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Abstract 

Background Accurate mortality risk quantification is crucial for the management of hepatocellular carcinoma (HCC); 
however, most scoring systems are subjective.

Purpose To develop and independently validate a machine learning mortality risk quantification method for HCC 
patients using standard-of-care clinical data and liver radiomics on baseline magnetic resonance imaging (MRI).

Methods This retrospective study included all patients with multiphasic contrast-enhanced MRI at the time of diag-
nosis treated at our institution. Patients were censored at their last date of follow-up, end-of-observation, or liver 
transplantation date. The data were randomly sampled into independent cohorts, with 85% for development 
and 15% for independent validation. An automated liver segmentation framework was adopted for radiomic feature 
extraction. A random survival forest combined clinical and radiomic variables to predict overall survival (OS), and per-
formance was evaluated using Harrell’s C-index.

Results A total of 555 treatment-naïve HCC patients (mean age, 63.8 years ± 8.9 [standard deviation]; 118 females) 
with MRI at the time of diagnosis were included, of which 287 (51.7%) died after a median time of 14.40 (interquartile 
range, 22.23) months, and had median followed up of 32.47 (interquartile range, 61.5) months. The developed risk 
prediction framework required 1.11 min on average and yielded C-indices of 0.8503 and 0.8234 in the development 
and independent validation cohorts, respectively, outperforming conventional clinical staging systems. Predicted risk 
scores were significantly associated with OS (p <.00001 in both cohorts).

Conclusions Machine learning reliably, rapidly, and reproducibly predicts mortality risk in patients with hepatocel-
lular carcinoma from data routinely acquired in clinical practice.

Clinical relevance statement Precision mortality risk prediction using routinely available standard-of-care clinical 
data and automated MRI radiomic features could enable personalized follow-up strategies, guide management deci-
sions, and improve clinical workflow efficiency in tumor boards.

Key Points 

• Machine learning enables hepatocellular carcinoma mortality risk prediction using standard-of-care clinical data and 
automated radiomic features from multiphasic contrast-enhanced MRI.
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• Automated mortality risk prediction achieved state-of-the-art performances for mortality risk quantification and outper-
formed conventional clinical staging systems.

• Patients were stratified into low, intermediate, and high-risk groups with significantly different survival times, generalizable 
to an independent evaluation cohort.

Keywords Hepatocellular carcinoma, Risk assessment, Magnetic resonance imaging, Medical image processing, 
Machine learning

Introduction
Liver cancer is the second most frequent cause of can-
cer-related death in the world [1] and the fifth leading 
cause in the United States [2]. In contrast to other cancer 
types, liver cancer incidence and mortality rates are ris-
ing [3, 4]. Hepatocellular carcinoma (HCC) is the most 
prevalent form of primary liver cancer, accounting for 
70–85% of total liver cancers globally [5]. Imaging is a 
critical tool for diagnosing and staging of HCC. Magnetic 
resonance imaging (MRI) provides high spatial resolution 
and allows soft-tissue characterization of the liver. The 
liver imaging reporting and data system (LI-RADS) [6] 
has been developed for non-invasive diagnosis based on 
imaging criteria, and in most cases, HCC can be detected 
and diagnosed using contrast-enhanced multiphasic 
imaging without an invasive biopsy [7].

Various scoring and staging systems have been pro-
posed for HCC mortality risk quantification and to strat-
ify patients into risk categories [8–14]. However, these 
systems use only limited one-dimensional tumor size 
measurements [9–13], do not make use of quantitative 
imaging biomarkers, and stratify patients into different 
risk groups based on strict thresholds. Traditional one-
dimensional tumor size measurements have major limita-
tions in reflecting viability, actual tumor size, and growth 
potential [15] and are subject to rater variability. Quanti-
tative image biomarkers, such as radiomic features, can 
be extracted from regions and volumes of interest from 
medical imaging data; however, automated segmentation 
methods are required for integration into clinical prac-
tice workloads. Fully automated whole liver segmentation 
based on deep learning has demonstrated robust, repro-
ducible, and generalizable segmentation performance 
across disease stages with substantially altered liver mor-
phology and only required processing times in the order 
of seconds [16].

The aim of this study was twofold: develop and validate 
an automated method for mortality risk quantification in 
HCC patients using only routinely available standard-of-
care clinical variables and radiomic features derived from 
automated liver segmentations on baseline multiphasic 
contrast-enhanced MRI by means of machine learning 
and use this risk score to stratify patients into low, inter-
mediate, and high-risk groups.

Materials and methods
Compliance with ethical standards
This HIPAA-compliant study was approved by the Yale 
School of Medicine institutional review board with full 
waiver of consent and conducted in accordance with the 
declaration of Helsinki.

Code availability
All code for the methodological implementation and 
the trained framework is publicly available on GitHub: 
https:// github. com/ Onofr eyLab/ hcc- morta lity- risk

Data availability
Patient data and imaging data used in this paper cannot 
be shared publicly due to legal reasons.

Patient inclusion and exclusion
This retrospective study identified all patients with treat-
ment-naïve HCC treated at our institution between the 
years 2008 and 2019. HCC was either proven by imaging 
criteria or biopsy confirmation. We included

 (i) all patients >18 years old
 (ii) that had multiphasic contrast-enhanced MRI at the 

time of diagnosis.

We excluded
 (i) all patients with missing clinical information,
 (ii) with no triphasic MRI acquisition or
 (iii) non-diagnostic MRI.

The patients were randomly sampled into independ-
ent cohorts, with 85% for development and 15% for inde-
pendent validation.

Clinical data
Clinical data were collected from the hospital’s electronic 
health record system, and conventional clinical staging 
scores [8–14] were calculated. Patients were evaluated 
for extrahepatic metastases on chest computed tomogra-
phy (CT) and bone scans at the date of diagnosis, and the 
following laboratory values were collected closest to the 
date of imaging: alpha-fetoprotein (AFP), total bilirubin, 

https://github.com/OnofreyLab/hcc-mortality-risk
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direct bilirubin, serum albumin, international normalized 
ratio (INR), partial thromboplastin time (PTT), sodium, 
and creatinine.

MRI acquisition and radiomics extraction
Multiphasic contrast-enhanced MRI was acquired 
using a standard institutional imaging protocol involv-
ing T1-weighted breath-hold sequences before con-
trast administration and 12–18 s, 60–70 s, and 3–5 min 
post-contrast injection for pre-contrast-, late arterial, 
portal venous-, and delayed-phase images, respectively. 
The scans were de-identified and downloaded from the 
picture archiving and communication system (PACS) 
server. Subsequently, automated image co-registration 
and whole liver segmentation were performed using a 
convolutional neural network [17], followed by radiomic 
feature extraction. Full details on the image processing 
pipeline can be found in Supplement 1.

Survival model and graded prognostic assessment
A random survival forest (RSF) [18] is a non-parametric 
method that uses an ensemble of survival trees to ana-
lyze right-censored time-to-event data. In this study, 
we fit an RSF with overall survival (OS) as the depend-
ent variable and the combination of all clinical- and 
radiomic variables as independent variables (termed 
“candidate variables”). OS was defined as the period 
between the imaging date and the date of death of any 
cause. Patients were censored either at their last date 
of follow-up, end-of-observation date, or at the date of 
liver transplantation. The following RSF settings were 
used: 1000 estimator trees were grown with a minimum 
of 10 samples to split an internal node, and 15 samples 
were required at a leaf node with 

√

n variables to con-
sider when looking for the best split. First, all candi-
date variables with a Pearson correlation coefficient > 
0.9 in the development cohort were excluded to reduce 

multicollinearity. Second, we fit the RSF on the remain-
ing candidate variables and obtained a ranked list of 
variable importance scores by ten permutations of ran-
dom shuffling. Third, we re-fit the final survival model 
on the 30 topmost important variables. To gain further 
insight and interpretability of the proposed method, we 
obtained variable importance scores by ten permuta-
tions of random shuffling for all included variables. Our 
method was implemented in Python (v3.8.11) using the 
scikit-survival package (v0.16.0). Three risk groups were 
defined from the risk score predictions of the proposed 
model using the “rhier” function of the R package “rolr” 
(v1.0), which uses a hierarchical method by applying 
ordered logrank tests [19], to stratify patients into low-, 
intermediate-, and high-risk groups. The risk score cut-
offs for each risk group were derived from the develop-
ment cohort, with a minimum of 25 subjects in each 
risk group. The same cutoff values were then applied 
for risk group stratification in the independent valida-
tion cohort. For performance evaluation of the proposed 
model and conventional clinical staging scores, we cal-
culated Harrell’s C-index [20] and the area under the 
time-dependent receiver operating characteristic curve 
(AUC) [21] at 1–5 years after the date of imaging.

Statistical analysis
Statistical analyses were conducted in SPSS (v27), R 
(v4.1.1), and Python (v3.8.11). p values < .05 were consid-
ered statistically significant, and Bonferroni correction 
was used when comparing multiple groups. Cox propor-
tional hazards regression analysis was used to determine 
the association of the developed risk score and the pro-
posed risk groups with OS. Median OS (mOS) was calcu-
lated, and Kaplan-Meier survival curves were plotted for 
each risk group and compared using a logrank test. The 
survival rates of the proposed risk groups were calculated 
at 1, 3, and 5 years after the date of imaging. To assess the 

Fig. 1 Flowchart of patient inclusion and exclusion. From an institutional database with 1172 patients, 555 patients (118 females, 437 males, 63.8 
± 8.9 years) with imaging- or histopathologically proven treatment-naïve hepatocellular carcinoma and baseline multiphasic contrast-enhanced 
magnetic resonance imaging at the time of diagnosis were included in the study
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Table 1 Patient baseline characteristics

Characteristic Overall Development cohort Validation cohort p value

Number of patients 555 471 84

Follow-up (months), median [IQR] 17.43 [25.17] 17.83 [25.28] 15.35 [23.98] 1.00#

Dead 287 (51.7) 241 (51.2) 46 (54.8) 1.00‡

Demographics

  Age, mean (SD) 63.8 (8.9) 63.9 (9.0) 63.0 (8.5) 1.00†

  Sex

    Female 118 (21.3) 101 (21.4) 17 (20.2) 1.00‡

    Male 437 (78.7) 370 (78.6) 67 (79.8)

  Ethnicity*

    Asian 15 (2.7) 15 (3.2) 0 (0.0) 1.00‡

    Black 72 (13.0) 61 (13.0) 11 (13.1)

    Hispanic 78 (14.1) 69 (14.6) 9 (10.7)

    Other/unknown 6 (1.1) 5 (1.1) 1 (1.2)

    White 384 (69.2) 321 (68.2) 63 (75.0)

  Cirrhosis 526 (94.8) 444 (94.3) 82 (97.6) 1.00‡

  Etiology

    HCV* 319 (57.5) 271 (57.5) 48 (57.1) 1.00‡

    HBV* 29 (5.2) 26 (5.5) 3 (3.6) 1.00‡

    Alcohol 167 (30.1) 136 (28.9) 31 (36.9) 1.00‡

    NAFLD* 87 (15.7) 77 (16.3) 10 (11.9) 1.00‡

    Autoimmune 8 (1.4) 8 (1.7) 0 (0.0) 1.00‡

    Cryptogenic 13 (2.3) 11 (2.3) 2 (2.4) 1.00‡

  Not available 18 (3.2) 16 (3.4) 2 (2.4) 1.00‡

  ECOG performance status

    0 405 (73.0) 341 (72.4) 64 (76.2) 1.00‡

    1 106 (19.1) 94 (20.0) 12 (14.3)

    2 24 (4.3) 21 (4.5) 3 (3.6)

    3 10 (1.8) 7 (1.5) 3 (3.6)

    4 10 (1.8) 8 (1.7) 2 (2.4)

Radiological data

  Number of lesions, mean (SD) 1.5 (1.1) 1.5 (1.0) 1.8 (1.6) 1.00†

  Maximum tumor diameter (cm), mean (SD) 4.0 (3.2) 4.0 (3.2) 4.3 (3.4) 1.00†

  Cumulative tumor diameter (cm), mean (SD) 4.6 (3.7) 4.6 (3.7) 4.9 (3.8) 1.00†

  Liver lobe

    Bilobar 124 (22.3) 99 (21.0) 25 (29.8) 1.00‡

    Left 110 (19.8) 95 (20.2) 15 (17.9)

    Right 321 (57.8) 277 (58.8) 44 (52.4)

  Ascites on imaging

    Absent 421 (75.9) 360 (76.4) 61 (72.6) 1.00‡

    Slight 87 (15.7) 74 (15.7) 13 (15.5)

    Moderate 47 (8.5) 37 (7.9) 10 (11.9)

  Portal vein thrombosis 63 (11.4) 51 (10.8) 12 (14.3) 1.00‡

  Tumor thrombus 51 (9.2) 41 (8.7) 10 (11.9) 1.00‡

  Infiltrative disease 28 (5.0) 22 (4.7) 6 (7.1) 1.00‡

  Metastatic disease 37 (6.7) 27 (5.7) 10 (11.9) 1.00‡

Laboratory values

  Alpha-Fetoprotein (ng/mL), mean (SD) 3799.0 (33,226.9) 2864.9 (18,534.2) 9037.1 (73,424.4) 1.00†

  Total bilirubin (mg/dL), mean (SD) 1.4 (1.8) 1.4 (1.8) 1.5 (2.3) 1.00†

  Direct bilirubin (mg/dL), mean (SD) 0.7 (1.3) 0.7 (1.3) 0.8 (1.3) 1.00†
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generalizability of the risk groups’ survival times to new 
cohorts, the survival times of each risk group were com-
pared between the development- and validation cohort 
using a logrank test.

Results
Patient characteristics
A total of 555 patients (mean age, 63.8 years ± 8.9 [stand-
ard deviation]; 118 females) with treatment-naïve HCC 
and multiphasic contrast-enhanced MRI at the time of 
diagnosis were included in the study. Patients without 
MRI at baseline (n  = 501), < 18 years (n  = 2), missing 
clinical information (n  = 16), no triphasic image acqui-
sition (n  = 84), and non-diagnostic MRI (n  = 14) were 
excluded from the study (Fig. 1). Patient baseline charac-
teristics are summarized in Table 1, and MRI parameters 
are reported in Supplemental Table  1. HCC was either 
proven by imaging criteria or histopathology.

A total of 287 (51.7%) patients died after a median time 
of 14.40 months (range, 0.20–97.12 months; interquar-
tile range (IQR), 22.23) after the date of imaging, and 

patients were followed up for a median of 32.47 months 
(range: 0.20–118.90 months; IQR: 61.5) after the date of 
imaging. The median time between the laboratory results 
and the imaging date was 10 days (IQR, 28.3). First treat-
ments based on the institution’s multidisciplinary tumor 
board decisions were as follows: 192 (34.6%) patients 
underwent transarterial chemoembolization, 138 (24.9%) 
thermal ablation, 82 (14.8%) hepatectomy, 68 (12.3%) a 
combination of transarterial chemoembolization and 
thermal ablation, 24 (4.3%) Sorafenib, 24 (4.3%) best sup-
portive care, 20 (3.6%) transarterial radioembolization 
with Yttrium-90, and lastly 7 (1.3%) liver transplantation. 
For model development and validation, a total of 471 
(85%) patients were randomly allocated to the develop-
ment cohort and 84 (15%) to the independent validation 
cohort.

Survival model
Figure 2 summarizes the entire model development pipe-
line. The proposed model attained C-indices of 0.8503 
and 0.8234 in  the development- and validation cohort, 

Numbers in parentheses are percentages. Ethnicity is provided through the electronic health record. To assess data consistency, the datasets were compared using a 
†two sample t-test for continuous, a ‡Chi-squared test for categorical characteristics, and a #logrank test for time-to-event data. HCV, hepatitis C virus; HBV, hepatitis B 
virus; NAFLD, non-alcoholic fatty liver disease; Child-Pugh [8]; BCLC, Barcelona Clinic Liver Cancer [9]

Table 1 (continued)

Characteristic Overall Development cohort Validation cohort p value

  Serum albumin (g/dL), mean (SD) 3.6 (0.6) 3.6 (0.6) 3.5 (0.6) 1.00†

  Sodium (mmol/L), mean (SD) 137.9 (3.7) 138.0 (3.6) 137.3 (4.1) 1.00†

  Creatinine (mg/dL), mean (SD) 1.0 (0.4) 1.0 (0.4) 1.0 (0.4) 1.00†

  International normalized ratio, mean (SD) 1.2 (0.3) 1.2 (0.3) 1.2 (0.3) 1.00†

  Partial thromboplastin time (sec), mean (SD) 12.7 (5.3) 12.7 (5.6) 12.6 (2.9) 1.00†

Staging systems

  Child-Pugh class

    A 336 (60.5) 288 (61.1) 48 (57.1) 1.00‡

    B 184 (33.2) 156 (33.1) 28 (33.3)

    C 35 (6.3) 27 (5.7) 8 (9.5)

  BCLC* stage

    0 45 (8.1) 40 (8.5) 5 (6.0) 1.00‡

    A 345 (62.2) 300 (63.7) 45 (53.6)

    B 70 (12.6) 57 (12.1) 13 (15.5)

    C 52 (9.4) 41 (8.7) 11 (13.1)

    D 43 (7.7) 33 (7.0) 10 (11.9)

First-line treatments

  Transarterial chemoembolization
  Ablation

192 (34.6)
138 (24.9)

159 (33.8)
113 (24.0)

33 (39.3)
25 (29.8)

1.00‡

  Liver resection 82 (14.8) 75 (15.9) 7 (8.3)

  Combined transarterial chemoembolization + ablation 68 (12.3) 63 (13.4) 5 (6.0)

  Sorafenib 24 (4.3) 19 (4.0) 5 (6.0)

  Best supportive care 24 (4.3) 18 (3.8) 6 (7.1)

  Y90-radioembolization 20 (3.6) 17 (3.6) 3 (3.6)

  Liver transplantation 7 (1.3) 7 (1.5) 0 (0)
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respectively. Table  2 summarizes all performance met-
rics for the proposed model and conventional clinical 
staging systems. For the interpretability of the proposed 
model, Fig. 3 depicts the variable importance scores of the 
included variables. On average, the proposed framework 
required a running time of 1.11 min per patient (auto-
mated liver segmentation, 0.70 s; extraction of 23 included 
radiomic features, 1.09 min; model prediction, 0.42 s).

Mortality risk predictions and graded prognostic 
assessment
The distribution of risk scores in the development and 
validation cohort is shown in Fig.  4. In the develop-
ment- and validation cohort, the mean (± standard 
deviation) predicted risk score was 121.57 (± 65.31) 
and 135.64 (± 67.59), respectively. Cox proportional 
hazards regression analysis showed a highly signifi-
cant association between the predicted risk score and 
OS in the development cohort (coefficient, 0.021658 

(p < .00001); HR, 1.022 (95% CI: 1.02, 1.024)), and 
in the validation cohort (coefficient, 0.021676 (p 
<.00001); HR, 1.022 (95% CI 1.016, 1.028)). The cut-
off values determined by the hierarchical method to 
stratify patients into low-, intermediate-, and high-
risk groups based on the proposed model’s predicted 
risk scores were 93.08 and 172.73. Detailed results of 
the Cox proportional hazards regression analysis for 
each risk group can be found in Supplemental Table 2. 
Example cases are shown in Fig.  5. In the develop-
ment cohort, 193 (41%) patients were assigned to the 
low-risk  group, 185 (39%) patients to the intermedi-
ate-risk group, and 93 (20%) patients to the high-risk 
group. In the validation cohort, 27 (32%) patients 
were allocated to the low-risk group, 32 (38%) patients 
to the intermediate-risk group, and 25 (30%) patients 
to the high-risk group. Supplemental Table 3 shows a 
cross-tabulation analysis of the proposed risk groups 
across conventional clinical staging systems.

Fig. 2 Model development. An automated liver segmentation framework was adopted for radiomic feature extraction after automated image 
co-registration. To predict overall survival, a random survival forest was fit from a combination of clinical and radiomic variables. Model performance 
was evaluated using Harrell’s C-index and the area under the time-dependent receiver operating characteristic curve (AUC). Patients were stratified 
into low-, intermediate-, and high-risk groups based on their predicted risk scores
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Survival analysis
A comprehensive table with mOS times and 95% confi-
dence intervals for various strata can be found in Table 3. 
The mOS time of the entire study cohort was 32.47 (95% 
CI: 28.40, 37.83) months. In the development- and valida-
tion cohort, the mOS were 32.57 (95% CI: 29.13, 38.50) 
months and 24.57 (95% CI: 14.73, NA) months, respec-
tively. Survival rates (± standard error) for the proposed 
risk groups in the development- and validation cohort are 
summarized in Table 4. Survival times between the devel-
opment- and the validation cohort showed no statistical 
difference (p = .29). In the development cohort, mOS in 

the low-risk group was 90.40 (95% CI: 62.97, NA) months, 
25.8 (95% CI: 23.50, 31.90) months in the intermediate-
risk, and 6.40 (95% CI: 5.03, 7.73) months in the high-
risk group. In the validation cohort, mOS in the low-risk 
group was NA (95% CI:48.03, NA) months, 19.60 (95% CI: 
14.23, NA) months in the intermediate-risk, and 5.40 (95% 
CI: 3.80, 12.63) months in the high-risk group. Kaplan-
Meier curves for the developed risk groups can be found 
in Fig. 6. The developed low-, intermediate-, and high-risk 
groups demonstrated significantly different survival times 
in both cohorts (development cohort, p <.0001; valida-
tion cohort, p <.0001). Notably, no statistical difference 

Table 2 Performance evaluation

Staging System

Performance Measure

C-index
Time-dependent AUC

1 year 2 years 3 years 4 years 5 years

)
1

7
4

=
n(

tr
o

h
o

C
t

ne
m

p
ole

ve
D

Proposed method 0.850 0.907 0.904 0.910 0.890 0.895

Child-Pugh 0.735 0.721 0.686 0.641 0.630 0.637

BCLC 0.733 0.808 0.749 0.747 0.748 0.697

HKLC 0.741 0.807 0.773 0.745 0.730 0.708

AJCC-TNM 0.699 0.770 0.717 0.707 0.724 0.665

LCSGJ-TNM 0.697 0.763 0.714 0.712 0.720 0.668

JIS 0.743 0.818 0.771 0.745 0.747 0.706

ALBI-Grade 0.589 0.633 0.631 0.611 0.588 0.555

)
4

8
=

n(
tr

o
h

o
C

n
oita

dila
V

Proposed method 0.823 0.893 0.867 0.860 0.790 0.765

Child-Pugh 0.695 0.775 0.715 0.701 0.736 0.718

BCLC 0.815 0.917 0.850 0.791 0.769 0.799

HKLC 0.820 0.929 0.822 0.791 0.780 0.797

AJCC-TNM 0.737 0.825 0.766 0.690 0.700 0.706

LCSGJ-TNM 0.723 0.813 0.777 0.711 0.635 0.617

JIS 0.813 0.922 0.855 0.796 0.756 0.734

ALBI-Grade 0.625 0.635 0.693 0.706 0.701 0.679

To evaluate the performance of mortality risk stratification, we calculated Harrel’s C-index [19] and the area under the time-dependent receiver operating 
characteristic curve [20] (“AUC”). Child-Pugh [8]; BCLC, Barcelona Clinic Liver Cancer [9]; HKLC, Hong Kong Liver Cancer [10]; AJCC, American Joint Committee on Cancer 
 8th edition [11]; LCSGJ-TNM, Liver Cancer Study Group of Japan Tumor Node Metastasis [12]; JIS, Japan Integrated Staging [13]; ALBI, albumin-bilirubin [14]
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was found when comparing the survival times of each 
risk group between the development- and the validation 
cohort (low-risk group, p = 1.0; intermediate-risk group, 
p = 1.0; high-risk group, p = 1.0), thus indicating the gen-
eralizability of the risk groups’ survival times to new data. 

Complete results of the logrank test for pairwise OS com-
parisons between the proposed risk groups can be found 
in Supplemental Table  4. Kaplan-Meier curves for the 
conventional staging scores can be found in Supplemental 
Figure 1.

Fig. 3 Variable importance scores. The bar chart shows the mean variable importance score (error bars show standard deviation) of each 
included variable of the final risk prediction model obtained by 10 permutations of random shuffling. Naming convention of radiomic features: 
The prefix specifies the image type (original image or filter-derived MR image (“log”: Laplacian of Gaussian) with extraction parameters); the suffix 
specifies the MR contrast phase (“_pre”: pre-contrast phase, “_art”: late arterial phase, “_pv”: portal venous phase, “_del”: delayed phase). Equations 
for the calculation of each radiomic feature are available in ref. [22]. (AFP: Alpha-fetoprotein; INR: international normalized ratio; PTT: partial 
thromboplastin time)

Fig. 4 Distribution of predicted risk scores in the development- and independent validation cohort. Based on the risk score predictions 
of the survival model in the development cohort, we derived two cutoff points (93.08 and 172.73) to stratify patients into low-, intermediate-, 
and high-risk groups. We applied the same cutoff points for stratification in the independent validation cohort. For plotting, a Gaussian smoothing 
kernel was used
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Discussion
Using a large dataset (n = 555), we devised and indepen-
dently validated a fully automated framework for mortal-
ity risk prediction in hepatocellular carcinoma patients 
using routinely available standard-of-care clinical data 
and radiomic biomarkers from automated liver seg-
mentations on baseline multiphasic contrast-enhanced 
MRI. This completely data-driven method yielded reli-
able, fast, and reproducible risk predictions and attained 
state-of-the-art performances for mortality risk quanti-
fication at baseline. The generalizability of our method 
was confirmed in an independent validation cohort, and 
performance was compared against conventional stag-
ing systems. In addition, the proposed stratification into 
low-, intermediate- and high-risk groups yielded similar 
overall survival times in the development and validation 
cohort, indicating the generalizability of the method. 
By using automated liver segmentations, we ensure that 
the extracted radiomic imaging markers are stable and 
reproducible and increase the workflow substantially by 
demonstrating segmentation computation times under 
a second without the need for human interaction [17]. 
Finally, we developed our method using a data-driven 
approach. Instead of stratifying patients into risk groups 
based on one-dimensional image measurements [9–13], 
we derived risk group cutoff values using the full three-
dimensional imaging volume itself. Thus, such a risk pre-
diction framework could enable personalized follow-up 
strategies, guide management decisions, and improve 
clinical workflow efficiency in tumor boards.

We hypothesize that the proposed framework out-
performed conventional systems for mortality risk 
quantification in terms of C-index and AUC as it 
uses advanced quantitative imaging biomarkers from 
the whole liver volume in imaging and a data-driven 
approach for mortality risk prediction. Three-dimen-
sional quantitative assessment of tumor burden has 
been shown to be a stronger predictor of patient sur-
vival than one-dimensional tumor size measurements 
[23], and one-dimensional tumor size measurements, 
as used in conventional staging systems, have shown 
major limitations in reflecting viability, actual tumor 
size, and growth potential [24]. Our approach uses the 
full 3D MR imaging data for the extraction of quantita-
tive biomarkers, which is a rich representation of MRI 
compared to single-dimensional representations such as 
diameter-based measurements. The 30 biomarkers with 
the highest importance scores derived from the data 
demonstrate a combination of clinical features and radi-
omics across all four phases of the MRI study (Fig.  4). 
These biomarkers effectively represent disease through 
intensity patterns and textures summarized by the 

Table 3 Median overall survival times across staging systems

NA values indicate that more than 50% of the population was still alive at 
the end of the analysis; thus, median OS times cannot be calculated. Child-
Pugh [8]; BCLC, Barcelona Clinic Liver Cancer [9]; HKLC, Hong Kong Liver 
Cancer [10]; AJCC, American Joint Committee on Cancer  8th edition [11]; 
LCSGJ-TNM, Liver Cancer Study Group of Japan Tumor Node Metastasis [12]; 
JIS, Japan Integrated Staging [13]; ALBI, albumin-bilirubin [14]

Strata Median OS in months (95% CI)

Development cohort Validation cohort

Entire cohort 32.57 (29.13, 38.5) 24.57 (14.73, NA)

Proposed risk groups

  Low risk 90.4 (62.97, NA) NA (48.03, NA)

  Intermediate risk 25.8 (23.5, 31.9) 19.6 (14.23, NA)

  High Risk 6.4 (5, 7.8) 5.4 (3.8, NA)

Child-Pugh

  A 43.6 (36.97, 56.77) 97.17 (24.57, NA)

  B 18.6 (15.9, 26.13) 15.37 (6.8, NA)

  C 4.83 (2.1, 5.9) 3.92 (1.23, NA)

BCLC stage

  0 74.7 (57.67, NA) NA (NA, NA)

  A 39.8 (32.93, 53.1) 65.77 (36.73, NA)

  B 18.33 (16.43, 25.8) 13.67 (9.3, NA)

  C 7.73 (5.83, 10.43) 5.4 (4.1, NA)

  D 3.5 (2.1, 5.1) 2.65 (1.23, NA)

HKLC stage

  I 57.67 (52.3, 91.6) NA (36.73, NA)

  II 28.63 (24.33, 33.87) 46.3 (23.9, NA)

  III 16.93 (15.23, 21.47) 8 (6.5, NA)

  IV 9.07 (6.4, NA) 5.47 (4.77, NA)

  V 3.27 (2.5, 5.1) 2.65 (1.23, NA)

AJCC-TNM

  IA 57.67 (50.7, 74.7) 65.77 (24.57, NA)

  IB 38.5 (30.3, 54.1) 46.3 (14.73, NA)

  II 25.23 (21, 35.17) 9.3 (6.5, NA)

  IIIA 17.8 (15.83, 44.53) 3.8 (1.6, NA)

  IIIB 5.83 (3.7, 16.93) 1.13 (0.23, NA)

  IVA 7.97 (1.6, NA) 5.47 (4.77, NA)

  IVB 2.67 (2.1, 7.1) 48.03 (20.33, NA)

LCSGJ-TNM

  I 57.67 (50.7, 74.7) 48.03 (36.73, NA)

  II 39.8 (32.57, 54.3) 9.83 (8.33, NA)

  III 21 (17.4, 29.13) 2.03 (0.23, NA)

  IVA 6.78 (3.7, 19.73) 5.47 (4.77, NA)

  IVB 2.67 (2.1, 7.1) NA (27.9, NA)

JIS

  0 59.6 (54.7, NA) NA (NA, NA)

  1 45.7 (32.93, 62.97) 48.03 (27.9, NA)

  2 30.3 (21, 42.57) 20.33 (14.73, NA)

  3 14.67 (8.53, 19.5) 9.2 (2.03, NA)

  4 3.5 (2.23, 7.1) 4.07 (3.8, NA)

  5 1.6 (0.5, NA) 0.73 (0.23, NA)

ALBI grade

  1 39.43 (33.87, 53.1) 2.5 (NA, NA)

  2 12.13 (3.27, NA) 14.73 (5.7, NA)

  3 22.1 (16.67, 27.43) NA (NA, NA)
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radiomics in different phases of the imaging study. The 
performances of the conventional staging systems are in 
line with previously published studies [25–31]. Previ-
ous works have developed machine learning models for 
mortality risk quantification. However, direct compari-
son is challenging due to the different datasets, imaging 

modalities, and study endpoints being used. Mei et  al. 
[32] developed and validated a prognostic nomogram 
to predict survival in patients with unresectable HCC 
after hepatic arterial infusion chemotherapy in a cohort 
with 463 predominantly advanced-stage patients attain-
ing C-indices of 0.710 and 0.716 in their development 
and validation cohorts, respectively. Furthermore, the 
authors proposed a risk stratification approach to clas-
sify patients into three or four risk groups based on a 
trisection cutoff and a quartile cutoff point with signifi-
cantly different OS times. While their approach did not 
include quantitative imagining biomarkers, their data-
driven design achieved superior performance compared 
to conventional staging systems in their cohort, similar 
to the findings of our study. Liu et al. [33] developed and 
validated a prognostic nomogram to predict overall sur-
vival in HCC patients after hepatectomy from radiomic 
features from tumor segmentations on portal venous 
phase computed tomography and clinical- and patho-
logical variables in a cohort with 544 Chinese patients 
and achieved C-indices of 0.747 and 0.777 in their 
development and validation cohorts, respectively. Based 
on the predicted risk scores, patients were allocated into 

Table 4 Survival rates (± standard error) for the proposed risk 
groups

Proposed risk group Years Survival rates (± Standard error)

Development 
cohort (n = 471)

Validation 
cohort (n = 84)

Low risk 1 0.98 (± 0.01) 1.00 (± 0.00)

3 0.85 (± 0.03) 0.85 (± 0.08)

5 0.61 (± 0.05) 0.68 (± 0.13)

Intermediate risk 1 0.83 (± 0.03) 0.70 (± 0.08)

3 0.31 (± 0.04) 0.38 (± 0.10)

5 0.13 (± 0.04) 0.29 (± 0.11)

High risk 1 0.23 (± 0.05) 0.28 (± 0.09)

3 0.00 (± 0.00) 0.11 (± 0.08)

5 0.00 (± 0.00) 0.11 (± 0.08)

Fig. 5 Example cases. Standard-of-care clinical data and axial pre-contrast-, late arterial, portal venous-, and delayed-phase MRI with corresponding 
automated liver segmentations overlaid in blue. Low-risk group: A 59-year-old male patient presenting with a focal 4.5 cm lesion in the right liver 
lobe. The patient was censored after 8.75 years. Intermediate-risk group: A 54-year-old male patient presenting with a focal 3.1 cm lesion in the right 
liver lobe. The patient died 15 months after diagnosis. High-risk group: A 54-year-old male patient presenting with a focal 5.7 cm lesion in the right 
liver lobe. The patient died 6.7 months after diagnosis
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low and high-risk groups with significantly different OS 
times. The authors could significantly improve perfor-
mance when integrating radiomic features into the risk 
prediction model compared to clinical- and pathologi-
cal features alone. Blanc-Durand et  al. [34] proposed 
a scoring system to stratify HCC patients undergoing 
transarterial radioembolization with Yttrium-90 into 
a low- and a high-risk group. Radiomic features were 
derived from semi-automatic liver segmentations from 
pretreatment 18F-fluorodeoxyglucose positron emis-
sion tomography images. Their proposed risk score 
was significantly correlated with OS and could stratify 
patients into two risk groups with distinct OS times. 
However, their method was not evaluated on an inde-
pendent validation cohort, and no measures of prog-
nostic power, such as the C-index or time-dependent 
AUCs, were reported, and their method relies on man-
ually revised semi-automatic liver segmentations. In 
their multi-institutional study, Ji et  al. [35] presented 
a machine learning framework to predict the time to 
recurrence after resection. Their method was developed 
and evaluated in 470 patients with solitary HCC lesions 
and used radiomic features derived from manual tumor 
and peritumoral segmentations from baseline contrast-
enhanced computed tomography images combined 
with clinical variables and achieved C-indices of 0.733–
0.801, outperforming conventional staging systems. 
The authors proposed a risk stratification approach to 
allocate patients into low, intermediate, and high-risk 
groups with significantly different OS times. Their study 
confirms the utility of a data-driven approach and the 
usage of advanced quantitative imaging biomarkers for 
time-to-event data. However, their method relies on 
time-consuming manual tumor segmentation and does 

not use a fully automated segmentation method as our 
liver segmentation approach, which yields segmentation 
in processing times of under a second (0.70 s).

Our study has several limitations. First, our method 
was developed using retrospective data from a single 
institution; thus, prospective multicenter studies and 
external validation are warranted before potential clini-
cal translation. However, our method was developed 
using a large dataset and yielded precise and gener-
alizable results in an independent validation cohort. 
Furthermore, the large cohort size of this study adds 
a degree of robustness to the findings, and the relative 
simplicity of the analytical elements involved enhances 
the likelihood of reproducibility and the reliability of 
the findings. Due to these factors, we anticipate that 
other groups can replicate our study using the pub-
licly available code. Second, we did not control for the 
effects of different treatment types on OS. Neverthe-
less, our method is still predictive of OS even without 
any treatment information given. Finally, the proposed 
method relies on multiphasic contrast-enhanced MRI 
and cannot be applied to patients who underwent other 
imaging modalities at baseline. In future work, we will 
incorporate longitudinal data from multiple external 
contributors and evaluate our method on a larger inde-
pendent validation cohort.

In conclusion, we present a fully automated framework 
for mortality risk prediction in hepatocellular carcinoma 
patients using routinely available standard-of-care clini-
cal data and radiomic features derived from automated 
liver segmentations on baseline multiphasic contrast-
enhanced MRI outperforming conventional staging sys-
tems for mortality risk quantification. The developed 
method, based on machine learning, can help personalize 

Fig. 6 Kaplan-Meier curves of the proposed risk groups in the development- and validation cohort
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follow-up strategies, guide management decisions, and 
improve clinical workflow efficiency in tumor boards.
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