Skip to main content
Log in

Imaging for the assessment of the arrhythmogenic potential of mitral valve prolapse

  • Invited Review
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Mitral valve prolapse (MVP) is the most common valve disease in the western world and recently emerged as a possible substrate for sudden cardiac death (SCD). It is estimated an annual risk of sudden cardiac death of 0.2 to 1.9% mostly caused by complex ventricular arrhythmias (VA). Several mechanisms have been recognized as potentially responsible for arrhythmia onset in MVP, resulting from the combination of morpho-functional abnormality of the mitral valve, structural substrates (regional myocardial hypertrophy, fibrosis, Purkinje fibers activity, inflammation), and mechanical stretch. Echocardiography plays a central role in MVP diagnosis and assessment of severity of regurgitation. Several abnormalities detectable by echocardiography can be prognostic for the occurrence of VA, from morphological alteration including leaflet redundancy and thickness, mitral annular dilatation, and mitral annulus disjunction (MAD), to motion abnormalities detectable with “Pickelhaube” sign. Additionally, speckle-tracking echocardiography may identify MVP patients at higher risk for VA by detection of increased mechanical dispersion. On the other hand, cardiac magnetic resonance (CMR) has the capability to provide a comprehensive risk stratification combining the identification of morphological and motion alteration with the detection of myocardial replacement and interstitial fibrosis, making CMR an ideal method for arrhythmia risk stratification in patients with MVP. Finally, recent studies have suggested a potential role in risk stratification of new techniques such as hybrid PET-MR and late contrast enhancement CT. The purpose of this review is to provide an overview of the mitral valve prolapse syndrome with a focus on the role of imaging in arrhythmic risk stratification.

Clinical relevance statement

Mitral valve prolapse is the most frequent valve condition potentially associated with arrhythmias. Imaging has a central role in the identification of anatomical, functional, mechanical, and structural alterations potentially associated with a higher risk of developing complex ventricular arrhythmia and sudden cardiac death.

Key Points

• Mitral valve prolapse is a common valve disease potentially associated with complex ventricular arrhythmia and sudden cardiac death.

• The mechanism of arrhythmogenesis in mitral valve prolapse is complex and multifactorial, due to the interplay among multiple conditions including valve morphological alteration, mechanical stretch, myocardial structure remodeling with fibrosis, and inflammation.

• Cardiac imaging, especially echocardiography and cardiac magnetic resonance, is crucial in the identification of several features associated with the potential risk of serious cardiac events. In particular, cardiac magnetic resonance has the advantage of being able to detect myocardial fibrosis which is currently the strongest prognosticator.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMVP:

Arrhythmic mitral valve prolapse

BD:

Barlow’s disease

CMR:

Cardiovascular MR

cVA:

Complex ventricular arrhythmia

FED:

Fibroelastic deficiency

MAD:

Mitral annular disjunction

MVP:

Mitral valve prolapse

NSVT:

Non-sustained ventricular tachycardia

PVC:

Premature ventricular contraction

SCD:

Sudden cardiac death

VF:

Ventricular fibrillation

VT:

Ventricular tachycardia

References

  1. Delling FN, Vasan RS (2014) Epidemiology and pathophysiology of mitral valve prolapse. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.113.006702

    Article  PubMed  PubMed Central  Google Scholar 

  2. Adabifirouzjaei F, Hsiao A, DeMaria AN (2022) Mitral valve prolapse—the role of cardiac imaging modalities. Structural Heart. https://doi.org/10.1016/j.shj.2022.100024

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sabbag A, Essayagh B, Barrera JDR et al (2022) EHRA expert consensus statement on arrhythmic mitral valve prolapse and mitral annular disjunction complex in collaboration with the ESC Council on valvular heart disease and the European Association of Cardiovascular Imaging endorsed cby the Heart Rhythm Society, by the Asia Pacific Heart Rhythm Society, and by the Latin American Heart Rhythm Society. EP Europace. https://doi.org/10.1093/europace/euac125

    Article  PubMed  Google Scholar 

  4. Parwani P, Avierinos J-F, Levine RA, Delling FN (2017) Mitral valve prolapse: multimodality imaging and genetic insights. Prog Cardiovasc Dis. https://doi.org/10.1016/j.pcad.2017.10.007

    Article  PubMed  PubMed Central  Google Scholar 

  5. Palmisano A, Nicoletti V, Colantoni C et al (2021) Dynamic changes of mitral valve annulus geometry at preprocedural CT: relationship with functional classes of regurgitation. Eur Radiol Exp. https://doi.org/10.1186/s41747-021-00231-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nalliah CJ, Mahajan R, Elliott AD et al (2019) Mitral valve prolapse and sudden cardiac death: a systematic review and meta-analysis. Heart. https://doi.org/10.1136/heartjnl-2017-312932

    Article  PubMed  Google Scholar 

  7. Tseng ZH, Olgin JE, Vittinghoff E et al (2018) Prospective countywide surveillance and autopsy characterization of sudden cardiac death. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.117.033427

    Article  PubMed  PubMed Central  Google Scholar 

  8. Basso C, Perazzolo Marra M, Rizzo S et al (2015) Arrhythmic mitral valve prolapse and sudden cardiac death. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.115.016291

    Article  PubMed  PubMed Central  Google Scholar 

  9. Basso C, Iliceto S, Thiene G, Perazzolo Marra M (2019) Mitral valve prolapse, ventricular arrhythmias, and sudden death. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.118.034075

    Article  PubMed  Google Scholar 

  10. Düren DR, Becker AE, Dunning AJ (1988) Long-term follow-up of idiopathic mitral valve prolapse in 300 patients: a prospective study. J Am Coll Cardiol. https://doi.org/10.1016/0735-1097(88)90164-7

    Article  PubMed  Google Scholar 

  11. Nishimura RA, McGoon MD, Shub C et al (1985) Echocardiographically documented mitral-valve prolapse. N Engl J Med. https://doi.org/10.1056/NEJM198511213132101

    Article  PubMed  Google Scholar 

  12. Aabel EW, Chivulescu M, Lie ØH et al (2023) Ventricular arrhythmias in arrhythmic mitral valve syndrome—a prospective continuous long-term cardiac monitoring study. EP Europace. https://doi.org/10.1093/europace/euac182

    Article  PubMed  Google Scholar 

  13. Virani SS, Alonso A, Aparicio HJ et al (2021) Heart disease and stroke statistics—2021 Update. Circulation. https://doi.org/10.1161/CIR.0000000000000950

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grigioni F, Enriquez-Sarano M, Ling LH et al (1999) Sudden death in mitral regurgitation due to flail leaflet. J Am Coll Cardiol. https://doi.org/10.1016/S0735-1097(99)00474-X

    Article  PubMed  Google Scholar 

  15. Savage DD, Devereux RB, Garrison RJ et al (1983) Mitral valve prolapse in the general population. 2. Clinical features: the Framingham Study. Am Heart J 106(3):577–581. https://doi.org/10.1016/0002-8703(83)90705-6

  16. Han H, Ha FJ, Teh AW et al (2018) Mitral valve prolapse and sudden cardiac death: a systematic review. J Am Heart Assoc. https://doi.org/10.1161/JAHA.118.010584

    Article  PubMed  PubMed Central  Google Scholar 

  17. Freed LA, Levy D, Levine RA et al (1999) Prevalence and Clinical Outcome of Mitral-Valve Prolapse. N Engl J Med. https://doi.org/10.1056/NEJM199907013410101

    Article  PubMed  Google Scholar 

  18. Bhutto ZR, Barron JT, Liebson PR et al (1992) Electrocardiographic abnormalities in mitral valve prolapse. Am J Cardiol. https://doi.org/10.1016/0002-9149(92)91287-E

    Article  PubMed  Google Scholar 

  19. Bekheit SG, Ali AA, Deglin SM, Jain AC (1982) Analysis of QT interval in patients with idiopathic mitral valve prolapse. Chest. https://doi.org/10.1378/chest.81.5.620

    Article  PubMed  Google Scholar 

  20. Kaya Ü, Eren H (2020) Fragmented QRS may be associated with complex ventricular arrhythmias in mitral valve prolapse. Minerva Cardioangiol 68(6):577–585. https://doi.org/10.23736/S0026-4725.20.05123-3

  21. Basso C, Calabrese F, Corrado D, Thiene G (2001) Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings. Cardiovasc Res. https://doi.org/10.1016/S0008-6363(01)00261-9

    Article  PubMed  Google Scholar 

  22. Miller MA, Dukkipati SR, Turagam M et al (2018) Arrhythmic mitral valve prolapse. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2018.09.048

    Article  PubMed  PubMed Central  Google Scholar 

  23. Han H, Parsons SA, Teh AW et al (2020) Characteristic histopathological findings and cardiac arrest rhythm in isolated mitral valve prolapse and sudden cardiac death. J Am Heart Assoc. https://doi.org/10.1161/JAHA.119.015587

    Article  PubMed  PubMed Central  Google Scholar 

  24. Han H-C, Parsons SA, Curl CL et al (2021) Systematic quantification of histologic ventricular fibrosis in isolated mitral valve prolapse and sudden cardiac death. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2020.12.021

    Article  PubMed  PubMed Central  Google Scholar 

  25. Morningstar JE, Gensemer C, Moore R et al (2021) Mitral Valve Prolapse Induces Regionalized Myocardial Fibrosis. J Am Heart Assoc. https://doi.org/10.1161/JAHA.121.022332

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hinderer S, Schenke-Layland K (2019) Cardiac fibrosis – a short review of causes and therapeutic strategies. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2019.05.011

    Article  PubMed  Google Scholar 

  27. Rizzo S, Perazzolo Marra M, De Gaspari M, Basso C (2021) The missing pieces in the puzzle of arrhythmic mitral valve prolapse: papillary muscles, mitral annulus dysjunction, and myocardial scarring. Heart Rhythm. https://doi.org/10.1016/j.hrthm.2021.01.004

    Article  PubMed  Google Scholar 

  28. Garbi M, Lancellotti P, Sheppard MN (2018) Mitral valve and left ventricular features in malignant mitral valve prolapse. Open Heart. https://doi.org/10.1136/openhrt-2018-000925

    Article  PubMed  PubMed Central  Google Scholar 

  29. SantoroBIASE FLDI, HRANITZKY P et al (2014) Ventricular fibrillation triggered by PVCs from papillary muscles: clinical features and ablation. J Cardiovasc Electrophysiol. https://doi.org/10.1111/jce.12478

    Article  Google Scholar 

  30. Alhede C, Higuchi S, Hadjis A et al (2022) Premature ventricular contractions are presaged by a mechanically abnormal sinus beat. JACC Clin Electrophysiol. https://doi.org/10.1016/j.jacep.2022.05.005

    Article  PubMed  Google Scholar 

  31. Sriram CS, Syed FF, Ferguson ME et al (2013) Malignant bileaflet mitral valve prolapse syndrome in patients with otherwise idiopathic out-of-hospital cardiac arrest. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2013.02.060

    Article  PubMed  Google Scholar 

  32. Villatore A, Sala S, Stella S et al (2021) Autoimmune myocarditis and arrhythmogenic mitral valve prolapse: an unexpected overlap syndrome. J Cardiovasc Dev Dis. https://doi.org/10.3390/jcdd8110151

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jiang W, Xiong Y, Li X, Yang Y (2021) Cardiac fibrosis: cellular effectors, molecular pathways, and exosomal roles. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.715258

    Article  PubMed  PubMed Central  Google Scholar 

  34. Salvador AM, Nevers T, Velázquez F et al (2016) Intercellular adhesion molecule 1 regulates left ventricular leukocyte infiltration, cardiac remodeling, and function in pressure overload–induced heart failure. J Am Heart Assoc. https://doi.org/10.1161/JAHA.115.003126

    Article  PubMed  PubMed Central  Google Scholar 

  35. Śniez̊ek-Maciejewska M, Dubiel JP, Piwowarska W et al (1992) Ventricular arrhythmias and the autonomic tone in patients with mitral valve prolapse. Clin Cardiol. https://doi.org/10.1002/clc.4960151029

    Article  PubMed  Google Scholar 

  36. Myles RC, Wang L, Kang C et al (2012) Local β-adrenergic stimulation overcomes source-sink mismatch to generate focal arrhythmia. Circ Res. https://doi.org/10.1161/CIRCRESAHA.111.262345

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mason JW, Koch FH, Billingham ME, Winkle RA (1978) Cardiac biopsy evidence for a cardiomyopathy associated with symptomatic mitral valve prolapse. Am J Cardiol. https://doi.org/10.1016/0002-9149(78)90623-9

    Article  PubMed  Google Scholar 

  38. La VL, Ometto R, Centofante P et al (1998) Arrhythmic profile, ventricular function, and histomorphometric findings in patients with idiopathic ventricular tachycardia and mitral valve prolapse: clinical and prognostic evaluation. Clin Cardiol. https://doi.org/10.1002/clc.4960211007

    Article  PubMed  Google Scholar 

  39. Bains S, Tester DJ, Asirvatham SJ et al (2019) A novel truncating variant in FLNC-encoded filamin C may serve as a proarrhythmic genetic substrate for arrhythmogenic bileaflet mitral valve prolapse syndrome. Mayo Clin Proc. https://doi.org/10.1016/j.mayocp.2018.11.028

    Article  PubMed  Google Scholar 

  40. Guglielmo M, Arangalage D, Bonino MA et al (2023) Additional value of cardiac magnetic resonance feature tracking parameters for the evaluation of the arrhythmic risk in patients with mitral valve prolapse. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-023-00944-x

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nagata Y, Bertrand PB, Baliyan V et al (2023) Abnormal mechanics relate to myocardial fibrosis and ventricular arrhythmias in patients with mitral valve prolapse. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.122.014963

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chivulescu M, Aabel EW, Gjertsen E et al (2022) Electrical markers and arrhythmic risk associated with myocardial fibrosis in mitral valve prolapse. Europace. https://doi.org/10.1093/europace/euac017

    Article  PubMed  PubMed Central  Google Scholar 

  43. Constant Dit Beaufils AL, Huttin O, Jobbe-Duval A et al (2021) Replacement myocardial fibrosis in patients with mitral valve prolapse: relation to mitral regurgitation, Ventricular Remodeling, and Arrhythmia. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.120.050214

    Article  PubMed  Google Scholar 

  44. Pavon AG, Arangalage D, Pascale P et al (2021) Myocardial extracellular volume by T1 mapping: a new marker of arrhythmia in mitral valve prolapse. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-021-00797-2

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gatti M, Palmisano A, Esposito A et al (2021) Feature tracking myocardial strain analysis in patients with bileaflet mitral valve prolapse: relationship with LGE and arrhythmias. Eur Radiol. https://doi.org/10.1007/s00330-021-07876-z

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pradella S, Grazzini G, Brandani M et al (2019) Cardiac magnetic resonance in patients with mitral valve prolapse: focus on late gadolinium enhancement and T1 mapping. Eur Radiol. https://doi.org/10.1007/s00330-018-5634-5

    Article  PubMed  Google Scholar 

  47. Kitkungvan D, Nabi F, Kim RJ et al (2018) Myocardial fibrosis in patients with primary mitral regurgitation with and without prolapse. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2018.06.048

    Article  PubMed  Google Scholar 

  48. Bennett S, Tafuro J, Duckett S et al (2022) Definition, prevalence, and clinical significance of mitral annular disjunction in different patient cohorts: a systematic review. Echocardiography. https://doi.org/10.1111/echo.15299

    Article  PubMed  Google Scholar 

  49. Lancellotti P, Pibarot P, Chambers J et al (2022) Multi-modality imaging assessment of native valvular regurgitation: an EACVI and ESC council of valvular heart disease position paper. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jeab253

    Article  PubMed  Google Scholar 

  50. Zoghbi WA, Adams D, Bonow RO et al (2017) Recommendations for noninvasive evaluation of native valvular regurgitation. J Am Soc Echocardiogr. https://doi.org/10.1016/j.echo.2017.01.007

    Article  PubMed  Google Scholar 

  51. Nordhues BD, Siontis KC, Scott CG et al (2016) Bileaflet mitral valve prolapse and risk of ventricular dysrhythmias and death. J Cardiovasc Electrophysiol. https://doi.org/10.1111/jce.12914

    Article  PubMed  Google Scholar 

  52. Avierinos J-F, Gersh BJ, Melton LJ et al (2002) Natural history of asymptomatic mitral valve prolapse in the community. Circulation. https://doi.org/10.1161/01.CIR.0000028933.34260.09

    Article  PubMed  Google Scholar 

  53. Hutchins GM, Moore GW, Skoog DK (1986) The association of floppy mitral valve with disjunction of the mitral annulus fibrosus. N Engl J Med. https://doi.org/10.1056/NEJM198602273140902

    Article  PubMed  Google Scholar 

  54. Eriksson MJ, Bitkover CY, Omran AS et al (2005) Mitral annular disjunction in advanced myxomatous mitral valve disease: echocardiographic detection and surgical correction. J Am Soc Echocardiogr. https://doi.org/10.1016/j.echo.2005.06.013

    Article  PubMed  Google Scholar 

  55. Carmo P, Andrade MJ, Aguiar C et al (2010) Mitral annular disjunction in myxomatous mitral valve disease: a relevant abnormality recognizable by transthoracic echocardiography. Cardiovasc Ultrasound. https://doi.org/10.1186/1476-7120-8-53

    Article  PubMed  PubMed Central  Google Scholar 

  56. Perazzolo Marra M, Basso C, De Lazzari M et al (2016) Morphofunctional abnormalities of mitral annulus and arrhythmic mitral valve prolapse. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.116.005030

    Article  PubMed  PubMed Central  Google Scholar 

  57. Muthukumar L, Rahman F, Jan MF et al (2017) The Pickelhaube sign. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2016.09.016

    Article  PubMed  Google Scholar 

  58. Slavich M, Palmisano A, Pannone L et al (2019) Hidden danger behind the prolapse. Circ Cardiovasc Imaging. https://doi.org/10.1161/CIRCIMAGING.119.009639

    Article  PubMed  Google Scholar 

  59. Huttin O, Pierre S, Venner C et al (2016) Interactions between mitral valve and left ventricle analysed by 2D speckle tracking in patients with mitral valve prolapse: one more piece to the puzzle. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jew075

    Article  PubMed  Google Scholar 

  60. Essayagh B, Sabbag A, Antoine C et al (2021) The mitral annular disjunction of mitral valve prolapse. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2021.04.029

    Article  PubMed  Google Scholar 

  61. Tong J, Yew M, Huang W, Yong QW (2022) The dance of death: cardiac arrest, mitral and tricuspid valve prolapses, and biannular disjunctions. CASE (Phila). https://doi.org/10.1016/j.case.2021.11.006

    Article  PubMed  Google Scholar 

  62. Tayal B, Delling FN, Malahfji M, Shah DJ (2021) Cardiac imaging for risk assessment of malignant ventricular arrhythmias in patients with mitral valve prolapse. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.574446

    Article  PubMed  PubMed Central  Google Scholar 

  63. Figliozzi S, Georgiopoulos G, Lopes PM et al (2023) Myocardial fibrosis at cardiac MRI helps predict adverse clinical outcome in patients with mitral valve prolapse. Radiology. https://doi.org/10.1148/radiol.220454

    Article  PubMed  Google Scholar 

  64. Zugwitz D, Fung K, Aung N et al (2022) Mitral annular disjunction assessed using CMR imaging. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2022.07.015

    Article  PubMed  PubMed Central  Google Scholar 

  65. Dejgaard LA, Skjølsvik ET, Lie ØH et al (2018) The mitral annulus disjunction arrhythmic syndrome. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2018.07.070

    Article  PubMed  Google Scholar 

  66. Faletra FF, Leo LA, Paiocchi VL et al (2022) Morphology of mitral annular disjunction in mitral valve prolapse. J Am Soc Echocardiogr. https://doi.org/10.1016/j.echo.2021.09.002

    Article  PubMed  Google Scholar 

  67. Mantegazza V, Volpato V, Gripari P et al (2021) Multimodality imaging assessment of mitral annular disjunction in mitral valve prolapse. Heart. https://doi.org/10.1136/heartjnl-2020-317330

    Article  PubMed  Google Scholar 

  68. Angelini A, Ho SY, Anderson RH et al (1988) A histological study of the atrioventricular junction in hearts with normal and prolapsed leaflets of the mitral valve. Heart. https://doi.org/10.1136/hrt.59.6.712

    Article  Google Scholar 

  69. Wu S, Siegel RJ (2022) Mitral annular disjunction: a case series and review of the literature. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2022.976066

    Article  PubMed  PubMed Central  Google Scholar 

  70. Groeneveld SA, Kirkels FP, Cramer MJ et al (2022) Prevalence of mitral annulus disjunction and mitral valve prolapse in patients with idiopathic ventricular fibrillation. J Am Heart Assoc. https://doi.org/10.1161/JAHA.121.025364

    Article  PubMed  PubMed Central  Google Scholar 

  71. Essayagh B, Iacuzio L, Civaia F et al (2019) Usefulness of 3-Tesla cardiac magnetic resonance to detect mitral annular disjunction in patients with mitral valve prolapse. Am J Cardiol. https://doi.org/10.1016/j.amjcard.2019.08.047

    Article  PubMed  Google Scholar 

  72. Basso C, Perazzolo Marra M (2018) Mitral annulus disjunction. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2018.07.069

    Article  PubMed  Google Scholar 

  73. Putnam AJ, Kebed K, Mor-Avi V et al (2020) Prevalence of mitral annular disjunction in patients with mitral valve prolapse and severe regurgitation. Int J Cardiovasc Imaging 36(7):1363–1370. https://doi.org/10.1007/s10554-020-01818-4

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kulkarni AA, Chudgar PD, Burkule NJ, Kamat NV (2022) Mitral annulus disjunction and arrhythmic mitral valve prolapse: emerging role of cardiac magnetic resonance imaging in the workup. Indian J Radiol Imaging 32(4):576–581. https://doi.org/10.1055/s-0042-1754357

    Article  PubMed  PubMed Central  Google Scholar 

  75. Haugaa K (2021) Improving the imaging diagnosis of mitral annular disjunction. Heart. https://doi.org/10.1136/heartjnl-2020-317667

    Article  PubMed  Google Scholar 

  76. Romero Daza A, Chokshi A, Pardo P et al (2021) Mitral valve prolapse morphofunctional features by cardiovascular magnetic resonance: more than just a valvular disease. J Cardiovasc Magn Reson. https://doi.org/10.1186/s12968-021-00800-w

    Article  PubMed  PubMed Central  Google Scholar 

  77. Aquaro GD, De Gori C, Grilli G et al (2023) Dark papillary muscles sign: a novel prognostic marker for cardiac magnetic resonance. Eur Radiol. https://doi.org/10.1007/s00330-023-09400-x

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dieterlen M-T, Klaeske K, Spampinato R et al (2023) Histopathological insights into mitral valve prolapse-induced fibrosis. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2023.1057986

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pradella S, Grazzini G, Miele V (2020) Mitral valve prolapse imaging: the role of tissue characterization. Quant Imaging Med Surg. https://doi.org/10.21037/qims-2020-25

  80. Niu Z, Chan V, Mesana T, Ruel M (2016) The evolution of mitral valve prolapse: insights from the Framingham Heart Study. J Thorac Dis. https://doi.org/10.21037/jtd.2016.07.58

  81. Thamman R, Gupta N, Doshi R et al (2020) Mitral annular disjunction: Wolf in sheep’s clothing? Echocardiography. https://doi.org/10.1111/echo.14898

    Article  PubMed  Google Scholar 

  82. Bui AH, Roujol S, Foppa M et al (2017) Diffuse myocardial fibrosis in patients with mitral valve prolapse and ventricular arrhythmia. Heart. https://doi.org/10.1136/heartjnl-2016-309303

    Article  PubMed  Google Scholar 

  83. Fulton BL, Liang JJ, Enriquez A et al (2018) Imaging characteristics of papillary muscle site of origin of ventricular arrhythmias in patients with mitral valve prolapse. J Cardiovasc Electrophysiol. https://doi.org/10.1111/jce.13374

    Article  PubMed  Google Scholar 

  84. Guglielmo M, Fusini L, Muscogiuri G et al (2021) T1 mapping and cardiac magnetic resonance feature tracking in mitral valve prolapse. Eur Radiol. https://doi.org/10.1007/s00330-020-07140-w

    Article  PubMed  Google Scholar 

  85. Hourdain J, Clavel MA, Deharo J-C et al (2018) Common phenotype in patients with mitral valve prolapse who experienced sudden cardiac death. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.118.033488

    Article  PubMed  Google Scholar 

  86. Kim AJ, Xu N, Umeyama K et al (2020) Deficiency of circulating monocytes ameliorates the progression of myxomatous valve degeneration in marfan syndrome. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.119.042391

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mewton N, Liu CY, Croisille P et al (2011) Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. https://doi.org/10.1016/j.jacc.2010.11.013

    Article  PubMed  Google Scholar 

  88. Yue L, Xie J, Nattel S (2011) Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc Res. https://doi.org/10.1093/cvr/cvq329

    Article  PubMed  Google Scholar 

  89. Sridhar S, Vandersickel N, Panfilov AV (2017) Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue. Sci Rep. https://doi.org/10.1038/srep40985

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. https://doi.org/10.1038/nm.2807

    Article  PubMed  PubMed Central  Google Scholar 

  91. Travers JG, Kamal FA, Robbins J et al (2016) Cardiac Fibrosis. Circ Res. https://doi.org/10.1161/CIRCRESAHA.115.306565

    Article  PubMed  PubMed Central  Google Scholar 

  92. Piek A, de Boer RA, Silljé HHW (2016) The fibrosis-cell death axis in heart failure. Heart Fail Rev. https://doi.org/10.1007/s10741-016-9536-9

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nensa F, Bamberg F, Rischpler C et al (2018) Hybrid cardiac imaging using PET/MRI: a joint position statement by the European Society of Cardiovascular Radiology (ESCR) and the European Association of Nuclear Medicine (EANM). Eur Radiol. https://doi.org/10.1007/s00330-017-5008-4

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nazir MS, Ismail TF, Reyes E et al (2018) Hybrid positron emission tomography–magnetic resonance of the heart: current state of the art and future applications. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jey090

    Article  PubMed  PubMed Central  Google Scholar 

  95. Miller MA, Adams DH, Pandis D et al (2020) Hybrid positron emission tomography/magnetic resonance imaging in arrhythmic mitral valve prolapse. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2020.1555

    Article  PubMed  PubMed Central  Google Scholar 

  96. Miller MA, Devesa A, Robson PM et al (2023) Arrhythmic mitral valve prolapse with only mild or moderate mitral regurgitation. JACC Clin Electrophysiol. https://doi.org/10.1016/j.jacep.2023.04.011

    Article  PubMed  Google Scholar 

  97. Dweck MR, Abgral R, Trivieri MG et al (2018) Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2017.02.021

    Article  PubMed  Google Scholar 

  98. Feuchtner GM, Alkadhi H, Karlo C et al (2010) Cardiac CT angiography for the diagnosis of mitral valve prolapse: comparison with echocardiography <sup/>. Radiology. https://doi.org/10.1148/radiol.2541090393

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tsianaka T, Matziris I, Kobe A et al (2021) Mitral annular disjunction in patients with severe aortic stenosis: extent and reproducibility of measurements with computed tomography. Eur J Radiol Open. https://doi.org/10.1016/j.ejro.2021.100335

    Article  PubMed  PubMed Central  Google Scholar 

  100. Toh H, Mori S, Izawa Y et al (2021) Prevalence and extent of mitral annular disjunction in structurally normal hearts: comprehensive 3D analysis using cardiac computed tomography. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jeab022

    Article  PubMed  Google Scholar 

  101. Koo HJ, Kang J-W, Oh SY et al (2019) Cardiac computed tomography for the localization of mitral valve prolapse: scallop-by-scallop comparisons with echocardiography and intraoperative findings. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jey139

    Article  PubMed  PubMed Central  Google Scholar 

  102. Esposito A, Palmisano A, Barbera M et al (2019) Cardiac computed tomography in troponin-positive chest pain. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2018.08.013

    Article  PubMed  Google Scholar 

  103. Vignale D, Palmisano A, Colantoni C et al (2023) Toward a One-Stop Shop CT Protocol in Acute Chest Pain Syndrome. Radiology. https://doi.org/10.1148/radiol.220844

    Article  PubMed  Google Scholar 

  104. Palmisano A, Vignale D, Tadic M et al (2022) Myocardial late contrast enhancement CT in troponin-positive acute chest pain syndrome. Radiology. https://doi.org/10.1148/radiol.211288

    Article  PubMed  Google Scholar 

  105. Palmisano A, Vignale D, Benedetti G et al (2020) Late iodine enhancement cardiac computed tomography for detection of myocardial scars: impact of experience in the clinical practice. Radiol Med. https://doi.org/10.1007/s11547-019-01108-7

    Article  PubMed  PubMed Central  Google Scholar 

  106. Piroli F, Boccellino A, Ingallina G et al (2023) Feasibility and reliability of comprehensive three-dimensional transoesophageal echocardiography screening process for transcatheter mitral valve replacement. Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jead015

    Article  PubMed  PubMed Central  Google Scholar 

  107. Vignale D, Palmisano A, Gnasso C et al (2023) Extracellular volume fraction (ECV) derived from pre-operative computed tomography predicts prognosis in patients undergoing transcatheter aortic valve implantation (TAVI). Eur Heart J Cardiovasc Imaging. https://doi.org/10.1093/ehjci/jead040

    Article  PubMed  PubMed Central  Google Scholar 

  108. Palmisano A, Vignale D, Peretto G et al (2021) Hybrid FDG-PET/MR or FDG-PET/CT to detect disease activity in patients with persisting arrhythmias after myocarditis. JACC Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2020.03.009

    Article  PubMed  Google Scholar 

Download references

Funding

The authors state that this work has not received any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Esposito.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Antonio Esposito.

Conflict of interest

Marco Francone is European Radiology’s section editor of Cardiac in the Scientific editorial board. He has not taken part in the review or selection process of this article.

The authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.

Anna Palmisano is a member of the European Radiology Experimental scientific editorial board.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was not required for this study because it is a review article.

Ethical approval

Institutional Review Board approval was not required because it is a review article.

Study subjects or cohorts overlap

No original data are included in the review.

Methodology

• narrative review

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esposito, A., Gatti, M., Trivieri, M.G. et al. Imaging for the assessment of the arrhythmogenic potential of mitral valve prolapse. Eur Radiol (2023). https://doi.org/10.1007/s00330-023-10413-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00330-023-10413-9

Keywords

Navigation