a system, simplified by normalization. Solving the system and inverting the
normalizing transformation gives the solution (without approximation) of the orig-
inal problem. As we shall describe in what follows, in practice, one omits higher
order terms to obtain approximate solutions. Interestingly, the normalization proce-
dure gives a short-cut to slow–fast dynamics. Removing the nonresonant terms, one
finds normally hyperbolic manifolds from the normalized equations because of the
dominating presence of slow–fast dynamics, and one can then ask, whether these
manifolds persist in the original system. One of the two theorems, formulated for an
infinite-dimensional setting, the Sanchez-Palencia theorem allows us to conclude the
validity of approximations for all time. However, we shall argue that this qualitative
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information is not enough to prove the existence of such manifolds in the original
system. Instead, we will introduce the notion of “almost-invariant” manifold.

We demonstrate this slow–fast dynamics, produced by averaging-normalization,
for a parametrically excited wave equation that has as an additional interest, the sug-
gestion in Rand et al. (1995) that this equation could not be handled by the usual
and well-established perturbation techniques. Our analysis shows that perturbation
analysis does not fail, but that surprisingly enough, a complicated bifurcation struc-
ture destroys this picture for relatively small values of the small parameter ε. For
this part of the analysis, we use higher order averaging in the case of near-resonance
(Sanders et al. 2007) and we use numerical bifurcation techniques as described in
Kuznetsov (2004) and implemented in Kuznetsov and Levitin (1995–2001), Dhooge
et al. (2008).

For the terminology of normal forms, resonance, near-resonance etc., we refer to
Sanders et al. (2007). We stress finally that the emergence of slow–fast dynamics
by averaging-normalization is a phenomenon common to many hyperbolic nonlinear
PDE problems. Therefore, the phenomenon we describe, is rather general and it is
caused by the presence of resonant and nonresonant terms in the original problem
which obscure the underlying dynamics. An extensive discussion and a number of
examples can be found in Verhulst (2005), Sect. 13.3.

2 Normal Forms for Wave Equations

Consider the semilinear initial value problem

dw

dt
+ Aw = εf (w, t, ε), w(0) = w0, (1)

where −A generates a uniformly bounded C0-group G(t), −∞ < t < +∞, on the
Banach space X.

We assume the following basic conditions:

• f is continuously differentiable and uniformly bounded on D̄ × [0,∞) × [0, ε0],
where D is an open, bounded set in X.

• f can be expanded with respect to ε in a Taylor series, at least to some order.

2.1 Integral Equation and Standard Form

A generalized solution of (1) is defined as a solution of the integral equation:

w(t) = G(t)w0 + ε

∫ t

0
G(t − s)f

(
w(s), s, ε

)
ds.

It is well known that under the given conditions for f and with the uniform
boundedness of G(t) the integral equation has a unique solution that exists on the
timescale 1/ε. The proof follows the usual contraction construction in Banach spaces.
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Using the variation of constants transformation w(t) = G(t)z(t) for (1), we find
the integral equation corresponding with the so-called standard form (see Sanders et
al. 2007 or Verhulst 2005)

z(t) = w0 + ε

∫ t

0
F

(
z(s), s, ε

)
ds, F (z, s, ε) = G(−s)f

(
G(s)z, s, ε

)
. (2)

2.2 Averaging Normal Form

We assume that F(z, s, ε) is an almost-periodic function in a Banach space, satisfying
Bochner’s criterion; see, for instance Verhulst (2005). The average F 0 is defined by

F 0(z) = lim
T →∞

1

T

∫ T

0
F(z, s,0) ds. (3)

Applying normalization by the averaging transformation

z(t) = v(t) + ε

∫ t

0

(
F(v, s,0) − F 0(v)

)
ds, v(0) = w0, (4)

produces the normal form equation

v(t) = w0 + ε

∫ t

0
F 0(v(s)

)
ds + O

(
ε2).

After introducing transformation (4), we can still obtain the exact solution by solv-
ing the resulting equation for v(t) including the O(ε2)-terms, to find z(t) from (4)
and then w(t). The averaging approximation z̄(t) of z(t) is obtained by omitting the
O(ε2)-terms:

z̄(t) = w0 + ε

∫ t

0
F 0(z̄(s))ds, (5)

or alternatively

dz̄

dt
= εF 0(z̄), z̄(0) = w0. (6)

Under these rather general conditions, Buitelaar (1993) (or Verhulst 2005) provides
the following theorem.

Theorem 2.1 (General averaging) Consider (1) and the corresponding z(t), z̄(t)

given by (2) and (5) under the basic conditions stated above. If G(t)z̄(t) exists in
an interior subset of D on the timescale 1/ε, we have

z(t) − z̄(t) = o(1) as ε → 0

on the timescale 1/ε. If F(z, t,0) is periodic in t , the error is O(ε).
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2.3 Application to Hyperbolic Equations

A straightforward application is to consider semilinear initial value problems of hy-
perbolic type,

utt + Au = εf (u,ut , t, ε), u(0) = u0, ut (0) = v0, (7)

where A is a positive, self-adjoint linear operator on a separable Hilbert space and
f satisfies the basic conditions. In our application later on, we will be concerned
with the case that we have one space dimension and that for ε = 0 we have a linear,
dispersive wave equation by choosing:

Au = −uxx + u.

To make the relation with (1) explicit, one writes u1 = u, u2 = ut and

∂u1

∂t
= u2,

∂u2

∂t
= −Au1 + εf (u1, u2, t, ε).

One uses the operator (with eigenvalues and eigenfunctions) associated with this sys-
tem.

In particular and to focus ideas, consider the case of the boundary conditions
u(0, t) = u(π, t) = 0.

In this case, a suitable domain for the eigenfunctions is {u ∈ W 1,2(0,π) : u(0) =
u(π) = 0}. Here, W 1,2(0,π) is the Sobolev space consisting of functions u ∈
L2(0,π) that have first-order generalized derivatives in L2(0,π). The eigenvalues
are λn = √

n2 + 1, n = 1,2, . . . and the spectrum is nonresonant. The implication is
that F(z, s,0) in expression (3) is almost-periodic.

Assume now for (7) homogeneous Dirichlet conditions or homogeneous Neumann
conditions. The denumerable eigenvalues in this case are λn = ω2

n and the corre-
sponding eigenfunctions vn(x) with n = 1,2,3, . . . . Substitution of the expansion∑

un(t)vn(x) and taking inner products, produces the infinite set of coupled second-
order equations

ün + ω2
nun = εF (u), (8)

with u representing the infinite set un, u̇n with n = 1,2,3, . . . in the Dirichlet case,
n = 0,1,2, . . . in the Neumann case.

2.4 The Sanchez-Palencia Theorem

In the case of attraction, averaging-normalization leads to stronger approximation
results. The results can be described as follows. Consider the initial value problem in
a Banach space

ẋ = εf (x, t), x(0) = x0.
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Suppose that we can average the vector field:

f 0(z) = lim
T →∞

1

T

∫ T

0
f (z, s) ds

and thus can consider the averaged equation

ż = εf 0(z), z(0) = x0.

We have the following result.

Theorem 2.2 Suppose that the vector fields f and f 0 are continuously differentiable
and that z = a is an asymptotically stable critical point (in linear approximation) of
the averaged equation. If x0 lies within the domain of attraction of a, we have

x(t) − z(t) = o(1) as ε → 0

for t ≥ 0. If the vector field f is periodic in t , the error is O(ε) for all time.

The result is based on Sanchez-Palencia (1975) and Sanchez-Palencia (1976); for
more details and examples in the finite-dimensional context, see Sanders et al. (2007).
Note, however, that the proof in Sanders et al. (2007) immediately carries over to a
Banach space, as in Sanchez-Palencia (1976).

2.5 Slow–Fast Dynamics

In our analysis of the hyperbolic PDE (7), we will be interested in the case that we
have a resonance between a finite number of modes k and that the infinite number of
other, nonresonant modes are attracted to a stationary solution. To fix ideas, assume
that these stationary states correspond with the trivial solutions of the modes as will
be the case in our example. The attraction is produced by dissipation and it is natural
to include in the O(ε) term of (7) the term −εβut so that f (u,ut , t, ε) is replaced by
−βut + f (u,ut , t, ε) with β > 0, independent of ε.

With these assumptions, we shall split system (8) into two subsystems. First, the
finite-dimensional system:

ün +ω2
nun = −εβu̇n +εf1(u0, u̇0, . . . , uk, u̇k)+ε2f2(u)+ε3 · · · , n = 0,1, . . . , k,

(9)
where we have removed the nonresonant terms by normalization (with some abuse of
notation, we keep using the variable un). Because of the assumption of nonresonance
for the modes starting with n = k + 1, the averaging process leaves in the second,
infinite-dimensional system to first order only the dissipative term:

ün + ω2
nun = −εβu̇n + ε2g2(u)

) + ε3 · · · , n = k + 1, k + 2, . . . . (10)

Omitting the O(ε2) terms in the finite-dimensional system (9), we will analyze
the system

ün + ω2
nun = −εβu̇n + εf1(u0, u̇0, . . . , uk, u̇k), n = 0,1, . . . , k, (11)
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looking for attracting (hyperbolic) invariant sets.
The explicit averaging-normalization transformation for the second (infinite-

dimensional) system (10) starts with the standard transformation un, u̇n → yn1 , yn2

un = yn1 cosωnt + yn2

ωn

sinωnt,

u̇n = −ωnyn1 sinωnt + yn2 cosωnt, n = k + 1, k + 2, . . . ,

followed by averaging. Omitting the O(ε2) terms, this produces the system

ẏn1 = −1

2
εβyn1, ẏn2 = −1

2
εβyn2, n = k + 1, k + 2, . . . .

The solutions decay exponentially to zero and according to the Sanchez-Palencia
Theorem 2.2 we have

un(t) = e− 1
2 εβt

(
un(0) cosωnt + u̇n(0)

ωn

sinωnt

)
+ o(1),

u̇n(t) = e− 1
2 εβt

(
−un(0)ωn sinωnt + u̇n(0) cosωnt

)
+ o(1),

n = k + 1, k + 2, . . . , with the estimates o(1) as ε → 0 and validity of the estimates
for all positive time (t ≥ 0). For the energy of the modes of system (10), we have

En(t) = 1

2

(
u̇2

n(t) + ω2
nu

2
n(t)

) = En(0)e−εβt + o(1)

for all time. We conclude that after an interval of time, asymptotically larger than 1/ε

(for instance, 1/ε2), the right-hand sides of the second (infinite-dimensional) system
after averaging-normalization become o(1). Starting with o(1) initial conditions, the
nonresonant modes remain o(1).

In this way, we have arrived at an explicit construction of slow–fast dynamics
by asymptotics. The infinite-dimensional system (10) represents after some time or
with small initial values the slow dynamics, the resonant system (9) the fast one.
The hyperbolic invariant sets of the resonant system are normally hyperbolic in the
complete system. Note, however, that we have the following issues; some of them
need further discussion:

1. By higher order averaging-normalization, we can remove all resonant modes
1, . . . , k from the nonresonant system (10). Using these transformations, the er-
ror estimates will improve, the solutions of system (10) are shown to approach
the trivial solutions with even higher precision. In this way, we have an explicit
justification of restricting our analysis to the finite-dimensional resonant system
as ε → 0. The manifold M spanned by the first k modes is “almost-invariant.”

2. The asymptotic results obtained are valid as ε → 0 and this poses the classical
problem of what happens when increasing ε; see the discussion in Verhulst (2005),
Sect. 10.5. As we will show in an application in the next section, continuation of
ε away from 0 in higher dimensional systems, leads to interesting bifurcations.
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3. Related to the preceding item is the problem of accidental resonance. We have
excluded this by our assumptions, however, we did not exclude near accidental
resonance. Again, this plays no part as ε → 0, but the phenomenon comes up
when increasing ε in a high-, even infinite-dimensional, system. This will also be
demonstrated later on.

4. Nontrivial hyperbolic, stationary solutions of system (11) produce solutions of a
particular form. The corresponding resonant modes can be written as a harmonic
(periodic) function plus an o(1) (probably almost-periodic) function. The nonres-
onant modes are o(1) solutions.

5. If the manifold M , discussed in the first item, is compact, it is a serious candidate
to put it in the framework of Fenichel’s slow manifold theory. Extension to infinite-
dimensional problems of Fenichel theory is possible but raises special difficulties,
depending on the choice of operator and the type of problem formulation. A dis-
cussion on parabolic and hyperbolic problems can be found in Bates and Jones
(1989); see also Bates et al. (1998, 1999), Menon and Haller (2001), and Zeng
(1998). In Jones and Titi (1996), the emphasis is on the persistence of invariant
manifolds in dissipative equations, the main technique is contraction which takes
often the form of Gronwall’s lemma.

In this rather general framework, we can not prove the existence of a slow man-
ifold as we can not exclude small chaotic behavior at higher order. The possibility
of such phenomena was also observed in Wittenberg and Holmes (1997). Note,
however, that our results are stronger than formal, as the “almost-invariance” of
the manifold M has been established rigorously.

3 A Parametrically Excited Wave Equation

An interesting problem was studied by Rand et al. (1995), where they considered the
wave equation

utt − c2uxx + εβut + (
ω2

0 + εγ cos t
)
u = εαu3, t ≥ 0, 0 < x < π, (12)

with boundary conditions ux(0, t) = ux(π, t) = 0 and β > 0 (damping). For ε = 0,
the model reduces to the dispersive wave equation of Sect. 2.3, also we shall see that
the discussion on slow–fast dynamics of Sect. 2.5 applies. In Rand et al. (1995), the
experimental motivation for this model is discussed, firstly a line of coupled pendula
with vertical (parametric) forcing and secondly the behavior of water waves in a
vertically forced channel. Related mechanical problems can be found in Seyranian
and Mailybaev (2003).

3.1 Modal Expansion

Using the eigenfunctions vn(x) = cosnx, and eigenvalues

ω2
n = ω2

0 + n2c2, n = 0,1,2, . . . , (13)
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we expand the solution as

u(x, t) =
∞∑
0

un(t) cosnx.

Taking L2-inner products with vn(x) produces the infinite-dimensional system

ün + ω2
nun = ε

(−βu̇n − γ un cos t + αgn(u)
)
, n = 0,1,2, . . . , (14)

with u = (u0, u1, u2, . . .) and suitable initial conditions. The gn are infinite, homoge-
neous cubic series in u0, u1, u2, . . . with terms of the form

u3
n, u2

i uj (i �= j), uiujul (i �= j �= l).

For example in the case of truncating the expansion to the first three modes, we have

g0 = u3
0 + 3

2
u0u

2
1 + 3

2
u0u

2
2 + 3

4
u2

1u2,

g1 = 3

4
u3

1 + 3u2
0u1 + 3

2
u1u

2
2 + 3u0u1u2, (15)

g2 = 3

4
u3

2 + 3u2
0u2 + 3

2
u2

1u2 + 3

2
u0u

2
1.

When applying averaging, we will consider the full system; in our numerical analysis,
we will consider the cases of 3,10, and 20 modes. We note that the normal mode
solutions do not satisfy system (14).

If the sequence of eigenvalues is nonresonant, for initial values that are ε-indepen-
dent and for ε small enough, all solutions will decay to zero; see Rand et al. (1995).
The explicit calculation is included in the next subsection.

In general, one can distinguish the following resonance cases:

• Wave speed and dispersion parameter c and ω0 are O(1) quantities with respect
to ε. In this case, it is easy to see from the eigenvalue equation (13) that three
modes cannot be in resonance, but two modes can be in 2 : 1- or 3 : 1-resonance.
However, because of symmetry, the corresponding normal forms are degenerate;
the analysis runs as in Tuwankotta and Verhulst (2000) where this phenomenon is
analyzed extensively.

• The wave speed c is O(ε). In this case we have, assuming that ω0 is an O(1)

quantity, for a finite number of modes the 1 : 1 : 1 : · · · -resonance. This number
depends on ε.

• The dispersion is small: ω0 = O(ε). In this case, the system is fully resonant. This
problem is unsolved; see, for instance, the discussion in Verhulst (2005), Chap. 13.

3.2 The Case of One Floquet Resonance

A nontrivial case arises if one of the eigenvalues is close to 1/2, the first Floquet
resonance, and there are no other accidental resonances. Suppose that ω2

m = 0.25 +
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εd , m �= 0 (as in Rand et al. 1995). Using averaging-normalization in amplitude-
phase variables

un = rn cos(ωnt + ψn), u̇n = −rnωn sin(ωnt + ψn), n = 0,1,2, . . . , (16)

we find after averaging, with some abuse of notation using the same rn,ψn for the
variables,

ṙn = −ε
β

2
rn + O

(
ε2), n �= m,

ψ̇0 = −ε
α

ω0

3

8
r2

0 + O
(
ε2), ψ̇n = −ε

α

ωn

9

32
r2
n + O

(
ε2), n �= 0,m,

ṙm = 1

2
εrm(−β + γ sin 2ψm) + O

(
ε2),

ψ̇m = ε

(
d + γ

2
cos 2ψm − α

ωm

9

32
r2
m

)
+ O

(
ε2) (m �= 0).

The solution decays to the trivial solution if β > |γ |. Suppose now that β/|γ | < 1
with two solutions for ψm from

sin 2ψm = β

γ
.

Assume m �= 0. Using the two solutions for ψm, the equation

d + γ

2
cos 2ψm − α

ωm

9

32
r2
m = 0, m �= 0,

produces 0,1, or 2 solutions for rm, corresponding (in the case of 1 or 2 solutions)
with periodic solutions of the equation for rm in system (14). The case m = 0 runs in
the same way.

In the case of one or two solutions, an elementary eigenvalue calculation yields:
αγ cos 2ψm > 0 produces stability, αγ cos 2ψm < 0 produces instability. All the other
modes have eigenvalue −εβ/2 at rn = 0.

We conclude that the modes with n �= m decay to zero while the flow in the cor-
responding Lyapunov manifolds tends to parallel flow. This is the situation described
in Sect. 2.5: the resonant normal mode m produces a two-dimensional, stable Lya-
punov manifold in an ε-neighborhood of the corresponding linear normal mode. The
stationary solutions correspond with solutions dominated by harmonic functions.

Note that the approximation theory summarized in Sect. 2.2 produces o(1) ap-
proximations of the rn,ψn variables for all time when omitting the O(ε2) terms in
the equations. The Lyapunov manifolds are almost-invariant as discussed in Sect. 2.5.

After performing averaging, a large number of numerical simulations were given
in Rand et al. (1995) for system (14). In many cases, the numerics confirms the
asymptotic analysis but not always. An interesting case arises when they choose
α = γ = 1, β = 1/2, ε = 0.1, d = 0.3, indicated in Rand et al. (1995) as “point D.”
From their simulations, they conclude that perturbation theory fails here and this is a
reason to have a closer look at this case.
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3.3 The Combined 1 : 2- and 1 : 1 : 1-Resonance

Using the parameters of point D and assuming that no other resonance is active, we
find one nontrivial critical point in the Lyapunov manifold (normal mode) with m = 1
for 2ψm = π/6, a stable focus. Note that if we choose d >

√
3/4 = 0.43 . . . , we

have two nontrivial critical points, for 2ψm = π/6,5π/6, a stable focus and a saddle.
In this case unbounded solutions exist, or formulated more precisely, solutions that
leave the domain of validity of the normal form equations. All the other modes should
decay. However, this is based on the assumption of having the first Floquet resonance
as the only one. Using the parameters of point D, we find successively

ω0 = 0.44 + O(ε), ω1 = 0.50 + O(ε),

ω2 = 0.66 + O(ε), ω3 = 0.85 + O(ε), etc.

As in this calculation ε = 0.1, it seems natural to consider this case as a near 1:1:1-
resonance. Also, the observation that the ratio ω0 : ω3 points at the presence of an
additional 1 : 2-resonance seems natural, but for the cubic terms of (12) this resonance
is degenerate, i.e., normalization shifts the corresponding terms to much higher order.

We have averaged the system truncated to three modes (labeled 0,1, and 2) to first
and second order. The result is listed in the Appendix. We then performed numerical
bifurcation analysis, using MATCONT (Dhooge et al. 2008), to see how various modes
interact. In the averaged system, nontrivial equilibria correspond to periodic solutions
in the original system and limit cycles correspond to 2-tori, a Hopf bifurcation of a
limit cycle in the averaged system corresponds with a Neimark–Sacker bifurcation
in the original system yielding generically a 3-torus. For the bifurcation terminology,
we refer to Kuznetsov (2004).

We note that we are interested only in the way the trivial solution becomes unsta-
ble, mode solutions appear and interact, but not beyond as this is not captured by the
normal form equations. Therefore, in the numerical bifurcation diagram of the aver-
aged equations, we show only those bifurcations which occur first when we start with
small μ and increase this parameter (we replace ε by εμ, put ε = 0.1 and vary μ).

3.3.1 First-Order Averaging

From the analysis of the case of one Floquet resonance in Sect. 3.2, it follows that for
μ small enough and suitable d , we expect a stable mode 1 periodic solution. Indeed,
for |d| < 0.43 . . . the trivial solution is unstable and there are two vertical bifurca-
tion curves; see Fig. 1, where the origin loses/gains stability upon variation of the
parameter d in a pitchfork bifurcation. There are several pitchfork bifurcation curves
corresponding to the different modes. At a point where two pitchfork curves inter-
sect, a curve of branch points emanates along which two modes exchange stability.
So, below the intersection with PFu

2 , a stable mode 1 exists to the right of PFs
1. Above

the intersection, it exists but is unstable between PFs
1 and BP1(1) and is stable to the

right of BP1(1).
This solution remains stable except for a region bounded by curve H where this

mode solution loses and gains stability in a supercritical Hopf bifurcation when para-
meters are varied from low to higher d . We note that when restricted to the manifold
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Fig. 1 Numerical bifurcation diagram based on first-order averaging of system (13) with the assumption
of near 1 : 1 : 1-resonance leading to the averaged system (19). Horizontally, we have the detuning d ,
vertically the parameter μ. Labels denote PFu,s

i
= Pitchfork (full lines); i = 0,1,2 denotes the mode in-

volved, s or u indicates the (in-)stability of the bifurcating critical point. BPi = Branch Point (dot-dashed);
i = 0,1,2 denotes the mode involved. H = Hopf bifurcation (dot-dashed). The shaded region is unphys-
ical, i.e., εμd < −0.06. The critical point in mode 1 loses stability through the Hopf bifurcation of the
averaged equation corresponding to a periodic solution in the Lyapunov manifold of mode 1 in the original
system

u0 = u̇0 = u2 = u̇2 = 0, the motion of mode 1 is still stable. In this region, the slight-
est nonzero perturbation will excite the two other modes and will, in the original
vector field, produce dynamics on an invariant torus. Remarkably, the point D is just
outside this region. Therefore, first order averaging predicts a stable mode 1 solution
here, in contradiction with the numerical simulation result in Rand et al. (1995). We
stop the discussion of the system obtained by first order averaging by mentioning that
there is always a stable mode 2 solution to the right of PFs

2. Mode 0 exists above PFs
0

and is stable between BP0(1) and BP0(2) and between BP0(3) and BP0(4). First-order
averaging is generally valid only for ε � 1, in the case of our choice of parameters
for μ < 0.4.

3.3.2 Second-Order Averaging

To check the claim formulated in Rand et al. (1995) that perturbation theory has
broken down, we use second-order averaging to see whether higher-order terms will
change the result qualitatively. This is probable as the 1 : 1 : 1-resonance acts pri-
marily on the cubic terms at second-order normalization. The resulting equations can
be found in the Appendix and the results of the bifurcation analysis are shown in
Fig. 2. Some bifurcation curves are altered in a negligible way, primarily those where
the trivial solution loses stability and mode solutions appear. For instance, the two
vertical pitchfork curves PFu

1 and PFs
1 corresponding to the principal resonance are

now slightly bent and the horizontal curve PF0 is lowered by a small amount. Not
so, however, for the stability of the mode 1 solution as the Hopf curve in the higher
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Fig. 2 Numerical bifurcation diagram based on second-order averaging of system (13) with the assump-
tion of near 1 : 1 : 1-resonance leading to the averaged system (18). Horizontally, we have the detuning
d , vertically the parameter μ. Labels are analogous as in Fig. 1, except for GH = Generalized Hopf point,
LPC = Limit Point of Cycles (dotted), NS = Neimark–Sacker of cycles (dotted) and R1 = Resonance 1 : 1
point. The curve indicated with H represents the Hopf bifurcation of the critical point of the averaged
equation and so to the Neimark–Sacker bifurcation of the corresponding periodic solution in the Lyapunov
manifold of mode 1

approximation has altered drastically. Moreover, the region of stability of the mode 1
solution originating from the Floquet resonance, is not only delimited by the curve
BP1(1) already present for first-order averaging, but also by BP1(2). Another aspect is
that here the curve BP0(1) is connected to BP0(3), and BP0(2) to BP0(4).

If we now consider d > −0.43 fixed and increase μ, then there are two mech-
anisms along which the mode 1 solution becomes unstable; We may encounter a
branch point or a supercritical Hopf point. The latter occurs for d > 0.17 and μ ≈ 0.5.
Increasing μ, the Lyapunov manifold for mode n = m = 1 bifurcates upon crossing
the lower arc, thus producing a stable periodic solution where the three modes inter-
act. As for the system obtained by first order averaging, the critical point of mode
1 remains stable when restricted to the manifold u0 = u̇0 = u2 = u̇2 = 0. When we
further increase μ, this periodic orbit disappears when it has collided with an un-
stable periodic motion. This scenario follows from the existence of the generalized
Hopf point, where the Hopf bifurcation scenario changes from super to subcritical.
Indeed, Fig. 2 shows the fold of cycles-curve LPC and also another way how the
limit cycle may become unstable, i.e., through a supercritical Neimark–Sacker bifur-
cation. In the original truncated ystem, this corresponds generically to motion on an
invariant three-torus. Finally, the presence of the R1-point indicates that this 3-torus
will be destructed by touching a homoclinic connection or in a scenario involving
periodicity.
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Fig. 3 Numerical bifurcation diagram for the first three modes. PDu,s
i

= period-doubling bifurcation of
the origin; i = 0,1,2 denotes the mode involved in the period-doubling and s or u denotes whether the
period-2 solution is stable or not. NS = Neimark–Sacker bifurcation, BPi = Branch Point; i = 0,1 de-
notes the mode involved. CH = Chenciner point. The point D from Rand et al. (1995) is located within the
Neimark–Sacker curve (see the main text). On the lower arc the Neimark–Sacker bifurcation is supercriti-
cal, while the upper-arc is subcritical and the square (CH) denotes the transition, a Chenciner bifurcation.
The shaded area corresponds to c2 < 0

3.3.3 Time-T Map with 3 Modes

To check whether it is sufficient to consider the second order averaging result, we
compute the bifurcation diagram of system (14) truncated to the first three modes
using the time-T map, with T the period of the forcing. Recall that the frequency of
the forcing is twice the internal frequency. This gives a map of which we study the
stability of fixed points, using CONTENT (Kuznetsov and Levitin 1995–2001), and
nontrivial fixed points corresponding to periodic orbits in the truncated system. For
reasons of comparison, we have chosen

c2 = 0.06 + εμd, ω2
0 = 0.19, ω2

1 = 0.25 + εμd, ω2
2 = 0.43 + 4εμd.

(17)
The stability boundaries of the trivial solution are now given by several period-

doublings PD instead of pitchfork PF curves. The BP curves of Figs. 1 and 2 related
to stability exchanges between mode solutions remain branch points. And finally, the
Hopf curve turns into a Neimark–Sacker bifurcation and the codimension 2 general-
ized Hopf bifurcation into a Chenciner bifurcation. When comparing Figs. 2 and 3,
the shape and place of the bifurcation curves is similar except for the curve BP1(2)

which is closer to the NS curve for the time-T map than for the second order averaged
system. The right analog of PFu

2 does not appear in the time-T map.
Note that algorithms to compute the analogs of the LPC and NS curves of Fig. 2

are unavailable for the time-T map. Instead simulations together with Lyapunov ex-
ponents can be used as an indication of the dynamics; see Fig. 4 and Table 1. We
focus on the multifrequency scenario. We take d = 1 and for μ = 0.4 we find a fixed
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Fig. 4 Simulations of the second iterate of time-T map for 3 modes projected onto (y01 , y02 ), (y11 , y12 )

and (y21 , y22 ) planes. a μ = 0.52 a torus, b μ = 0.5473 a doubled torus, c μ = 0.551025 two 3-tori,
d μ = 0.56 chaos in a small window until μ = 0.569

point of the second iterate, i.e., a periodic orbit. Increasing μ, we get a motion on
a 2-torus as in Fig. 4a. After a further increase the 2-torus doubles near μ ≈ 0.5428
and undoubles at μ ≈ 0.5477; see Fig. 4b. Then the 2-torus bifurcates into a stable
3-torus, but it is destroyed quickly in an interaction with another nearby 3-torus. Fi-
nally, for a small window of μ, we have chaos, until everything collapses to the trivial
solution near μ ≈ 0.569. A computation of all Lyapunov exponents; see Table 1, is
in agreement with the simulations. Note that we show results for the time-T map,
but due to the periodic forcing any nontrivial motion inherits an extra zero exponent
in the full system. Note that the doubling is not predicted by averaging and that this
occurs for values of μ below the NS-curve in Fig. 2.
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Table 1 Lyapunov exponents for attractors shown in Fig. 4

μ λ1 λ2 λ3 λ4 λ5 λ6

0.52 −0.000008 −0.012448 −0.012472 −0.012527 −0.012546 −0.025000

0.5473 0.000009 −0.000692 −0.009205 −0.018167 −0.026665 −0.027374

0.551025 0.000004 0.000002 −0.000018 −0.027534 −0.027552 −0.027555

0.000009 0.000007 −0.000038 −0.027515 −0.027555 −0.027561

0.56 0.003102 0.000001 −0.004324 −0.023680 −0.027994 −0.031105

Fig. 5 Partial bifurcation
diagram for truncation to 10
modes. For μ small enough, the
three mode picture persists in
the system truncated to 10
modes. The labels are analogous
to those of the Fig. 3. Apart
from minor dissimilarities there
is one extra Neimark–Sacker
bifurcation curve for μ ≈ 2.4 of
which the lower arc is
supercritical and the upper
subcritical, and another
Chenciner bifurcation in
between

3.3.4 Time-T Map with 10 Modes

It is now clear that the one mode picture does not persist if μ 
 0.5. However, it
is still of interest whether the three mode picture persists and whether the observed
behavior can be attributed to the 1 : 1 : 1 resonance. As a first experiment, we con-
sider the first 10 modes and compute the bifurcation curves involving one of the first 3
modes; see Fig. 5. We restricted ourselves to μ < 3 as very large multipliers appeared,
making it difficult to extend some computations. Remarkably enough, qualitatively
the bifurcation diagram persists for μ < 2. We present the principal bifurcation di-
agram, although the higher modes bifurcate as well, but play a minor role. We note
that mode 1 now also excites all higher order odd modes, but the amplitude in these
modes is very small compared to that of mode 1 (<10−5 for modes 5–11 and <10−12

for modes from 13 on). This is in agreement with the estimates in Sect. 2.5.
For higher values of μ, there is an additional Neimark–Sacker bifurcation. Below

the curve BP1(2), this multi-frequency motion occurs on a stable submanifold con-
sisting of all the odd modes, i.e., a small perturbation in an even mode decays. Above
BP1(2), perturbations quickly distort the multi-frequency oscillation. The end points
of this Neimark–Sacker curve are degenerate resonance 1 : 1 points, but we have
omitted a further analysis of this parameter region as the mode 1 solution is unstable
there. We also considered 20 modes with excellent agreement with the results with
10 modes and no extra instabilities for mode 1.
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4 Discussion

1. Our explanation for the observations in Rand et al. (1995) is, that the small pa-
rameter ε and the initial conditions were chosen too large and that the influence
of near-resonance was neglected. The latter also explains how the dominant three
mode interaction arises from the near 1 : 1 : 1-resonance. Note that perturbation
theory has been proved to be valid for ε near zero, but the size of the domain
of validity is critically dependent on the type of problem. First-order averaging,
assuming one Floquet resonance, shows no interaction between the modes, and
thus one could not predict the interaction with higher modes for larger values of ε.
Second-order averaging shows strong interaction between the first three modes.

2. From the point of view of numerical bifurcation theory, it is interesting that the
combination with averaging-normalization is fruitful. The reason is that numer-
ical bifurcation analysis starts with critical points but that critical points of the
averaged vector field already correspond with periodic solutions. So, a Hopf bi-
furcation produces a periodic solution, but in the corresponding map obtained by
averaging an invariant closed curve, a 2-torus; a Neimark–Sacker bifurcation of
the periodic solution corresponds with a 3-torus, etc.

3. We found chaos in the truncated system with three modes in a small window of
size 0.001 near μ = 0.56. Simulations indicate that with more than three modes,
chaos occurs for slightly larger values of μ and in a larger parameter window.
Predictably, second-order averaging is not precise enough to describe the phe-
nomenon in this case. Note that in general, averaging-normalization can describe
chaos if its measure is large enough.

4. The manifold where the fast dynamics takes place is almost-invariant. We conjec-
ture that the reason that very small fluctuations are possible for the higher-order
modes arises from the presence of higher-order resonance manifolds containing
stable and unstable periodic solutions with corresponding intersecting stable and
unstable manifolds. These resonance manifolds are of very small size and the
analysis to describe them is subtle. For an analysis of such resonance manifolds
in two degrees of freedom, see Tuwankotta and Verhulst (2000). To prove the
correctness of the conjecture, more research is needed.

5. The parametrically excited wave equation is also of practical interest; applications
are cited in Rand et al. (1995). A number of the phenomena we found, periodic
and quasi-periodic solutions, are stable and in this way open for experimental
investigation.

Acknowledgements Peter Bates and Stephan van Gils made remarks on an early draft of the paper.
Remarks and questions by two anonymous referees have resulted in substantial changes.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix

Here, we provide details of the first- and second-order averaging of system (14) ex-
panded into 3 modes.
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First of all, in order to consider the 3 mode system as a detuned 1 : 1 : 1 resonance,
we introduce the following frequencies

Ω1 = 0.25 − εc1, Ω2 = 0.25 + εμd, Ω3 = 0.25 + 3εc1 + 4εμd.

If we fix ε = 0.1, c1 = 0.6, we recover the choice used in Rand et al. (1995), but note
that this induces a scaling such that μ = O(1) and c1 is similar to but not the same as
c2 in (17). We will consider μ and d as free parameters.

Second, we rewrite (14) as a first-order system and use the standard transformation

un = yn1 cosωnt + yn2

ωn

sinωnt,

u̇n = −ωnyn1 sinωnt + yn2 cosωnt, n = 0,1,2.

Solving for
dyn1
dt

,
dyn2
dt

, n = 0,1,2, i.e., the variation of constants, we obtain a system

ẏ = εf (t, y).

We calculate the average

f 0 = lim
T →∞

1

T

∫ T

0
f (t, y) dt = 1

2π

∫ 2π

0
f (t, y) dt.

The second equality follows from the periodicity of f . For the second-order approx-
imation, we compute the following integral

u1(t, y) =
∫ t

0

(
f (t, y) − f 0)dt − 1

2π

∫ 2π

0

(∫ t

0
f (t, y) − f 0

)
dt,

where the second term ensures that the average of u1 vanishes. Then the higher-order
approximation by second order averaging is obtained from the average of

f 10 = Dyf (t, y)u1 − Dyu
1f 0,

where the second term vanishes as the average of u1 is zero. The vector field that we
now consider is

ẏ = εf 0(y) + ε2f 10(y). (18)

Note that the validity of this approximation has only been shown for finite-
dimensional systems with periodic, not almost-periodic, perturbations.

Below we list the result of averaging, i.e., f 0 and f 10 = (f 10
1 (y), f 10

2 (y), . . .)T,
for completeness.
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f 0(y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−2c1 − μ)y02 − 1
4μy01 − 3

8μ(24y02y
2
12

+ 24y02y
2
22

+ 12y2
12

y22 + 4y01y11y12 + 2y02y
2
11

+ 4y2
01

y02

+ y2
11

y22 + 2y02y
2
21

+ 2y11y12y21 + 4y01y21y22 + 16y3
02

),

1
4 (−μ + 2c1)y01 − 1

4μy02 + 9
16μ( 2

3y3
01

+ (y2
11

+ 8
3y2

02

+ 4
3y2

12
+ 4

3y2
22

+ y2
21

)y01 + 1
2y2

11
y21

+ 4
3y12(y22 + 2y02)y11 + 8

3 ( 1
4y2

12
+ y22y02)y21),

μ((2d − 4)y12 − 1
4y11) − 9

8 (4y3
12

+ (16y2
02

+ 4
3y2

01

+ 4
3y21y01 + y2

11
+ 8y2

22
+ 2

3y2
21

+ 16y22y02)y12

+ 4
3y11((y21 + 2y01)y02 + y22(y21 + y01)))μ,

− 1
4μ(y12 + 2dy11 + y11) + 9

32 (y3
11

+ ( 16
3 y22y02 + 2y2

21

+ 4y2
12

+ 8
3y2

22
+ 4y21y01 + 16

3 y2
02

+ 4y2
01

)y11

+ 16
3 y12((y21 + 2y01)y02 + y22(y21 + y01)))μ,

((−1 + 8d)μ + 6c1)y22 − 1
4μy21 − 3

4μ(6y3
22

+ (12y2
12

+ 2y2
01

+ y2
11

+ 24y2
02

+ 3
2y2

21
)y22 + (4y21y01 + 12y2

12
+ y2

11
)y02

+ 2y11y12(y21 + y01)),

1
4 ((−8d − 1)μ − 6c1)y21 − 1

4μy22 + 9
16 ( 1

2y3
21

+ (2y2
01

+ 2y2
22

+ y2
11

+ 8
3y2

02
+ 4

3y2
12

)y21 + y01y
2
11

+ 8
3y12(y02 + y22)y11

+ 16
3 y01(

1
4y2

12
+ y22y02))μ.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)
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f 10
1 (y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
256 (−13056y5

02
+ (−3264y2

21
− 2560 − 6528y2

01

− 65280y2
22

− 3264y2
11

− 65280y2
12

)y3
02

+ (−97920y2
12

y22

− 9792y12(y21 + 2y01)y11 − 4896y22(4y21y01 + y2
11

))y2
02

+ (−24480y4
12

+ (−7344y2
11

− 78336y2
22

− 9792y2
01

− 9792y21y01 − 3840 + 4608d − 4608y2
21

)y2
12

− 14976( 17
13y01 + y21)y22y12y11 − 19584y4

22

+ (18432d − 6048y2
21

− 4608y2
11

− 9792y2
01

− 3840)y2
22

− 306y4
11

+ (−2448y2
01

− 2448y21y01 − 1152y2
21

+ 384d)y2
11

− 288y4
21

+ (1536d − 2448y2
01

)y2
21

− 96

− 816y4
01

)y02 − 14688y4
12

y22 − 3024( 34
21y01 + y21)y11y

3
12

+ 6912(− 119
48 y2

22
− 5

18 − 13
12y21y01 − 17

24y2
01

− 25
64y2

21

+ d − 5
8y2

11
)y22y

2
12

+ 1152y11((− 13
2 y01 − 69

16y21)y
2
22

+ (− 17
16y01 − 21

32y21)y
2
11

− 25
64y3

21
− 13

8 y01y
2
21

+ (d − 17
8 y2

01
)y21 + 2

3 (d − 17
8 y2

01
)y01)y12 + (−900y2
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− 3744y21y01)y
3
22

+ (−162y4
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+ (−1224y2
01

− 1872y21y01

+ 576d − 621y2
21

)y2
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+ 3072y21(− 39
128y2

21
− 17

32y2
01

+ d)y01)y22 − 64y01)μ
2 + 3

4 (−32y3
02

+ (48y2
22

− 2y2
11

− 8y2
01

− 8
3 + 4y2

21
− 24y2

12
)y02 + 12y2

12
y22 + 2y11(−2y01

+ y21)y12 + y22(y
2
11

+ 8y21y01))c1μ − 2c2
1y02 .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)
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f 10
2 (y) =

⎛
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(21)
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f 10
3 (y) =

⎛
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