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Longitudinal ultrasound-based AI model
predicts axillary lymph node response to
neoadjuvant chemotherapy in breast cancer:
a multicenter study
Ying Fu1, Yu-Tao Lei2, Yu-Hong Huang3, Fang Mei4, Song Wang5, Kun Yan5, Yi-Hua Wang6, Yi-Han Ma1 and
Li-Gang Cui1*

Abstract
Objectives Developing a deep learning radiomics model from longitudinal breast ultrasound and sonographer’s axillary
ultrasound diagnosis for predicting axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) in breast cancer.

Methods Breast cancer patients undergoing NAC followed by surgery were recruited from three centers between
November 2016 and December 2022. We collected ultrasound images for extracting tumor-derived radiomics and deep
learning features, selecting quantitative features through various methods. Two machine learning models based on
random forest were developed using pre-NAC and post-NAC features. A support vector machine integrated these data
into a fusion model, evaluated via the area under the curve (AUC), decision curve analysis, and calibration curves. We
compared the fusion model’s performance against sonographer’s diagnosis from pre-NAC and post-NAC axillary
ultrasonography, referencing histological outcomes from sentinel lymph node biopsy or axillary lymph node dissection.

Results In the validation cohort, the fusionmodel outperformed both pre-NAC (AUC: 0.899 vs. 0.786, p < 0.001) and post-
NAC models (AUC: 0.899 vs. 0.853, p= 0.014), as well as the sonographer’s diagnosis of ALN status on pre-NAC and post-
NAC axillary ultrasonography (AUC: 0.899 vs. 0.719, p < 0.001). Decision curve analysis revealed patient benefits from the
fusion model across threshold probabilities from 0.02 to 0.98. The model also enhanced sonographer’s diagnostic ability,
increasing accuracy from 71.9% to 79.2%.

Conclusion The deep learning radiomics model accurately predicted the ALN response to NAC in breast cancer.
Furthermore, the model will assist sonographers to improve their diagnostic ability on ALN status before surgery.

Clinical relevance statement Our AI model based on pre- and post-neoadjuvant chemotherapy ultrasound can
accurately predict axillary lymph node metastasis and assist sonographer’s axillary diagnosis.

Key Points
● Axillary lymph node metastasis status affects the choice of surgical treatment, and currently relies on subjective ultrasound.
● Our AI model outperformed sonographer’s visual diagnosis on axillary ultrasound.
● Our deep learning radiomics model can improve sonographers’ diagnosis and might assist in surgical decision-making.
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Introduction
Neoadjuvant chemotherapy (NAC) is increasingly used
for breast cancer with clinically positive axillary lymph
nodes (ALN) [1, 2], necessitating accurate ALN response
assessment for optimal post-NAC axillary surgical strat-
egy [3]. While axillary lymph node dissection (ALND)
remains the standard for clinical node-positive (cN+)
breast cancer, NAC effectively eliminates ALN metastasis
in 40–75% of cases [4]. Accurately predicting ALN
response to NAC can markedly reduce unnecessary axil-
lary surgeries and their associated risks like lymph node
edema, and infection. Some patients may undergo axillary
surgery despite without ALN metastasis [5].
Mammography, magnetic resonance imaging (MRI),

and ultrasonography (US) are widely used to stage and
monitor breast cancer during NAC treatment [6].
Radiomics is effective in cancer diagnosis, treatment
evaluation, ALN metastasis detection, phenotype char-
acterization, and prognosis prediction [7–12]. Deep
learning offers automated, enhanced imaging feature
analysis compared to traditional radiomics. In addition,
transfer learning is explored for feature extraction in small
medical datasets. Recent evidence suggests that deep

learning radiomics (DLR) from preoperative US can pre-
dict early-stage breast cancer’s ALN status with high
sensitivity and negative predictive value [13]. A study also
found that a longitudinal MRI-based DLR model could
predict the pathological complete response of breast
cancer to NAC accurately, indicating that longitudinal
medical images could capture more quantitative infor-
mation during NAC [14]. Based on these findings, we
hypothesize that a DLR model using pre-NAC and post-
NAC US images can more effectively predict ALN
response.
Few studies have trained and validated a multimodal

DLR model that uses both pre-NAC and post-NAC
ultrasound images to predict ALN response in breast
cancer. Prior research has not compared artificial intel-
ligence (AI) models with sonographers’ visual diagnosis
on pre-NAC and post-NAC axillary ultrasound images.
Our study focuses on comparing the DLR model’s pre-
dictive performance against sonographers, validating the
model with independent external datasets, and assessing
the AI model’s potential to improve sonographers’
diagnostic ability in axillary diagnosis on ultrasound
images.

Fig. 1 The design of the workflow for this study. The construction of the deep learning radiomics model involves the following steps: Acquisition of
original images, manual segmentation, feature extraction, feature selection, the model construction. A sonographers made the first decision of axillary
lymph node status using the pre-NAC and post-NAC axillary ultrasound. After a month interval, a second decision was provided for the same images with
the assistance of an artificial intelligence model. The pathological results of axillary lymph nodes were regarded as the golden standard. NAC,
neoadjuvant chemotherapy; US, ultrasound; AI, artificial intelligence; ROI, region of interest; ALN, axillary lymph node; LASSO, least absolute shrinkage and
selection operator
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Materials and methods
Patients
The study received ethical approval from the Ethics
Committees of the Peking University Third Hospital,
Guangdong Provincial People’s Hospital, and Peking
University Cancer Hospital. Due to the retrospective
nature of the study, patient informed consent was waived.
From November 2016 to December 2022, 669 patients
from three hospitals, who underwent NAC followed by
surgery, were enrolled. The inclusion criteria were: (i) cN
+ breast cancer treated with standard NAC; (ii) complete
pre-NAC and post-NAC ultrasound scans; (iii) ALN sta-
ging via sentinel lymph node biopsy (SLNB) or ALND;
and (iv) complete baseline data. The exclusion criteria
were: (i) prior breast cancer treatment (n= 43), (ii) other
malignancies or distant metastasis (n= 28), (iii) bilateral
breast cancer (n= 18), (iv) inadequate or poor-quality US
images (n= 39), and (v) missing clinicopathological data
(n= 44). Patients from hospitals I and II comprised the
training cohort (n= 216), whereas patients from hospitals
III comprised the independent validation cohort
(n= 281). Figure 1 shows the study workflow.

NAC regimen and histological assessment
All patients underwent 6 or 8 cycles of NAC, using either
taxane alone or in combination with anthracycline, with
human epidermal growth factor receptor-2 (HER2) positive
patients also receiving anti-HER2 therapy. Surgery followed
2–3 weeks after NAC. ALN response to NAC was assessed
histologically via SLNB or ALND, defining ALNmetastasis as
invasive tumor presence in any lymph node. Immunohis-
tochemistry (IHC) determined HER2, hormone receptor
(HR), and Ki-67 status: estrogen receptor (ER) and proges-
terone receptor (PR) were positive if staining cells > 1%, while
Ki-67 expression was defined as high or low with a 20% cutoff
[15]. HER2 status was based on IHC scores (0 or 1+ as
negative, 3+ as positive) or fluorescence in situ hybridization
for IHC 2+ cases [16]. Baseline data, including age, menstrual
status, clinical T and N stages, were recorded. Breast cancer
was classified intoHR+/HER2-, HER2+, and TNBC based on
molecular receptor expression.

Ultrasound examination
All patients underwent pre- and post-NAC ultrasound
examinations conducted two weeks before and after NAC
treatment. Ultrasound images were obtained using Esaote
(MyLab Twice), Siemens (S3000), or Philips (EPIQ5)
ultrasound scanners equipped with 7- to 15-MHz linear
transducer (see Supporting Material-II, Ultrasound
Examinations). Two sonographers performed ultrasound
examinations at hospital I, one at hospital II, and two at
hospitals III. Each sonographer had more than eight years
of experience in breast ultrasound imaging. Before NAC,

patients underwent breast ultrasound scans and core-
needle biopsy, selecting the ultrasound images containing
the largest diameter of mass for further analysis. A total of
2585 ultrasound images from 497 patients were collected
and analyzed, encompassing both pre-NAC and post-
NAC images.

Tumor segmentation and image preprocessing
Pre-NAC and post-NAC US images were imported into
3D Slicer software (version 4.10.1) for manual tumor
delineation. Two experienced sonographers (6 and 8 years
in breast cancer ultrasound), blinded to histological
results, segmented the tumor regions of interest (ROI),
encompassing the entire tumor but excluding blood ves-
sels, adipose tissue, and normal breast tissue. Each ultra-
sound image had its tumor ROI delineated. For radiomics
process, US images were preprocessed to a uniform voxel
size of 1 × 1mm. For the deep learning process, US ima-
ges covering the entire tumor area were resized to
448 × 448 pixels and grayscale normalized to 0–1000 for
uniform feature extraction.

Feature extraction and selection
Feature extraction and selection were conducted on pre-
NAC and post-NAC ultrasound images using pyradiomics
software (version 3.3.0), extracting 2446 radiomics fea-
tures (1223 from each pre-NAC and post-NAC; see
Supporting Material-I. Feature Extraction). These inclu-
ded shape-based, first-order statistical, texture-based, and
wavelet-derived features. Combat harmonization mini-
mized bias from different scanners across hospitals. For
deep learning, all resized images were input into the deep
convolutional neural network VGG16, which has been
pretrained on a large-scale ImageNet database (https://
www.image-net.org/). Then we extracted transfer features
from the fully connected layers (see Supporting Material-
III. Basic Principles of Deep Learning and Neural Net-
work). This yielded 1223 pre-NAC and 1223 post-NAC
radiomic features, and 2048 deep learning features each
for pre-NAC and post-NAC.
Feature values were standardized using z-score normal-

ization. In the training cohort, feature selection involved the
Mann–Whitney U test to identify features significantly asso-
ciated with ALN response to NAC (p < 0.05). The Least
Absolute Shrinkage and Selection Operator (LASSO) was
used to eliminate features with zero coefficients. To reduce
feature correlation, Spearman analysis removed one feature
from highly correlated pairs (correlation coefficient > 0.8),
based on their diagnostic performance.

Model construction and Integration
To optimize the DLR model for ALN response prediction
after NAC, we adjusted their hyperparameters. This
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included hyperparameter tuning to enhance model per-
formance and early stopping to prevent model overfitting,
ensuring model generalizability. We used 30% of the
training cohort to assess the VGG16 model’s perfor-
mance, measured by the area under the curve (AUC), and
stopped training if the performance did not increase over
ten consecutive calculation cycles. To further refine the
model, significant conventional ultrasound features such
as tumor size, echo type, and blood flow signal, were
integrated into the fully connected layer, increasing neu-
ron count. Two predictive models (pre-NAC and post-
NAC) were built using a random forest algorithm, gen-
erating two DLR signatures. A support vector machine
(SVM) model then combined pre-NAC and post-NAC
radiomics and deep learning features. The integration of
these temporally distinct features enables a more com-
prehensive analysis, enhancing the machine learning

model’s predictive power. The SVM model was designed
to accurately predict the ALN metastasis in breast cancer
patients following NAC.

Comparison with sonographer and AI-assisted diagnosis
We evaluated model performance by comparing each
machine learning model’s AUC with sonographer’s diag-
nosis on axillary ultrasound and explored if the fusion
model enhanced sonographer’s diagnostic ability. Two
sonographers, with 6 and 8 years of experience, indepen-
dently assessed ALN status on pre-NAC and post-NAC
ultrasound images, blinded to pathological results. Based
on previous studies, the presence of any of the following
criteria indicates metastatic ALN on US: (i) loss of the fatty
hilum, (ii) round shape, or (iii) eccentric cortical thickening
(> 3mm) [17, 18]. After a month, the same sonographers
re-assessed the US images with AI model assistance,

Table 1 Clinicopathologic characteristics of patients in the ALN+ and ALN- groups

Characteristics Training cohort p value Validation cohort p value

ALN− (n= 105) ALN+ (n= 111) ALN− (n= 182) ALN+ (n= 99)

Age, mean ± sd 51.16 ± 11.06 51.88 ± 11.62 0.641 49.36 ± 9.93 47.99 ± 9.60 0.262

Menstrual status, n (%) 0.861 0.794

yes 47 (44.8%) 51 (45.9%) 82 (45.1%) 43 (43.4%)

no 58 (53.2%) 60 (54.1%) 100 (54.9%) 56 (56.6%)

Molecular subtype, n (%) < 0.001 < 0.001

TNBC 16 (15.2%) 16 (14.4%) 36 (19.8%) 19 (19.2%)

HR+/HER2− 33 (31.4%) 68 (61.3%) 41 (22.5%) 58 (58.6%)

HER2+ 56 (53.4%) 27 (24.3%) 105 (57.7%) 22 (22.2%)

HR receptor, n (%) 0.031 < 0.001

HR− 44 (41.9%) 31 (27.9%) 88 (48.4%) 26 (26.3%)

HR+ 61 (58.1%) 80 (72.1%) 94 (51.6%) 73 (73.7%)

HER2 receptor, n (%) < 0.001 < 0.001

HER2− 49 (46.7%) 84 (75.7%) 77 (42.3%) 77 (77.8%)

HER2+ 56 (53.3%) 27 (24.3%) 105 (57.7%) 22 (22.2%)

Tumor response, n (%) < 0.001 < 0.001

pCR 48 (45.7%) 18 (16.2%) 77 (42.3%) 11 (11.1%)

non-pCR 57 (54.3%) 93 (83.8%) 105 (57.7%) 88 (88.9%)

Clinical T stage, n (%) 0.058 0.056

cT1 21 (20.0%) 15 (13.5%) 23 (12.6%) 6 (6.1%)

cT2 70 (66.7%) 70 (63.1%) 117 (64.3%) 58 (58.6%)

cT3 9 (8.6%) 23 (20.7%) 20 (11.0%) 13 (13.1%)

cT4 5 (4.7%) 3 (2.7%) 22 (12.1%) 22 (22.2%)

Clinical N stage, n (%) < 0.001 0.002

cN1 88 (83.8%) 79 (71.2%) 147 (80.8%) 69 (69.7%)

cN2 13 (12.4%) 27 (24.3%) 25 (13.7%) 16 (16.2%)

cN3 4 (3.8%) 5 (4.5%) 10 (5.5%) 14 (14.1%)

Golden standard for the definition of a lymph node metastasis was histology following to SLNB or ALND after NAC
ALN+ Axially lymph node metastasis, ALN− Axially lymph node without metastasis, HER2+ human epidermal growth factor receptor-2, TNBC triple negative breast
cancer, HR hormone receptor, pCR pathological complete response, NAC neoadjuvant chemotherapy, SLNB sentinel lymph node biopsy, ALND axillary lymph node
dissection
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initially obtaining the AI prediction before making their
final diagnosis. We compared the sonographer’s initial
diagnosis with the AI-assisted diagnosis to determine
whether the AI model would serve as a useful tool for
enhancing the sonographer’s diagnostic ability.

Statistical analysis
Statistical analysis was conducted using SPSS software
(version 25.0). Group differences were assessed using the
student’s t-test or Mann-Whitney U-test for continuous
variables and the chi-square test or Fisher’s exact test for
categorical variables. The performances of the models were
evaluated using the AUC, and the DeLong test was used to
compare the performances of the different models. Deci-
sion curve analysis (DCA) to evaluate the clinical utility of
the models [19]. Model performance was assessed based on
accuracy (ACC), specificity (SPE), sensitivity (SEN), posi-
tive predictive value (PPV), and negative predictive value
(NPV), seeing Supporting Material-IV. Statistical Metrics.
Statistical significance was set at p < 0.05.

Results
Baseline characteristics of patients
In this study, 497 patients were included, with an average
age of 51.47 years. Of these patients, 210 were ALN+ and
287 were ALN- after NAC. The ALN+ rates were 51.39%
in the training cohort and 35.23% in the validation cohort.
Significant differences in molecular subtype, primary
tumor response and clinical N stage were observed
between ALN+ and ALN- groups (all the p < 0.05), while
other baseline characteristics showed no significant

variance in both training and validation cohorts. Table 1
details the baseline characteristics of the patients.

Feature selection and model construction
In the training cohort, 1362 radiomic features (463 pre-
NAC, 899 post-NAC) and 2908 deep learning features
(1357 pre-NAC, 1551 post-NAC) from ultrasound images
were significantly associated with ALN metastasis after
NAC (Mann–Whitney U test, p < 0.05). After LASSO
selection, seven pre-NAC and nine post-NAC features
were selected. The detailed LASSO selection mean-square
error change curve and coefficient change lines are shown
in Fig. S1. From highly correlated pairs (Spearman cor-
relation coefficient > 0.8), the feature with higher diag-
nostic performance was retained, resulting in six pre-
NAC and eight post-NAC features for model construction
(see Table 2). Two random forest models (pre-NAC and
post-NAC) were developed, with their output signatures
integrated into a SVM model.
Figure 2A, B show the ROC curves of the three machine

learning models, with the fusion model achieving the
highest AUCs of 0.949 in the training cohort and 0.899 in
the validation cohort. It outperformed both the pre-NAC
(AUC= 0.786, p < 0.05) and post-NAC (AUC= 0.853,
p < 0.05) models in the validation cohort. The decision
curve analysis demonstrated that the combined model
had satisfactory net clinical benefits in both the training
and validation cohorts (Fig. 2C, D). The calibration plots
also demonstrated excellent agreement between the
actual and predicted ALN status in both cohorts of the
fusion model (Fig. 2E, F).

Table 2 The details of selected radiomics and deep learning features for model construction, including ICC value and LASSO
coefficient of features

Original image Feature type Feature name ICC value LASSO coefficient

Pre-NAC image Rad_ori_firstorder Maximum 0.948 0.0212

Rad_ori_GLRLM LongRunLowGrayLevelEmphasis 0.904 −0.01085

Rad_wavalet_GLSZM GrayLevelVariance 0.913 −0.0224

Deep learning VGG16_98 0.907 0.00325

Deep learning VGG16_972 0.974 0.0208

Deep learning VGG16_1679 0.876 −0.00916

Post-NAC image Rad_ori_firstorder Entropy 0.961 −0.0367

Rad_wavalet_GLCM IDM 0.977 0.0211

Rad_wavalet_GLDM LowGrayLevelEmphasis 0.901 0.0127

Deep learning VGG16_230 0.913 0.00293

Deep learning VGG16_384 0.905 −0.0450

Deep learning VGG16_719 0.955 0.00751

Deep learning VGG16_1625 0.924 0.0422

Deep learning VGG16_1832 0.932 −0.0493

ICC intraclass correlation coefficient, LASSO least absolute shrinkage and selection operator, NAC neoadjuvant chemotherapy, Rad radiomics, GLRLM gray level run
length matrix, GLSZM gray level size zone matrix, GLCM gray level co-occurrence matrix, GLDM gray level dependence matrix
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Comparison of sonographer and radiomics model
Our study compared the sonographers’ first diagnosis on
axillary ultrasound with three machine-learning models

based on pre-NAC and post-NAC breast ultrasound fea-
tures. The models’ performance metrics, including AUC,
ACC, SEN, SPE, PPV, and NPV, are detailed in Table 3.

Fig. 2 Comparison of ROC curves, Decision curve analysis of the three models, and the calibration curves of the fusion model. ROC curves show the
performance of the fusion model, pre-NAC model, and post-NAC model for predicting ALN metastasis in the training (A) and validation cohorts (B).
Decision curve analysis (DCA) for three models was showed in the training (C) and validation cohorts (D), the y-axis indicates the net benefit; x-axis
indicates threshold probability. Calibration curves of the fusion model in the training (E) and validation (F) cohorts are presented. AUC, area under the
curve; FPR, false positive rate; TPR, true positive rate
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The fusion model outperformed the sonographer in the
training cohort with an accuracy of 88.89%, sensitivity of
84.68%, and specificity of 93.33%, and in the validation
cohort with an accuracy of 85.77%, sensitivity of 83.84%,
and NPV of 86.81%. Despite its wide clinical application,
axillary ultrasound showed the lowest AUCs (0.753 in
training cohort, 0.719 in validation cohort). The three AI
models (AUCs: 0.899, 0.786, and 0.853, respectively) sur-
passed the sonographer’s first diagnosis (AUC: 0.719) in the
validation cohort. The sonographer identified ALN+
patients with sensitivities of 63.06% (training cohort) and
51.52% (validation cohort), while AI models achieved
higher sensitivities (82.88–92.79% in training cohort,
73.73–83.84% in validation cohort). For identifying ALN-
patients, the sonographer’s specificity was comparable to
the AI models, with the pre-NAC model showing the
lowest specificity (70.48% in training cohort, 64.84% in
validation cohort).

AI assist in sonographer’s diagnosis on ALN status
With the assistance of the fusion AI model, the sonographer
performed a second reading of the US image. As seen in
Table 3, the sonographer’s diagnostic ability improved when
assisted by the AI model, most prominently in sensitivity,
which increased from 63.06% to 70.27% in the training cohort
and from 51.52% to 62.63% in the validation cohort. More-
over, the AUCs of the sonographer’s second diagnosis were
considerably greater than that of the initial diagnosis (p < 0.05
in both the training and validation cohorts), indicating that the
fusion AI model effectively improved the sonographer’s
diagnostic ability. Figure 3 illustrates the ROI delineation and
heatmap on the US images of two representative patients
(ALN+ and ALN−).

Discussion
ALN status is crucial for guiding surgical treatment in
clinical practice, as ALN metastasis typically indicates a

worse prognosis and a higher recurrence risk [6]. SLNB or
ALND is routinely performed to assess the axillary lymph
node status. In our study, 42.25% of the patients had no
ALN metastasis after NAC but underwent invasive axil-
lary surgery, leading to huge costs and unnecessary
complications. Previous studies have confirmed that MRI-
based radiomics features from primary tumors could
accurately predict the ALN status with an AUC of
0.790–0.862, but only focused on imaging-derived radio-
mics [15, 20–22]. A previous study showed the feasibility
of predicting the ALN status using a mammography-
based radiomics model with an AUC of 0.809 (95% CI,
0.794–0.833) [23]. Our study involved developing a mul-
timodality AI model using pre- and post-NAC US images,
allowing for a more comprehensive use of US images to
predict ALN status. The DeLong test revealed the fusion
model’s reliability in noninvasively identifying the ALN
status after NAC, sparing unnecessary surgery and
complications.
Axillary ultrasound is commonly used to evaluate the

ALN status during NAC in patients with breast cancer. In
our study, the fusion model demonstrated superior diag-
nostic performance, with an AUC of 0.899 in the valida-
tion cohort, significantly outperforming the sonographer’s
diagnosis on axillary US, with an AUC of 0.719. Alvarez
reported that axillary ultrasound’s sensitivity and specifi-
city for breast cancer ranged from 48.8% to 87.1% and
55.6% to 97.3%, respectively, consistent with our findings
[24]. However, axillary ultrasound diagnosis is usually
influenced by the operator experience, and difficulty in
detecting very small metastasis in the ALN region. Thus,
despite its widespread clinical use, a sonographer’s ultra-
sound diagnosis should not be the only imaging approach
for assessing ALN status after NAC. In addition, we found
that the sonographer’s diagnosis on the axillary US
showed high specificity for ALN diagnosis after NAC but
low sensitivity. Our results are consistent with previous

Table 3 The performance of different models and sonographer in training and validation cohorts

Cohort Approach AUC (95% CI) ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) Delong test (p)

Training (n= 216) Fusion model 0.949 (0.921, 0.977) 88.89 84.68 93.33 93.07 85.22 Reference

Pre-NAC model 0.849 (0.797, 0.902) 81.94 92.79 70.48 76.87 90.24 < 0.001

Post-NAC model 0.890 (0.845, 0.936) 84.72 82.88 86.67 86.79 82.73 0.091

Sonographer 0.753 (0.698, 0.809) 75.00 63.06 87.62 84.34 69.17 < 0.001

Sonographer + AI 0.813 (0.764, 0.863) 81.02 70.27 92.38 90.70 74.62 < 0.001

Validation (n= 281) Fusion model 0.899 (0.855, 0.943) 85.77 83.84 86.81 77.57 90.80 Reference

Pre-NAC model 0.786 (0.728, 0.844) 67.97 73.74 64.84 53.28 81.94 < 0.001

Post-NAC model 0.853 (0.806, 0.901) 80.07 80.81 79.67 68.38 88.41 0.014

Sonographer 0.719 (0.663, 0.774) 74.02 51.52 86.26 67.11 76.59 < 0.001

Sonographer + AI 0.792 (0.740, 0.844) 81.49 62.63 91.76 80.52 81.86 < 0.001

AUC area under the curve, ACC accuracy, SEN sensitivity, SPE specificity, PPV positive predictive value, NPV negative predictive value
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Fig. 3 This Figure illustrates pre- and post-neoadjuvant chemotherapy (NAC) ultrasound images from two patients: one showing a complete axillary
lymph node (ALN) response and the other with residual ALN metastasis after NAC. The second and third columns correspond to the radiomics heatmap
(Firstorder_Maximum and GLCM_IDM) generated from the radiomics pipeline, while the fourth column depicts the Grad CAM Map heatmap from the
deep learning pipeline. These heatmaps visually represent areas of interest identified by each model in assessing ALN status. For the Firstorder_Maximum
heatmap, the larger the dark blue prompt value is, the more disordered the intensity value is in this region. For the GLCM_IDM heatmap, the larger the
dark red prompt value is, the more disordered the texture is in this region. For the Grad CAM heatmap, the larger the red prompt value is, the more
contribution feature value is in this region, also indicating the deep learning model pays more attention to the red region on breast cancer ultrasound
image. NAC, neoadjuvant chemotherapy; GLCM, Gray level co-occurrence matrix inverse difference moment; Grad CAM, gradient-weighted class
activation mapping; US, ultrasound; HR, hormone receptor; HER2, human epidermal growth factor antibody 2; AI, artificial intelligence
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studies showing that the sensitivity of MRI was 61.4–70%,
indicating that axillary US performed similarly to MRI
[25, 26]. Moreover, sonographers rely on subjective
judgments of ALN morphology, whereas respiratory and
cardiac motion artifacts may affect their diagnosis on
MRI. Conventional US images are also more robust.
In our study, the sonographers’ first diagnosis relied

only on their personal perspective or personal diagnosis,
whereas the second diagnosis referenced the prediction
results of the fusion model. Some breast cancer hetero-
geneity might relate to ALN metastasis, but cannot be
visually observed by sonographers. The results showed
that the diagnostic ability was significantly enhanced in
the second diagnosis, indicating that the AI model can
capture and integrate potential breast cancer hetero-
geneity overlooked by sonographers when assessing ALN
status. When the AI model’s risk score significantly
deviates from the sonographer’s first diagnosis, the
sonographer would pay more attention to the lymph
nodes, which initially were indeterminate and were not
classified as metastatic in the first reading. Sonographers
re-evaluated and made an upgrading ALN diagnosis in the
second reading with AI assistance.
The fusion model’s superiority for higher threshold

probabilities above 15% suggests its utility in identifying
patients who could benefit from ALND, thereby mini-
mizing unnecessary surgical interventions. However, the
ideal threshold for ALND recommendation should bal-
ance the risks of unwarranted surgery against under-
treatment risks, warranting further validation in future
studies tailored to patient conditions and clinical prac-
tices. In addition, the model’s high negative predictive
value (NPV) of 90.8% in the validation cohort suggests its
effectiveness in accurately identifying patients who may
not need ALND, potentially averting related surgical
complications. Nonetheless, ALND omission decisions
should consider the AI model’s predictions in conjunction
with other factors, including patient personalized condi-
tion, molecular subtype, and lymph node size.
Our study had some limitations. First, primary tumor

segmentation was performed manually, which is time-
consuming. In future, we plan to explore the performance
of an automatic segmentation model. Second, selection
bias was unavoidable due to the retrospective nature of
the study. Larger sample sizes and evidence from more
multicenter studies are required to test the predictive
efficiency and assistive ability of the AI model. Third, we
collected US images from various acquisition protocols,
potentially affecting the imaging analysis. Thus, a har-
monization process was employed to minimize hetero-
geneity. Finally, the relatively limited number of
sonographers who participated in this study may not
accurately represent an average sonographer’s ability.

Future studies should involve more sonographers in
diagnosing ALN status to evaluate the model’s assist
efficacy more comprehensively.

Conclusion
We developed a fusion AI model that integrates pre- and
post-NAC US images, providing superior prediction of
ALN metastasis after NAC in breast cancer compared
with the single-modality model or sonographer diagnosis.
This AI model can serve as an effective tool to assist
sonographers in improving their diagnostic abilities.

Abbreviations
AI Artificial intelligence
ACC Accuracy
ALN Axillary lymph node
ALND Axillary lymph node dissection
AUC Area under the curve
cN+ Clinical node-positive
DLR Deep learning radiomics
HER2 Human epidermal growth factor receptor-2
HR Hormone receptor
IHC Immunohistochemical
LASSO Least absolute shrinkage and selection operator
MRI Magnetic resonance imaging
NAC Neoadjuvant chemotherapy
NPV Negative predictive value
PPV Positive predictive value
ROC Receiver operating characteristic
ROI Regions of interest
SEN Sensitivity
SLNB Sentinel lymph node biopsy
SPE Specificity
SVM Support vector machine
US Ultrasonography

Supplementary information
The online version contains supplementary material available at https://doi.
org/10.1007/s00330-024-10786-5.

Funding
This research received Key Clinical Projects of Peking University Third Hospital
No. BYSYZD2023020.

Compliance with ethical standards

Guarantor
The scientific guarantor of this publication is LC.

Conflict of interest
The authors of this manuscript declare no relationships with any companies,
whose products or services may be related to the subject matter of the article.

Statistics and biometry
One of the authors has significant statistical expertise.

Informed consent
Written informed consent was waived by the Institutional Review Board.

Ethical approval
Institutional Review Board approval was obtained.

Study subjects or cohorts overlap
No study subject or cohort overlap has been reported.

Fu et al. European Radiology Page 9 of 10

https://doi.org/10.1007/s00330-024-10786-5
https://doi.org/10.1007/s00330-024-10786-5


Methodology

● Retrospective
● Diagnostic or prognostic study
● Multicenter study

Author details
1Department of Ultrasound, Peking University Third Hospital, No. 49 North
Garden Road, Haidian District, Beijing 100191, China. 2Department of General
Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian
District, Beijing 100191, China. 3Department of Breast Cancer, Cancer Center,
Guangdong Provincial People’s Hospital (Guangdong Academy of Medical
Sciences), Southern Medical University, Guangzhou 510080 Guangdong, China.
4Department of Pathology, Peking University Third Hospital, School of Basic
Medical Sciences, Peking University Health Science Center, Beijing 100191,
China. 5Department of Ultrasound, Peking University Cancer Hospital &
Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry
of Education/Beijing), No. 52 Fucheng Road, Haidian District, Beijing 100142,
China. 6Department of Ultrasound, North China University of Science and
Technology Affiliated Hospital, 73 South Jianshe Road, Lubei District, Tangshan
066300, China.

Received: 28 August 2023 Revised: 4 February 2024 Accepted: 10 March
2024

References
1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN

estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

2. Trapani D, Ginsburg O, Fadelu T et al (2022) Global challenges and policy
solutions in breast cancer control. Cancer Treat Rev 104:102339. https://
doi.org/10.1016/j.ctrv.2022.102339

3. Tamirisa N, Thomas SM, Fayanju OM et al (2018) Axillary nodal evaluation
in elderly breast cancer patients: potential effects on treatment decisions
and survival. Ann Surg Oncol 25:2890–2898. https://doi.org/10.1245/
s10434-018-6595-2

4. Pilewskie M, Morrow M (2017) Axillary nodal management following
neoadjuvant chemotherapy: a review. JAMA Oncol 3:549–555. https://doi.
org/10.1001/jamaoncol.2016.4163

5. Krag DN, Anderson SJ, Julian TB et al (2010) Sentinel-lymph-node
resection compared with conventional axillary-lymph-node dissection in
clinically node-negative patients with breast cancer: overall survival
findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol
11:927–933. https://doi.org/10.1016/S1470-2045(10)70207-2

6. Chang JM, Leung JWT, Moy L, Ha SM, Moon WK (2020) Axillary nodal
evaluation in breast cancer: state of the art. Radiology 295:500–515.
https://doi.org/10.1148/radiol.2020192534

7. Minarikova L, Bogner W, Pinker K et al (2017) Investigating the prediction
value of multiparametric magnetic resonance imaging at 3 T in response
to neoadjuvant chemotherapy in breast cancer. Eur Radiol 27:1901–1911.
https://doi.org/10.1007/s00330-016-4565-2

8. Pereira NP, Curi C, Osório CABT et al (2019) Diffusion-weighted magnetic
resonance imaging of patients with breast cancer following neoadjuvant
chemotherapy provides early prediction of pathological response—a
prospective study. Sci Rep 9:16372. https://doi.org/10.1038/s41598-019-52785-3

9. Eun NL, Kim JA, Son EJ et al (2020) Texture analysis with 3.0-T MRI for
association of response to neoadjuvant chemotherapy in breast cancer.
Radiology 294:31–41. https://doi.org/10.1148/radiol.2019182718

10. Nadrljanski MM, Milosevic ZC (2020) Tumor texture parameters of invasive
ductal breast carcinoma in neoadjuvant chemotherapy: early identifica-
tion of non-responders on breast MRI. Clin Imaging 65:119–123. https://
doi.org/10.1016/j.clinimag.2020.04.016

11. Dogan BE, Yuan Q, Bassett R et al (2019) Comparing the performances of
magnetic resonance imaging size vs pharmacokinetic parameters to
predict response to neoadjuvant chemotherapy and survival in patients

with breast cancer. Curr Probl Diagn Radiol 48:235–240. https://doi.org/
10.1067/j.cpradiol.2018.03.003

12. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more
information from medical images using advanced feature analysis. Eur J
Cancer 48:441–446. https://doi.org/10.1016/j.ejca.2011.11.036. Oxford, England

13. Jiang M, Li CL, Luo XM et al (2022) Radiomics model based on shear-wave
elastography in the assessment of axillary lymph node status in early-
stage breast cancer. Eur Radiol 32:2313–2325. https://doi.org/10.1007/
s00330-021-08330-w

14. Wu J, Gong G, Cui Y, Li R (2016) Intratumor partitioning and texture
analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant
tumor subregions to predict pathological response of breast cancer to
neoadjuvant chemotherapy. J Magn Reson Imaging 44:1107–1115.
https://doi.org/10.1002/jmri.25279

15. Hammond ME, Hicks DG (2015) American Society of Clinical Oncology/
College of American Pathologists human epidermal growth factor receptor
2 testing clinical practice guideline upcoming modifications: proof that
clinical practice guidelines are living documents. Arch Pathol Lab Med
139:970–971. https://doi.org/10.5858/arpa.2015-0074-ED

16. Wolff AC, Hammond ME, Hicks DG et al (2013) Recommendations for
human epidermal growth factor receptor 2 testing in breast cancer:
American Society of Clinical Oncology/College of American Pathologists
clinical practice guideline update. J Clin Oncol 31:3997–4013. https://doi.
org/10.1200/JCO.2013.50.9984

17. Youk JH, Son EJ, Kim JA, Gweon HM (2017) Pre-operative evaluation of
axillary lymph node status in patients with suspected breast cancer using
shear wave elastography. Ultrasound Med Biol 43:1581–1586. https://doi.
org/10.1016/j.ultrasmedbio.2017.03.016

18. Zheng Q, Yan H, He Y et al (2024) An ultrasound-based nomogram for
predicting axillary node pathologic complete response after neoadjuvant
chemotherapy in breast cancer: Modeling and external validation. Cancer
130:1513–1523. https://doi.org/10.1002/cncr.35248

19. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas
under two or more correlated receiver operating characteristic curves: a
nonparametric approach. Biometrics 44:837–845

20. Mao N, Yin P, Li Q et al (2020) Radiomics nomogram of contrast-
enhanced spectral mammography for prediction of axillary lymph node
metastasis in breast cancer: a multicenter study. Eur Radiol 30:6732–6739.
https://doi.org/10.1007/s00330-020-07016-z

21. Yu Y, Tan Y, Xie C et al (2020) Development and validation of a pre-
operative magnetic resonance imaging radiomics-based signature to
predict axillary lymph node metastasis and disease-free survival in
patients with early-stage breast cancer. JAMA Netw Open 3:e2028086.
https://doi.org/10.1001/jamanetworkopen.2020.28086

22. Kim EJ, Kim SH, Kang BJ, Choi BG, Song BJ, Choi JJ (2014) Diagnostic
value of breast MRI for predicting metastatic axillary lymph nodes in
breast cancer patients: diffusion-weighted MRI and conventional MRI.
Magn Reson Imaging 32:1230–1236. https://doi.org/10.1016/j.mri.2014.
07.001

23. Yang J, Wang T, Yang L et al (2019) Preoperative prediction of axillary
lymph node metastasis in breast cancer using mammography-based
radiomics method. Sci Rep 9:4429. https://doi.org/10.1038/s41598-019-
40831-z

24. Alvarez S, Añorbe E, Alcorta P, López F, Alonso I, Cortés J (2006) Role of
sonography in the diagnosis of axillary lymph node metastases in breast
cancer: a systematic review. AJR Am J Roentgenol 186:1342–1348. https://
doi.org/10.2214/AJR.05.0936

25. Song D, Yang F, Zhang Y et al (2022) Dynamic contrast-enhanced MRI
radiomics nomogram for predicting axillary lymph node metastasis in
breast cancer. Cancer Imaging 22:17. https://doi.org/10.1186/s40644-022-
00450-w

26. Mao N, Dai Y, Lin F et al (2020) Radiomics nomogram of DCE-MRI for the
prediction of axillary lymph node metastasis in breast cancer. Front Oncol
10:541849. https://doi.org/10.3389/fonc.2020.541849

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Fu et al. European Radiology Page 10 of 10

https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.ctrv.2022.102339
https://doi.org/10.1016/j.ctrv.2022.102339
https://doi.org/10.1245/s10434-018-6595-2
https://doi.org/10.1245/s10434-018-6595-2
https://doi.org/10.1001/jamaoncol.2016.4163
https://doi.org/10.1001/jamaoncol.2016.4163
https://doi.org/10.1016/S1470-2045(10)70207-2
https://doi.org/10.1148/radiol.2020192534
https://doi.org/10.1007/s00330-016-4565-2
https://doi.org/10.1038/s41598-019-52785-3
https://doi.org/10.1148/radiol.2019182718
https://doi.org/10.1016/j.clinimag.2020.04.016
https://doi.org/10.1016/j.clinimag.2020.04.016
https://doi.org/10.1067/j.cpradiol.2018.03.003
https://doi.org/10.1067/j.cpradiol.2018.03.003
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1007/s00330-021-08330-w
https://doi.org/10.1007/s00330-021-08330-w
https://doi.org/10.1002/jmri.25279
https://doi.org/10.5858/arpa.2015-0074-ED
https://doi.org/10.1200/JCO.2013.50.9984
https://doi.org/10.1200/JCO.2013.50.9984
https://doi.org/10.1016/j.ultrasmedbio.2017.03.016
https://doi.org/10.1016/j.ultrasmedbio.2017.03.016
https://doi.org/10.1002/cncr.35248
https://doi.org/10.1007/s00330-020-07016-z
https://doi.org/10.1001/jamanetworkopen.2020.28086
https://doi.org/10.1016/j.mri.2014.07.001
https://doi.org/10.1016/j.mri.2014.07.001
https://doi.org/10.1038/s41598-019-40831-z
https://doi.org/10.1038/s41598-019-40831-z
https://doi.org/10.2214/AJR.05.0936
https://doi.org/10.2214/AJR.05.0936
https://doi.org/10.1186/s40644-022-00450-w
https://doi.org/10.1186/s40644-022-00450-w
https://doi.org/10.3389/fonc.2020.541849

	Longitudinal ultrasound-based AI model predicts axillary lymph node response to neoadjuvant chemotherapy in breast cancer: a�multicenter�study
	Introduction
	Materials and methods
	Patients
	NAC regimen and histological assessment
	Ultrasound examination
	Tumor segmentation and image preprocessing
	Feature extraction and selection
	Model construction and Integration
	Comparison with sonographer and AI-assisted diagnosis
	Statistical analysis

	Results
	Baseline characteristics of patients
	Feature selection and model construction
	Comparison of sonographer and radiomics�model
	AI assist in sonographer’s diagnosis on ALN�status

	Discussion
	Conclusion
	Supplementary information
	Acknowledgements
	Acknowledgements




