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contrast-enhanced MRI: an imaging
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Abstract
Objectives To evaluate signal enhancement ratio (SER) for tissue characterization and prognosis stratification in
pancreatic adenocarcinoma (PDAC), with quantitative histopathological analysis (QHA) as the reference standard.

Methods This retrospective study included 277 PDAC patients who underwent multi-phase contrast-enhanced (CE)
MRI and whole-slide imaging (WSI) from three centers (2015–2021). SER is defined as (SIlt− SIpre)/(SIea− SIpre), where
SIpre, SIea, and SIlt represent the signal intensity of the tumor in pre-contrast, early-, and late post-contrast images,
respectively. Deep-learning algorithms were implemented to quantify the stroma, epithelium, and lumen of PDAC on
WSIs. Correlation, regression, and Bland-Altman analyses were utilized to investigate the associations between SER and
QHA. The prognostic significance of SER on overall survival (OS) was evaluated using Cox regression analysis and
Kaplan–Meier curves.

Results The internal dataset comprised 159 patients, which was further divided into training, validation, and internal
test datasets (n= 60, 41, and 58, respectively). Sixty-five and 53 patients were included in two external test datasets.
Excluding lumen, SER demonstrated significant correlations with stroma (r= 0.29–0.74, all p < 0.001) and epithelium
(r=−0.23 to −0.71, all p < 0.001) across a wide post-injection time window (range, 25–300 s). Bland-Altman analysis
revealed a small bias between SER and QHA for quantifying stroma/epithelium in individual training, validation
(all within ± 2%), and three test datasets (all within ± 4%). Moreover, SER-predicted low stromal proportion was
independently associated with worse OS (HR= 1.84 (1.17–2.91), p= 0.009) in training and validation datasets, which
remained significant across three combined test datasets (HR= 1.73 (1.25–2.41), p= 0.001).

Conclusion SER of multi-phase CE-MRI allows for tissue characterization and prognosis stratification in PDAC.

Clinical relevance statement The signal enhancement ratio of multi-phase CE-MRI can serve as a novel imaging
biomarker for characterizing tissue composition and holds the potential for improving patient stratification and
therapy in PDAC.
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Key Points
● Imaging biomarkers are needed to better characterize tumor tissue in pancreatic adenocarcinoma.
● Signal enhancement ratio (SER)-predicted stromal/epithelial proportion showed good agreement with histopathology
measurements across three distinct centers.

● Signal enhancement ratio (SER)-predicted stromal proportion was demonstrated to be an independent prognostic factor for
OS in PDAC.

Keywords Pancreatic adenocarcinoma, Multi-phase contrast-enhanced MRI, Signal enhancement ratio, Digital
pathology, Tumor tissue composition

Graphical Abstract

Introduction
Pancreatic adenocarcinoma (PDAC) is one of the most
lethal cancers with a dismal 5-year survival rate of 11% [1].
A hallmark feature of PDAC is its extensive desmoplastic
stroma, which is thought to confer biological aggressive-
ness [2, 3]. It is reported that this dense stroma acts as
a physical barrier to hinder the effective delivery of
drugs [4, 5]. Moreover, the amount of stroma displays
remarkable variability within the tumors as well as among
patients, and this variability has been shown to yield
prognostic information [6]. Generally, a low proportion of
stroma predicts an unfavorable prognosis in PDAC
[7–10]. However, current clinical imaging assessments
predominantly rely on shape-based and volume-based
descriptors [11]. There is a strong need to identify

imaging biomarkers for characterizing tumor tissue
composition in PDAC.
Multi-phase dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI) is a highly sensitive
modality for tumor characterization when compared to
CT, owing to its superior soft tissue contrast and ability to
provide functional information [12]. Quantitative para-
meters such as the volume transfer constant, Ktrans, have
yielded some preliminary results in stroma estimation
[13]. However, the technical complexities and relatively
low image quality due to lower spatial resolution
compared to conventional multi-phase contrast-enhanced
MRI (CE-MRI), are major obstacles preventing the
widespread use of quantitative parameters [14]. In con-
trast, signal enhancement ratio (SER) is a semiquantitative
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method to estimate signal intensity changes through a
three-time-point examination [15]. Specifically, SER is
defined as (SIlt− SIpre)/(SIea− SIpre), where SIpre, SIea, and
SIlt represent the signal intensity (SI) on pre-contrast,
early post-contrast, and late post-contrast images,
respectively. Previous studies have demonstrated close
associations between SER and tumor biological behavior
as well as prognostic outcomes in breast cancer [15, 16].
Nevertheless, few studies have investigated the potential
of SER for PDAC tissue characterization.
With advances in digital pathology, Hao Fu et al

proposed the first deep-convolutional neural network
architecture for PDAC detection [17]. Bo Li et al
employed a conditional generative adversarial model to
segment tumors and stroma on whole-slide images
(WSIs) [9]. These advancements facilitate an objective
and standardized assessment of tumor tissue composi-
tion. However, to the best of our knowledge, the
relationship between SER and quantitative tumor tissue
composition has not been investigated in PDAC.
Therefore, the objective of our study was to evaluate the
potential of SER derived from multi-phase CE-MRI
for characterizing tissue composition in PDAC, with
quantitative histopathological analysis (QHA) as the
reference standard. The prognostic value of SER was
also analyzed.

Methods
Study patients
This retrospective study was approved by the institutional
review board and the requirement for written informed
consent was waived.
The study comprised consecutive patients with PDAC

who underwent upfront surgery and preoperative multi-
phase CE-MRI from three academic centers in China
between 2015 and 2021. The internal dataset included
patients who underwent either a 16-phase DCE-MRI
or conventional multi-phase CE-MRI from Henan Cancer
Hospital, Zhengzhou (Center A). Among patients with
16-phase DCE-MRI, a division was made into a training
dataset (encompassing scans obtained 2015–2019)
and a validation dataset (encompassing scans obtained
2020–2021). Patients who underwent conventional
CE-MRI constituted an independent internal test dataset.
Two external test datasets were included, consisting
of patients who underwent conventional multi-phase
CE-MRI at Xiangya Hospital of Central South University,
Changsha (Center B), and Subei People’s Hospital,
Yangzhou (Center C), respectively.
The inclusion criteria for all patients were as follows: (i)

upfront surgical resection with histopathological con-
firmation of PDAC, (ii) preoperative multi-phase CE-MRI
within one month of surgery, and (iii) the availability of

hematoxylin and eosin (H&E)-stained WSIs from tumor
resections. The exclusion criteria were as follows: (i)
inadequate MRI quality, (ii) missing or less than three
WSIs, and (iii) absence of clinical data. The participant
flowchart is shown in Fig. 1.

MRI protocol and analysis
MRI protocol
The acquisition parameters for MRI are detailed in
Appendix E1 and Table E1 and E2. In training and vali-
dation datasets, the MR sequences included 16-phase
DCE-MRI, diffusion-weighted imaging (DWI), and T2-
weighted imaging (T2WI). The acquisition of 16-phase
DCE-MRI employed the CAIPIRINHA-Dixon-TWIST-
VIBE technique. This technique involved capturing one
pre-contrast phase (PRE), six consecutive arterial phases
(AP) from 15 to 37 s after contrast injection, six con-
secutive portal venous phases (PVP) from 50 to 72 s, and
followed by three delayed phases (DP) at 90, 150, and
300 s. For DWI, a single-shot echo-planar imaging pulse
sequence was utilized with b-values of 50 and 800 s/mm2.
Subsequently, apparent diffusion coefficient (ADC) maps
were generated from the DWI scans of both b-values. In
the internal and two external test datasets, conventional
multi-phase CE-MRI was acquired with one PRE, AP
(15–25 s), PVP (50–55 s), and DP (120–180 s).

Imaging preprocess and region of interest (ROI) measurements
For batch extraction of the region of interest (ROI) mea-
surements, a grid and deformable registration technique via
Elastix (https://elastix.lumc.nl/) was employed to achieve
voxel-wise alignment for multi-phase CE-MRI images.
Subsequently, ROIs for the tumor and paraspinal muscle
were drawn by two radiologists (C.X. and Z.B., with 7 and 4
years of abdominal imaging experience, respectively), see
Appendix E1 (electronic supplemental material) for more
details of ROI delineations. The SER of the tumor at multi-
phase CE-MRI was calculated as follows [18]:

SERlt ea ¼ ðSIlt � SIpreÞ=ðSIea � SIpreÞ

where SIpre, SIea, and SIlt represent the signal intensity
(SI) of the tumor ROI on pre-contrast, early post-contrast
(AP or PVP: ranged from 15 to 72 s after contrast
injection), and late post-contrast images (PVP or DP:
ranged from 50 to 300 s), respectively. To assess the
reproducibility of SER, two radiologists independently
delineated the tumor ROIs on 16-phase DCE-MRI.
Furthermore, in training and validation datasets, several
additional parameters were acquired, including ADC
values of the tumor, the tumor-to-muscle SI ratio on
T2WI, and all pre- and post-contrast scans of 16-phase
DCE-MRI.
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SER analysis for quantifying tumor tissue composition
Given the wide post-injection time window of 16-phase
DCE-MRI, we investigated the proper scanning timing of
SER for characterizing tissue composition. Consistent with
previous findings [13, 19], PDAC showed a rapid increase in
enhancement during AP, followed by a gradual and slow
increase in PVP and DP (Fig. S1). Consequently, for early
post-contrast time point (Tea), we selected two clinically
significant AP time points: The pancreatic parenchyma
phase (approximately 35 s after contrast injection) is widely
accepted as the optimal phase for detecting PDAC, while
the late AP phase (approximately 25 s) is readily accessible
and considered optimal for identifying liver tumors. Addi-
tionally, a commonly utilized PVP time point (approxi-
mately 50 s). Furthermore, for late post-contrast time points
(Tlt), we analyzed all time points in PVP and DP, ranging
from 50 (excluding Tea= 50) to 300 s, to investigate the
impact of scan delay on tissue characterization. Spearman
correlation analysis was employed to evaluate the correla-
tion between SER and QHA. A time-r-value curve fitting
analysis was combined to determine the optimal time points
of Tea and Tlt for characterizing tissue composition.
To assess the predictive capacity of SER for tissue

quantification, the initial linear regression model was
developed, using the SER at the optimally chosen Tea

and Tlt time points in training datasets. This model was
subsequently validated in an entirely separate validation

dataset. In instances where the optimally chosen time
points were not acquired on conventional CE-MRI, a
second linear regression model, utilizing the SER that
demonstrated the highest correlation with QHA based on
conventional CE-MRI scanning timings, was further
constructed in the training dataset. This second model
was then tested in three different test datasets to evaluate
its clinical generalizability on conventional CE-MRI. The
SER-fitted tissue composition maps were generated by
employing the corresponding regression model and per-
forming voxel-based calculations using Python scripts.

Quantitative histopathological analysis (QHA)
Three or more H&E-stained slides from tumor resection
were selected for each patient and digitized at × 40 magni-
fication at respective institutions. Two deep-learning-based
segmentation models were developed to quantify tumor
tissue composition on WSIs: one is for tumor detection and
the other is for tissue segmentation. Image annotation of the
“normal” and “tumor” region, as well as the “stroma”, “epi-
thelium”, and “lumen” tissue was performed using ASAP
(https://computationalpathologygroup.github.io/ASAP/), by
two pathologists (Y.C.G. and M.Y.S. with 6 years of experi-
ence in gastrointestinal pathology).

Tumor detection A VGG-19-based convolutional neural
network was trained to recognize the normal and tumor

Fig. 1 Flowchart of the patient selection process in training, validation, internal test, and two external test datasets. PDAC, pancreatic adenocarcinoma;
DCE-MRI, dynamic contrast-enhanced MRI; WSIs, whole-slide images

Xia et al. European Radiology Page 4 of 11

https://computationalpathologygroup.github.io/ASAP/


regions. A total of 453 WSIs were annotated by
pathologists to establish the ground truth for model
training and validation. Of these, 209 WSIs were obtained
from a publicly accessible cohort of The Cancer Genome
Altas-Pancreatic Adenocarcinoma (TCGA-PAAD), avail-
able at https://www.cancer.gov. Then, 244 WSIs were
selected in a randomized, center-balanced manner from
the pool of WSIs at Centers A, B, and C. A total of 16,061
patches of size 512 × 512 pixels were extracted for model
training and validation at a ratio of 7:3.

Tissue segmentation A U-Net-based neural network
was employed to segment stroma, epithelium, and
lumen, as in our previous work [20]. A total of 391
WSIs from five TCGA cohorts, namely PAAD, breast
cancer, lung adenocarcinoma, lung squamous cell
carcinoma, and stomach adenocarcinoma, were manu-
ally annotated for model training. Ninety WSIs were
selected in a randomized, center-balanced manner from
Centers A, B, and C, and annotated for model-
independent validation. A total of 17,159 patches of size
512 × 512 pixels were generated for model training and
validation at a ratio of 7:3.
Finally, the proportion of stroma, epithelium, and lumen
was calculated as the percentages of specific tissue area
within the tumor area across all WSIs. The segmentation
results were checked by two pathologists, and corrections
were made as necessary.

Statistical analysis
Statistical analyses were performed using SPSS (version
25.0, IBM; Armonk, NY, USA). Continuous and catego-
rical variables were compared using the Kruskal–Wallis
test and the Chi-square test or Fisher exact test, respec-
tively. Interobserver agreements for SER were assessed
using intraclass correlation coefficients (ICC). The
agreements between SER and QHA for tissue quantifi-
cation were evaluated through Bland-Altman plots and
Pearson correlation tests. Survival analysis was performed
on overall survival (OS), employing Kaplan–Meier curves
with log-rank tests, and univariate- and multivariate Cox
regression analyses. The cutoff point of stroma, epithe-
lium, and SER for survival analysis was determined by
their respective mean value. The significance level was set
at p < 0.05, with a two-tailed approach for all analyses.

Results
Patient characteristics
A total of 277 patients were included in this study. The
internal dataset comprised 159 patients from Center A,
which was further divided into training, validation, and
internal test datasets (n= 61, 40, 58, respectively). There

were two external datasets from center B (n= 65) and
center C (n= 53). The demographic and clin-
icalpathologic characteristics of the patients were largely
balanced among the datasets (Table 1). Overall, 156
(56.3%) patients were male with a median age of 62 years
(IQR, 54–68). The median intervals between MRI exam-
inations and surgery were 3 (IQR, 2–6), 5 (4–7), 3 (2–6), 6
(3–8), and 6 (4–9) days for training, validation, internal
test, and two external datasets, respectively.

Quantitative histopathological analysis
QHA was performed on 1027 WSIs from 277 (3.7 ± 0.8)
patients in all datasets. The tumor detection model
achieved a mean area under the receiver operating char-
acteristic curve (AUC) of 0.94. The tissue segmentation
model achieved mean Dice similarity coefficients for
stroma, epithelium, and lumen were 0.89, 0.90, and 0.79,
respectively (see Fig. S2 for visual examples).
The average proportion of stroma, epithelium, and

lumen was 59.7 ± 13.7%, 25.5 ± 11.2%, and 5.4 ± 3.0% in
PDAC. Poorly differentiated tumors exhibited a higher
proportion of epithelium (poor, 36.2 ± 11.5% vs. well/
moderate, 23.0 ± 9.6%; p < 0.001), and a lower propor-
tion of stroma (poor, 48.8 ± 13.9% vs. well/moderate,
62.2 ± 12.4%; p < 0.001) than well or moderately differ-
entiated PDACs, excluding lumen. Given the low pro-
portion of lumen, our subsequent analysis focused on
stroma and epithelium.

Correlation analysis between QHA and MRI
For conventional MRI parameters, the tumor-to-muscle
SI ratio on T2WI and all scans of 16-phase DCE-MRI
showed negligible to significantly weak correlations with
stroma (r, range −0.02 to 0.23) and epithelium (r, range
−0.05 to −0.16); ADC showed weak yet significant cor-
relations with stroma and epithelium (r= 0.32 and −0.29,
respectively, both p < 0.001) in combined training and
validation datasets.
In contrast, Fig. 2 illustrates the significant correlations

that exist between SER and both stroma (r, range
0.29–0.74, all p < 0.001) and epithelium (r, range −0.23 to
−0.71, all p < 0.001) across a wide post-injection time
window (range from 25 to 300 s). The highest correlations
with both stroma and epithelium (r= 0.74 and −0.71,
respectively) are demonstrated by SER300_35, thereby
establishing the optimal SER. Further analysis from the
time-r-value curve fitting suggests a proper Tlt time
window of approximately 150–300 s (all |r| > 0.5). In
accordance, the highest correlations are exhibited when
Tea= 35 (all |r| > 0.70), followed by Tea= 50 (all |r| > 0.55)
and Tea= 25 s (all |r| > 0.50) (Fig. S3). For conventional
CE-MRI scanning timing, the SER150_50 demonstrated the
highest correlations with both stroma and epithelium
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(r= 0.63 and −0.58, respectively). The interobserver
agreement for SER is good, with all ICC values exceeding
0.80 (range, 0.81–0.90).

Linear regression analysis for tissue quantification
To evaluate the predictive capacity of SER for tissue
quantification, linear regression analyses were performed

Fig. 2 The SER and QHA correlation matrix in training and validation datasets. The Spearman correlation coefficients between SER and QHA measured
the proportion of stroma (Stro%) and epithelium (Epi%) across various Tea and Tlt time points (columns (Tea) represent the three early-contrast time points
and rows (Tlt) represent the late-contrast time points). SER, signal enhancement ratio; QHA, quantitative histopathological analysis. ** indicates p < 0.001

Table 1 Clinicopathologic characteristics in training, validation, internal test, and two external datasets

Characteristics Internal dataset (n= 159) External datasets (n= 118) p-value

Training

(n = 61)

Validation

(n = 40)

Internal test

(n= 58)

External test

1 (n= 65)

External test

2 (n= 53)

Age (years)a 63 (56–68) 63 (56–70) 62 (53–66) 61 (52–67) 64 (54–71) 0.568

Sex (male) 34 (55.7) 21 (52.5) 32 (55.2) 37 (56.9) 32 (60.4) 0.958

CA 19-9 (> 37 U/mL) 47 (77.0) 28 (70.0) 44 (75.9) 47 (72.3) 37 (69.8) 0.875

Tumor location (head) 41 (67.2) 29 (72.5) 47 (81.0) 46 (70.8) 33 (62.3) 0.248

Tumor size (cm)a 3.5 (2.7–5.0) 3.5 (2.6–4.3) 3.5 (2.5–4.6) 3.0 (2.5–4.5) 2.8 (1.8–3.5) 0.004*

Pathological T stage 0.003*

T1 10 (16.4) 3 (7.5) 10 (17.2) 11 (16.9) 19 (35.9)

T2 31 (50.8) 26 (65) 26 (44.8) 35 (53.9) 30 (56.6)

T3 20 (32.8) 11 (27.5) 22 (37.9) 19 (29.2) 4 (7.5)

Pathological N stage 0.256

N0 76 (75.2) 31 (77.5) 43 (74.1) 46 (70.8) 31 (58.5)

N1 or N2 25 (24.8) 9 (22.5) 15 (25.9) 19 (29.2) 22 (41.5)

Pathological TNM stage (AJCC 8th edition) 0.787

I 31 (50.8) 18 (45) 31 (53.4) 34 (52.3) 28 (52.8)

II 27 (44.3) 20 (50) 27 (46.6) 28 (43.1) 22 (41.5)

III 3 (4.9) 2 (5) 0 (0) 3 (4.6) 3 (5.7)

Resection margin (R0) 58 (95.1) 39 (97.5) 46 (86.7) 62 (95.3) 48 (90.5) 0.650

Histological grade 0.880

Well or Moderate 48 (78.7) 33 (80.5) 48 (82.7) 51 (78.5) 45 (84.9)

Poor 13 (21.3) 7 (17.5) 10 (17.2) 14 (21.5) 8 (15.1)

CA carbohydrate antigen. * Indicates statistical significance; p < 0.05
aContinuous variables are presented with median and interquartile range and compared using the Kruskal–Wallis test; categorical variables are presented with
numbers and percentages and compared using the Chi-square test or Fisher’s exact test

Xia et al. European Radiology Page 6 of 11



and the model development results are summarized in
Appendix E2 and Table E3. In Bland-Altman analysis, bias
and 95% limits of agreement (LA) indicated good accu-
racy for stroma/epithelium quantification by using the
optimal SER300_35 model in both training and validation
datasets (all mean bias within ±1% and 95% LA within
± 20%). Moreover, the low standard error (all < 10%)
suggested a high level of precision (refer to Table E4 for
details). Pearson correlation test showed strong correla-
tions between SER300_35 and QHA in training and vali-
dation datasets for quantifying stroma (r= 0.79 vs. 0.71,
both p < 0.001) and epithelium (r= 0.76 vs. 0.63, both
p < 0.001) (Fig. 3). The visual examples of the SER-fitted
stroma/epithelium maps are shown in Fig. 4.
To validate the clinical generalizability of SER on

conventional CE-MRI, the second regression model,
utilizing SER150_50, was constructed and tested in the
internal- and two external test datasets. Bland-Altman
plots also showed a small bias between the measure-
ments of SER150_50 and QHA in all three test datasets,
with a mean bias of approximately ± 4% and 95% LA
within ± 25% (see Table E4 for details). Pearson corre-
lation test showed moderate correlations in three test
datasets, for stroma (r= 0.60 vs. 0.52 vs. 0.60, all
p < 0.001) and epithelium (r= 0.52 vs. 0.49 vs. 0.52, all
p < 0.001) (Fig. 3).

Univariable and multivariable analyses for prognostic
significance
Univariate and multivariate Cox regression analyses were
performed in combined training and validation datasets.
The binary categorical marker of stromal proportion

predicted by SER300_35 was an independent predictor of
OS (cutoff= 60%, for low vs. high, HR= 1.84, 95% CI:
1.17–2.91, p= 0.009) after adjustment for the histologic
grade, pathological T and N stage, and resection margin
(Table 2). Similar results were obtained for the con-
tinuous marker of stromal proportion predicted by
SER300_35 (HR= 0.98 (0.96–1.00), p= 0.019) (Table E5).
Kaplan–Meier curves demonstrated that the stromal

proportion predicted by SER300_35 identified substantially
different OS periods between two patient subgroups
(median OS: low 10.1 vs. high 20.3 months, HR= 2.08
(1.30–3.32), p= 0.002). Notably, these findings were com-
parable to those obtained through QHA (low 10.7 vs. high
22.8 months, HR= 2.06 (1.30–3.26), p = 0.002). Similar
findings were observed in the stromal proportion predicted
by SER150_50 across three combined test datasets (low 15.3
vs. high 20.6 months, HR= 1.73 (1.25–2.41), p= 0.001),
compared to QHA (low 15.0 vs. high 21.9 months, HR=
1.72 (1.23–2.41), p = 0.002) (Fig. 5).

Discussion
Characterization of tumor tissue composition has shown
promise for enhancing patient stratification and therapy
in PDAC [3, 4, 21]. In this study, significant correlations
were observed between SER and QHA-measured stroma/
epithelium in PDAC. The high interobserver reproduci-
bility of SER, coupled with its demonstrated concordance
in tissue quantification with QHA across three distinct
centers, reinforces its reliability and generalizability as a
potential imaging biomarker for characterizing tissue
composition in PDAC. Moreover, our analysis demon-
strated that SER-predicted a low stromal proportion was

Fig. 3 Bland-Altman plot and Pearson correlation plot for stroma and epithelium. a–d showing the agreement of stroma and epithelium quantified by
using SER300_35 and QHA in training and validation datasets, respectively. e–h showing the agreement of stroma and epithelium quantified by using
SER150_50 and QHA in the internal and two external test datasets. Bland-Altman plot is presented with a mean bias (bold line) and 95% limits of
agreement (dot line). SER, signal enhancement ratio; QHA, quantitative histopathological analysis. ** indicates p < 0.001
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Fig. 4 The SER-fitted maps for characterizing stroma and epithelium in PDAC. a–c Showing three representative tumors consisting of a low (high) (a),
medium (medium) (b), and high (low) proportion of stroma (epithelium) (c), respectively. The SER-fitted stroma and epithelium maps provide a directly
visualizable assessment of the proportion of stroma and epithelium in PDAC. SER, signal enhancement ratio; WSIs, whole-slide images; QHA, quantitative
histopathological analysis; Stro, stroma; Epi, epithelium

Table 2 Univariable and multivariable Cox regression analysis of the OS in combined training and validation datasets

Parameters Univariate Multivariate

Hazard ratio p-value Hazard ratio p-value

Age (> 65 vs. ≤ 65 years) 0.90 (0.58–1.39) 0.626

Sex (male vs. female) 0.86 (0.56–1.33) 0.497

CA19-9 level (> 37 vs. ≤ 37 U/mL) 1.15 (0.70–1.89) 0.574

Tumor location (head vs. body/tail) 1.05 (0.66-1.69) 0.834

Pathological T stage (T3 vs. T1-2) 1.38 (0.87–2.18) 0.17 1.10 (0.67–1.79) 0.712

Pathological N stage (N1-2 vs. N0) 1.79 (1.10–2.91) 0.019* 1.79 (1.10–2.93) 0.02*

Histological grade (poor vs. well/moderate) 3.07 (1.80–5.24) < 0.001** 3.06 (1.73–5.41) < 0.001**

Resection margin (R1 vs. R0) 3.14 (1.12–8.27) 0.03* 1.69 (0.55–5.13) 0.358

LVI (positive vs. negative) 1.27 (0.75–2.15) 0.379

Perineural invasion (positive vs. negative) 0.99 (0.62–1.57) 0.963

SER300_35 (low vs. high) 1.98 (1.28–3.07) 0.002* ... ...

Stro% predicted by SER300_35 (low vs. high) 1.96 (1.27–3.04) 0.003* 1.84 (1.17–2.91) 0.009*

Epi% predicted by SER300_35 (low vs. high) 0.64 (0.42–0.99) 0.049* ... ...

Adjuvant chemotherapy (yes vs. no) 0.75 (0.48–1.17) 0.211

Variables with p < 0.10 in the univariate analysis were included in the multivariate analysis. Data in parentheses are 95% confidence intervals
OS overall survival, LVI lymphovascular invasion, SER signal enhancement ratio, Stro% the proportion of stroma, Epi% the proportion of epithelium
* indicates p < 0.05, ** indicates p < 0.001
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independently associated with worse OS in training and
validation datasets, and this association retained its sig-
nificant prognostic value across three combined test
datasets. These findings underscore the potential of SER
for tissue characterization and prognostic stratification
in PDAC.
The visual assessment of quantitative histopathological

features is prone to interobserver variability, and thus we
have developed deep-learning algorithms for QHA.
Compared to previous studies [9, 17], our segmentation
models have exhibited comparable performance in a
relatively large multicenter dataset. Moreover, the stromal
proportion measured by QHA is in line with prior studies
by using immunohistochemical staining [22, 23], indi-
cating the good accuracy of our segmentation models.
To investigate the optimal time points of SER for tissue

characterization, our study utilized a 16-phase DCE-MRI,
which offers a wider post-injection time window com-
pared to conventional CE-MRI for PDAC characteriza-
tion. Our investigation revealed that the optimal tissue

characterization using SER may be achieved by combining
Tea= 35 and Tlt= 300 s. These findings align with prior
studies that have demonstrated a slow and gradual
enhancement pattern in PDAC, with PPP providing the
maximum contrast for PDAC detection [13, 19].
SER of multi-phase CE-MRI can provide a semi-

quantitative approximation of the redistribution rate
constant [15, 18]. The correlation between SER and QHA
may potentially be elucidated by different tissue contrast
agent concentrations. Specifically, the stroma, which is
comprised of dense fibrotic tissue, increases the volume of
distribution for the contrast agent. Conversely, gadoli-
nium is incapable of permeating intact cell membranes
within the epithelium [14].
To the best of our knowledge, this is the first study to

investigate SER as a potential imaging biomarker for
quantifying tissue composition in PDAC. To assess the
predictive capacity of SER, we developed a first linear
regression model utilizing the optimal SER300_35. Our
results demonstrated that the stromal/epithelial proportion

Fig. 5 The prognostic value of stroma quantified by QHA and SER. Kaplan–Meier curves for overall survival (OS) according to the stromal proportion
quantified by QHA (a), and SER300_35 (b) across the training and validation datasets, as well as QHA (c), and SER150_50 (d) across the internal and two
external test datasets. Kaplan–Meier curves show that a low stromal proportion is significantly associated with worse OS in PDAC. QHA, quantitative
histopathological analysis; SER, signal enhancement ratio; Stro, stroma
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predicted by SER300_35 exhibited a high level of agreement
with the measurements of QHA, thereby supporting the
efficacy of SER for tissue quantification. Furthermore,
recognizing that SER may be influenced by varying scan-
ning systems [18], we conducted additional validation using
conventional CE-MRI data from three distinct centers.
Despite the optimal time points not routinely captured in
conventional CE-MRI [24–26], the stromal/epithelial pro-
portion predicted by SER150_50 still demonstrated a good
agreement with the measurements of QHA. This finding
further emphasizes the applicability and generalizability of
SER for tissue quantification in clinical practice.
A majority of studies have shown that PDAC with a

low proportion of stroma tends to exhibit worse histo-
logical grades and poorer outcomes [8–10, 27, 28],
which aligns with our findings. However, there exists
conflicting evidence in the literature, suggesting that a
low proportion of stroma predicts longer survival
[23, 29]. This contradiction can partly be attributed to
the limitations of small sample sizes and discrepancies in
stroma quantification methods. Notably, the conflicting
studies predominantly rely on subjective and random
regional assessments or solely evaluate stroma in the
most severe areas, both of which fail to adequately
represent the entire tumor due to the spatial hetero-
geneity of PDAC [30]. In contrast, QHA enables an
objective and standardized approach to analyze WSIs in
multicenter cohorts. Our findings demonstrated that the
stromal proportion predicted by SER achieved compar-
able performance to QHA in stratifying patients. Fur-
thermore, when subjected to multivariate analysis, the
SER-predicted stromal proportion remained an inde-
pendent predictor in training and validation datasets,
and demonstrated significant prognostic value across
three test datasets. These findings might have significant
implications for PDAC management.

Limitations
We acknowledge several limitations in our study. First,
the retrospective design introduces potential bias in
patient selection. Second, the sample size was relatively
small after separating training, validation, and internal
and external test datasets. Third, the retrospective nature
of the study prevented us from conducting spatial regis-
tration between WSIs and MRI data. Furthermore, future
studies should be conducted with prospective cohorts,
preferably in a multicenter setting.

Conclusions
In conclusion, our study demonstrated that SER of multi-
phase CE-MRI is a potential imaging biomarker for tissue
composition characterization and prognosis stratification
in PDAC.
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