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Abstract 

Objective To build and merge a diagnostic model called multi‑input DenseNet fused with clinical features (MI‑
DenseCFNet) for discriminating between Staphylococcus aureus pneumonia (SAP) and Aspergillus pneumonia (ASP) 
and to evaluate the significant correlation of each clinical feature in determining these two types of pneumonia using 
a random forest dichotomous diagnosis model. This will enhance diagnostic accuracy and efficiency in distinguishing 
between SAP and ASP.

Methods In this study, 60 patients with clinically confirmed SAP and ASP, who were admitted to four large tertiary 
hospitals in Kunming, China, were included. Thoracic high‑resolution CT lung windows of all patients were extracted 
from the picture archiving and communication system, and the corresponding clinical data of each patient were collected.

Results The MI‑DenseCFNet diagnosis model demonstrates an internal validation set with an area under the curve 
(AUC) of 0.92. Its external validation set demonstrates an AUC of 0.83. The model requires only 10.24s to gener‑
ate a categorical diagnosis and produce results from 20 cases of data. Compared with high‑, mid‑, and low‑ranking 
radiologists, the model achieves accuracies of 78% vs. 75% vs. 60% vs. 40%. Eleven significant clinical features were 
screened by the random forest dichotomous diagnosis model.

Conclusion The MI‑DenseCFNet multimodal diagnosis model can effectively diagnose SAP and ASP, and its diag‑
nostic performance significantly exceeds that of junior radiologists. The 11 important clinical features were screened 
in the constructed random forest dichotomous diagnostic model, providing a reference for clinicians.

Clinical relevance statement MI‑DenseCFNet could provide diagnostic assistance for primary hospitals that do not 
have advanced radiologists, enabling patients with suspected infections like Staphylococcus aureus pneumonia 
or Aspergillus pneumonia to receive a quicker diagnosis and cut down on the abuse of antibiotics.

Key points 

• MI-DenseCFNet combines deep learning neural networks with crucial clinical features to discern between Staphylococcus  
   aureus pneumonia and Aspergillus pneumonia.

• The comprehensive group had an area under the curve of 0.92, surpassing the proficiency of junior radiologists.

• This model can enhance a primary radiologist’s diagnostic capacity.
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Introduction
According to the Global Burden of Disease 2019 
study, more than 2.49 million deaths are caused by 
lower respiratory tract infections, including pneumo-
nia and fine bronchitis [1, 2]. Identifying pneumonia 
pathogens is challenging and time-consuming, but the 
imaging results obtained from computer tomography 
(CT) scans can offer a certain level of characteriza-
tion for pulmonary pathological changes correspond-
ing to specific pathogenic microorganisms. This 
allows for improved quantification and measurement 
of lesion size and degree or severity of lung involve-
ment, potentially leading to faster diagnosis compared 
to molecular diagnosis in the laboratory [3]. However, 
the interpretation of imaging histology involves visual 
perception and uncertain judgmental decisions, inevi-
tably resulting in human misinterpretation of image 
results [4].

Automated review and simultaneous analysis of 
numerous quantitative features of CT images and their 
degree of correlation are enabled by artificial intelligence 
[5]. Conversely, deep learning neural networks under 
artificial intelligence can automatically learn features 
from image data without the need for human predefini-
tion [6, 7]. However, there are few studies on the combi-
nation of clinical features with image-assisted diagnostic 
models, and combining these models can result in a more 
accurate diagnosis.

Certain specific imaging features (such as air cres-
cent sign, air sacs, and halo sign) distinguish pneumo-
nia caused by Staphylococcus aureus pneumonia (SAP) 
and Aspergillus pneumonia (ASP), but there are also 
similar imaging features (such as cavities, exudates, 
solids, and nodules) that cannot be distinguished 
with great precision by inexperienced physicians [8, 
9]. Given the distinct treatment options and progno-
sis associated with lung infections caused by these 
two pathogens, delayed identification of the pathogen 
could result in unfavorable outcomes due to empirical 
drug use alone [10, 11]. Combining imaging-assisted 
diagnostic models with clinical features to achieve 
early predictions of SAP and ASP can significantly aid 
in making clinical treatment decisions.

Thus, this study aimed to develop and validate the MI-
DenseCFNet multimodal diagnostic model using a deep 
learning neural network. Furthermore, the study aims to 
identify clinical features significantly associated with SAP 
and ASP using a random forest binary diagnostic model, 
which combines standard machine learning (ML) with 
patients’ clinical data to provide a reference for clinicians 
to aid in making treatment decisions.

Patients and methods
Patient cohort and data collection
This study was conducted in accordance with the rel-
evant guidelines and regulations. According to Chinese 
legislation and system requirements, the ethical review 
committee of the First Affiliated Hospital of Kunming 
Medical University approved and exempted written 
informed consent for this retrospective study. A total of 
231 clinically confirmed SAP and 215 ASP were selected 
from four large tertiary hospitals in Kunming, China. 
After the exclusion of ineligible patients by two chief 
radiologists and a chief physician who specialized in res-
piratory infections according to the inclusion and exclu-
sion criteria, a final selection of 60 patients with SAP 
and 60 patients with ASP was achieved. From the picture 
archiving and communication system, 31,259 high-reso-
lution CT lung windows of the chest of all patients were 
exported, and the clinical information of the correspond-
ing patients was collected from the electronic medical 
record database of each hospital (Fig. 1).

Inclusion criteria include the following: (1) the diagnos-
tic criteria for patients as per the relevant guidelines of 
the American Thoracic Society[12]; (2) identifying patho-
gens by deep sputum culture, blood culture, bronchoal-
veolar lavage culture, histopathology, and macrogenomic 
sequencing, with the above identification serving as the 
“gold standard” for the pathogenesis of SAP and ASP.

Exclusion criteria: (1) patients with heart failure; (2) 
patients with pulmonary surgery history; (3) individuals 
presenting diffuse interstitial lung lesion on chest CT; (4) 
individuals affected by connective tissue disease or sys-
temic disease involving the lungs; (5) patients with pul-
monary malignancy, active tuberculosis, or pulmonary 
embolism; (6) cases where chest CT images are unclear 
or pseudo-shadows are obvious and cannot meet the 
requirements of diagnosis and analysis; (7) instances with 
inadequate clinical information.

Image data

Collection of CT images All patients were scanned 
using a GE 64-row CT machine, with parameters set to 
100–130 kV tube voltage, automatic tube current modu-
lation, 192 × 0.6 mm or 128 × 0.625 mm detector col-
limation, and 1 to 2.5 mm slice thickness. One of the 
following CT scanners was used to examine all patients: 
Brilliance iCT, GE Discovery CT 750 HD, Somatom Defi-
nition, Somatom Emotion and IQon Spectral. A high 
kernel (b60) and a 512 × 512 matrix were employed for 
reconstructing all images, and image data were exported 
in the Dicom format.
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Preprocessing of CT Images Mimics Research 19.0 
software converted the collected image data from the 
Dicom format to BMP format files, resulting in an 
export of 13,964 images after removing slices without 
image features. To meet the training backbone require-
ments, data enhancement was performed through 
operations such as horizontal flipping, random scal-
ing, and random panning. Furthermore, data for each 
image were normalized to 0 and 1. This operation is to 
standardize the pixel value of the image to the range of 
0 to 1, where 0 represents black and 1 represents white. 
It is a common preprocessing step in training neu-
ral networks, which can stabilize the training process, 
accelerate the convergence rate, and reduce the model’s 
dependence on specific attributes of the image.

Construction of MI‑DenseCFNet multimodal diagnosis 
models
MI-DenseCFNet multimodal diagnostic model, a fusion 
model based on a deep learning neural network, com-
prises two modules: a deep learning imaging histology 
classification diagnostic model and a deep neural net-
work (DNN) clinical feature extraction model. Figure  2 
shows the schematic of the model.

Construction of the deep learning imaging histology 
classification and diagnosis model
To extend the training data, enhance the model gener-
alization, and prevent overfitting, migration learning 
fine-tuning was employed [13]. A total of 135,609 single-
channel gray CT images corresponding to 2719 patients 
were sourced from the China National Center for Bioin-
formation (CNCB) website, and invalid slices were cen-
sored for migration training of the model. This approach 
enables the DenseNet-201 deep learning model to grasp 
the basic features of chest CT images in advance (CNCB 
website:https:// www. cncb. ac. cn).

Subsequently, the weights of the classification model 
DenseNet-201 after data extension learning were loaded 
into the DenseNet-201 model for SAP and ASP chest CT 
imaging tasks. The training set data were employed to 
develop the model, whereas the validation set data were 
used for independent testing of the model and to com-
pare the internal validation set data with the diagnostic 
performance of radiologists (Supplemental 1). Then, 
accuracy, precision, sensitivity, specificity, and F1 score 
were calculated based on the classification and diagno-
sis results produced by the deep learning algorithm. The 
receiver operator characteristic curve (ROC) was plotted 
using the matplotlib package in Python (version: 3.8.12, 
http:// www. Python. org). To evaluate the consistency of 

Fig. 1 AThe first affiliated hospital of kunming medical university, the first people’s hospital of yunnan province, and the kunming yan’an hospital; 
BKunming first people’s hospital ganmei hospital

https://www.cncb.ac.cn
http://www.python.org
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diagnostic performance, Kappa values were computed 
using the scikit-learn package, with Kappa values < 0.40, 
0.40–0.75, and > 0.75 indicating low, moderate, and excel-
lent consistency, respectively. To plot the heat map of the 
model, gradient-weighted class activation mapping was 
employed. Gradient-weighted Class Activation Mapping 
(Grad-CAM) [14] was used for thermal map visualization 
to further verify the effectiveness of the method. Grad-
CAM combines overall situation averaging pooling and 
weighting of gradient signals to generate heat maps that 
highlight areas of the image that have a significant impact 
on the final prediction results. It does this by calculat-
ing the gradient of the final convolutional layer to deter-
mine which feature maps in that layer are important for 
the classification of a particular class. By multiplying and 
summing these gradients with the feature map, followed 
by ReLU activation and global averaging pooling, Grad-
CAM produces a heat map that shows the regions of the 
image associated with the predicted results.

Deep neural network clinical feature extraction model
To further enhance the diagnostic accuracy of the model, 
we employed a DNN to extract clinical features. The 
clinical data used includes structured data from hospital 
records (such as patient age, gender, medical history, and 
text descriptions from image reports), all entered into the 

DNN in digital form and combined with the raw image 
data to provide more comprehensive information to the 
DNN.

Since the clinical data employed in this study are cat-
egorized into clinical symptoms, laboratory results, 
and imaging features (comprising 49 features, includ-
ing demographic features), three 3-layer DNNs were 
employed to extract features for each of these three 
types of data (Fig. 2)

Mathematical logic of MI‑DenseCFNet model
The CT image feature vectors Vbone ∈ R1 × C (C repre-
sents the dimension of the eigenvector) extracted by 
the skeleton network and the clinical feature vectors 
extracted by three deep neural networks with the same 
structure (image feature vectors Vimg ∈ R1 × 128, clinical 
symptom feature vectors Vclic ∈ R1 × 128, and laboratory 
examination indicator feature vectors Vlab ∈ R1 × 128) 
are concatenated along the dimension axis to form vec-
tor V ∈ R1 ×  (C  + 128 × 3). Then, V is fed into a fully con-
nected network composed of 2048, 1024, and 2 neurons 
to learn these Homologous isomerism data. Finally, a 
binary probability vector is output through the Softmax 
activation function (Fig. 2)

In this study, Softmax is chosen as the activation func-
tion of binary classification instead of Sigmoid because 

Fig. 2 (A) Preprocessed CT image set; (B) Skeleton network DenseNet‑201 for extracting feature vectors from CT image sets; (C) Input of clinical 
information (clinical symptoms, laboratory results, imaging features) is fed into a three‑layer deep neural network (DNN) for training and extracting 
clinical feature vectors; (D) Converging and connecting clinical and image feature vectors; (E) After fusing clinical and image feature vector 
information, it is fed into a DNN with two layers for training, and finally, a DNN with two neurons outputs the classification and diagnosis results; (F) 
Confusion matrix visualization classification diagnosis results
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Sigmoid and Softmax are theoretically equivalent in 
binary classification problem, and the function expres-
sion is as follows:

where x1 and x2 are inputs, x1 is selected as the positive 
example of input this time, and it can be seen from the 
formula (1-2) that (x1-x2) can be replaced by z1, that is, 
Softmax(x1) can be written as:

From Eqs. (1-1) and (1-3), it can be seen that when 
the Softmax function has only two inputs, it is actually 
the Sigmoid function, which is completely equivalent 
in binary classifications. Therefore, we use Softmax as 
the activation function for the probability output in this 
binary classification problem.

Emphasize and illustrate
DenseNet-201 is a neural network model for learning 
standardized CT images. It mainly learns some texture 
features on the images, which may not be recognized 
by the human eye. In the DNN clinical feature extrac-
tion model, radiologists first read the CT images of the 
included patients and diagnosed the corresponding clini-
cal image features (this is a conclusive report), and then 
these structured data were input into the DNN in the 
form of numbers.

Similarities: Both models are trained on the same set 
of patients, and the images correspond to the clinical 
data.
Differences: The input data of DenseNet-201 is stand-
ardized CT images, and the input data of DNN is 
structured clinical data.

Construction of a machine learning classification 
and diagnosis system
The construction of the random forest dichotomous 
diagnosis model was completed using RStudio (version 
2022.12.0-353) software equipped with R language (ver-
sion 4.2.2).

Random forest dichotomous models
Caret and random Forest packages were employed to 
construct the disease classification and diagnosis model. 

(1-1)Sigmoid(x1) =
1

1+ e−x1

(1-2)Softmax(x1) =
ex1

e−x1 + e−x2
=

1

1+ e−(x1−x2)

(1-3)Softmax(z1) =
1

1+ e−z1

First, the create Data Partition function in the caret pack-
age was used to randomly divide the clinical features 
of the internal dataset into training and validation sets 
at a ratio of 8:2. An initial screening of the 49 included 
features (encompassing demographic features, clinical 
symptoms, laboratory findings, and imaging features) 
was performed using the recursive feature elimination 
method. Subsequently, the random forest algorithm was 
employed to further filter out significant classification 
features using the following parameter settings: mtry = 
3 and ntree = 500. The selection of the top-scoring vari-
ables was based on the variable importance score indica-
tors Mean Decrease Accuracy and Mean Decrease Gini. 
The most important classification features were derived 
by identifying their intersections. To plot random for-
est ROC curves, the pROC package was loaded, and the 
diagnostic classification performance of the model was 
quantitatively assessed based on the ROC curves.

Statistical methods
SPSS 26.0 was used to analyze the differences between 
the clinical characteristics of SAP and ASP. A p value  
< 0.05 was considered a statistically significant difference.

Results
Characteristics of the study population
In this study, 120 patients were included, comprising 
60 patients with SAP and 60 patients with ASP. Among 
these patients, 70 were male and 50 were female, with 
51 having a history of smoking and 69 without a history 
of smoking. The age range of the participants was 7–82 
years, with a median age of 50 years. The study identified 
27 cases in the age group > 60 years and 93 cases in the 
age group ≤ 60 years. Employing an independent sam-
ple t-test, it was concluded that no statistical differences 
existed between patients with SAP and ASP in terms of 
gender, age, and history of smoking, as indicated by p 
value > 0.05 (Table 1).

Internal validation of the MI‑DenseCFNet multimodal 
diagnostic model
Generally speaking, the training of neural networks is a 
process of continuous optimization results; that is, with 
the increase in the number of training rounds, the train-
ing index will become better and better and constantly 
close to the ideal state. Therefore, the training result of 
the neural network is not a process worthy of attention, 
but the result of the verification set that is not trained.

The imaging-only group model [DenseNet-201] 
exhibited an area under the curve (AUC) of 0.76, with 
an accuracy of 78.4%, precision of 78.8%, sensitivity of 
75.5%, specificity of 75.5%, F1 score of 0.771, and Kappa 
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value of 0.53 (Fig.  3, Supplemental 2). The classifica-
tion and diagnosis efficiency consistency of this model 
was moderate. After adding the DNN model to extract 
clinical features, the integrated group (clinical + imag-
ing) model [MI-DenseCFNet] demonstrated an AUC of 
0.92, accuracy of 88.1%, precision of 87.6%, sensitivity 

of 87.5%, specificity of 85.3%, F1 score of 0.875, and 
Kappa value of 0.75 (Fig. 3, Supplemental 2). The clas-
sification and diagnosis efficiency consistency of this 
model was excellent. Figure  4 illustrates the heat map 
of the model.

Performance verification
Comparison of the radiologist and model performance
The DenseNet-201 model required 10.24 s for diagnosis, 
with an accuracy rate of 78%. The low-ranking physi-
cian employed 1178.56 s for diagnosis, with an accuracy 
rate of 40%. Similarly, the middle-ranking physician took 
626.37 s for diagnosis, with an accuracy rate of 60%. The 
high-ranking physician took 463.28 s for diagnosis, with 
an accuracy rate of 75% (Supplemental 3).

External validation
For validation, chest CT images and clinical information 
from the external validation set were imported into the 
MI-DenseCFNet diagnostic model. The external valida-
tion set exhibited an AUC of 0.83, diagnostic accuracy of 
84.3%, precision of 85.4%, sensitivity of 83.9%, specific-
ity of 83.9%, F1 score of 0.846, and Kappa value of 0.68 
(Fig.  5 and Supplemental 2). Furthermore, the external 
validation set demonstrated a moderate consistency of 
classification and diagnosis efficiency.

Classification of SAP and ASP by the model
An analysis of the diagnostic accuracy of SAP and ASP 
indicated accuracy rates of 89.9% for SAP and 61.1% for 
ASP in the imaging-only group (Fig. 6A). In the combined 
group, the corresponding accuracy was 90.3% for SAP and 
84.7% for ASP (Fig. 6B). Furthermore, in the external vali-
dation group, SAP and ASP exhibited diagnostic accuracy 
rates of 93% and 74.8%, respectively (Fig. 6C).

Random forest classification diagnosis model based 
on machine learning
Based on the variable importance score index, 20 vari-
ables were finally selected (Supplemental 4). After taking 
the intersection set, 11 important classification features 
were filtered out (Table  2). Using these 11 important 
classification features, a random forest classification 
diagnostic model was developed in the training set. Con-
sequently, the AUC for the model in the training set was 
0.812 (95% Cl, 0.726–0.899), whereas that in the valida-
tion set was 0.95 (95% Cl, 0.852–1) (Supplemental 5).

Discussion
Artificial intelligence is a challenging science compris-
ing various fields and is increasingly employed in medical 
research, diagnosis, and treatment, particularly in medi-
cal imaging application research [15–17]. Notably, image 

Table 1 Demographic characteristics of the enrolled patients

SLE: systemic lupus erythematosus; * for postoperative patients except for lung 
surgery (brain surgery, debridement, etc.)

Clinical factors ASP (n = 60) SAP (n = 60) p

Gender n (%) 0.065

 Male 30 (50%) 40 (66.7%)

 Female 30 (50%) 20 (33.3%)

Age (year) n (%) 0.36

 > 60 12 (20%) 15 (25%)

 ≤ 60 48 (80%) 45 (75%)

Smoking history n (%) 0.516

 Smoking 23 (38.3%) 28 (46.7%)

 Non‑smoking 37 (61.7%) 32 (53.3%)

Past history n (%)

 Diabetes 10 (16.7%) 13 (21.7%)

 Hypertension 3 (5%) 13 (21.7%)

 Gout 2 (3.3%) 4 (6.7%)

 Leukemia 1 (1.7%) 1 (1.7%)

 Renal failure 1 (1.7%) 3 (5%)

 SLE 2 (3.3%) 2 (3.3%)

 Hyperthyroidism 1 (1.7%) 0

 Oral glucocorticoids 2 (3.3%) 1 (1.7%)

 Immunosuppression 2 (3.3%) 0

 Postoperative* 0 6 (10%)

Fig. 3 Image‑based: Image‑only group model [DenseNet‑201]; 
Clinical Joint: Integrated group (clinical+imaging) model 
[MI‑DenseCFNet]
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datasets have been extensively employed to develop 
deep-learning diagnostic models for differentiating vari-
ous diseases in visual imaging diagnosis [13, 18–20]. In 
various parts of the world, medical resources are limited, 
resulting in scenarios where patients in critical condi-
tions suffering from lung infections could die due to a 
lack of timely treatment. Current approaches employed 
for pneumonia pathogen detection have several limita-
tions, including low sensitivity and accuracy, prolonged 
waiting time, high labor costs, and the use of nonspecific 
drugs (such as broad-spectrum antibiotics), which could 
exacerbate the disease and increase hospitalization costs 
[21–23].

In this study, the MI-DenseCFNet multimodal diag-
nostic model was developed and validated. Based on a 
deep learning neural network, this model functions as 
an adjunctive diagnostic model, combining imaging his-
tology with clinical features to effectively differentiate 
between SAP and ASP. First, the model’s comprehensive 
group diagnostic performance was assessed, indicating 
an AUC of 0.92, an F1 score of 0.875, and Kappa value 
of 0.75. The model’s classification diagnostic efficiency 
consistency was excellent. Compared with the deep 
diagnostic agent forest model developed by Chen et  al 
[24], which yielded a combined AUC of 0.851 ± 0.003 
in secondary pathogen identification, the accuracy of 
this model in separate ASP diagnosis analysis was 0.081 
± 0.005 and 0.781 ± 0.005 for SAP. Notably, our model 
demonstrated enhanced diagnostic accuracy. From a 
distinct perspective, it can also be demonstrated that 
obtaining better diagnostic accuracy is correlated with 
the inclusion of clinical features in our model. In addi-
tion, the color shade of the intensity of attention accord-
ing to the heat map indicates that the model is better at 
extracting the imaging features.

In the external validation set, the model exhibited a 
diagnostic performance characterized by an AUC of 0.83, 
an F1 score of 0.846, and a Kappa value of 0.68, indicating 
a moderate level of classification and diagnostic efficiency 
agreement. The significant area under the ROC curve 
obtained in the external validation set demonstrates that 
this model can identify new chest CT images and clini-
cal features that were not previously incorporated into 

Fig. 4 A–D and a–d are the CT images of suspicious lesion areas detected by the deep learning diagnostic model for ASP and SAP, respectively. The 
color bar on the right panel indicates the intensity of attention, with a darker red color indicating the strongest attention and a darker blue color 
indicating weaker attention

Fig. 5 External validation set ROC curve
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the model. Moreover, a higher F1 score demonstrates 
that the model has good classification ability and no 
overfitting. However, a separate analysis of the model 
diagnostic accuracy for SAP and ASP indicated 89.9% 
vs. 61.1% for the imaging-only group, 90.3% vs. 84.7% 

for the combined group, and 93% vs. 74.8% for the exter-
nal validation set. These findings demonstrate that the 
model exhibited reduced accuracy in diagnosing the ASP. 
This observation is associated with the characteristics 
of the included ASP images, as most of the ASP images 
are isolated nodules with a low number of lesion levels, 
leading to fewer data volume for the deep learning neu-
ral network in extracting image features. This difference 
can also be seen in the confusion matrix. Nonetheless, 
with the incorporation of clinical features, the model’s 
diagnostic accuracy demonstrated enhancement in the 
integrated group compared with the imaging-only group 
(88.1% vs. 78.4%). Previous investigations [25] demon-
strated that their ML-based joint columnar maps exhib-
ited good discrimination in the validation set for invasive 
fungal infections of the lung (AUC = 0.844), outperform-
ing clinical (AUC = 0.696) and radiomics (AUC = 0.767) 
models. The overall performance of our model outper-
forms the results of this study, mainly because of the 
enhanced capability of deep learning convolutional neu-
ral networks in extracting image features compared with 
ML [26]. For invasive pulmonary aspergillosis (IPA), a 

Fig. 6 A–C Model diagnostic performance cases of ASP and SAP; a–c confusion matrix

Table 2 Statistical tests of the variables

Name ASP (N = 50) SAP (N = 50) p

GM test 1.6 ± 2.6 0.1 ± 0.1 < 0.001

Halo sign 1.6 ± 0.5 2.0 ± 0.0 < 0.001

Air crescent sign 1.6 ± 0.5 2.0 ± 0.0 < 0.001

Albumin (g/L) 34.4 ± 7.6 29.9 ± 6.5 0.002

CRP (mg/L) 57.5 ± 90.7 111.7 ± 109.4 0.008

Neutrophils (×  109/L) 7.1 ± 6.1 11.6 ± 12.6 0.03

G test (pg/mL) 68.6 ± 120.1 26.0 ± 74.4 0.036

WBC (×  109/L) 9.5 ± 6.4 11.9 ± 5.6 0.049

PCT (ng/mL) 1.2 ± 4.9 9.0 ± 29.3 0.072

Lactic acid (mmol/L) 1.8 ± 1.3 1.5 ± 1.1 0.196

PLT (×  109/L) 278.8 ± 118.7 253.1 ± 145.7 0.337
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study developed the IPA-NET diagnostic model, achiev-
ing an external validation set accuracy of 89.7% and an 
AUC of 0.95, thereby validating the model’s exceptional 
accuracy in diagnosing IPA [27]. However, the imaging 
features of IPA are significantly different from those asso-
ciated with nonfungal pneumonia to some extent [28]. 
In our study, due to the challenges in collecting imaging 
data of ASP, some cases of putrefactive ASP attributed to 
tuberculosis and bronchiectasis were excluded. Further-
more, because of the more distinctive imaging features of 
ASP, the enrollment of chest CT of ASP can be expanded 
in future studies to enhance the diagnostic accuracy of 
ASP.

The advantage of our study is not only attributed to the 
incorporation of patients’ clinical information into our 
model but also to the identification of significant clini-
cal features linked with SAP and ASP in our ML model. 
These identified features can be provided separately to 
clinicians in their routine clinical practice, serving as a 
criterion to determine whether a patient is infected with 
S. aureus or Aspergillus, thus offering empirical deci-
sions for clinical purposes. In addition, in the following 
research, we can also screen out some clinical features 
that can optimize DNN extraction through the random 
forest classification diagnostic model, so as to further 
improve the accuracy of the MI-DenseCFNet multimodal 
diagnostic model. However, we find that the AUC of the 
validation set (95%) is much higher than the AUC of the 
training set (81.2%) in the random forest classification 
diagnostic model. We believe that the AUC of the train-
ing set is calculated when the model is trained, and the 
AUC of the validation set is calculated on the after-con-
vergence training set model so that the AUC of the vali-
dation set is higher than the AUC of the training set [29]. 
In addition, because the amount of data brought in was 
not large enough, the training set and validation set data 
were grouped by a ratio of 8:2, which was exacerbated to 
some extent by the uneven distribution of data. We can 
increase the amount of data and adjust the proportion 
of the training set to improve the results. Furthermore, 
our distinct analyses of SAP and ASP studies enhance the 
credibility of our model in terms of diagnostic accuracy 
for these two types of pneumonia compared with previ-
ous studies [24]. Compared with the diagnostic perfor-
mance of radiologists, the 20 cases of internal validation 
set data took only 10.24 s to arrive at a diagnosis in the 
imaging-only group model, with a diagnostic accuracy 
significantly higher than that of a junior radiologist with 
2–3 years of experience (78% vs. 40%). Notably, the speed 
of the model to arrive at a diagnosis is dependent on 
computer hardware performance, which could achieve 
even faster speeds as technology continues to advance.

Our study has some limitations. The primary focus 
was to obtain consistently high-quality chest CT 
images; however, after strict screening using exclusion 
criteria, the total sample size of the enrolled group 
proved to be insufficient. Thus, the model encoun-
tered challenges in completely extracting the image 
feature vectors associated with SAP and ASP during 
the training process. Nonetheless, subsequently, we 
can let the model focus on learning about lesions by 
expanding the sample size or manually outlining the 
region of interest to further enhance the diagnostic 
accuracy of the model.

Conclusion
The MI-DenseCFNet multimodal diagnosis model can 
effectively diagnose SAP and ASP, and its diagnostic per-
formance significantly exceeds that of junior radiologists, 
thereby accelerating the diagnostic process of patho-
genic diseases. The 11 important clinical features were 
screened in the constructed random forest dichotomous 
diagnostic model, providing a reference for clinicians.

Abbreviations
ASP  Aspergillus pneumonia
AUC   Area under the curve
CNCB  China National Center for Bioinformation
CT  Computer tomography
DNN  Deep neural network
IPA  Invasive pulmonary aspergillosis
MI‑DenseCFNet  Multi‑input DenseNet fused with clinical features
ML  Machine learning
ROC  Receiver operator characteristic curve
SAP  Staphylococcus aureus pneumonia

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s00330‑ 023‑ 10578‑3.

ESM 1 (PDF 1091 kb)

Acknowledgements
Thank you to Professor Jq.Z., my esteemed supervisor, and all the researchers 
who took part in this work.
The data used in this work are subject to the following licenses/restrictions: 
data sets cannot be made public. You can reach this email address using the 
proper protocol ariesliutong@foxmail.com to obtain pertinent information 
and data.
Jq.Z., T.L., and all helped to conceptualize and design the study. T.L. recruited 
patients. T.L. sorted out the data. This manuscript was primarily written by T.L. 
T.L. has this work’s first authorship. T.L., Qh.Z., and Zh.Z. analyzed the data. T.L., 
Zh.Z., Qh.Z., Qz.C., Y.Y., Js.L., Xm.Z., and Jq.Z. provided feedback on prior drafts 
of the work. The final manuscript was read and approved by all writers.

Funding
This study has received funding from the Cultivating Plan Program for the 
Leader in Science and Technology of Yunnan Province provided funding for 
this study, grant numbers L2019007.

https://doi.org/10.1007/s00330-023-10578-3
https://doi.org/10.1007/s00330-023-10578-3


Page 10 of 11Liu et al. European Radiology

Declarations

Guarantor
The scientific guarantor of this publication is Dr. Jianqing Zhang, who is the 
corresponding author of the article.

Conflict of interest
The authors declare that they have no competing interests.

Statistics and biometry
No complex statistical methods were necessary for this paper.

Informed consent
This study was conducted in accordance with the relevant guidelines and 
regulations. According to Chinese legislation and system requirements, the 
ethical review committee of the First Affiliated Hospital of Kunming Medical 
University approved and exempted written informed consent for this retro‑
spective study.

Ethical approval
The authors confirm that the journal’s ethical policy, as indicated on the 
journal’s author guidelines page, has been followed and that the appropri‑
ate ethics review has obtained approval from the First Affiliated Hospital of 
Kunming Medical University ethics committee.

Study subjects or cohorts overlap
Not applicable.

Methodology

• retrospective
• multicenter study

Author details
1 The Second Department of Respiratory and Critical Care Medicine, The First 
Affiliated Hospital of Kunming Medical University, No. 295, Xichang Road, 
Wuhua District, Kunming, Yunnan 650032, People’s Republic of China. 2 Medi‑
cal Imaging Department, The First Affiliated Hospital of Kunming Medical 
University, Kunming, Yunnan 650032, People’s Republic of China. 3 School 
of Information, Yunnan University, Kunming, Yunnan 650032, People’s Republic 
of China. 

Received: 8 November 2023   Revised: 12 December 2023   Accepted: 14 
December 2023

References
 1. GBD 2019 LRI Collaborators (2022) Age‑sex differences in the global 

burden of lower respiratory infections and risk. factors, 1990‑2019: results 
from the Global Burden of Disease Study 2019. Lancet Infect Dis. https:// 
doi. org/ 10. 1016/ S1473‑ 3099(22) 00510‑2

 2. GBD (2019) Diseases and Injuries Collaborators (2020) Global burden of 
369 diseases and injuries in 204 countries and territories, 1990‑2019: a 
systematic analysis for the Global Burden of Disease Study 2019. Lancet. 
https:// doi. org/ 10. 1016/ S0140‑ 6736(20) 30925‑9

 3. Shi H, Han X, Jiang N et al (2020) Radiological findings from 81 patients 
with. COVID‑19 pneumonia in Wuhan, China: a descriptive study. Lancet 
Infect Dis. https:// doi. org/ 10. 1016/ S1473‑ 3099(20) 30086‑4

 4. Fitzgerald R (2001) Error in radiology. Clin Radiol. https:// doi. org/ 10. 1053/ crad. 2001. 
0858

 5. Binczyk F, Prazuch W, Bozek P, Polanska J (2021) Radiomics and artificial 
intelligence in lung cancer screening. Transl Lung Cancer Res. https:// doi. 
org/ 10. 21037/ tlcr‑ 20‑ 708

 6. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature. https:// doi. org/ 
10. 1038/ natur e14539

 7. Shen D, Wu G, Suk HI (2017) Deep learning in medical image 
analysis. Annu Rev Biomed Eng. https:// doi. org/ 10. 1146/ annur 
ev‑ bioeng‑ 071516‑ 044442

 8. Godoy MCB, Ferreira Dalla Pria HR, Truong MT, Shroff GS, Marom EM 
(2022) Invasive fungal pneumonia in immunocompromised patients. 
Radiol Clin North Am. https:// doi. org/ 10. 1016/j. rcl. 2022. 01. 006

 9. Hodina M, Hanquinet S, Cotting J, Schnyder P, Gudinchet F (2002) Imag‑
ing of cavitary necrosis in complicated childhood pneumonia. Eur Radiol. 
https:// doi. org/ 10. 1007/ s0033 00101 008

 10. Cadena J, Thompson GR 3rd, Patterson TF (2021) Aspergillosis: epidemiol‑
ogy, diagnosis, and treatment. Infect Dis Clin North Am. https:// doi. org/ 
10. 1016/j. idc. 2021. 03. 008

 11. Turner NA, Sharma‑Kuinkel BK, Maskarinec SA et al (2019) Methi‑
cillin‑resistant Staphylococcus aureus: an overview of basic and 
clinical research. Nat Rev Microbiol. https:// doi. org/ 10. 1038/ 
s41579‑ 018‑ 0147‑4

 12. Metlay JP, Waterer GW, Long AC et al (2019) Diagnosis and Treatment 
of adults with community‑acquired pneumonia. An Official Clinical 
Practice Guideline of the American Thoracic Society and Infectious 
Diseases Society of America. Am J Respir Crit Care Med. https:// doi. 
org/ 10. 1164/ rccm. 201908‑ 1581ST

 13. Kermany DS, Goldbaum M, Cai W et al (2018) Identifying medical 
diagnoses and. treatable diseases by image‑based deep learning. Cell. 
https:// doi. org/ 10. 1016/j. cell. 2018. 02. 010

 14. Selvaraju RR, Cogswell M, Das A et al (2017) Grad‑CAM: visual explana‑
tions from. Deep Networks via Gradient‑Based Localization. in IEEE 
International Conference on Computer Vision. https:// doi. org/ 10. 1109/ 
ICCV. 2017. 74

 15. Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist‑level classifica‑
tion of skin. cancer with deep neural networks. Nature. https:// doi. org/ 
10. 1038/ natur e21056

 16. Wachinger C, Reuter M, Klein T (2018) DeepNAT: Deep convolutional 
neural. network for segmenting neuroanatomy. Neuroimage. https:// 
doi. org/ 10. 1016/j. neuro image. 2017. 02. 035

 17. Wong TY, Bressler NM (2016) Artificial intelligence with deep learning 
technology looks into diabetic retinopathy screening. JAMA. https:// 
doi. org/ 10. 1001/ jama. 2016. 17563

 18. Rajaraman S, Candemir S, Kim I, Thoma G, Antani S (2018) Visualiza‑
tion and interpretation of convolutional neural network predictions in 
detecting pneumonia in pediatric chest radiographs. Appl Sci (Basel). 
https:// doi. org/ 10. 3390/ app81 01715

 19. Li L, Qin L, Xu Z et al (2020) Using Artificial Intelligence to Detect 
COVID‑19 and. Community‑acquired pneumonia based on pulmonary 
CT: evaluation of the diagnostic accuracy. Radiology. https:// doi. org/ 
10. 1148/ radiol. 20202 00905

 20. Wang L, Ding W, Mo Y et al (2021) Distinguishing nontuberculous 
mycobacteria from Mycobacterium tuberculosis lung disease from CT 
images using a deep learning framework. Eur J Nucl Med Mol Imaging. 
https:// doi. org/ 10. 1007/ s00259‑ 021‑ 05432‑x

 21. Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving sepsis cam‑
paign: international guidelines for management of severe sepsis 
and septic shock, 2012. Intensive Care Med. https:// doi. org/ 10. 1007/ 
s00134‑ 012‑ 2769‑8

 22. Chaudhuri A, Martinez‑Martin P, Kennedy PG et al (2008) EFNS guide‑
line on the management of community‑acquired bacterial meningitis: 
report of an EFNS Task Force on acute bacterial meningitis in older 
children and adults. Eur J Neurol. https:// doi. org/ 10. 1111/j. 1468‑ 1331. 
2008. 02193.x

 23. American Thoracic Society; Infectious Diseases Society of America 
(2005) Guidelines for the management of adults with hospital‑
acquired, ventilator‑associated, and healthcare‑associated pneumonia. 
Am J Respir Crit Care Med. https:// doi. org/ 10. 1164/ rccm. 200405‑ 644ST

 24. Chen W, Han X, Wang J et al (2022) Deep diagnostic agent forest 
(DDAF): A deep learning pathogen recognition system for pneumo‑
nia based on CT. Comput Biol Med. https:// doi. org/ 10. 1016/j. compb 
iomed. 2021. 105143

 25. Yan C, Hao P, Wu G et al (2022) Machine learning‑based combined 
nomogram for predicting the risk of pulmonary invasive fungal 

https://doi.org/10.1016/S1473-3099(22)00510-2
https://doi.org/10.1016/S1473-3099(22)00510-2
https://doi.org/10.1016/S0140-6736(20)30925-9
https://doi.org/10.1016/S1473-3099(20)30086-4
https://doi.org/10.1053/crad.2001.0858
https://doi.org/10.1053/crad.2001.0858
https://doi.org/10.21037/tlcr-20-708
https://doi.org/10.21037/tlcr-20-708
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1016/j.rcl.2022.01.006
https://doi.org/10.1007/s003300101008
https://doi.org/10.1016/j.idc.2021.03.008
https://doi.org/10.1016/j.idc.2021.03.008
https://doi.org/10.1038/s41579-018-0147-4
https://doi.org/10.1038/s41579-018-0147-4
https://doi.org/10.1164/rccm.201908-1581ST
https://doi.org/10.1164/rccm.201908-1581ST
https://doi.org/10.1016/j.cell.2018.02.010
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1109/ICCV.2017.74
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
https://doi.org/10.1016/j.neuroimage.2017.02.035
https://doi.org/10.1016/j.neuroimage.2017.02.035
https://doi.org/10.1001/jama.2016.17563
https://doi.org/10.1001/jama.2016.17563
https://doi.org/10.3390/app8101715
https://doi.org/10.1148/radiol.2020200905
https://doi.org/10.1148/radiol.2020200905
https://doi.org/10.1007/s00259-021-05432-x
https://doi.org/10.1007/s00134-012-2769-8
https://doi.org/10.1007/s00134-012-2769-8
https://doi.org/10.1111/j.1468-1331.2008.02193.x
https://doi.org/10.1111/j.1468-1331.2008.02193.x
https://doi.org/10.1164/rccm.200405-644ST
https://doi.org/10.1016/j.compbiomed.2021.105143
https://doi.org/10.1016/j.compbiomed.2021.105143


Page 11 of 11Liu et al. European Radiology 

infection in severely immunocompromised patients. Ann Transl Med. 
10.21037/atm‑21‑4980

 26. Currie G, Hawk KE, Rohren E, Vial A, Klein R (2019) Machine learning 
and deep learning in medical imaging: intelligent imaging. J Med 
Imaging Radiat Sci. https:// doi. org/ 10. 1016/j. jmir. 2019. 09. 005

 27. Wang W, Li M, Fan P et al (2023) Prototype early diagnostic model for 
invasive pulmonary aspergillosis based on deep learning and big data 
training. Mycoses. https:// doi. org/ 10. 1111/ myc. 13540

 28. Alexander BD, Lamoth F, Heussel CP et al (2021) Guidance on imaging 
for invasive pulmonary aspergillosis and mucormycosis: from the 
Imaging Working Group for the Revision and Update of the Consensus 
Definitions of Fungal Disease from the EORTC/MSGERC. Clin Infect Dis. 
https:// doi. org/ 10. 1093/ cid/ ciaa1 855

 29. Biau (2012) Analysis of a Random Forests Model. JMLR. org. http:// jmlr. 
org/ papers/ v13/ biau1 2a. html

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1016/j.jmir.2019.09.005
https://doi.org/10.1111/myc.13540
https://doi.org/10.1093/cid/ciaa1855
http://jmlr.org
http://jmlr.org/papers/v13/biau12a.html
http://jmlr.org/papers/v13/biau12a.html

	MI-DenseCFNet: deep learning–based multimodal diagnosis models for Aureus and Aspergillus pneumonia
	Abstract 
	Objective 
	Methods 
	Results 
	Conclusion 
	Clinical relevance statement 
	Key points 

	Introduction
	Patients and methods
	Patient cohort and data collection
	Image data
	Construction of MI-DenseCFNet multimodal diagnosis models
	Construction of the deep learning imaging histology classification and diagnosis model
	Deep neural network clinical feature extraction model
	Mathematical logic of MI-DenseCFNet model
	Emphasize and illustrate

	Construction of a machine learning classification and diagnosis system
	Random forest dichotomous models


	Statistical methods
	Results
	Characteristics of the study population
	Internal validation of the MI-DenseCFNet multimodal diagnostic model
	Performance verification
	Comparison of the radiologist and model performance
	External validation

	Classification of SAP and ASP by the model
	Random forest classification diagnosis model based on machine learning

	Discussion
	Conclusion
	Acknowledgements
	References


