Skip to main content

Advertisement

Log in

Current status of optoacoustic breast imaging and future trends in clinical application: is it ready for prime time?

  • Review
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Optoacoustic imaging (OAI) is an emerging field with increasing applications in patients and exploratory clinical trials for breast cancer. Optoacoustic imaging (or photoacoustic imaging) employs non-ionizing, laser light to create thermoelastic expansion in tissues and detect the resulting ultrasonic emission. By combining high optical contrast capabilities with the high spatial resolution and anatomic detail of grayscale ultrasound, OAI offers unique opportunities for visualizing biological function of tissues in vivo. Over the past decade, human breast applications of OAI, including benign/malignant mass differentiation, distinguishing cancer molecular subtype, and predicting metastatic potential, have significantly increased. We discuss the current state of optoacoustic breast imaging, as well as future opportunities and clinical application trends.

Clinical relevance statement

Optoacoustic imaging is a novel breast imaging technique that enables the assessment of breast cancer lesions and tumor biology without the risk of ionizing radiation exposure, intravenous contrast, or radionuclide injection.

Key Points

• Optoacoustic imaging (OAI) is a safe, non-invasive imaging technique with thriving research and high potential clinical impact.

• OAI has been considered a complementary tool to current standard breast imaging techniques.

• OAI combines parametric maps of molecules that absorb light and scatter acoustic waves (like hemoglobin, melanin, lipids, and water) with anatomical images, facilitating scalable and real-time molecular evaluation of tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BI-RADS:

Breast-Imaging Reporting and Data System

BOLD:

Blood oxygen level dependent

dHb:

Deoxyhemoglobin

HbO2 :

Oxyhemoglobin

HER2:

Human epidermal growth factor receptor 2

MRI:

Magnetic resonance imaging

MSOT:

Multispectral optoacoustic tomography

NIR:

Near-infrared

OAI:

Optoacoustic imaging

PET:

Positron emission tomography

TOLD:

Tissue oxygen level dependent

US:

Ultrasound

References

  1. Alexander GB. On the production and reproduction of sound by light: [read before the American Association for the Advancement of Science, in Boston, August 27, 1880.] (1880) Researches of Sumner Tainter and Alexander Graham Bell. Photophonic transmitters. Experiments to ascertain the nature of the rays that affect selenium. Non-Electric Photophonic Receivers. Ame J Sci 20(118):305

  2. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23(3):313–20

    Article  CAS  PubMed  Google Scholar 

  3. Neuschler EI, Butler R, Young CA et al (2018) A pivotal study of optoacoustic imaging to diagnose benign and malignant breast masses: a new evaluation tool for radiologists. Radiology 287(2):398–412

    Article  PubMed  Google Scholar 

  4. Dogan BE, Menezes GLG, Butler RS et al (2019) Optoacoustic imaging and gray-scale US features of breast cancers: correlation with molecular subtypes. Radiology 292(3):564–572

    Article  PubMed  Google Scholar 

  5. Zhang J, Duan F, Liu Y, Nie L (2020) High-resolution photoacoustic tomography for early-stage cancer detection and its clinical translation. Radiol Imaging Cancer 2(3)

  6. MacCuaig WM, Jones MA, Abeyakoon O, McNally LR (2020) Development of multispectral optoacoustic tomography as a clinically translatable modality for cancer imaging. Radiol Imaging Cancer. 2(6)

  7. Neuschler EI, Lavin PT, Tucker FL et al (2018) Downgrading and upgrading gray-scale ultrasound BI-RADS categories of benign and malignant masses with optoacoustics: a pilot study. AJR Am J Roentgenol 211(3):689–700

    Article  PubMed  Google Scholar 

  8. Butler R, Lavin PT, Tucker FL et al (2018) Optoacoustic breast imaging: imaging-pathology correlation of optoacoustic features in benign and malignant breast masses. AJR Am J Roentgenol 211(5):1155–1170

    Article  PubMed  Google Scholar 

  9. Zackrisson S, van de Ven SMWY, Gambhir SS (2014) Light in and sound out: emerging translational strategies for photoacoustic imaging. Cancer Res. 74(4):979–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dolet A, Ammanouil R, Petrilli V et al (2021) In vitro and in vivo multispectral photoacoustic imaging for the evaluation of chromophore concentration. Sensors (Basel). 21(10):3366

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Wen Y, Guo D, Zhang J et al (2022) Clinical photoacoustic/ultrasound dual-modal imaging: current status and future trends. Front Physiol 13:1036621

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nyayapathi N, Xia J (2019) Photoacoustic imaging of breast cancer: a mini review of system design and image features. J Biomed Opt 24(12):1–13

    Article  PubMed  Google Scholar 

  13. Tzoumas S, Nunes A, Deliolanis NC, Ntziachristos V (2015) Effects of multispectral excitation on the sensitivity of molecular optoacoustic imaging. J Biophotonics 8(8):629–637

    Article  PubMed  Google Scholar 

  14. Buehler A, Kacprowicz M, Taruttis A, Ntziachristos V (2013) Real-time handheld multispectral optoacoustic imaging. Opt Lett 38(9):1404–6

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Garcia-Uribe A, Erpelding TN, Krumholz A et al (2015) Dual-modality photoacoustic and ultrasound imaging system for noninvasive sentinel lymph node detection in patients with breast cancer. Sci Rep 5:15748

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Lin L, Hu P, Shi J et al (2018) Single-breath-hold photoacoustic computed tomography of the breast. Nat Commun 9(1):2352

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  17. Kim C, Erpelding TN, Jankovic L, Pashley MD, Wang LV (2010) Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed Opt Express 1(1):278–284

    Article  PubMed  PubMed Central  Google Scholar 

  18. Manohar S, Dantuma M (2019) Current and future trends in photoacoustic breast imaging. Photoacoustics 16:100134

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kruger RA, Lam RB, Reinecke DR, Del Rio SP, Doyle RP (2010) Photoacoustic angiography of the breast. Med Phys 37(11):6096–6100

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barr RG, De Silvestri A, Scotti V et al (2019) Diagnostic performance and accuracy of the 3 interpreting methods of breast strain elastography: a systematic review and meta-analysis. J Ultrasound Med 38(6):1397–1404

    Article  PubMed  Google Scholar 

  21. Pillai A, Voruganti T, Barr R, Langdon J (2022) Diagnostic accuracy of shear-wave elastography for breast lesion characterization in women: a systematic review and meta-analysis. J Am Coll Radiol 19(5):625-634.e0

    Article  PubMed  Google Scholar 

  22. Barr RG, Engel A, Kim S, Tran P, De Silvestri A (2023) Improved breast 2D SWE algorithm to eliminate false-negative cases. Invest Radiol 58(10):703–709

    Article  CAS  PubMed  Google Scholar 

  23. Seiler SJ, Neuschler EI, Butler RS, Lavin PT, Dogan BE (2023) Optoacoustic imaging with decision support for differentiation of benign and malignant breast masses: a 15-reader retrospective study. AJR Am J Roentgenol 220(5):646–658

    Article  PubMed  Google Scholar 

  24. Pu H, Zhang XL, Xiang LH et al (2019) The efficacy of added shear wave elastography (SWE) in breast screening for women with inconsistent mammography and conventional ultrasounds (US). Clin Hemorheol Microcirc 71(1):83–94

    Article  PubMed  Google Scholar 

  25. Sadigh G, Carlos RC, Neal CH, Wojcinski S, Dwamena BA (2013) Impact of breast mass size on accuracy of ultrasound elastography vs conventional B-mode ultrasound: a meta-analysis of individual participants. Eur Radiol 23(4):1006–1014

    Article  PubMed  Google Scholar 

  26. Suvannarerg V, Chitchumnong P, Apiwat W et al (2019) Diagnostic performance of qualitative and quantitative shear wave elastography in differentiating malignant from benign breast masses, and association with the histological prognostic factors. Quant Imaging Med Surg 9(3):386–398

    Article  PubMed  PubMed Central  Google Scholar 

  27. Du J, Wang L, Wan CF et al (2012) Differentiating benign from malignant solid breast lesions: combined utility of conventional ultrasound and contrast-enhanced ultrasound in comparison with magnetic resonance imaging. Eur J Radiol 81(12):3890–3899

    Article  PubMed  Google Scholar 

  28. Liu H, Jiang YX, Liu JB, Zhu QL, Sun Q (2008) Evaluation of breast lesions with contrast-enhanced ultrasound using the microvascular imaging technique: initial observations. Breast 17(5):532–539

    Article  PubMed  Google Scholar 

  29. Hu Q, Wang XY, Zhu SY, Kang LK, Xiao YJ, Zheng HY (2015) Meta-analysis of contrast-enhanced ultrasound for the differentiation of benign and malignant breast lesions. Acta Radiol 56(1):25–33

    Article  PubMed  Google Scholar 

  30. Ozcan BB, Xi Y, Dogan BE (2023) Supplemental optoacoustic imaging of breast masses: a cost-effectiveness analysis. Acad Radiol 31(1):121–130

  31. Gröhl J, Hacker L, Cox BETAL (2022) The IPASC data format: a consensus data format for photoacoustic imaging. Photoacoustics 26:100339

    Article  PubMed  PubMed Central  Google Scholar 

  32. Xu M, Wang LV (2006) Photoacoustic imaging in biomedicine. Review of scientific instruments 77(4):041101

    Article  ADS  Google Scholar 

  33. Menke J (2015) Photoacoustic breast tomography prototypes with reported human applications. Eur Radiol 25(8):2205–2213

    Article  PubMed  Google Scholar 

  34. Wilkerson EC, Van Acker MM, Bloom BS, Goldberg DJ (2019) Utilization of laser therapy during pregnancy: a systematic review of the maternal and fetal effects reported from 1960 to 2017. Dermatol Surg 45(6):818–828

    Article  CAS  PubMed  Google Scholar 

  35. Premarket Approval (PMA). U.S. Food and Drug Administration website. Available via https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P200003. Updated May 15, 2023. Accessed May 18, 2023.

  36. Laser Safety Information. The Laser Institute website. Available via https://www.lia.org/resources/laser-safety-information. Accessed October 4, 2023

  37. Mann RM, Hooley R, Barr RG, Moy L (2020) Novel approaches to screening for breast cancer. Radiology 297(2):266–285

    Article  PubMed  Google Scholar 

  38. Menezes GLG, Pijnappel RM, Meeuwis C et al (2018) Downgrading of breast masses suspicious for cancer by using optoacoustic breast imaging. Radiology 288(2):355–365

    Article  PubMed  Google Scholar 

  39. Kim YJ, Kim JS, Kim IA (2018) Molecular subtype predicts incidence and prognosis of brain metastasis from breast cancer in SEER database. J Cancer Res Clin Oncol 144(9):1803–1816

    Article  CAS  PubMed  Google Scholar 

  40. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365(9472):1687–717

    Article  Google Scholar 

  41. Yin L, Duan JJ, Bian XW, Yu SC (2020) Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 22(1):61

    Article  PubMed  PubMed Central  Google Scholar 

  42. Presented by Dogan et al at the 108th Scientific Assembly and Annual Meeting of the Radiological Society of North America, November 29 to December 5, 2020.

  43. Diot G, Metz S, Noske A et al (2017) Multispectral optoacoustic tomography (MSOT) of human breast cancer. Clin Cancer Res 23(22):6912–6922

    Article  CAS  PubMed  Google Scholar 

  44. Buffa FM, Harris AL, West CM, Miller CJ (2010) Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene. Br J Cancer 102(2):428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vaupel P, Schlenger K, Knoop C, Höckel M (1991) Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51(12):3316–3322

    CAS  PubMed  Google Scholar 

  46. Fyles A, Milosevic M, Hedley D et al (2002) Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. J Clin Oncol 20(3):680–687

    Article  CAS  PubMed  Google Scholar 

  47. Daimiel I (2019) Insights into hypoxia: non-invasive assessment through imaging modalities and its application in breast cancer. J Breast Cancer 22(2):155–171

    Article  PubMed  PubMed Central  Google Scholar 

  48. Panico C, Ferrara F, Woitek R et al (2022) Staging breast cancer with MRI, the T. A key role in the neoadjuvant setting. Cancers (Basel) 14(23)

  49. Zhao D, Jiang L, Hahn EW, Mason RP (2009) Comparison of 1H blood oxygen level-dependent (BOLD) and 19F MRI to investigate tumor oxygenation. Magn Reson Med 62(2):357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arai TJ, Yang DM, Campbell JW et al (2021) Oxygen-sensitive MRI: a predictive imaging biomarker for tumor radiation response? Int J Radiat Oncol Biol Phys 110(5):1519–1529

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dubec MJ, Buckley DL, Berks M et al (2023) First-in-human technique translation of oxygen-enhanced MRI to an MR Linac system in patients with head and neck cancer. Radiother Oncol 183:109592

    Article  CAS  PubMed  Google Scholar 

  52. Rich LJ, Seshadri M (2015) Photoacoustic imaging of vascular hemodynamics: validation with blood oxygenation level-dependent MR imaging. Radiology 275(1):110–118

    Article  PubMed  Google Scholar 

  53. Liu L, O’Kelly D, Schuetze R (2021) Non-invasive evaluation of acute effects of tubulin binding agents: a review of imaging vascular disruption in tumors. Molecules 26(9)

  54. Guo Y, Wang H, Gerberich JL et al (2021) Imaging-guided evaluation of the novel small-molecule benzosuberene tubulin-binding agent KGP265 as a potential therapeutic agent for cancer treatment. Cancers (Basel) 13(19)

  55. Ghosh P, Guo Y, Ashrafi A et al (2020) Oxygen-enhanced optoacoustic tomography reveals the effectiveness of targeting heme and oxidative phosphorylation at normalizing tumor vascular oxygenation. Cancer Res 80(17):3542–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Quiros-Gonzalez I, Tomaszewski MR et al (2022) Photoacoustic tomography detects response and resistance to bevacizumab in breast cancer mouse models. Cancer Res 82(8):1658–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu JJ, Wang Z, Nie LM (2022) RGD-functionalised melanin nanoparticles for intraoperative photoacoustic imaging-guided breast cancer surgery. Eur J Nucl Med Mol Imaging 49(3):847–860

    Article  CAS  PubMed  Google Scholar 

  58. Sim C, Kim H, Moon H, Lee H, Chang JH, Kim H (2015) Photoacoustic-based nanomedicine for cancer diagnosis and therapy. J Control Release 203:118–125

    Article  CAS  PubMed  Google Scholar 

  59. Harrison T, Zemp RJ (2011) Coregistered photoacoustic-ultrasound imaging applied to brachytherapy. J Biomed Opt 16(8):080502

    Article  PubMed  Google Scholar 

  60. Wu Z, Stangl S, Hernandez-Schnelzer A et al (2023) Functionalized hybrid iron oxide-gold nanoparticles targeting membrane Hsp70 radiosensitize triple-negative breast cancer cells by ROS-mediated apoptosis. Cancers (Basel) 15(4)

  61. Nosrati H, Salehiabar M, Charmi J et al (2023) Enhanced in vivo radiotherapy of breast cancer using gadolinium oxide and gold hybrid nanoparticles. ACS Appl Bio Mater 6(2):784–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schuemann J, Berbeco R, Chithrani DB et al (2016) Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int J Radiat Oncol Biol Phys 94(1):189–205

    Article  PubMed  Google Scholar 

  63. Tomaszewski MR, Gehrung M, Joseph J, Quiros-Gonzalez I, Disselhorst JA, Bohndiek SE (2018) Oxygen-enhanced and dynamic contrast-enhanced optoacoustic tomography provide surrogate biomarkers of tumor vascular function, hypoxia, and necrosis. Cancer Res 78(20):5980–5991

    Article  CAS  PubMed  Google Scholar 

  64. Jo J, Folz J, Gonzalez ME et al (2023) Personalized oncology by in vivo chemical imaging: photoacoustic mapping of tumor oxygen predicts radiotherapy efficacy. ACS Nano 17(5):4396–4403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. O’Kelly D, Guo Y, Mason RP (2020) Evaluating online filtering algorithms to enhance dynamic multispectral optoacoustic tomography. Photoacoustics 19:100184

    Article  PubMed  PubMed Central  Google Scholar 

  66. Biswas D, Vasudevan S, Chen GCK, Bhagat P, Sharma N, Phatak S (2017) Time–frequency based photoacoustic spectral response technique for differentiating human breast masses. Biomed Phys Eng Express 3(3):035002

    Article  Google Scholar 

  67. von Minckwitz G, Untch M, Blohmer JU (2012) Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol 30(15):1796–1804

    Article  Google Scholar 

  68. Cortazar P, Zhang L, Untch M et al (2014) Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 384(9938):164–172

    Article  PubMed  Google Scholar 

  69. Lin L, Tong X, Hu P, Invernizzi M, Lai L, Wang LV (2021) Photoacoustic computed tomography of breast cancer in response to neoadjuvant chemotherapy. Adv Sci (Weinh) 8(7):2003396

    Article  CAS  PubMed  Google Scholar 

  70. Schaafsma BE, van de Giessen M, Charehbili A et al (2015) Optical mammography using diffuse optical spectroscopy for monitoring tumor response to neoadjuvant chemotherapy in women with locally advanced breast cancer. Clin Cancer Res 21(3):577–584

    Article  PubMed  Google Scholar 

  71. Roblyer D, Ueda S, Cerussi A et al (2011) Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment. Proc Natl Acad Sci U S A 108(35):14626–14631

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Ntziachristos V, Chance B (2001) Probing physiology and molecular function using optical imaging: applications to breast cancer. Breast Cancer Res 3(1):41–46

    Article  CAS  PubMed  Google Scholar 

  73. Amar L, Bruma M, Desvignes P, Leblanc M, Perdriel G, Velghe M (1964) Detection d’omes elastiques (ultrasonores) sur l’os occipital, induites par impulsions laser dans l’oeil d’un lapin. C R Hebd Seances Acad Sci 259:3653–3655

    CAS  PubMed  Google Scholar 

  74. Bowen T, Nasoni RL, Pifer AE, Sembroski GH. (1981) Some experimental results on the thermoacoustic imaging of tissue equivalent phantom materials. in Proceedings 1981 Ultrasonics Symposium. IEEE 823–827.

  75. Oraevsky AA, Jacques SL, Esenaliev RO, Tittel FK (1994) Laser-based optoacoustic imaging in biological tissues. in Laser-tissue interaction V and ultraviolet radiation hazards. SPIE 2134:122–128

    ADS  Google Scholar 

  76. Oraevsky AA, Karabutov AA, Solomatin SV et al (2001) Laser optoacoustic imaging of breast cancer in vivo. In Biomed Pptoacoustics II SPIE 4256:6–15

    ADS  Google Scholar 

  77. Menezes GLG, Mann RM, Meeuwis C et al (2019) Optoacoustic imaging of the breast: correlation with histopathology and histopathologic biomarkers. Eur Radiol 29(12):6728–6740

    Article  PubMed  PubMed Central  Google Scholar 

  78. Oraevsky AA, Clingman B, Zalev J, Stavros AT, Yang WT, Parikh JR (2018) Clinical optoacoustic imaging combined with ultrasound for coregistered functional and anatomical mapping of breast tumors. Photoacoustics 12:30–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Manohar S, Kharine A, van Hespen JC, Steenbergen W, van Leeuwen TG (2005) The Twente Photoacoustic Mammoscope: system overview and performance. Phys Med Biol 50(11):2543–2557

    Article  PubMed  Google Scholar 

  80. Kruger RA, Kuzmiak CM, Lam RB, Reinecke DR, Del Rio SP, Steed D (2013) Dedicated 3D photoacoustic breast imaging. Med Phys 40(11):113301

    Article  PubMed  PubMed Central  Google Scholar 

  81. Toi M, Asao Y, Matsumoto Y et al (2017) Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array. Scientific Rep 7(1):41970

    Article  CAS  ADS  Google Scholar 

  82. Yamaga I, Kawaguchi-Sakita N, Asao Y et al (2018) Vascular branching point counts using photoacoustic imaging in the superficial layer of the breast: a potential biomarker for breast cancer. Photoacoustics 11:6–13

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nyayapathi N, Zhang H, Zheng E et al (2021) Photoacoustic dual-scan mammoscope: results from 38 patients. Biomed Opt Express 12(4):2054–2063

    Article  PubMed  PubMed Central  Google Scholar 

  84. Abeyakoon O, Woitek R, Wallis MG et al (2022) An optoacoustic imaging feature set to characterise blood vessels surrounding benign and malignant breast lesions. Photoacoustics 27:100383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gu L, Deng H, Bai Y et al (2023) Sentinel lymph node mapping in patients with breast cancer using a photoacoustic/ultrasound dual-modality imaging system with carbon nanoparticles as the contrast agent: a pilot study. Biomed Opt Express 14(3):1003–1014

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Townsend Majors for her help in illustrating the optoacoustic device systems.

Funding

Dr. Ozcan is fully supported by Eugene P. Frenkel Scholarship in Clinical Medicine granted to Dr. Dogan by UT Southwestern Simmons Comprehensive Cancer Center. The study presented in Fig. 6 was supported in part by NIH NCI grants 1R01CA244579, 2P30CA142543, and S10 OD018094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bersu Ozcan.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Basak E. Dogan, MD.

Conflict of interest

The authors of this manuscript declare relationships with the following companies: Basak E. Dogan, MD, received a research grant from Seno Medical Instruments for an unrelated project regarding neoadjuvant chemotherapy response assessment. Seno Medical Instruments, Inc. is the source of the cases described in Figs. 3 and 5.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was not required for this study because this is a review study.

Ethical approval

Institutional Review Board approval was not required because this is a review study.

Study subjects or cohorts overlap

No study subjects or cohorts have been previously reported.

Methodology

• review

• performed at one institution

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 63 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozcan, B.B., Wanniarachchi, H., Mason, R.P. et al. Current status of optoacoustic breast imaging and future trends in clinical application: is it ready for prime time?. Eur Radiol (2024). https://doi.org/10.1007/s00330-024-10600-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00330-024-10600-2

Keywords

Navigation