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Abstract 

Objectives A prospective, multi‑centre study to evaluate concordance of morphologic lung MRI and CT in chronic 
obstructive pulmonary disease (COPD) phenotyping for airway disease and emphysema.

Methods A total of 601 participants with COPD from 15 sites underwent same‑day morpho‑functional chest MRI 
and paired inspiratory‑expiratory CT. Two readers systematically scored bronchial wall thickening, bronchiectasis, 
centrilobular nodules, air trapping and lung parenchyma defects in each lung lobe and determined COPD phenotype. 
A third reader acted as adjudicator to establish consensus. Inter‑modality and inter‑reader agreement were assessed 
using Cohen’s kappa (im‑κ and ir‑κ).

Results The mean combined MRI score for bronchiectasis/bronchial wall thickening was 4.5/12 (CT scores, 2.2/12 
for bronchiectasis and 6/12 for bronchial wall thickening; im‑κ, 0.04–0.3). Expiratory right/left bronchial collapse 
was observed in 51 and 47/583 on MRI (62 and 57/599 on CT; im‑κ, 0.49–0.52). Markers of small airways disease 
on MRI were 0.15/12 for centrilobular nodules (CT, 0.34/12), 0.94/12 for air trapping (CT, 0.9/12) and 7.6/12 for perfu‑
sion deficits (CT, 0.37/12 for mosaic attenuation; im‑κ, 0.1–0.41). The mean lung defect score on MRI was 1.3/12 (CT 
emphysema score, 5.8/24; im‑κ, 0.18–0.26). Airway‑/emphysema/mixed COPD phenotypes were assigned in 370, 218 
and 10 of 583 cases on MRI (347, 218 and 34 of 599 cases on CT; im‑κ, 0.63). For all examined features, inter‑reader 
agreement on MRI was lower than on CT.

Conclusion Concordance of MRI and CT for phenotyping of COPD in a multi‑centre setting was substantial with vari‑
able inter‑modality and inter‑reader concordance for single diagnostic key features.

Clinical relevance statement MRI of lung morphology may well serve as a radiation‑free imaging modal‑
ity for COPD in scientific and clinical settings, given that its potential and limitations as shown here are carefully 
considered.

Key Points 

• In a multi-centre setting, MRI and CT showed substantial concordance for phenotyping of COPD (airway-/emphysema-/
mixed-type).
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• Individual features of COPD demonstrated variable inter-modality concordance with features of pulmonary hypertension 
showing the highest and bronchiectasis showing the lowest concordance.

• For all single features of COPD, inter-reader agreement was lower on MRI than on CT.

Keywords Magnetic resonance imaging, Computed tomography, Chronic obstructive pulmonary disease, 
Pulmonary emphysema

Introduction
Chronic obstructive pulmonary disease (COPD) is a 
common respiratory disorder, which globally caused 
3.28 million deaths in 2019 [1]. For more than 50 
years, COPD drug development aimed preferentially 
at improvement of spirometry indices as study end 
point [2]. However, since manifestation of the disease 
is inhomogeneous with different severity of damage 
to airways and lung parenchyma, global parameters 
from pulmonary function tests may remain normal 
or almost normal for a long time due to compensa-
tion of local functional impairment by intact portions 
of the organ [2, 3]. More recent concepts are focused 
on earlier treatment and take into account that dif-
ferent disease manifestations or phenotypes such as 
“emphysema-type” and “airway-type” show differ-
ent rates of disease progression and require different 
treatment strategies [2, 4–8]. In the last two decades, 
computed tomography (CT) has become the method 
of choice for image-based phenotyping of COPD [7, 
9]. Several multi-centre cohort studies employing CT 
for morphologic analysis of lung structure and phe-
notyping of COPD have improved the understanding 
of disease mechanisms in COPD and provided new 
biomarkers for the characterization of lung disease 
as well as clinical decision-making in the future [7, 
9–12].

To avoid cumulative radiation exposure from CT 
for repeat monitoring, magnetic resonance imaging 
(MRI) has been suggested as a radiation-free non-inva-
sive alternative. It combines imaging of morphologi-
cal abnormalities with techniques for the assessment 
of regional lung function, as shown in monocentric 
COPD studies [13–15]. Moreover, in patients with 
cystic fibrosis, morpho-functional MRI and a suitable 
semi-quantitative scoring system for chronic-obstruc-
tive airway disease have already been established for 
clinical routine [15–21]. For imaging COPD, multi-
centre experience with morpho-functional MRI 
regarding feasibility and agreement with CT was still 
missing. Thus, the purpose of the present study was 
to prospectively evaluate the feasibility and diagnostic 
yield of MRI for phenotyping of COPD and to compare 
it to CT in a large cohort study.

Methods/design
Study design
The trial (trial registration: German Clinical Trials Reg-
ister DRKS00005072) was embedded into the German 
“Impact of Systemic Manifestations/Comorbidities on 
Clinical State, Prognosis, Utilisation of Health Care 
Resources in Patients with COPD” study (COSYCONET, 
NCT01245933), substudy: “Image-Based Structural and 
Functional Phenotyping of the COSYCONET Cohort 
Using MRI and CT” (MR-COPD, NCT02629432). COSY-
CONET is a prospective multi-centre study which has 
enrolled more than 2700 subjects [22, 23].

The present imaging sub-study was designed to exam-
ine the diagnostic value of lung MRI as a radiation-free 
alternative to low-dose CT (LDCT) for phenotyping of 
COPD. To examine concordance between MRI and CT, 
607 participants from the COSYCONET cohort were 
enrolled at 15 COSYCONET study centres over a time 
span of 3 years (for the detailed inclusion criteria of the 
cohort study see [23]); additional exclusion criteria for 
the imaging sub-study are provided in the Supplementary 
Material.

This study was carried out in accordance with the rules 
of good clinical practice defined by the World Medical 
Association [24, 25]. It was approved by the Institutional 
Review Boards of all participating study centres and the 
German Federal Office for Radiation Protection. Written 
informed consent was obtained from all participants.

Magnetic resonance imaging
MRI examinations were performed on clinical MR sys-
tems with 1.5 T (Magnetom Aera, Avanto, Espree and 
Symphony [Siemens Healthineers]) or 3.0 T (Magnetom 
Trio [Siemens Healthineers] and Ingenia [Philips]). A 
basic MRI protocol for the assessment of structural and 
functional lung alterations in COPD patients was com-
posed as suggested in previous work and adapted to the 
specifications of each scanner, as far as necessary [15, 
26]. The total image acquisition time was approximately 
30 min. MRI included morphological non-contrast-
enhanced and contrast-enhanced sequences in in- and 
expiration and a dynamic contrast-enhanced series to 
study lung perfusion. The protocol was designed to be 
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applicable at all scanners in the different locations of the 
study. Therefore, it was based on commercially avail-
able sequences like 3D gradient echo (GE) and fast spin 
echo sequences for morphological imaging. More recent 
developments such as ultra-short echo-time sequences 
were not yet included. Dynamic perfusion imaging was 
performed using a T1-weighted keyhole pulse sequence 
(dynamic contrast enhancement (DCE)) and 2 ml gado-
linium-based contrast agent (Gadobutrol, 1 mmol/ml, 
Bayer AG) followed by a saline chaser [27, 28]. After con-
trast agent administration, the 3D GE acquisitions were 
repeated in in- and expiration, with additional fat satura-
tion preparation for the transversal images. Further pro-
tocol details are listed in the Supplementary Material.

Computed tomography
CT examinations were performed on clinical CT scan-
ners of different manufacturers with at least 40-row 
detector arrays. The standardized non-enhanced LDCT 
protocol employed inspiratory and end-expiratory spi-
ral acquisitions of the entire lung in thin collimation, as 
described in the supplementary material.

Image assessment
Scientific image processing was performed at the central 
coordinating centre in Heidelberg. MR and CT images 
were evaluated visually using a multimodal OsiriX (Osi-
riX 64-bit, Pixmeo SARL) post-processing workstation 
(iMac 27″, Apple Inc.) and two 21″ certified medical 
image displays (Eizo Nanao Corporation). Two radiolo-
gists with 3 years of experience in pulmonary imaging 
analyzed the images independently. Both examinations 
from each patient were read separately by each reader 
and blinded to the images and results obtained with 
the other modality. A time span of at least 2 weeks was 
kept in between the reads of MRI and CT to minimise 
recall bias. Finally, the records of both first readers were 
reviewed by a third reader with more than 20 years of 
experience in pulmonary MRI as adjudicator to establish 
a consensus.

The semi-quantitative visual analysis was based on a 
modified scoring system of the COPD Gene CT Work-
shop Group and established scoring systems for MRI in 
cystic fibrosis and COPD [11, 14, 20]. Multiple MRI and 
CT features of large and small airways disease were rated 
binary or using a 3-point-scale for each lobe as illustrated 
in Supplementary Table 4.

On CT, bronchiectasis and bronchial wall thickening 
were reported separately, while on MRI, a single sum 
score was given for bronchiectasis and/or bronchial wall 
thickening, since reporting these separately was expected 
to be difficult. Collapses of main and/or lobar bronchi 
and for small airways disease, centrilobular nodules and 

air trapping on expiratory scans were reported for both 
modalities. Adapted to the diagnostic scope of each 
modality, mosaic attenuation was recorded on CT, while 
lung perfusion deficits were recorded on MRI. On CT, 
the presence and extent of emphysema in each lobe was 
evaluated with a further extended 5-point scale (Sup-
plementary Table 4). On MRI, lung parenchyma defects 
were recorded as indicators of lung emphysema. Parasep-
tal emphysema, bullae and signs of pulmonary hyperten-
sion were reported for both modalities. The leading type 
of emphysema (centrilobular or perilobular) was deter-
mined on CT. Following the semi-quantitative evalua-
tions, each reader was requested to categorise the COPD 
into “airway-type”, “emphysema-type” or “mixed-type”.

Statistical analyses
The statistical analyses were conducted with R v.4.2.0 (R 
Foundation for Statistical Computing). Mean ± standard 
deviation (SD), median and range as well as absolute and 
relative frequencies were used to describe the endpoints. 
Results from the adjudicator-established consensus served 
as the standard of reference to assess concordance between 
MRI and CT. Inter-modality and inter-reader variability 
were evaluated with Cohen’s Kappa (κ), which was rated 
as previously described [29]: κ < 0.00 = poor; 0.00 < κ 
≤ 0.20 = slight; 0.21 < κ ≤ 0.40 = fair; 0.41 < κ ≤ 0.60 = 
moderate; 0.61 < κ ≤ 0.80 = substantial; 0.81 < κ ≤ 1.00 =  
near perfect. Additionally, the accuracy was calculated 
as the relative frequency of concordant evaluation. The 
reading results were managed using REDCap electronic 
data capture tools (Vanderbilt University) [30, 31].

Results
A total of 607 participants were enrolled in the study, 
581 (95.7%) of whom were examined with both MRI 
and CT while the remainder did not finish at least one 
of the examinations (e.g. because of claustrophobia) as 
illustrated in Fig.  1. The demographics and pulmonary 
function of the imaging cohort are shown in Table 1. The 
average radiation dose for in- and expiratory CT scans 
combined was 3.04 ± 0.68 mSv.

Large airway disease
Mean sum scores for bronchiectasis and/or bronchial 
wall thickening on MRI and CT are presented in Table 2. 
The average per-lobe concordance of the combined bron-
chiectasis and/or bronchial wall thickening score on MRI 
with bronchiectasis on CT was slight (im-κ = 0.07), while 
the average per-lobe concordance with bronchial wall 
thickening on CT was fair (im-κ = 0.22, Table  3). On 
expiratory scans, collapses of each of the main bronchi 
were observed in 7–8% of participants on MRI and in 
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10% of participants on CT at a moderate inter-modality 
concordance. Collapses of lobar bronchi were observed 
in 6% of participants on MRI and in 19% of participants 
on CT at a fair inter-modality concordance (Table 4).

Small airways disease
On MRI, the mean sum scores for centrilobular nod-
ules, lung perfusion deficits and air trapping were 0.15, 
8.4 and 0.4, while on CT, the mean sum scores for cen-
trilobular nodules, mosaic attenuation on inspiratory 
images and air trapping on expiratory scans were 0.34, 
0.37 and 0.9, respectively (Table  2). The average per-
lobe concordance between MRI and CT was fair for 

both centrilobular nodules (im-κ = 0.26) and air trap-
ping (im-κ = 0.37, Table 3) (Fig. 2).

Emphysema
On MRI, the mean sum score for lung parenchyma 
defects was 1.3/12, while on CT, the mean sum score for 
emphysema was 5.8/24. For comparison with MRI, the 
5-point scale for the description of emphysema on CT 
was reduced to a 3-point scale as used for MRI. Based on 
this, per-lobe concordance for parenchymal defects on 
MRI with emphysema on CT showed a fair concordance 
(im-κ = 0.21, Table 3).

On MRI, paraseptal emphysema, bullae and signs of 
pulmonary hypertension were reported in 12, 26 and 
124 of 583 subjects (CT 93, 70 and 125 of 599 subjects). 

Fig. 1 Study flow chart
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Inter-modality concordance was fair for paraseptal 
emphysema (im-κ = 0.21), moderate for bullae (im-κ = 
0.48) and near perfect for signs of pulmonary hyperten-
sion (im-κ = 0.84, Table  4). On CT, the leading type of 
emphysema was centrilobular in 375 of 599 subjects 
(63%), perilobular in 44 subjects (7%) and in 180 subjects 
(30%) the type of emphysema was not determined.

Classification of COPD type
On MRI, “Airway-type”-COPD was observed in 370 
of 583 subjects (63%), “Emphysema-type”-COPD was 
observed in 203 subjects (36%) and “mixed-type”-COPD 
was observed in 10 subjects (2%, ir-κ = 0.51). On CT, 
“Airway-type”-COPD was observed in 347 of 599 sub-
jects (58%), “Emphysema-type”-COPD was observed in 
218 cases (36%) and “mixed-type-COPD” in 34 cases (6%, 
ir-κ = 0.66). The inter-modality concordance regarding 
the COPD type was substantial at im-κ = 0.63 (Figs. 3, 4).

Inter‑reader agreement
For all sum scores and binary features that were assessed, 
inter-reader concordance was lower on MRI compared 
with CT. For collapses of the main bronchi, collapses 
of lobar bronchi and air trapping, the inter-reader con-
cordance of both MRI and CT was lower than that of the 
inter-modality concordance. For centrilobular nodules 
and COPD type, only the inter-reader concordance of 
MRI (but not of CT) was lower than the inter-modality 

Table 1 Participant demographics, lung function and GOLD 
stages

Participants were counted as smokers if they had smoked at least 100 cigarettes 
in their lifetime. BMI body mass index, FEV1% forced expiratory volume in 1 s 
percent predicted, GOLD Global Initiative for Chronic Obstructive Lung Disease

n (%)

Total participants 601

  Male 368 (61.2)

  Female 233 (38.8)

Age (years) 65.5 ± 8.6

  Median 67

  Range 42–85

BMI 26.8 ± 4.9

Smokers 552 (91.8)

Pack years 44.1 ± 35.9

FEV1% 59.6 ± 20.7

GOLD stages

  No COPD by GOLD criteria 84 (14)

  GOLD stage 1 59 (9.3)

  GOLD stage 2 249 (41.4)

  GOLD stage 3 167 (27.8)

  GOLD stage 4 39 (6.5)

  No spirometry data 3 (0.5)
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concordance. “Collapses of lobar bronchi” was the only 
feature that showed no inter-reader concordance on MRI 
(ir-κ = −0.02); on CT, all features showed at least slight 
inter-reader concordance (Figs. 5, 6).

Discussion
The conducted study shows the feasibility of lung MRI 
with a standardized imaging protocol in a multi-centre 
setting. Semi-quantitative visual evaluation of the images 
produced scores of key findings of COPD ranging from 
large over small airways disease to emphysema which 
allowed for a comparison of MRI and CT.

In large airways disease, inter-modality concordance 
was fair for bronchial wall thickening and slight for bron-
chiectasis on a lobar basis. This can mainly be attributed 
to the lower spatial resolution of MRI compared with 
CT. In the applied MRI protocols, the spatial resolution 
ranged from 1.04 × 1.04 to 1.76 × 1.76 mm in plane at 
a slice thicknesses of 1.8 to 6 mm. The spatial resolution 
of the CT scans was defined as 0.78 × 0.78 mm in plane 
with a slice thickness of 0.625 to 1 mm, thus producing 2 
to 5 times better resolution in plane and approximately 
5 to 40 times smaller voxel sizes. Of the key features of 
COPD, bronchiectasis of peripheral airways appears 
to be the most critical structure. Unless small airways 
appear with thickened walls or mucus filling, they can be 
well detected with CT, but no more with MRI [32, 33]. 
Since this was anticipated when setting up the study, 
only a combined sum score was planned for reporting 
bronchiectasis and/or bronchial wall thickening on MRI. 
Moreover, due to longer acquisition times, MRI is more 
sensitive to respiratory and cardiac motion, which fur-
ther deteriorates the detection of fine structures [32]. It 
is therefore not surprising that bronchiectases were more 
frequently observed on CT. The difference in spatial reso-
lution also explains that expiratory collapses of the main 
bronchi could be well seen on MRI, while inter-modality 
and inter-reader concordance were lower for lobar bron-
chi. Im-κ for collapses of the right and left main bronchi 

were 0.49 and 0.52, respectively, but on average only 
0.27 on the lobar level. Similarly, inter-reader agreement 
dropped on CT from κ = 0.46 for collapses of the main 
bronchi to κ = 0.16 for collapses of lobar bronchi and on 
MRI from κ = 0.37–0.40 for collapses of the main bron-
chi to κ = 0.02 for collapses of lobar bronchi.

Regarding small airways disease, centrilobular nod-
ules and air trapping mostly showed fair inter-modality 
concordance on a per-lobe basis, demonstrating that 
MRI can provide some information about small air-
ways disease without visualizing small healthy airways 
themselves.

Emphysema only showed a slight to fair inter-modal-
ity concordance on a lobar level, which is most likely 
because lung tissue mainly consists of air-filled alveolar 
space with low hydrogen content and multiple air tissue 
surfaces, resulting in low signal intensity and poor sig-
nal-to-noise ratio [12, 34]. Therefore, an even lower sig-
nal intensity in emphysematous lung areas is difficult to 
perceive, which explains why so-called minus-pathol-
ogy, such as emphysema, is difficult to detect with MRI.

Examination of the COPD type showed substan-
tial inter-reader and inter-modality concordance, 
most likely because this was a binary feature that was 
assessed for the whole lung. Pulmonary trunk ectasia 
showed the highest inter-modality concordance (κ = 
0.84), validating that large-vessel diameters can ade-
quately be assessed by both MRI and CT.

On CT, inter-reader agreement ranged from κ = 0.10 
for the sum score of mosaic attenuation to κ = 0.66 for 
classification of COPD type. Widell and Lidén reported 
kappa values of 0.28 to 0.85 for inter-reader agreement 
of pulmonary patterns on HRCT (high-resolution CT) 
with half of the patterns at kappa values above 0.70 
[35]. That is significantly higher than the inter-reader 
agreements recorded in this study. Reasons for this 
could be the superior image quality of HRCT compared 
to LDCT and that the patterns of the HRCT study were 
on average easier to recognise. Moreover, the HRCT 

Table 3 Cohen’s κ and accuracy of MRI and CT features on a lobar basis

RLL right lower lobe, RML right middle lobe, RUL right upper lobe, LUL left upper lobe, Ling. lingula, LLL left lower lobe

CT feature MRI feature Cohen’s κ Accuracy

RLL RML RUL LUL Ling. LLL RLL RML RUL LUL Ling. LLL

Bronchiectasis Bronchiectasis/bron‑
chial wall thickening

0.07 0.09 0.04 0.06 0.10 0.06 0.45 0.46 0.44 0.48 0.49 0.41

Bronchial wall thickening 0.30 0.14 0.24 0.25 0.17 0.31 0.75 0.65 0.65 0.64 0.60 0.77

Bronchial collapse Bronchial collapse 0.29 0.11 0.07 0.33 0.10 0.23 0.90 0.95 0.96 0.99 0.97 0.86

Centrilobular nodules Centrilobular nodules 0.41 0.25 0.22 0.21 0.09 0.39 0.95 0.95 0.95 0.96 0.96 0.94

Air trapping Air trapping 0.40 0.32 0.36 0.37 0.38 0.37 0.78 0.94 0.94 0.95 0.95 0.76

Emphysema Parenchymal defects 0.18 0.26 0.23 0.20 0.21 0.20 0.54 0.59 0.54 0.53 0.57 0.55
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study recorded only binary findings while this study 
included scores with different options and semi-quan-
titative evaluation, hence potentially decreasing inter-
reader agreement.

On MRI, almost all assessed hallmarks of COPD were 
underestimated with lower inter-reader agreement com-
pared to CT. This can primarily be attributed to the lower 
spatial resolution and lower signal-to-noise ratio of MRI 

Table 4 Results of binary airway and emphysema features that were assessed on MRI and CT

On MRI and CT, a pulmonary trunc ectasia of 29 mm or more and a ratio of right ventricle diameter/left ventricle diameter of more than 1 were counted as signs of 
pulmonary hypertension. ir-κ inter-reader concordance by Cohen’s κ, im-κ inter-modality concordance by Cohen’s κ

Feature MRI (n = 583) CT (n = 599) Inter‑modal

Prevalence (%) ir‑κ Prevalence (%) ir‑κ im‑κ Accuracy

Collapse right main bronchus 51 (9) 0.37 62 (10) 0.46 0.49 0.91

Collapse left main bronchus 47 (8) 0.40 57 (10) 0.46 0.52 0.92

Collapses of lobar bronchi 33 (6) –0.02 115 (19) 0.16 0.27 0.84

Paraseptal emphysema 12 (2) 0.49 93 (16) 0.52 0.21 0.87

Bullae 26 (4) 0.60 70 (12) 0.55 0.48 0.92

Signs of pulmonary hypertension 124 (21) 0.65 125 (21) 0.63 0.84 0.95

Fig. 2 Large and small airway disease in a 70‑year‑old female participant (classified as airway predominant COPD phenotype). The CT images 
in in‑ and expiration (a, c) as well as the MRI in in‑ and expiration (b, d) show a collapse of the intermediate bronchus and left main bronchus 
with large areas of air trapping in expiration (asterisks)
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as explained above. Moreover, since lung MRI is still not a 
frequent examination in clinical routine, the readers, who 
had at least 3 years of experience in pulmonary imag-
ing, were more experienced in reading CT compared to 

MRI, despite training sessions before the study reads. The 
relatively limited experience of the two primary readers 
compared with the adjudicator also most likely explains, 
why for bronchial collapses and air trapping, inter-reader 

Fig. 3 Airway‑type COPD in a 57‑year‑old female participant (classified as airway predominant COPD phenotype). The white arrowhead on the CT 
image (a) indicates thickened bronchial walls in the right lower lobe. On the corresponding MRI, bronchial wall thickening appears less conspicuous 
with a slightly better visualisation on the contrast‑enhanced transverse 3D gradient echo image (c) compared to the non‑contrast‑enhanced (b, 
white arrowheads). Functional deficits from airway disease appear as perfusion defects on the DCE series (d, grey arrowheads) and as air trapping 
on the contrast‑enhanced transverse 3D gradient echo image in expiration (e)
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concordance on CT and MRI each was lower than inter-
modality concordance, which was based on the results 
from the consensus read.

In contrast to the COPDGene and EvA (emphysema 
vs airway disease) studies, which used two different 
CT scans for the analysis of the degree of emphysema 
and airway architecture (EvA) or the discrimination of 
emphysema and gas trapping (COPDGene), the present 
study used an identical LDCT protocol for inspiratory 
and expiratory scans in order to reduce radiation dose, 
obtain identical image quality and facilitate quality man-
agement procedures [36, 37].

One potential limitation of the study is the scoring sys-
tem. For most features, it was based on a 3-point scale 

for absence or presence of a finding in less or more than 
50% of a lung lobe. This produced rather a description of 
the presence of a finding than detailed quantitative infor-
mation. For this study, this was considered appropriate 
and practicable, since COPD phenotyping is based on the 
presence or predominance of key features. Consequently, 
statistics focused on concordance of both methods for 
the presence of findings. Any calculated mean or median 
scores should therefore be interpreted carefully. The 
focus on qualitative rather than quantitative informa-
tion also explains why concordance for attributing COPD 
phenotypes was higher than for most of the individual 
parameters.

Fig. 4 Emphysema‑type COPD in a 69‑year‑old male participant (classified as emphysema predominant COPD phenotype). Arrowheads on the CT 
image (a) indicate severe emphysema in both anterior upper lung lobes and in the tip of the left lower lung lobe. On the corresponding MRI, 
the affected parts of the lung appear as lung parenchyma defects on the contrast‑enhanced transverse 3D gradient echo image (b), as perfusion 
deficits in the DCE series (c) and as signal void in the transverse half Fourier fast spin echo image (d)
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Moreover, MR image quality in this study reflects a 
compromise and the best possible level that could be 
achieved with the installed MR scanners at the time of 
study setup in 2013 rather than the potential maximum 
with the latest equipment. Differences in MR scanners 
and overall image quality were obvious and documented 
with a dedicated MRI phantom [38]. Further analysis of 
the influence of scanner type, image quality and reader 
experience levels would be beyond the scope of this 
publication.

Finally, in this multi-centre study, image acquisition 
took place in 15 different locations, but the reading of all 
images was conducted in Heidelberg by the same 3 read-
ers, which increased standardization. Having different 

readers at each location in the future might increase vari-
ance between the centres.

When discussing the benefits of avoiding radiation 
exposure by using MRI instead of CT, one might argue 
that most COPD patients are elderly with limited remain-
ing life expectancy and that ionizing radiation from CT 
is therefore less relevant. However, this topic is disput-
able and controversely discussed, e.g. in the context of 
CT for lung cancer screening [39]. Nevertheless, COPD 
also affects younger patients and even if the percentage 
is small, it amounts to large absolute numbers given the 
high prevalence of COPD worldwide. For example, the 
prevalence of COPD in the USA in 2007–2012 in the age 
group “20–50 years” was about 1.6%, which is equivalent 

Fig. 5 Paraseptal emphysema in a 51‑year‑old male participant (classified as airway predominant COPD phenotype). Arrowheads on the CT 
images (a) indicate areas of paraseptal emphysema with large bullae. On the corresponding MRI, the affected parts of the lung appear as lung 
parenchyma defects on the contrast‑enhanced transverse 3D gradient echo image (b), as perfusion deficits in the DCE series (c) and as signal void 
in the transverse half Fourier fast spin echo images (d)
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to over 2 million cases only in the USA [40]. Particularly 
for these patients, avoiding radiation exposure would be 
desirable.

Moreover, besides being radiation-free, MRI offers 
additional value compared to CT in terms of functional 
imaging. While the presented work focuses mainly on 
MRI of lung morphology, future applications will com-
bine this approach with functional MRI of the lungs. 
It would be beyond the scope of this article to discuss 
all functional imaging capacities of MRI in detail, but 
approaches to study lung perfusion, airway dysfunc-
tion, lung ventilation and respiratory mechanics using 
periodic signal alterations from respiration and cardiac 
action, arterial spin labelling or aerosolized contrast 
agents, hyperpolarized or inert gases are ample [41]. It 
appears more than realistic that this will make lung MRI 
not only an alternative, but complementary to CT for 
imaging COPD in the future.

The functional imaging component of our study proto-
col used the clinically most established method which is 
first-pass contrast-enhanced imaging with bolus injection 
of gadolinium chelates and time-resolved gradient-echo 

sequences. Injection of gadolinium-based contrast mate-
rials is considered reasonably safe and no adverse reac-
tions to contrast infection were recorded during the study. 
However, besides rare acute adverse reactions and even 
rarer potential long-term complications such as nephro-
genic systemic fibrosis, repeat contrast-enhanced MRI 
scans may lead to gadolinium deposition in the brain [42]. 
No adverse events were observed and no clinical symp-
toms have been associated with gadolinium deposition in 
this study. The gadolinium retention can be minimized, 
but not completely prevented by using macrocyclic 
instead of linear agents [43]. Therefore, functional MRI 
techniques without intravenous contrast would be highly 
appreciated, but imaging results might be disappointing 
in COPD patients with emphysema and insufficient lung 
signal intensity [44].

Against the background of significant comorbidities 
and the high risk of lung cancer in COPD patients, it is 
well known that CT offers benefits such as opportunistic 
lung cancer screening or detection of coronary artery cal-
cifications. For example, 91.8% of the participants of this 
study were current or former smokers. The sensitivity of 

Fig. 6 Mixed pattern with emphysema and extensive airway disease in a 62‑year‑old female participant (classified as airway predominant 
COPD phenotype). Arrowheads on the CT images (a, d) indicate severe emphysema in both anterior upper and posterior lung lobes. On 
the corresponding MRI, the affected parts of the lung appear as signal void in the transverse half Fourier fast spin echo images (b, e) or lung 
parenchyma defects on the contrast‑enhanced transverse 3D gradient echo image (c) and as extensive perfusion deficits in the DCE series (f)
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MRI for the detection of lung nodules of at least 6 mm 
in diameter is over 70% and therefore only slightly lower 
compared to CT, with significantly inferior sensitivity of 
MRI for non-/subsolid nodules [45]. Thus, MRI offers 
moderate but still valuable opportunistic lung cancer 
screening capacities.

In conclusion, this study shows the potential and the 
limitations of lung MRI for COPD research in a multi-
centre setting. Concordance of MRI and CT for pheno-
typing of COPD was substantial, while it was variable for 
individual key findings of COPD. Inter-modality concord-
ance was fair to moderate for most features of large air-
way disease, but only slight to fair for bronchiectasis and 
emphysema while inter-reader agreement was generally 
lower on MRI compared to CT. This is mainly attributed 
to the lower spatial resolution of MRI, its limitations in 
detecting minus pathology and its susceptibility to motion 
artefacts. However, the information about regional mani-
festation of disease in the lungs from MRI could still be a 
valuable adjunct to clinical data and standard spirometry.
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