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Abstract 

Objectives  To evaluate the performance of multiparametric neurite orientation dispersion and density imaging 
(NODDI) radiomics in distinguishing between glioblastoma (Gb) and solitary brain metastasis (SBM).

Materials and methods  In this retrospective study, NODDI images were curated from 109 patients with Gb (n = 
57) or SBM (n = 52). Automatically segmented multiple volumes of interest (VOIs) encompassed the main tumor 
regions, including necrosis, solid tumor, and peritumoral edema. Radiomics features were extracted for each main 
tumor region, using three NODDI parameter maps. Radiomics models were developed based on these three NODDI 
parameter maps and their amalgamation to differentiate between Gb and SBM. Additionally, radiomics models were 
constructed based on morphological magnetic resonance imaging (MRI) and diffusion imaging (diffusion-weighted 
imaging [DWI]; diffusion tensor imaging [DTI]) for performance comparison.

Results  The validation dataset results revealed that the performance of a single NODDI parameter map model 
was inferior to that of the combined NODDI model. In the necrotic regions, the combined NODDI radiomics model 
exhibited less than ideal discriminative capabilities (area under the receiver operating characteristic curve [AUC] = 
0.701). For peritumoral edema regions, the combined NODDI radiomics model achieved a moderate level of discrimi-
nation (AUC = 0.820). Within the solid tumor regions, the combined NODDI radiomics model demonstrated superior 
performance (AUC = 0.904), surpassing the models of other VOIs. The comparison results demonstrated that the NODDI 
model was better than the DWI and DTI models, while those of the morphological MRI and NODDI models were similar.

Conclusion  The NODDI radiomics model showed promising performance for preoperative discrimination 
between Gb and SBM.

Clinical relevance statement  The NODDI radiomics model showed promising performance for preoperative dis-
crimination between Gb and SBM, and radiomics features can be incorporated into the multidimensional phenotypic 
features that describe tumor heterogeneity.
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Key Points 

• The neurite orientation dispersion and density imaging (NODDI) radiomics model showed promising performance for 
preoperative discrimination between glioblastoma and solitary brain metastasis.

• Compared with other tumor volumes of interest, the NODDI radiomics model based on solid tumor regions performed best 
in distinguishing the two types of tumors.

• The performance of the single-parameter NODDI model was inferior to that of the combined-parameter NODDI model.

Keywords  Glioblastoma, Solitary brain metastasis, NODDI, Multiple volumes of interest, Deep learning

Introduction
Glioblastoma (Gb) and solitary brain metastasis (SBM) 
are the most common brain tumors in adults [1–6]. Pre-
operative differentiation between Gb and SBM is clinically 
critical for aiding individualized treatment decisions. Histo-
pathology is the gold standard for diagnosing Gb and SBM, 
usually with biopsy or open surgical resection [7]. However, 
biopsy or open surgical resection may increase the risk of 
morbidity and mortality in older or weak patients. There-
fore, an accurate non-invasive diagnosis is preferable.

Magnetic resonance imaging (MRI) is the primary imaging 
modality for diagnosing brain tumors to obtain multi-view 
information to help neuroradiologists differentiate various 
pathologies. However, as both Gb and SBM often present 
a similar anatomic MRI appearance, morphological MRI 
is sometimes ambiguous in differentiating the two types of 
tumors [8]. Moreover, up to 40% of cases are incorrectly clas-
sified by morphological MRI alone [9]. Diffusion-weighted 
imaging (DWI) can be used to assess the spread and prolif-
eration of brain tumors and can differentiate between Gb 
and SBM [10, 11]. Advanced neurite-oriented diffusion and 
densitometric imaging (NODDI) is an extension of DWI, 
which includes the isotropic volume fraction (ISOVF), intra-
cellular volume fraction (ICVF), and orientation dispersion 
index (ODI) [12–16]. These parameters can assess the com-
plexity and heterogeneity of the brain microstructure in vivo, 
and can also allow quantitative analysis to elucidate other 
disease pathologies. In a pioneering study of NODDI, the 
extracellular volume fraction (VEC) in the peritumoral signal 
change area was more useful than intracellular and isotropic 
volume fraction in distinguishing Gbs from SBMs [17]. Cur-
rently, VEC, calculated through the ISOVF and ICVF, can 
be replaced by the ODI. Another study assessed the NODDI 
histogram analysis for distinguishing between two tumor 
types and compared the diagnostic performance of placing 
regions of interest (ROIs) [18]. Traditional diffusion data 
analysis methods involve pixel/voxel comparisons to identify 
lesion differences or rely on the mean signal for ROI-based 
investigations. These traditional studies are often hypothesis-
free and only reveal differences between Gb and SBM across 
sparse imaging features, providing insufficient information 
to elucidate the complex biology underlying the identified 
differences in diffusion signals.

Radiomics can acquire quantitative imaging signa-
tures at a high throughput and correlate imaging signa-
tures with targeted clinical outcomes [19–25]. ROIs and 
volumes of interest (VOIs) are delineated on the subre-
gions of tumors and lesions [18, 26, 27]. Thus, radiomics 
offers diverse imaging information and helps to explore 
the tumor microenvironment by analyzing well-defined 
subregional features that more precisely describe tumor 
heterogeneity. Radiomics based on multiple ROIs/VOIs 
can help provide potential evidence for the correlation 
between imaging and tumor heterogeneity, facilitating the 
integration of advanced imaging techniques and analysis 
methods into clinical practice. Additionally, it has also 
been used to identify survival stratification in Gb [28].

To the best of our knowledge, no radiomics studies have 
been conducted based on NODDI to distinguish between 
Gb and SBM. In this study, we evaluated the utility of radiom-
ics analysis of NODDI based on multiple VOIs in identifying 
SBM and Gb, compared its discriminatory performance with 
morphological MRI and diffusion MRI, and attempted to 
analyze the biological significance of the NODDI radiomics 
model.

Materials and methods
Ethics consideration
This retrospective study was approved by our institu-
tional ethics committee, which waived the requirement 
for obtaining informed patient consent.

Patients
The medical records of patients with histologically proven 
Gb or SBM at our institution between November 2015 and 
September 2021 were reviewed to determine enrolment eli-
gibility according to the inclusion and exclusion criteria. All 
the enrolled patients were classified based on the World 
Health Organization 2016 guidelines. The inclusion and 
exclusion criteria are shown in Supplemental Fig.  1. Over-
all, 109 patients met the study criteria and were divided into 
a training dataset (December 23, 2015, and October 9, 2019 
[n = 76]) and a time-independent validation dataset (October 
18, 2019, to September 26, 2021 [n = 33]). Demographic and 
clinical data are summarized in Table 1.
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Fig. 1  Radiomics workflow

Table 1  Clinical characteristics of the patients in the training and test datasets

Gb, glioblastoma; SBM, single brain metastasis; SD, standard deviation

Characteristic Training dataset (n = 76) Validation dataset (n = 33) p value

Gb
(n = 40)

SBM
(n = 36)

p value Gb
(n = 17)

SBM
(n =16)

p value

Age, years

  Mean ± SD 53.0 ± 10.0 52.9 ± 11.5 0.973 55.4 ± 10.7 58.7 ± 9.9 0.369 0.069

Gender, n 0.299 0.226 0.994

  Male (%) 22 (55.0) 24 (66.7) 12 (70.6) 8 (50.0)

  Female (%) 18 (45.0) 12 (33.3) 5 (29.4) 8 (50.0)

Variety of SBM, n

Lung, n

  Adenocarcinoma (%) 25 (69.4) 13 (81.1)

  Squamous cell carcinoma (%) 1 (2.8)

  Neuroendocrine carcinoma (%) 4 (11.1) 1 (6.3)

  Small cell lung carcinoma (%) 1 (2.8)

  Poorly differentiated carcinoma (%) 1 (2.8)

Stomach, n

  Adenocarcinoma (%) 1 (2.8) 0

  Kidney, n

  Clear cell carcinoma (%) 1 (2.8) 1 (6.3)

  Uterus, n

  Endometrial carcinoma (%) 0 1 (6.3)

  Unknown site, n (%) 2 (5.5)
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Sample size and radiomics number estimation
According to the events per predictor variable and thumb 
rules, 10–15 samples are required for each predictor 

variable to yield a stable estimate [26, 29]. For the power 
calculation of the validation dataset, > 11 patients were 
required to acquire 80% power and a type I error rate of 5% 

Fig. 2  Necrosis (VOI 1), solid tumor (VOI 2), and peritumoral edema (VOI 3) are indicated by the yellow, red, and green lines, respectively

Table 2  The performance of validation dataset for NODDI radiomics, morphological MRI sequence, ADC, and DTI models

95% CI, 95% confidence interval

Main tumor regions Model Sensitivity Specificity Accuracy AUC (95% CI)

Necrosis NODDI - ICVF model 0.705 0.625 0.666 0.676 (0.485–0.867)

NODDI - ISOVF model 0.647 0.750 0.697 0.673 (0.477–0.868)

NODDI - DOI model 0.882 0.437 0.666 0.621 (0.422–0.820)

Combined NODDI model 0.772 0.647 0.737 0.701 (0.541–0.860)

Combined morphological MRI model 0.704 0.764 0.721 0.694 (0.531–0.856)

ADC model 0.941 0.437 0.697 0.669 (0.472–0.866)

Combined DTI model 0.884 0.500 0.697 0.706 (0.521–0.890)

Solid tumor NODDI - ICVF model 0.705 0.937 0.818 0.790 (0.621–0.959)

NODDI - ISOVF model 0.647 0.937 0.787 0.835 (0.688–0.980)

NODDI - DOI model 0.823 0.812 0.818 0.901 (0.799–1.000)

Combined NODDI model 0.942 0.812 0.878 0.904 (0.789–1.000)

Combined morphological MRI model 0.764 0.937 0.848 0.864 (0.734–0.993)

ADC model 0.882 0.625 0.757 0.820 (0.678–0.961)

Combined DTI model 0.941 0.625 0.787 0.776 (0.596–0.954)

Peritumoral edema NODDI - ICVF model 1.000 0.687 0.848 0.779 (0.587–0.971)

NODDI - ISOVF model 0.941 0.500 0.727 0.713 (0.533–0.892)

NODDI - DOI model 0.764 0.812 0.787 0.812 (0.656–0.968)

Combined NODDI model 0.941 0.6875 0.818 0.820 (0.664–0.976)

Combined morphological MRI model 0.824 0.688 0.758 0.824 (0.684–0.964)

ADC model 0.941 0.625 0.787 0.794 (0.632–0.955)

Combined DTI model 0.941 0.437 0.697 0.662 (0.464–0.859)

Fig. 3  Receiver operating characteristic curves for different radiomics models based on the main tumor regions (a–u). Necrosis (a–g); solid tumor 
(h–n); peritumoral edema (o–u)

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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[30]. Our dataset included 109 patients, of whom 76 and 
33 were categorized into the training and validation data-
sets, respectively, meeting the sample size requirement. 
Specifically, in the training dataset, the minimum sample 
size of one tumor type was 36; thus, the maximum number 
of features included in the radiomic model construction 
was 4.

Image acquisition
MR acquisitions were performed using a 3.0-T MRI 
scanner (MAGNETOM Prisma; Siemens Healthcare, 
Erlangen, Germany) with a 64-channel head and neck 
integrated coil. MR data included morphological MRI 
sequences (T2-weighted image [T2WI], fluid-attenuated 
inversion recovery [FLAIR], T1-weighted image [T1WI], 
three-dimensional contrast-enhanced T1 magnetization 
prepared rapid gradient echo [CE-T1 MPRAGE]) and dif-
fusion MRI. Diffusion MRI was performed using six dif-
ferent b-values (0, 500, 1000, 1500, 2000, and 2500 s/mm2) 
and every nonzero b-value in 30 encoding directions [31]. 
CE-T1 MPRAGE was acquired after intravenous injec-
tion of 0.2 mL/kg gadopentetate dimeglumine (Magne-
vist, Bayer Schering Pharma AG, Berlin, Germany) using 
a high-pressure syringe, followed by a 20-mL saline flush 
at the same injection rate. CE-T1 MPRAGE images were 
obtained after contrast agent administration and recon-
structed into 20 axial slices before use. All MRI sequence 
parameters are listed in Supplemental Table  1. NODDI 
parametric maps (including ICVF, ISOVF, and ODI), 
apparent diffusion coefficient (ADC), and diffusion tensor 
imaging (DTI) parametric maps (including AD, FA, MD, 
and RD) were calculated from the multi-b-value diffusion 
MRI data using in-house-developed post-processing soft-
ware, NeuDiLab, based on the open-resource tool DIPY 
Toolbox (http://​dipy.​org).

Process of radiomics analysis
The radiomics analysis of NODDI based on multiple 
VOIs was briefly structured into three parts: processing, 
modeling, and validation (Fig. 1).

Image registration and segmentation
All morphological MR images, NODDI parametric maps, 
and ADC and DTI parametric maps were registered 
to FLAIR images using the open-source software ITK-
SNAP (version 3.8.0, http://​www.​itksn​ap.​org). A detailed 

description is provided in Supplemental Material E1. 
The multiple VOIs are defined as main tumor regions, 
including necrosis, solid tumor, and peritumoral edema 
areas. The VOIs on main tumor regions were delineated 
by automatic segmentation. Specifically, the nnU-Net 
trained by BraTs 2020 Challenge data was used to seg-
ment lesions automatically [32]. Then, the segmentations 
were discussed and revised by two radiologists (J.B. and 
X.M. with 5 and 10 years of experience, respectively), and 
the consensus results were used as the ground truth for 
segmentation. Examples of the two final segmentation 
cases based on automatic segmentation are shown in 
Fig. 2.

Feature extraction
Features were extracted from the main tumor regions 
using the open-source software FeAture Explorer (FAE, 
version 0.5.2) [33], the backend of which was based 
on PyRadiomics (version 3.0). Overall, there were 851 
radiomics features, including 14 shape features, 18 
first-order features, and 75 textural features extracted 
from each of the original NODDI parametric maps and 
the eight sub-bands of its wavelet transformation. The 
extracted textural features included those based on 
the (1) gray-level co-occurrence matrix, (2) gray-level 
dependence matrix, (3) gray-level run-length matrix, (4) 
gray-level size zone matrix, and (5) neighborhood gray-
tone difference matrix.

Feature reduction and selection
After feature extraction, all radiomics feature values were 
normalized between 0 and 1 according to the min-max 
method. In feature reduction, the Pearson correlation 
coefficient (PCC) for each pair of features was calculated, 
and if the PCC of the feature pair was higher than 0.90, 
only one of the features was randomly retained. Further 
feature selection was performed based on analysis of var-
iance, relief, and recursive feature elimination.

Model construction
Finally, radiomics models were constructed using logis-
tic regression and support vector machine with a linear 
kernel. For each tumor region, distinct radiomics mod-
els were individually constructed based on the NODDI 
parameter maps (ICVF, ISOVF, and ODI), as well as 
their combined application, to discern between Gb 

(See figure on next page.)
Fig. 4  Rose plots depicting the predictive performance for different neurite orientation dispersion and density imaging radiomics models based 
on the main tumor regions (a–f). The red bar with the predicted probability value indicates the successful predictions of the model in the training 
dataset; the gray bar with the predicted value indicates the failed predictions of the model in the training dataset. The same is applicable 
for the validation dataset

http://dipy.org
http://www.itksnap.org


Page 7 of 13Bai et al. European Radiology	

Fig. 4  (See legend on previous page.)
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and SBM. Furthermore, a series of radiomics models 
were constructed using ADC, a composite of four mor-
phological MRI sequences (T2WI, T1WI, FLAIR, and 
CE-T1 MPRAGE), and DTI (AD, FA, MD, and RD) for 
comparative analysis. To determine the hyper-parame-
ter of each model, five-fold cross-validation was applied 
to the training dataset. After determining the hyper-
parameter, all training data were retrained for the final 
models. The final models were evaluated using the 
time-independent validation dataset and determined by 
the best performance on the time-independent valida-
tion dataset. FAE was used for model training and pipe-
line operations for feature reduction and selection.

Model evaluation
Receiver operating characteristic (ROC) analysis was 
employed to illustrate model performance, sensitivity, 
specificity, accuracy, and area under the receiver oper-
ating characteristic curve (AUC), and their 95% confi-
dence intervals (CIs) were calculated for quantitative 
evaluation.

Statistical analyses
The statistical analyses were performed using SPSS 
(version 21.0) and MedCalc (version 20.015). Differ-
ences in clinical characteristics between Gb and SBM 
were assessed by the chi-squared test and independent 
samples t-test, as appropriate. DeLong’s test was per-
formed to observe the difference in the AUCs for the 
different models. All statistical tests assessed on signifi-
cance according to a two-tailed threshold of p < 0.05.

Results
Patients’ clinical characteristics
The clinical characteristics of the patients in the study 
datasets are provided in Table  1. There were no sig-
nificant differences between the training and validation 
datasets in terms of clinical characteristics (all p > 0.05).

In total, 57 (52.2%) Gbs and 52 (47.8%) SBMs were 
included. In the training and validation datasets, the Gb 
rates were 52.6% (40/76) and 51.5% (17/33), respectively, 
with no significant difference (p = 0.915).

Neurite orientation dispersion and density imaging 
radiomics models based on multiple volumes of interest

The predictive performance of the constructed pre-
diction models, utilizing NODDI parameter maps and 

their combination, varies across different main tumor 
regions. Generally, the performance of the single-param-
eter NODDI model is inferior to that of the combined 
NODDI model. Specifically, in the necrosis region, the 
AUCs of models for the three NODDI parameter maps 
ranged from 0.621 to 0.676, whereas the combined model 
showed slightly higher discrimination ability, with an 
AUC of 0.701 (95% CI, 0.541–0.860). In the solid tumor 
region, the AUCs of models for the three NODDI param-
eter maps ranged from 0.790 to 0.901, and among all 
models, it was observed that the combined model exhib-
ited superior discriminative power with an AUC of 0.904 
(95% CI, 0.789–1.000). Within the peritumoral edema 
region, the AUCs of models for a single NODDI parame-
ter map ranged from 0.713 to 0.812; however, even when 
integrated into a combined model, only moderate dis-
crimination ability was achieved, with an AUC of 0.820 
(95% CI, 0.664–0.976).

The results of additional evaluation indicators are pre-
sented in Table  2. Figure  3 displays the ROC curves of 
different models in three main tumor regions. The pre-
diction results of the training and validation datasets of 
the combined NODDI model are illustrated in Fig.  4. 
The differential evaluation of the four selected features 
between Gb and SBM is shown in Fig.  5. Additionally, 
the details of the radiomics process, such as the pairing 
parameters of feature selection methods and classifiers, 
are shown in Supplemental Figure 2, whereas the selected 
feature of different models is shown in Supplemental 
Table  2. Considering the superior discriminatory abil-
ity exhibited by the combined NODDI model within the 
solid tumor region, the DeLong test results for this model 
and other model are provided in Supplemental Table  3. 
However, no significant differences were observed in 
most of the results.

Performance comparison
Lateral comparison involved the utilization of combined 
morphological MRI, ADC, and combined DTI mod-
els. Within the necrosis region, these models exhibited 
comparable discrimination ability to the NODDI model, 
showcasing a general discriminative capacity with AUC 
values ranging from 0.669 to 0.706. Within the solid 
tumor region, the combined morphological MRI, ADC, 
and combined DTI models achieved AUCs of 0.864, 
0.820, and 0.776, respectively. Although the combined 
morphological MRI model exhibited acceptable discrimi-
natory ability, it showed some disparity compared with 

Fig. 5  Box plot of the four selected features distinguishing between glioblastoma (Gb) and solitary brain metastasis (SBM). Necrosis (a–d); solid 
tumor (e–h); peritumoral edema (i–l)

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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the NODDI model’s performance; indeed, as data volume 
or sample size significantly increased, the NODDI model 
displayed a distinct advantage in effectively identify-
ing tumors. In terms of peritumoral edema regions, the 
combined morphological MRI (AUC = 0.824) and ADC 
(AUC = 0.794) models showed similar discrimination 
ability compared with the NODDI model. However, lim-
ited discriminatory capability was observed when using 
the combined DTI model in this context. To summarize 
our findings among all lateral compared models used 
here: When ADC alone or the combined DTI model is 
used, the discrimination ability of the model is not ideal. 
The combined morphological MRI model showed a simi-
lar differential ability to the combined NODDI model.

Discussion
This study aimed to achieve accurate differentiation 
between Gb and SBM using preoperative MRI. Radiom-
ics features were extracted from multiple VOIs based on 
NODDI, followed by construction of classification mod-
els. Through lateral comparison, we have showcased the 
significant potential of NODDI radiomics analysis, spe-
cifically within the solid tumor region for distinguishing 
between Gb and SBM.

Morphological MRI offers an initial examination of 
tumors for the identification of Gb and SBM; however, 
more than 40% of the cases were incorrectly classified 
using only morphological MRI, which remains a chal-
lenge in neuroradiology [9]. Radiomics analysis can 
extract visually imperceptible features and characterize 
the specificity of tumors, which can significantly improve 
the accuracy of tumor identification. Considering the 
effectiveness of radiomics, the selection of appropriate 
MRI technology is very important. We strongly recom-
mend the combination of NODDI and radiomics. First, 
our results showed that DWI and DTI have limited abil-
ity to distinguish Gb and SBM and are considered appro-
priate as part of a multiparametric MRI protocol rather 
than as a single sequence to be combined with radiom-
ics. A large meta-analysis also showed that DWI and DTI 
exhibited broad individual sensitivities and specificities 
and only a moderate diagnostic accuracy [34]. Unlike 
traditional diffusion MRI methods that offer limited 
information, NODDI provides a more nuanced charac-
terization of brain tissue, including the density and orien-
tation of neuronal fibers [16, 17, 35]. This is particularly 
useful in the study of neurological disorders, where sub-
tle changes in tissue structure can be indicative of disease 
progression or response to therapy. As for morphological 
MRI, our results confirmed that morphological MRI had 
a similar performance to NODDI in differentiating Gb 
and SBM and did not show statistical difference, which 
may be related to the small sample size. NODDI provides 

a more detailed view of the brain’s microstructure com-
pared with morphological MRI, offering advantages 
in specificity and biological significance. NODDI pro-
vides indices that relate more directly to the underlying 
microstructure of the brain’s white matter and enables 
the identification of tissue subtypes and related injuries 
with enhanced specificity in pathology, a capability that 
morphological MRI cannot offer. Thus, NODDI offers a 
means to relate diffusion MRI signals to tissue features 
via biophysically inspired modeling. This is particularly 
advantageous in clinical practice as it provides a basis for 
more biological explanations of tissue changes.

More attention should be paid to the biological char-
acteristics of the main tumor region and its features. 
Compared with the other two main tumor regions, 
the NODDI radiomics model based on the solid tumor 
region demonstrates superior performance in differenti-
ating between Gb and SBM. The differences between Gb 
and SBM in the solid tumor region are mainly reflected 
in the enhancement patterns [1, 36]. Gb is character-
ized by high vascularity, local hypoxia, abnormal angio-
genesis, and inflammatory response. These factors lead 
to abnormal vascular permeability and disruption of the 
blood–brain barrier in the solid region of Gb, resulting 
in irregular and intense enhancement patterns on MRI. 
The enhancement patterns of SBM may vary depend-
ing on the characteristics of the primary cancer site and 
metastatic lesions. The enhancement in SBM is primar-
ily attributed to the disruption of the blood–brain barrier 
at the metastatic site. Generally, compared with Gb, SBM 
tends to have clear boundaries and a more homogene-
ous enhancement pattern. The selected features include 
two texture features and two first-order features. The tex-
tural features describe the texture variations in the ODI 
parameter map under wavelet analysis, quantifying the 
degree of texture complexity and capturing the irregular-
ity of the enhancement region. The first-order features 
describe the mean and variance of the VOI, recording 
changes in signal intensity in the enhancement region. 
Moreover, previous studies have demonstrated that 
changes in the ODI signal can correspond to changes in 
the microglia number, morphology, and activation state 
in various disease models [37]. The role of microglia in 
Gb and SBM is not the same [38]. In this study, three 
selected features of the ODI signal features demonstrated 
significant differences between Gb and SBM. This differ-
ence may indicate potential differences in the microglia 
or other cellular and molecular components in the solid 
tumor region of Gb and SBM.

Gb and SBM involve distinct molecular mechanisms 
and pathways in the formation of peritumoral edema 
[39–41]. Gb primarily induces edema through infiltra-
tive growth, potentially facilitating its invasive growth 
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by actively modifying the extracellular matrix and aid-
ing infiltrative spread within the brain. Contrastingly, 
SBM typically results in vasogenic edema due to meta-
static cancer cells compromising the integrity of the 
blood–brain barrier at new sites, leading to structural 
and functional impairments of the vascular wall, thus 
causing local vascular leakage and edema. Furthermore, 
SBMs may carry and release angiogenic factors unique 
to the primary tumor, further exacerbating the blood–
brain barrier breakdown and edema development. In our 
study, the NODDI radiomics model for the peritumoral 
edema region only demonstrated moderate discrimi-
native ability. This result is inconsistent with a previous 
study [17], and might be because of the limited capability 
of the selected features to distinguish between infiltrative 
edema and vasogenic edema.

The effectiveness of differentiating Gb from SBM 
through the NODDI model in the necrotic region is 
unsatisfactory. This inadequacy is likely due to the 
similar malignant biological characteristics of the two 
tumor types. The necrotic regions in both Gb and SBM 
result from their rapid and disorganized growth, lead-
ing to insufficient blood supply and eventual tumor tis-
sue necrosis [42, 43]. Compared with Gb, the necrosis 
in SBM may be more associated with the characteristics 
of the primary tumor. For example, melanoma, breast 
cancer, and lung cancer may carry specific genes and 
proteins that promote rapid growth when metastasizing 
to the brain, accelerating tumor growth, and leading to 
rapid vascular insufficiency and subsequent necrosis. The 
imaging features of these specific genes and proteins may 
either not be captured or have lacked sufficient specific-
ity. This can also be concluded from the fact that most of 
the Gb and SBM features were not statistically different.

The repeatability of radiomics is one of the main con-
straints of implementing models in clinical practice. 
Sharing of clinical data and radiomics models can make 
it easier to replicate all radiomics studies (including 
NODDI radiomics). However, data sharing may be hin-
dered by patient privacy issues, and model sharing is 
constrained by the disclosure of modeling processes and 
platforms (or code). The code compatibility is uncertain; 
the majority of these do not work. Fortunately, some 
open-source radiomics software, such as LIFEx [44] and 
FAE, provide necessary data processing and analysis 
functions, and can be easily used. The FAE was used in 
this study, including for the visualization of results and 
sharing of models, thus potentially reducing the need for 
retraining radiomics at a new site before implementation.

The limitations of this study must be acknowledged. 
First, our model was trained and validated using retro-
spective, small-sample data collected from a single insti-
tution. Second, more sequences or imaging modalities, 

such as perfusion-weighted imaging, should be added 
for comparison to improve persuasiveness. Finally, more 
refined subregions should be considered to explore the 
relationship between image features and VOIs.

In conclusion, the NODDI radiomics model showed 
promising performance for preoperative discrimination 
between Gb and SBM, and radiomics features can be 
incorporated into the multidimensional phenotypic fea-
tures that describe tumor heterogeneity.
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