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Abstract
Objectives To develop and validate an artificial intelligence (AI) system for measuring and detecting signs of carpal
instability on conventional radiographs.

Materials and methods Two case-control datasets of hand and wrist radiographs were retrospectively acquired at
three hospitals (hospitals A, B, and C). Dataset 1 (2178 radiographs from 1993 patients, hospitals A and B, 2018–2019)
was used for developing an AI system for measuring scapholunate (SL) joint distances, SL and capitolunate (CL) angles,
and carpal arc interruptions. Dataset 2 (481 radiographs from 217 patients, hospital C, 2017–2021) was used for testing,
and with a subsample (174 radiographs from 87 patients), an observer study was conducted to compare its
performance to five clinicians. Evaluation metrics included mean absolute error (MAE), sensitivity, and specificity.

Results Dataset 2 included 258 SL distances, 189 SL angles, 191 CL angles, and 217 carpal arc labels obtained from
217 patients (mean age, 51 years ± 23 [standard deviation]; 133 women). The MAE in measuring SL distances, SL
angles, and CL angles was respectively 0.65 mm (95%CI: 0.59, 0.72), 7.9 degrees (95%CI: 7.0, 8.9), and 5.9 degrees
(95%CI: 5.2, 6.6). The sensitivity and specificity for detecting arc interruptions were 83% (95%CI: 74, 91) and 64%
(95%CI: 56, 71). The measurements were largely comparable to those of the clinicians, while arc interruption detections
were more accurate than those of most clinicians.

Conclusion This study demonstrates that a newly developed automated AI system accurately measures and detects
signs of carpal instability on conventional radiographs.

Clinical relevance statement This system has the potential to improve detections of carpal arc interruptions and
could be a promising tool for supporting clinicians in detecting carpal instability.
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Key Points
● Artificial intelligence can accurately measure and detect signs of carpal instability on conventional radiographs.
● It measures scapholunate distances, scapholunate and capitolunate angles, and detects carpal arc interruptions.
The measurement accuracy was largely comparable to five clinicians with different specialties, and the arc interruption
detections were more accurate than most clinicians.

● All measurements and detections are explainable, and a new heat map technique was developed for visualizing the degree
and location of carpal arc interruptions in the image.

Keywords Wrist, Radiography, Artificial intelligence

Graphical Abstract

Introduction
Carpal instability exists when the carpal bones cannot
maintain their normal alignment under physiologic loads
and movements [1]. Most forms of carpal instability are
caused by acute trauma, such as ligament ruptures and
displaced fractures. Nontraumatic causes are less com-
mon and include inflammatory arthritis, infections, and
congenital disorders. While the true prevalence of carpal
instability remains unknown, traumatic ligament injuries
have been found to frequently co-occur with acute wrist
fractures. In studies using surgically verified data
(i.e., wrist arthroscopy), they were reported to be present
in 34% of all scaphoid fractures [2] and 13–64% of all
distal radius fractures [3–5]. Scapholunate (SL) ligament
tears were commonly identified in both types of fractures.

It is important to identify these injuries at an early stage,
as they could lead to SL dissociation and SL advanced
collapse (SLAC) if untreated [6]. It has been reported that
signs of carpal instability co-occurring with acute wrist
fractures are frequently overlooked on conventional
radiographs [7–9]. As conventional radiography is usually
the first imaging modality of choice after suspected wrist
trauma [10], it can be worthwhile to focus research efforts
on detecting signs of carpal instability on conventional
radiographs.
To identify carpal instability on conventional radio-

graphy, it is recommended to evaluate for widened
intercarpal joint distances and abnormal carpal angles
[1, 11]. Widening of the SL joint can be indicative of
traumatic tears of the SL ligament. In addition,
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disruptions of the carpal arc alignment are useful radi-
ological features for identifying this condition and other
causes of carpal instability [12]. However, carpal mea-
surements have been shown to be subject to human
variation and error [13–15] and may be unfamiliar to
clinicians other than musculoskeletal (MSK) radiologists
and (hand) surgeons. Therefore, a reliable and automated
system to measure and detect signs of carpal stability
could prove to be a valuable tool in daily clinical practice.
In recent years, artificial intelligence (AI) software has

shown high performance in automating various tasks in
the field of musculoskeletal radiology [16–19]. These
tasks range from quantifications, such as bone age
assessments and body composition measurements, to
lesion detections, such as bone fractures and tumors. In
light of these advances, we propose an explainable and
unified framework for automatically measuring and
detecting a wide variety of carpal instabilities. To limit the
scope of the study, we demonstrate the value of this fra-
mework for assessments of the SL joint distance, SL and
capitolunate (CL) angle, and carpal alignment. The pur-
pose of this study was twofold: (a) to develop and validate
an AI system that can accurately measure and detect signs
of carpal instability; and (b) to assess how this system
compares to clinicians with various specialties in mea-
suring and detecting signs of carpal instability on con-
ventional radiographs.

Materials and Methods
Datasets
This retrospective study was approved by the local insti-
tutional boards of the Radboud University Medical Center
(Radboudumc), Jeroen Bosch Hospital (JBZ), and Hospital
Gelderse Vallei (ZGV) in The Netherlands. Informed
written consent was waived, and data collection, anon-
ymization, and storage were performed in accordance
with local guidelines. Two datasets of hand, wrist, and
scaphoid radiographs were prepared for training and
evaluating the AI system. An overview of the character-
istics of these datasets is provided in Table 1. Additional
imaging parameters are provided in Appendix E1 (online).

Dataset 1
Dataset 1 consisted of 2178 radiographs (1993 patients)
that were obtained at Radboudumc and JBZ in
2018–2019. It consisted of an equal portion of frontal
view (including neutral, ulnar-deviated, clenched fist
anterior-posterior [AP] or posterior-anterior [PA], and
oblique) and lateral view radiographs. Radiographs were
excluded when the outlines of the carpal bones could not
be delineated due to metal implants and casts or excessive
degeneration, fusion, or destruction of bones. The latter
conditions can occur due to high-energy trauma or

chronic disease, such as end-stage rheumatoid arthritis.
The annotation protocol and a flow chart of the training
data selection (dataset 1) are respectively provided in
Appendices E2 and E3 (online).

Dataset 2
Dataset 2 consisted of 481 radiographs (217 patients; one
study per patient) obtained at ZGV in 2017–2021. This
dataset served for evaluating the automated measure-
ments of the AI system. The studies were preselected
based on the original radiology reports to balance the
number of patients with and without signs of carpal
instability. A flow chart of the test data selection (dataset
2) is shown in Fig. 1. Stricter exclusion criteria were

Table 1 Details of the experimental datasets

Variable Dataset 1 Dataset 2

Total Observer
study set

Task Train AI system Test AI
system

Compare AI
system

No. of patients 1993 217 87
Sex

Male 890 (44.7%) 84 (38.7%) 35 (40.2%)
Female 1103 (55.3%) 133 (61.3%) 52 (59.8%)

Age
All 45 ± 23 51 ± 23 56 ± 22
Male 40 ± 22 44 ± 21 50 ± 18
Female 49 ± 24 55 ± 24 59 ± 23

Number of
radiographs

2178 481 174

Radiograph Location
Hand 778 (35.7%) 46 (9.6%) 4 (2.3%)
Wrist 1265 (58.1%) 395 (82.1%) 162 (93.1%)
Scaphoid 135 (6.2%) 40 (8.3%) 8 (4.6%)

View
Neutral AP/PA 775 (35.6%) 210 (43.7%) 70 (40.2%)
Clenched fist AP/
PA

17 (0.8%) 48 (10.0%) 17 (9.8%)

Ulnar-deviated AP/
PA

29 (1.3%) 3 (0.6%) 0 (0%)

Oblique 286 (13.1%) 29 (6.0%) 0 (0%)
Lateral 1071 (49.2%) 191 (39.7%) 87 (45.1%)
Number studies 2093 217 87

Carpal stability statusa

Abnormal SL
distance

NA 65 39

Abnormal SL angle NA 98 38
Abnormal CL angle NA 20 20
Interrupted carpal
arcs

NA 70 44

Normal
measurements

NA 83 28

Fracture statusb

Wrist fracturec NA 66 31
Metacarpal fracture NA 7 2
No fracture NA 145 54

Source(s) Radboudumc, JBZ ZGV ZGV
Period 01/2018–04/2019 01/2017–12/

2021
01/2017–11/
2021

Percentages with respect to the total dataset size are in parentheses. Rounding
errors were resolved using the largest remainder method. aThe carpal stability
status was only determined for a subset of dataset 1 for development purposes
(see Appendix E2 [online] for more details). bThe fracture status according to the
original radiology reports. cIncludes the carpal bones and the distal radius and
the ulna.
NA not applicable, Radboudumc Radboud University Medical Center, ZGV
Hospital Gelderse Vallei
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Fig. 1 Flowchart for the inclusion and exclusion of studies in dataset 2 (test set). The number of studies at each step is denoted with n. Studies were
preselected from the text search results in random order. aBased on the study metadata (e.g., study date, patient demographics, report), these studies
were found to be duplicates of studies that were already included
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applied as compared to dataset 1 by excluding radio-
graphs with (a) any overprojection caused by metal
implants and casts, (b) no neutral (relaxed) lateral wrist
position, (c) non or partially ossified and developed carpus
(in children). The first criterion was added to maximize
the reliability of the measurements. The latter two criteria
were minimally required for performing the measure-
ments (see “Measurement Definitions” section). The
annotation protocol is described in the section “Reference
Standard”.
A subset of dataset 2 was used for conducting the sub-

sequent observer study (see “Observer study” section). It
consisted of 87 studies (193 radiographs from 87 patients).
The subset was balanced by including at least 20 studies for
each of the following conditions: abnormal CL angle,
abnormal SL angle, abnormal SL joint distance, interrupted
carpal arcs, and no abnormal measurements. The distribu-
tion of distance and angle measurement values for dataset 2
(full and subset) is provided in Appendix E4.

Measurement definitions
The measurements investigated in this study were defined
according to the literature [20]. The SL joint distance was
measured on the mid-points of the scaphoid-lunate facet
on the AP/PA view. Dornberger et al [21] showed that
thresholds of 3.0 and 3.7 mm on respectively neutral and
ulnar-deviated views (Stecher’s projections) were optimal.
SL joint distances exceeding these thresholds were con-
sidered abnormal in this study. For children (6–14 years
old), the thresholds were set to the upper limit of
the normal values per age group, as reported by
Kaawach et al [22].
The SL and CL angles were defined as the angles

between the long axis of the scaphoid or capitate and the
mid-plane axis of the lunate on the lateral radiographic
view [11]. In a neutral wrist position, the SL angle should
be between 30 and 60 degrees, and the CL angle should be
less than 30 degrees. Values exceeding these reference
values were considered abnormal. The same thresholds
were used for children and adolescents.
The carpal arcs were defined on the neutral AP/PA view

as proposed by Gilula [12]. The arcs were considered
interrupted or abnormal in cases of carpal dislocations,
carpal collapses, or dislocated carpal fractures. Dissociations
causing the arcs only to lengthen were not considered
interruptions unless bones subluxated proximally into the
widened joint spaces. This also applied to normal anatomical
variants (i.e., shortened triquetrum or bi-lobed/type II lunate
morphology [23]) or narrowed joint spaces.

Reference standard
The reference standard was determined by a consensus
reading of two experienced MSK radiologists (M.R.

and B.M., with 27 and 26 years of experience, respec-
tively). They independently annotated the test dataset
(dataset 2) and resolved any discrepancies using the
consensus reading procedure as described in Appendix E5
(online).

AI pipeline
The pipeline of the AI system is summarized in Fig. 2.
The system was designed to take a radiograph as input
and to return the following outputs (depending on the
provided view): (a) SL joint distance in millimeters, (b)
SL angle in degrees, (c) CL angle in degrees, (d) polylines
of the carpal arcs, and (e) markers of potential disrup-
tions of the carpal arcs with an overall disruption score.
The pipeline consisted of three general steps. Two
convolutional neural networks (CNNs) first segmented
the anterior and lateral sides of the carpals on the AP/
PA view and lateral view, respectively. Next, the orien-
tation (major/minor axis) and articular facet joint sur-
faces of the bones were determined using active
appearance models (AAMs). Last, all measurements and
subsequent detections from the articular surfaces and
bone axes were automatically derived by the AI system.
Interruptions of the carpal arcs were determined by
comparing the observed and reconstructed hypothetical
shape of the carpal arc polylines if noninterrupted
(obtained from a point distribution model [PDM]).
A newly developed heat map technique using vectors
and color-coding visualizes the degree (z-score) and
location of carpal arc interruptions in the original image
(Fig. 2). The system is publicly available at https://grand-
challenge.org/algorithms/, where it can be run in a web
browser. A detailed description of the processing steps
and training procedure is provided in Appen-
dices E6 and E7 (online).

Observer study
An observer study was conducted among five clinicians:
an MSK radiologist (M.V.), non-MSK radiologist (S.K.),
hand surgeon (S.Z., EBHS certified), junior doctor on
general surgery (J.v.A.), and emergency (ER) doctor (T.O.-
B.) with 14, 12, 16, 1, and 24 years of experience,
respectively. The clinicians independently measured in
the subset of database 2 the SL joint distance, SL and CL
angle (derived from axes) as defined in the “Measurement
Definitions” section. They indicated their confidence on a
five-point Likert scale whether the carpal arcs were
interrupted. The lowest and highest scores, respectively,
indicated that the carpal arcs were definitely normal and
abnormal, while the neutral option (uncertain, interrup-
tions might be present or not present) was the cut-off
point for the clinical decision for follow-up examination.
The clinicians assessed all cases using the Cirrus Core
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Fig. 2 Overview of the (AI) pipeline for measuring and detecting signs of carpal instability in frontal and lateral view radiographs. The spatial and
geometric properties of the relevant carpal bones are determined by segmentation and are then used to identify the articular facet joint surfaces. Based
on the obtained bone surfaces and angles, the carpal instability measurements and detections can be conducted. The generated carpal arcs are
visualized as color-coded points (n= 100) that form an easily interpretable heatmap. The warmer colors indicate significant deviations from the
reconstructed hypothetical normal arcs (expressed as z-scores). These deviations or distances are shown by the small tails attached to the points
(displacement vectors). More information can be found in Appendix E6 (online)
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Workstation on the web platform Grand Challenge (ver-
sion 2022.07, 2022) [24] and had access to all radiographic
views per patient.

Statistical analysis
Evaluation metrics
The segmentation and landmark localization component of
the AI system were separately evaluated on dataset 1. The
evaluation details are provided in Appendix E8 (online).
The whole AI system was evaluated on dataset 2. The
accuracy of the measurements and generated carpal arcs
were respectively evaluated using the mean absolute error
(MAE) and mean Fréchet distance (MFD). The measure-
ment agreement with the reference standard was evaluated
using the bias and limits of agreement (LoA) obtained from
a Bland-Altman plot analysis [25]. The ability to detect
abnormal distances, angles, and carpal arc interruptions
was evaluated using the following metrics: sensitivity, spe-
cificity, and area under the receiver operating characteristic
(ROC) curve (AUC) (arc interruptions only). For evaluating
carpal arc interruption detections, the detection threshold
of the AI system was selected that maximized the Youden’s
index. The Fréchet distance was calculated using the
similarity measures Python library (version 0.7.0, 2023)
[26]. The Bland-Altman plot analysis was conducted using
the pyCompare Python library (version 1.5.4, 2022) [27].
The other metrics were calculated using the scikit-learn
Python library (version 1.2.1, 2023) [28].

Significance tests
Stratified bootstrapping with 1000 iterations was applied
for estimating 95% confidence intervals (CIs), except for
the Bland-Altman plots that were calculated as described
in [25]. Stratification was conducted by grouping data per
1 mm (distances), 10 degrees (angles), and binary labels
(detections). Significance testing was performed with two-
sided paired permutation tests with 1000 iterations using
the MLxtend Python library (version 0.21.0, 2022) [29],
except for the AUCs that were compared with DeLong
tests [30] using the pyroc Python library (version 0.2.0,
2022) [31]. Differences with a p value smaller than 0.05
were considered significant.

Results
Test data characteristics
Five hundred and seventy-four studies with and without
signs of carpal instability were preselected based on the
radiology reports. After the initial visual assessment, 196
studies were excluded. These studies involved the fol-
lowing cases: wrist in cast and/or with osteosynthesis
material (n= 111), both hands depicted in a single
radiograph (n= 61), carpal bones not fully depicted
(n= 10), too severe degeneration or destruction of the

carpal bones (n= 8), too young patient (≤ 6 years old;
n= 6). Cases with severe degeneration or destruction
(e.g., SLAC, displaced fractures) were only excluded when
the annotation was no longer possible due to disappeared
articular surfaces (n= 6), excessive osteoporosis (n= 1),
or complete isolated scaphoid dislocation (n= 1).
Next, from the 220 studies randomly sampled for the

consensus reading procedure, two duplicate studies and
one study examining a patient with insufficient ossifica-
tion of the carpal bones were excluded. Three SL distance
and SL angle measurements were respectively excluded
due to insufficient visibility of the anterior side of the
lunate and the lateral side of the scaphoid. This resulted
into a final selection of 217 studies from 217 patients
(mean age, 51 years ± 23 [standard deviation {SD}]; 133
women). As the studies contained multiple radiographic
series, the measurements included 258 SL distances, 189
SL angles, 191 CL angles, and 217 sets of labelled carpal
arcs. All studies selected for the observer study (subset of
dataset 2) contained at least one AP/PA and lateral view
radiograph (no excluded measurements), so that all
measurements could be conducted by the clinicians.

Evaluation of the AI system
Measurement and detection results
Table 2 presents the measurement error (MAE, bias, LoA,
MFD) of the AI system for SL joint distances, SL and CL

Table 2 Measurement results of the AI system on dataset 2

Measurement Value 95%CI

SL distance (mm) (n= 258)

MAE 0.65 (0.59, 0.72)

Bias −0.46 (−0.58, −0.35)

Lower LoA −2.32 (−2.52, −2.12)

Upper LoA +1.40 (+1.20, +1.59)

SL angle (degrees) (n= 189)

MAE 7.9 (7.0, 8.9)

Bias +0.6 (−0.9, +2.1)

Lower LoA −20.0 (−22.5, −17.4)

Upper LoA +21.2 (+18.6, +23.7)

CL angle (degrees) (n= 191)

MAE 5.9 (5.2, 6.6)

Bias +1.2 (+0.1, +2.3)

Lower LoA −13.6 (−15.4, −11.7)

Upper LoA +15.9 (+14.1, +17.8)

Carpal arcs (mm) (n= 217)

MFD proximal arc 1.34 (1.20, 1.49)

MFD middle arc 1.15 (1.02, 1.29)

MFD distal arc 1.25 (1.11, 1.41)

The bias (mean) and LoA are reported for the difference between the AI system
and ground truth (GT) (AI – GT). The number of measurements is denoted with
n. mm = millimeter.
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angles, and carpal arcs with their 95% CIs in dataset 2. The
MAEs in measuring the SL joint distance, SL angle, and CL
angle on the total dataset were 0.65mm, 7.9 degrees, and
5.9 degrees, respectively. The corresponding Bland-Altman
plots are shown in Fig. 3, and the detection results are
included in Appendix E9. The MFDs in measuring the

proximal, middle, and distal carpal arc on the total dataset
were 1.34, 1.15, and 1.25mm, respectively. The sensitivity,
specificity, and AUC in detecting interruptions in the carpal
arcs were 83% (95%CI: 74%, 91%), 64% (95%CI: 56%, 71%),
and 0.80 (95%CI: 0.73, 0.87), respectively (detection
threshold was set to 11%). The corresponding ROC curve
with 95%CI bands is shown in Fig. 4a.

Fig. 3 Bland-Altman plots of the measurement agreement between the
AI system and the GT on the measurements of the SL distance (n= 258,
see a), SL angle (n= 189, see b), and CL angle (n= 191, see c) in dataset 2.
Each marker represents one paired measurement. The dashed lines
represent the mean difference (blue) and LoA (orange). The shaded bands
represent 95%CI

Fig. 4 a ROC curve with the operating point of the carpal arc interruption
detection results of the AI system on dataset 2 (70 positive cases, 147
negative cases). b ROC curves of the carpal arc interruption detection
results of the AI system and those of the clinicians on the observer study
subset (44 positive cases, 43 negative cases). Each case represents one
study from one patient. The shaded bands represent 95%CIs. The black
line represents no ability to discriminate between interrupted and non-
interrupted arcs. AUC = area under the ROC curve
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Results of auxiliary system components
The carpal bone segmentation and landmark localization
results are included in Appendices E10 and E11 (online).

Comparison of the AI system to the clinicians
Measurement and detection results
Table 3 presents the measurement error (MAE, bias, LoA)
of the AI system and clinicians for SL joint distances, SL
and CL angles with their 95%CIs and p values. The cor-
responding Bland-Altman plots are provided in Appen-
dix E12. Table 4 presents the detection performance

(sensitivity, specificity, AUC) of the AI system and clin-
icians for interrupted carpal arcs with their 95%CIs and
p values. The ROC curves for the carpal arc interruption
detections are shown in Fig. 4b.

Failure case analysis
A qualitative analysis of the failure cases of the AI system
and clinicians showed that the AI system made 13 mea-
surement and subsequent detection errors that none of
the clinicians made (from a total of 52 errors [AI]: 4/12
[SL distance], 5/16 [SL angle], 3/8 [CL angle], 1/16 [carpal

Table 3 Comparison of measurement results between the AI system and clinicians

Reader SL distance measurement (n= 87)

MAE

Value p Bias Lower LoA Upper LoA

AI 0.62 (0.50, 0.73) −0.37 (−0.56, −0.18) −2.10 (−2.43, −1.78) +1.36 (+1.03, +1.68)

Junior doctor 0.60 (0.50, 0.72) 0.89 −0.15 (−0.34, +0.03) −1.87 (−2.19, −1.55) +1.57 (+1.25, +1.89)

Hand surgeon 0.40 (0.33, 0.49) 0.003 −0.03 (−0.16, +0.09) −1.17 (−1.38, −0.96) +1.10 (+0.89, +1.31)

ER doctor 0.60 (0.50, 0.72) 0.88 +0.23 (+0.06, +0.40) −1.32 (−1.61, −1.03) +1.78 (+1.49, +2.07)

Radiologist 0.49 (0.38, 0.63) 0.21 +0.04 (−0.13, +0.21) −1.51 (−1.80, −1.22) +1.60 (+1.31, +1.89)

MSK radiologist 0.57 (0.47, 0.66) 0.49 +0.05 (−0.12, +0.22) −1.52 (−1.81, −1.22) +1.62 (+1.33, +1.92)

Reader SL angle measurement (n= 87)

MAE

Value p Bias Lower LoA Upper LoA

AI 7.7 (6.7, 8.7) +2.1 (+0.03, +4.2) −17.2 (−20.8, −13.6) +21.4 (+17.8, +25.0)

Junior doctor 9.0 (7.6, 10.4) 0.11 +4.6 (+2.3, +6.8) −16.4 (−20.3, −12.5) +25.5 (+21.6, +29.4)

Hand surgeon 7.7 (6.4, 9.0) 0.97 −4.3 (−6.2, −2.4) −22.0 (−25.3, −18.7) +13.4 (+10.1, +16.7)

ER doctor 10.9 (9.3, 12.7) 0.01 −8.5 (−11.0, −6.0) −31.4 (−35.6, −27.1) +14.3 (+10.1, +18.6)

Radiologist 9.8 (7.8, 12.0) 0.048 +3.1 (+0.2, +6.0) −23.6 (−28.5, −18.6) +29.7 (+24.8, +34.7)

MSK radiologist 6.9 (5.6, 8.3) 0.39 −1.5 (−3.5, +0.6) −20.4 (−23.9, −16.8) +17.4 (+13.9, +21.0)

Reader CL angle measurement (n= 87)

MAE

Value p Bias Lower LoA Upper LoA

AI 6.0 (5.0, 7.0) +0.6 (−1.1, +2.2) −14.7 (−17.6, −11.9) +15.9 (+13.0, +18.7)

Junior doctor 4.5 (3.8, 5.2) 0.03 −0.3 (−1.5, +0.9) −11.4 (−13.4, −9.3) +10.8 (+8.7, +12.8)

Hand surgeon 4.0 (3.3, 4.8) 0.01 +0.2 (−1.0, +1.4) −10.8 (−12.9, −8.8) +11.3 (+9.2, +13.4)

ER doctor 5.8 (4.7, 6.9) 0.82 −0.65 (−2.4, +1.1) −17.1 (−20.1, −14.0) +15.8 (+12.7, +18.9)

Radiologist 5.7 (4.7, 6.9) 0.73 +2.2 (+0.6, +3.8) −12.6 (−15.4, −9.9) +17.0 (+14.3, 19.8)

MSK radiologist 3.4 (2.8, 3.9) < 0.001 +0.4 (−0.5, +1.3) −8.1 (−9.7, −6.5) +8.9 (+7.3, +10.5)

The bias (mean) and LoA are reported for the difference between the AI system or reader and the GT (AI/reader – GT). The number of measurements is denoted with
n. 95%CIs are reported in parentheses. The p values refer to the differences in evaluation metrics with respect to the AI system.
ER emergency room.
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arcs]). Example failure cases corresponding to the SL
distances, SL and CL angles are shown in Fig. 5, and those
corresponding to the carpal arcs are shown in Fig. 6. In
four abnormal SL distance detection errors (false nega-
tives), the segmentation of the scaphoid or lunate was
elongated into the widened SL joint space (n= 2) or the
measurement was carried out on the nonanterior side of
the lunate (n= 2). In the former failure cases, displaced
fracture parts of the distal radius moved into the SL joint
space. In five abnormal SL angle detection errors (four
false positives, one false negative), the lunate axis sig-
nificantly deviated due to prediction errors of the mid-
point on the lunate-radius facet. In the three CL angle
detection errors (two false positives, one false negative),
the lunate axis (n= 3) and capitate axis (n= 2) sig-
nificantly deviated due to prediction errors of the mid-
point on the lunate-radius, lunate-capitate, or capitate-
metacarpal III facet. In the abnormal angle detection
failure cases, the lunate was either significantly rounded
or fractured (with displacement), or there was substantial
overprojection on the lunate and capitate (from the other
bones). In one carpal arc interruption detection error
(false positive), the proximal carpal arc had a nonrelevant
interruption, as the proximal contour of the lunate
diverged from the radius, and the scaphoid was slightly
tilted.
There were 20 measurement and subsequent detection

errors made by the majority of clinicians that were not
made by the AI system (from a total of 52 errors [clin-
icians]: 3/8 [SL distance], 6/16 [SL angle], 2/5
[CL angle], 9/23 [carpal arcs]). Example failure cases
corresponding to the SL distances, SL and CL angles are
shown in Fig. 5, and those corresponding to the carpal
arcs are shown in Fig. 6. In three widened SL distance
detection errors (false positives), the clinicians disagreed
on the location of the anterior side of the lunate (due to
pseudo-delineated or irregular contour) (n= 2) or sca-
phoid (due to pseudo-overarching surface) (n= 1). In six

abnormal SL angle detection errors (three false positives,
three false negatives), the scaphoid axis deviated due to
overprojection on the dorsal side, especially from the
triquetrum. In two abnormal CL angle detection errors
(one false positive, one false negative), the capitate axis
deviated due to an asymmetrical bone shape. In nine
carpal arc interruption detection errors (one false posi-
tive, eight false negatives), the capitate and lunate
respectively slightly subluxated proximally toward the
widened SL joint space (n= 5) and radial carpal joint
(n= 3), or the clinicians disagreed on the congruence of
the articular surfaces between the lunate and its sur-
rounding bones (n= 1).

Discussion
Measurements for carpal instability on conventional
radiographs can be inconsistent between examiners and
may be unfamiliar to less experienced clinicians. This
multicenter study shows that AI driven measurements
and detections of radiological signs of carpal instability
are feasible at a clinically acceptable level. The MAEs in
measuring SL distances, SL angles, and CL angles were
0.65 mm, 7.9 degrees, and 5.9 degrees, respectively. The
sensitivity and specificity for detecting arc interruptions
were 83 and 64%, respectively. The observer study shows
that the AI system had a comparable accuracy to most
clinicians in measuring SL distances and SL angles (equal
or higher [p < 0.05] than, respectively, four and five clin-
icians). It had a lower accuracy in measuring the CL angle
than most clinicians (p < 0.05 for three clinicians), but the
difference was slight (MAE, 6.0 vs. 4.0 degrees [clinician
average]). The AI system had a higher sensitivity
than three clinicians at equal specificity in detecting
carpal arc interruptions (sensitivity/specificity, 73%/91%
vs. 45%/95% [clinician average], p < 0.05 [sensitivity]
and p ≥ 0.05 [specificity]). To the best of our knowledge,
only Keller et al [32] have investigated the application of
AI for one of the tasks and also demonstrated that SL

Table 4 Comparison of carpal arc interruption detection results between the AI system and clinicians

Reader Sensitivity (%) Specificity (%) AUC

Value Frac p Value Frac p Value p

AI 73 (59, 86) 32/44 91 (81, 98) 39/43 0.87 (0.79, 0.93)

Junior doctor 75 (61, 86) 33/44 > 0.99 81 (70, 91) 35/43 0.37 0.83 (0.75, 0.90) 0.35

Hand surgeon 48 (34, 64) 21/44 < 0.001 95 (88, 100) 41/43 0.69 0.84 (0.76, 0.91) 0.50

ER doctor 36 (23, 50) 16/44 < 0.001 93 (84, 100) 40/43 > 0.99 0.71 (0.62, 0.80) < 0.001

Radiologist 50 (36, 64) 22/44 0.01 98 (93, 100) 42/43 0.25 0.81 (0.74, 0.89) 0.18

MSK radiologist 84 (73, 93) 37/44 0.25 70 (56, 84) 30/43 0.01 0.89 (0.82, 0.94) 0.65

95%CIs are reported in parentheses. The p values refer to the differences in evaluation metrics with respect to the AI system. “Fraction” has been abbreviated to “Frac”.
The carpal arc interruption detection threshold of the AI system was set to 11%.
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distance measurements can be accurately automated.
Based on our findings, we expect that AI can potentially
improve detections of signs of carpal instability and
enable efficient screening without additional workload for
clinicians.

The failure case analysis revealed that there were
qualitative differences between the AI system and clin-
icians. It was found that 25% (13/52) of the detection
errors of the system were not made by any clinician.
However, conversely, the system did not make 38% (20/
52) of the detection errors made by the majority of
clinicians. Compared to the clinicians, the system dis-
played a slight disadvantage in measuring CL angles and
carrying out measurements in patients with a displaced
wrist fracture. Given the co-occurrence of ligament
injuries with acute wrist fractures, this is a relevant
finding that should be addressed in future research.
Nevertheless, it did not result in a lower detection per-
formance overall.
The AI system displayed an advantage over the

clinicians in determining the scaphoid axis when over-
projection was present and in detecting subtle arc inter-
ruptions due to subluxations. In this regard, there was no
distinct difference between clinicians who could be con-
sidered more specialized (i.e., MSK radiologist, hand
surgeon) and less specialized (i.e., junior doctor, ER doc-
tor) in assessing carpal instability. This suggests that the
system may have merit for both kinds of clinicians in
these cases. However, it is important to note that generally
the more specialized clinicians tended to have a lower
measurement and detection error than the less specialized
clinicians. Furthermore, while the system had a higher
sensitivity for arc interruptions than the ER doctor, non-
MSK radiologist, and hand surgeon, the difference in
AUC was only significant for the ER doctor. This indicates
that the confidence scores of the hand surgeon and
radiologist were on the conservative side (i.e., the optimal
threshold was lower than the neutral point on the Likert
scale). For those clinicians, the system could potentially be
beneficial in confirming suspicions of interrupted carpal
arcs. Follow-up research with more clinicians per pro-
fession is required to confirm our findings.
This study had several limitations. First, the studies in

the test dataset were collected in a case-control manner
and were mainly (pre)selected based on the original

Fig. 5 Example measurement and subsequent detection errors of
abnormal SL joint distances, SL angles, and CL angles made by the AI
system and clinicians. The lines in yellow, cyan, and orange, respectively,
represent the AI, clinicians, and GT measurements. The axes of the angle
measurements are shown in white with a dense pattern (AI or clinicians)
and a dashed pattern (GT). The start and end coordinates of the lines
corresponding to clinicians and GT have been averaged for this figure.
The measurement value and corresponding GT are provided below each
panel. a 77-year-old male with a widened SL joint distance (> 3 mm).
b 37-year-old male with a normal SL joint distance. c 36-year-old male
female with a normal SL angle. d 37-year-old male with a normal CL
angle. e 74-year-old female with a normal SL angle. f 68-year-old female
with an abnormal CL angle (> 30 degrees)
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Fig. 6 Example detection errors of carpal arc interruptions made by the AI system (a) and clinicians (b and c). The AI prediction and GT label are shown
in the upper left corner of each image. The interruption scores of the clinicians are shown below each image (ranging from 0% [no interruption] to 100%
[interruption]). The carpal arcs generated by the AI system are overlaid as color-coded points on the original image. The points correspond to z-scores:
the higher the z-score, the more abnormal and hence indicative the point is of an interruption (see more information in Appendix E6 [online]). The
deviations from the hypothetical normal shape of the carpal arcs are shown by the small tails attached to the points (displacement vectors). a 53-year-old
female with a distal radius fracture and slight narrowing of the radiocarpal joint but normal carpal alignment. b 82-year-old male with the capitate
subluxating proximally into the direction of a widened SL joint space. c 26-year-old male with slight angulation of the lunate accompanied by a widened
SL joint space and semiacute scaphoid fracture. ER Doc = emergency doctor, H Surg = hand surgeon, Jr Doc = junior doctor, MSK Rad =
musculoskeletal radiologist, Rad = radiologist
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radiology reports. Radiology reports were used for the
selection due to the absence of reliable and specific
diagnosis codes in the electronic health record (EHR)
system. Subtle signs of carpal instability may not always
have been reported, and this could have introduced
selection bias, although we found that the test dataset
contained a sufficient variety of measurement values.
Second, cases with osteosynthesis material (e.g., metal
plates, screws, k-wires) and casts were excluded in the test
dataset to maximize the reliability of the measurements.
We expect that this does not significantly affect the
software performance as long as the joint spaces and
surfaces are freely projected, but this should be investi-
gated in future research. Third, we only focused on
assessing the accuracy of the automated measurements
and did not link the derived detections of carpal instability
signs to the diagnosis. Carpal instability can be diagnosed
with wrist arthroscopy or alternatively with MRI and CT
arthrography. Nonetheless, assessing the diagnostic value
of the measurements was beyond the scope of this study
and should be addressed at a later stage of development.
Last, the software was compared against a panel of clin-
icians with different professions, as the diagnosis and
treatment of carpal instability often involves a multi-
disciplinary approach. Although this comparison provided
an estimate of the performance across clinicians, the
heterogeneity of the panel also meant that no universal
performance could be extracted.
In conclusion, this study provides preliminary evidence

that an automated AI system can accurately measure and
detect radiological signs of carpal instability. The auto-
mated measurements and detections were found to be
largely comparable to those of clinicians and may help to
raise awareness of carpal instability in clinical practice.
The system displayed the potential in improving the
detections of carpal arc interruptions by both specialized
and less specialized clinicians. The proposed framework
could be useful for automating other carpal instability
measurements and measurements in other musculoske-
letal structures. Future research should validate the AI
system in an observer study with more clinicians per
profession and investigate its potential impact on patient
outcomes in a concurrent reading setting.
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