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Abstract 

Objectives To evaluate dual-layer dual-energy computed tomography (dlDECT)–derived pulmonary perfusion maps 
for differentiation between acute pulmonary embolism (PE) and chronic thromboembolic pulmonary hypertension 
(CTEPH).

Methods This retrospective study included 131 patients (57 patients with acute PE, 52 CTEPH, 22 controls), who 
underwent CT pulmonary angiography on a dlDECT. Normal and malperfused areas of lung parenchyma were 
semiautomatically contoured using iodine density overlay (IDO) maps. First-order histogram features of normal 
and malperfused lung tissue were extracted. Iodine density (ID) was normalized to the mean pulmonary artery 
(MPA) and the left atrium (LA). Furthermore, morphological imaging features for both acute and chronic PE, as well 
as the combination of histogram and morphological imaging features, were evaluated.

Results In acute PE, normal perfused lung areas showed a higher mean and peak iodine uptake normalized 
to the MPA than in CTEPH (both p < 0.001). After normalizing mean ID in perfusion defects to the LA, patients 
with acute PE had a reduced average perfusion  (IDmean,LA) compared to both CTEPH patients and controls (p < 0.001 
for both).  IDmean,LA allowed for a differentiation between acute PE and CTEPH with moderate accuracy (AUC: 0.72, sen-
sitivity 74%, specificity 64%), resulting in a PPV and NPV for CTEPH of 64% and 70%. Combining  IDmean,LA in the malp-
erfused areas with the diameter of the MPA  (MPAdia) significantly increased its ability to differentiate between acute PE 
and CTEPH (sole  MPAdia: AUC: 0.76, 95%-CI: 0.68–0.85 vs.  MPAdia + 256.3 *  IDmean,LA − 40.0: AUC: 0.82, 95%-CI: 0.74–0.90, 
p = 0.04).

Conclusion dlDECT enables quantification and characterization of pulmonary perfusion patterns in acute PE 
and CTEPH. Although these lack precision when used as a standalone criterion, when combined with morphological 
CT parameters, they hold potential to enhance differentiation between the two diseases.

Clinical relevance statement Differentiating between acute PE and CTEPH based on morphological CT param-
eters is challenging, often leading to a delay in CTEPH diagnosis. By revealing distinct pulmonary perfusion patterns 
in both entities, dlDECT may facilitate timely diagnosis of CTEPH, ultimately improving clinical management.
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Key Points 

• Morphological imaging parameters derived from CT pulmonary angiography to distinguish between acute pulmonary 
embolism and chronic thromboembolic pulmonary hypertension lack diagnostic accuracy.

• Dual-layer dual-energy CT reveals different pulmonary perfusion patterns between acute pulmonary embolism and chronic 
thromboembolic pulmonary hypertension.

• The identified parameters yield potential to enable more timely identification of patients with chronic thromboembolic 
pulmonary hypertension.

Keywords Computed tomography, Pulmonary perfusion, Acute pulmonary embolism, Chronic thromboembolic 
pulmonary hypertension

Introduction
Acute pulmonary embolism (PE) is one of the main dif-
ferential diagnoses in patients presenting with chest 
pain and/or dyspnea, ranking high among the most 
common causes of death from cardiovascular disease 
[1, 2]. Chronic thromboembolic pulmonary hyperten-
sion (CTEPH) is a rare but potentially fatal sequela of 
prior acute PE with incomplete recanalization or recur-
rent (sub-)clinical pulmonary emboli [3–6]. Clinically, 
CTEPH is defined by an increase in mean pulmonary 
artery pressure (mPAP) at rest > 20 mmHg, a pulmonary 
arterial wedge pressure < 15 mmHg, a mismatch on lung 
ventilation/perfusion (V/Q) scintigraphy, and/or specific 
diagnostic signs of chronic thromboembolism on angi-
ography after ≥ 3 months of therapeutic anticoagulation 
[7, 8]. There is great uncertainty about the true incidence 
of CTEPH, which differs between ∼0.6% in “all-comers” 
and ∼3% in “PE-survivors” populations [6]. This can at 
least be partly attributed to the difficulties with identi-
fying patients that already present with CTEPH at their 
PE index event [4, 9]. A variety of computed tomogra-
phy pulmonary angiography (CTPA) parameters, which 
is the key imaging modality to rule out suspected PE 
[10], have been suggested to identify CTEPH [11–14]. 
These include direct vascular features such as laminated 
thrombi with obtuse angles to the contrast column, vessel 
narrowing or complete retraction, intimal irregularities, 
“webs and bands,” and post-stenotic dilatation. Indirect 
vascular features encompass dilatation of the mean pul-
monary artery (MPA) or enlargement of bronchial col-
lateral vessels. Indirect cardiac features, such as right 
ventricular hypertrophy, and parenchymal features, such 
as mosaic perfusion or parenchymal bands, are also sug-
gestive for CTEPH. However, these imaging features are 
typically subtle and thus often initially overlooked [15], 
leading to a considerable delay in diagnosis [12].

By acquiring two spectrally distinct datasets, dual-energy 
CT (DECT) enables the computation of material-specific 
images. Based on the different absorption characteristics of 
iodine and the pulmonary parenchyma [16], DECT allows 

for a mapping of pulmonary iodine uptake, which is consid-
ered a surrogate indicator for pulmonary perfusion [17–19]. 
Characteristically, pulmonary perfusion abnormalities in 
CTEPH are patchy or multisegmental, sharply defined, 
wedge-shaped, and hypoattenuating [20, 21]. The latter is 
also described for acute PE [22]. For both entities, DECT has 
been proven as a feasible method for visualization and quan-
tification of pulmonary perfusion defects [20, 22–28]. Fur-
thermore, the generated iodine density overlay (IDO) maps 
improve diagnosis in acute PE and CTEPH [22, 29–31].

In CTEPH, pulmonary perfusion is maintained by the 
formation of systemic-to-pulmonary anastomoses and/or 
the dilatation of the vasa privata of the lung [32]. Earlier 
studies for two-phase and more recent studies for single-
phase DECT suggest that DECT allows for a quantifica-
tion of distinct differences in regional perfusion patterns 
between acute PE and CTEPH, which most likely can be 
ascribed to the maintained blood flow in malperfused 
lung areas in CTEPH via these systemic collaterals [33, 
34]. Yet, both studies are limited primarily by their small 
sample sizes, and secondly due to the missing assessment 
of the diagnostic implications of their findings. Further-
more, two-phase DECT approaches hold the method’s 
inherent limitation of extra-radiation exposure.

Recently, we demonstrated the potential of single-
phase dual-layer dual-energy (dlDECT) to semiauto-
matically detect and quantify pulmonary perfusion 
abnormalities in PH [30]. Given the diagnostic challenges 
of CTEPH, we therefore sought to quantitatively assess 
dlDECT-derived pulmonary perfusion in acute PE and 
CTEPH. Our objective was to evaluate its diagnostic abil-
ity to detect and differentiate acute and chronic stages of 
pulmonary thromboembolism.

Materials and methods
Study population
This study was approved by the local institutional review 
board (Ethics Committee of the Faculty of Medicine from 
the University of Cologne, Cologne, Germany). Necessity 



Page 3 of 13Gertz et al. European Radiology
 

for informed consent was waived due to the retrospective 
design of the study. All clinical investigations were con-
ducted in accordance with the Declaration of Helsinki.

This was a single-center, retrospective study. All 
patients underwent CTPA on dlDECT between June 
2016 and February 2022, either due to suspected acute 
PE or CTEPH. Final diagnosis of CTEPH was reached 
by expert consensus based on right heart catheteriza-
tion (RHC), V/Q scintigraphy, and further tests, given 
the retrospective study design, in accordance with the 
2015 ESC/ERS guidelines [8]. Inclusion criteria for 
patients with acute PE were as follows: (1) suspicion 
of acute PE based on patient’s medical history and (2) 
concordant imaging findings on CTPA. Patients with (1) 
previous acute PE or known chronic thromboembolic 
disease (CTED) based on patient’s medical history or 
(2) direct vascular signs of chronicity (laminated throm-
bus with obtuse angle to the contrast column or calcifi-
cation, intravascular webs, complete arterial occlusion, 
arterial narrowing or retraction, post-stenotic vascu-
lar dilatation [12]) or (3) non-thrombotic occlusion on 
CTPA were excluded from the acute PE group.

A total of 22 patients served as a control cohort. 
Among them, 14 had been clinically suspected of hav-
ing PH, but were ruled out based on RHC results (mPAP 
< 25 mmHg) and showed no signs of CTED, as assessed 
by V/Q scintigraphy, CTPA, and pulmonary angiography 
when necessary. The remaining 8 patients underwent 
CTPA due to suspected acute PE but revealed no signs of 
acute or chronic PE upon assessment by a board-certified 
radiologist and presented no pulmonary comorbidities.

Image acquisition and reconstruction
CT data were acquired on a dlDECT (IQon, Philips 
Healthcare). All patients received an intravenous 50 mL 
bolus of contrast media (300 mg iodine/mL, Accupaque, 
GE Healthcare) followed by a 40 mL NaCl chaser, both 
injected with a flow rate of 4 mL/s. After reaching an 
attenuation of 150 HU in the MPA, scanning in cranio-
caudal direction was initiated with a delay of 4.9 s. The 
acquisition parameters were as follows: slice collima-
tion 64 × 0.625 mm; rotation time 0.33 s; tube potential 
120 kV; tube current 75  mAsref with activated automatic 
tube current modulation. For all reconstructions, a 
dedicated spectral reconstruction algorithm with a soft 
tissue kernel was used (Spectral, B, Philips Healthcare). 
Images were reconstructed in axial orientation every 
0.5 mm with a slice thickness of 1 mm. Matrix was set 
to 512 × 512. Both conventional images, identical to 
images reconstructed with the vendors hybrid-iterative 
reconstruction algorithm (iDose4, Philips Healthcare) 
[35], and IDO maps were reconstructed.

Image analysis
Morphological CTPA analysis

Assessment of morphological imaging features For 
all patients, a radiologist with 4 years of experience in 
cardiovascular imaging (R.J.G.) recorded direct vascu-
lar features, indirect vascular features, and parenchymal 
features associated with both acute and chronic PE, as 
detailed in Table 1 and reference [12].

Assessment of thrombus/vascular occlusion 
level Thrombus levels in CTEPH have been shown to 
correlate with the degree of systemic collateral supply 
[36] and perfusion pattern [37, 38]. Therefore, throm-
bus/vascular occlusion level in CTEPH was assessed 
and classified as either central (cCTEPH) or peripheral 
(pCTEPH) as described previously [37]. In brief, apply-
ing Boyden’s nomenclature [39], cCTEPH was defined by 
the presence of chronic clots at the level of the pulmo-
nary trunk and the main and lobar pulmonary arteries. 
pCTEPH was defined by the presence of CT features of 
chronic PE at the level of segmental and/or subsegmental 
arteries.

Lung segmentation and dlDECT‑based lung perfusion 
analysis
Semiautomatic segmentation of the lung into normal 
and malperfused lung areas was achieved as previously 
described [30]. In brief, threshold segmentation was per-
formed on automatically derived and manually verified lung 
volumes based on the IDO maps using a dedicated software 
solution for volumetric iodine quantification (ISD, Thresh-
oldSegmentation (1.1), Philips IntelliSpace Release 11).

Regions of interest, accounting for at least 50% of the 
vascular/atrial area at the largest diameter, were manually 
drawn to assess the mean iodine density (ID) in the MPA 
and the left atrium (LA), respectively. These readouts were 
used to define three lung areas as follows: malperfused 
areas with an ID of less than 5% of the MPA, normal per-
fused areas with an ID of more than 5% of the MPA and 
less than 50% of the LA, and the vessel compartment with 
an ID of more than 50% of the LA.

Histogram analysis of lung perfusion and normalization 
of histogram parameters
Histogram analysis included the following first-order 
parameters for normal and malperfused lung compart-
ments:  IDmean,  IDmax,  IDkurtosis, and  IDskewness. Values for 
 IDmean and  IDmax were normalized to the feeding vessel, the 
MPA  (IDmean,MPA,  IDmax,MPA), as described previously [40]:

IDmean,MPA =

meanID

meanIDMPA
IDmax,MPA =

maxID

meanIDMPA
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In addition, to account for systemic collateral supply of 
the lung, values for  IDmean and  IDmax were also normal-
ized to the LA  (IDmean,LA,  IDmax,LA):

Statistical analysis
The Shapiro-Wilk test was used to test for normality. Dif-
ferences in continuous, parametric data were compared 
using the t-test. Continuous, independent, nonparamet-
ric data were compared using the Mann-Whitney U test. 
Differences in categorical data were identified using Pear-
son’s chi-squared test. To compare variances among and 
between the subgroups concerning continuous, paramet-
ric data, the ANOVA test was used. After assessing the 
equality of variances using Levene’s test, post hoc testing 
was performed with Bonferroni adjustment for multiple 
comparisons. Differences between the subgroups for cat-
egorical, nonparametric variables were assessed using the 
Kruskal-Wallis test and Dunn-Bonferroni corrected post 
hoc analysis.

IDmean,LA =

meanID

meanIDLA
IDmax,LA =

maxID

meanIDLA

To assess the diagnostic performance of the derived 
histogram parameters, the respective patient subcohorts 
(subcohort 1: acute PE/CTEPH vs. control group, sub-
cohort 2: acute PE vs. CTEPH) were split into a train-
ing and a validation set (80/20 split) using a freeware 
research data randomizer (https:// www. rando mizer. org). 
Diagnostic performance was evaluated by calculating the 
area under the receiver operating characteristic curve 
(AUC) and positive and negative predictive value (PPV, 
NPV). Cut-off values for optimal sensitivity and specific-
ity were calculated using Youden’s index. Only the his-
togram features with the best diagnostic performance 
based on AUC analyses are reported in the “Results” 
section.

To examine whether histogram parameters provide 
additional information to discriminate acute PE from 
CTEPH, histogram parameters and morphological imag-
ing features, which were not a priori included in the 
exclusion criteria for acute PE, were combined using 
the method introduced by Pepe et  al [41]. Differences 
between AUCs were evaluated using the DeLong test [42].

A p-value of < 0.05 was considered statistically sig-
nificant. Statistical analysis was performed using SPSS 

Table 1 Morphological imaging features in acute PE, CTEPH, and controls

Continuous data are given as mean ± standard deviation. Categorical data are given as n/n (%)
§ Not given for APE and controls as the presence of direct vascular features led to an exclusion from either the acute PE or the control group, respectively; *preserved 
caliber of the vessel; central (“polo mint” sign if imaged in short axis, or “railway track” sign if imaged in long axis) or eccentric filling defect; +on a multiplanar-
reformatted four-chamber view; $characterized by free wall thickness >4 mm
** CTEPH vs. APE and CTEPH vs. controls, p < 0.001, respectively; APE vs. controls, p = 0.12. †CTEPH vs. APE and CTEPH vs. controls, p < 0.001, respectively; APE vs. controls, p = 
1.00; ‡CTEPH vs. APE, p = 0.042; CTEPH vs. controls, p < 0.01; APE vs. controls, p = 0.45; ||||CTEPH vs. APE, p < 0.001; CTEPH vs. controls, p = 0.01; APE vs. controls, p = 1.00

PE, pulmonary embolism; CTEPH, chronic thromboembolic pulmonary hypertension; APE, acute pulmonary embolism; MPAdia, diameter mean pulmonary artery; 
Aortadia, diameter aorta; RV, right ventricle; LV, left ventricle

APE CTEPH Controls p
Parameter (n = 57) (n = 52) (n = 22)

Direct vascular  features§

  Acute thrombus morphology* 0/52 (0%)

  Intravascular webs 34/52 (65.4%)

  Complete arterial occlusion 16/52 (30.8%)

  Arterial narrowing or retraction 47/52 (90.4%)

  Post-stenotic vascular dilatation 11/52 (21.2%)

Indirect vascular features

   MPAdia 28.8 ± 4.5 34.0 ± 5.5 26.7 ± 2.6 < 0.001 **
   MPAdia/aortadia ratio 0.85 ± 0.14 1.05 ± 0.22 0.83 ± 0.10 < 0.001 †
  RV/LV  ratio+ 1.09 ± 0.36 1.26 ± 0.43 0.93 ± 0.13 0.02 ‡
  Flattening of the interventricular septum 18/57 (31.6%) 30/52 (57.7%) 0/22 (0%) < 0.001

  RV-hypertrophy$ 1/57 (1.8%) 22/52 (42.3%) 0/22 (0%) < 0.001

  Diameter of the bronchial arteries, when detectable 
(31/46/5)

1.6 ± 0.31 2.4 ± 0.74 1.5 ± 0.16 < 0.001 ||||

Parenchymal features

  Mosaic perfusion 0/57 (0%) 16/52 (30.8%) 0/22 (0%) < 0.001

  Parenchymal bands 0/57 (0%) 21/52 (40.4%) 0/22 (0%) < 0.001

  Pulmonary infarction 9/57 (15.8%) 0/52 (0%) 0/22 (0%) < 0.001

https://www.randomizer.org
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software (IBM SPSS Statistics for macOS, Version 27.0) 
and R (R Core Development Team, version 4.2.0), using 
RStudio (RStudio, Version 2023.03.1).

Results
Patient demographics
A total of 116 patients with suspected acute PE and 
55 patients with CTEPH were included. Of these 171 
patients, 32 were excluded: 11 patients due to too low 
intraarterial contrast (mean attenuation in the MPA: 
261.1 ± 4.9 HU in included scans vs. 217.3 ± 19.5 HU in 
excluded scans, p < 0.001), 20 patients from the acute PE 
arm with subacute PE based on patient´s medical his-
tory or imaging features, and one patient with a tumor-
ous vascular occlusion (Fig. 1). There were no differences 
between the groups regarding age (mean ± SD: acute PE, 
61 ± 16 years; CTEPH, 62 ± 16 years; controls, 63 ± 18 
years; p = 0.76). While gender distribution between the 
acute PE (m/f, 32/25) and the CTEPH group (m/f, 24/28) 
was comparable (p = 0.30), controls were more often 
female (m/f, 5/17) as compared to PE patients (p = 0.008). 
Percentages of normal perfused and malperfused areas in 
the lung were 68.6 ± 17.9% and 28.3 ± 18.4%, respectively, 
for patients with acute PE, 53.6 ± 20.0% and 44.1 ± 20.2%, 
respectively, for patients with CTEPH, and 73.1 ± 18.2% 
and 23.9 ± 18.5%, respectively, for controls. There was no 
difference between groups regarding the number of beam 
hardening artifacts due to contrast in the subclavian vein 
and/or extracorporeal foreign material (acute PE, 30/57; 
CTEPH, 32/52; controls, 14/22; p = 0.54). Manual editing 

of the generated lung volumes was required in 54 of 131 
cases (41.2%) and more frequently necessary in acute 
PE compared to both other groups (acute PE, 37/57; 
CTEPH, 15/52; controls, 2/22; p < 0.001).

Morphological imaging features
Morphological imaging features are displayed in Table 1. 
Compared to patients with acute PE and controls, those 
with CTEPH had a greater MPA diameter (acute PE, 28.8 
± 4.5; CTEPH, 34.0 ± 5.5; controls, 26.7 ± 2.6; p < 0.001), 
a higher MPA/aorta ratio (acute PE, 0.85 ± 0.14; CTEPH, 
1.05 ± 0.22; controls, 0.83 ± 0.10; p < 0.001), and a higher 
right ventricle (RV) to left ventricle (LV) diameter ratio 
(acute PE, 1.09 ± 0.36; CTEPH, 1.26 ± 0.43; controls, 0.93 
± 0.13; p = 0.02), as well as larger diameters of the bron-
chial arteries (acute PE, 1.6 ± 0.31; CTEPH, 2.4 ± 0.74; 
controls, 1.5 ± 0.16; p < 0.001). Furthermore, a flattened 
interventricular septum and right ventricular hypertro-
phy were observed more frequently in the CTEPH group 
compared to the other two groups (p for both < 0.001; 
Table 1).

dlDECT‑derived pulmonary perfusion
Differentiation between controls and patients 
with thromboembolic disease
Figure  2 exemplifies the semiautomatically derived nor-
mal and malperfused lung areas in a control, a patient 
with acute PE, and a patient with CTEPH. Patients with 
acute PE had a significantly lower ID in the MPA as com-
pared to controls (p = 0.046). Right-to-left-heart contrast 

Fig. 1 Study flow chart. PE, pulmonary embolism; CTEPH, chronic thromboembolic pulmonary hypertension; CTED, chronic thromboembolic 
disease. *For example, pleural effusion, pneumonia, pulmonary oncologic manifestations. Pulmonary fibrosis and emphysema were not exclusion 
criteria
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transit via the pulmonary vascular bed, as indicated 
by the ID in the LA, revealed no differences between 
groups based on post hoc analysis. Malperfused lung 
areas in acute PE and CTEPH were perfused less when 
being standardized to the MPA  (IDmean,MPA) and more 

homogenous  (IDskewness) in comparison to controls 
 (IDmean,MPA: acute PE, 0.022 ± 0.005; CTEPH, 0.023 ± 
0.004; controls, 0.028 ± 0.005;  IDskewness: acute PE, 0.03 ± 
0.48; CTEPH, −0.06 ± 0.38; controls, −0.57 ± 0.45; p for 
all < 0.001; Table 2 and Fig. 3).

Fig. 2 Conventional reconstructions (A1–A6), corresponding IDO images (B1–B6), and automatically derived normal (C1–C6) and malperfused 
lung areas (D1–D6) illustrating the physiological ventro-dorsal gradient of pulmonary blood volume in the supine patient as well as the visually 
similar perfusion patterns in acute PE (middle) and CTEPH (bottom). IDO, iodine density overlay; APE, acute pulmonary embolism; CTEPH, chronic 
thromboembolic pulmonary hypertension



Page 7 of 13Gertz et al. European Radiology
 

On the basis of AUC analysis,  IDskewness in malperfused 
lung areas enabled for identification of acute PE/CTEPH 
(training set: AUC 0.77, 95%-CI: 0.66–0.87; validation 
set: AUC 0.72, 95%-CI: 0.53–0.92; Fig. 3). Applying a cut-
off of −0.35 as determined by Youden’s index resulted in a 
sensitivity of 79% and a specificity of 62% as well as a pos-
itive predictive value (PPV) of 90% and a negative predic-
tive value (NPV) of 29% in the validation dataset.

Differentiation between acute PE and CTEPH
In acute PE, normal perfused lung areas took up more 
iodine on average than in CTEPH when being normal-
ized to the MPA  (IDmean,MPA: 0.13 ± 0.04 vs. 0.10 ± 0.02, 
p < 0.001). Normalizing mean iodine uptake in perfu-
sion defects to the LA patients with acute PE showed a 
reduced perfusion compared to CTEPH patients and 
controls  (IDmean,LA, both p < 0.001; Figs. 4 and Fig. 5).

Table 2 dlDECT-based pulmonary perfusion characteristics in acute PE, CTEPH, and controls

Data are given as mean ± standard deviation. n.s., not significant

dlDECT, dual-layer dual-energy CT; PE, pulmonary embolism; CTEPH, chronic thromboembolic pulmonary hypertension; APE, acute pulmonary embolism; ID, iodine 
density; MPA, mean pulmonary artery; LA, left atrium

APE CTEPH Controls p APE vs. CTEPH APE vs. controls CTEPH vs. controls
Parameter (n = 57) (n = 52) (n = 22) p p p

Feeding vessel

   IDMPA (mg/mL) 12.6 ± 5.2 14.3 ± 3.9 15.3 ± 3.8 0.025 0.13 0.046 1.00

   IDLA (mg/mL) 10.1 ± 2.8 9.0 ± 2.3 10.4 ± 2.9 0.049 0.11 1.00 0.13

Normal perfused lung

  % normal perfused lung 68.6 ± 17.9 53.6 ± 20.0 73.1 ± 18.2 < 0.001 < 0.001 0.99 < 0.001
   IDmean,MPA 0.13 ± 0.04 0.10 ± 0.02 0.11 ± 0.03 < 0.001 < 0.001 0.05 1.00

   IDmean,LA 0.15 ± 0.03 0.16 ± 0.04 0.16 ± 0.05 0.17

   IDmax,MPA 0.44 ± 0.16 0.33 ± 0.13 0.35 ± 0.09 < 0.001 < 0.001 0.07 0.75

   IDmax,LA 0.4993 ± 0.0035 0.4998 ± 0.0003 0.4990 ± 0.0042 0.04 0.97 0.19 0.031
   IDkurtosis 5.4 ± 3.5 5.3 ± 3.6 6.3 ± 3.9 0.45

   IDskewness 2.0 ± 0.7 2.0 ± 0.7 2.1 ± 0.8 0.85

Malperfused lung

  % malperfused lung 28.3 ± 18.4 44.1 ± 20.2 23.9 ± 18.5 < 0.001 < 0.01 1.00 < 0.01
   IDmean,MPA 0.022 ± 0.005 0.023 ± 0.004 0.028 ± 0.005 < 0.001 1.00 < 0.001 < 0.001
   IDmean,LA 0.028 ± 0.012 0.040 ± 0.016 0.046 ± 0.022 < 0.001 < 0.001 < 0.001 0.70

   IDmax,MPA 0.0497 ± 0.0003 0.0498 ± 0.0002 0.0499 ± 0.0001 0.07

   IDmax,LA 0.06 ± 0.02 0.09 ± 0.03 0.08 ± 0.04 < 0.001 < 0.001 0.06 0.80

   IDkurtosis −1.1 ± 0.3 −1.1 ± 0.2 −0.7 ± 0.8 0.04 0.26 0.05 0.86

   IDskewness 0.03 ± 0.48 −0.06 ± 0.38 −0.57 ± 0.45 < 0.001 1.00 < 0.001 < 0.001

Fig. 3 Box (25th percentile, median, and 75th percentile) and whisker (10th and 90th percentile) plots for  IDskewness in malperfused lung areas (A) 
and diagnostic accuracy of  IDskewness in malperfused lung areas for acute PE/CTEPH based on AUC analysis in the training dataset (B) and the test 
dataset (C). ID, iodine density; AUC, area under curve; APE, acute pulmonary embolism; CTEPH, chronic thromboembolic pulmonary hypertension
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There were no differences for  IDmean,MPA and  IDskewness 
in malperfused lung areas between acute PE, cCTEPH, 
and pCTEPH respectively (Table  3). Furthermore, 
 IDmean,LA in CTEPH was similar with regard to throm-
bus/vascular occlusion level.

IDmean,LA in the malperfused areas allowed for a differ-
entiation between acute PE and CTEPH with moderate 
accuracy based on ROC analysis (training dataset: AUC: 
0.72, 95%-CI: 0.62–0.83; validation dataset: AUC: 0.71, 
95%-CI: 0.47–0.95). A cut-off value of 0.031 resulted in a 
PPV and NPV for CTEPH of 64% and 70% in the valida-
tion dataset.

Combining  IDmean,LA in the malperfused areas with the 
diameter of the MPA  (MPAdia) significantly increased 
the ability to differentiate between acute PE and CTEPH 

(sole  MPAdia evaluation: AUC: 0.76, 95%-CI: 0.68–0.85 
vs.  MPAdia + 256.3 *  IDmean,LA − 40.0: AUC: 0.82, 95%-CI: 
0.74–0.90, p = 0.04). Furthermore, combining  IDmean,LA 
in the malperfused areas with the diameter of the bron-
chial arteries, there was a trend to an increase in the AUC 
(sole bronchial artery diameter evaluation: AUC: 0.85, 
95%-CI: 0.77–0.94 vs. bronchial artery diameter + 33.11 * 
 IDmean,LA − 3.15: AUC: 0.90, 95%-CI: 0.84–0.97, p = 0.08).

Discussion
To the best of our knowledge, this study reports data 
from the largest cohort of acute PE and CTEPH patients 
that were characterized by DECT. Several notable find-
ings can be reported: First, perfusion deficit patterns in 
acute PE and CTEPH can be assessed and quantified by 

Fig. 4 dlDECT-based assessment of pulmonary perfusion via systemic collaterals in a patient with acute PE (top) and a patient suffering 
from CTEPH (bottom). Axial and paracoronar multiplanar reconstructions show the enlarged bronchial arteries (>1.5 mm) in the CTEPH patient 
(B3 and B4) leading to an increased perfusion in embolic lung areas as indicated by an increased  IDmean,LA (C1/2 vs. C3/4). APE, acute pulmonary 
embolism; CTEPH, chronic thromboembolic pulmonary hypertension; ID, iodine density; LA, left atrium
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dlDECT without additional radiation exposure. Sec-
ond,  IDskewness in malperfused lung areas can differenti-
ate between patients with thromboembolic perfusion 
defects and controls. Third, patients with acute PE show 
an overperfusion in non-embolic lung areas. Fourth, 
dlDECT allows for a quantification of iodine uptake in 
malperfused lung areas relative to systemic-to-pulmo-
nary collaterals unveiling distinct perfusion patterns in 
acute PE and CTEPH. Lastly, combining dlDECT-based 
pulmonary perfusion with morphological CT param-
eters increases the diagnostic accuracy in differentiating 
between acute PE and CTEPH.

DECT has proven applicability in acute PE and CTEPH 
to visualize pulmonary perfusion defects [20, 22–28]. 
Characteristically, in acute PE as well as in CTEPH, 
these are described as sharply defined, wedge-shaped, 
and hypoattenuating [20–22]. We demonstrated that the 
visual similarities in perfusion deficit patterns, shared 
by both entities, can be assessed and quantified by a low 
 IDmean,MPA and an  IDskewness close to zero in malperfused 
lung areas. Giordano et al demonstrated that in pCTEPH 
PE-like perfusion defects are present in only 37.5%, 
while most patients with pCTEPH show a patchy perfu-
sion pattern [38]. Concordantly, based on  IDmean,MPA and 
 IDskewness in malperfused lung areas, we did see a trend 
towards a more PE-like perfusion pattern in central than 
in pCTEPH.

The diagnostic implications of DECT-based pulmo-
nary perfusion maps have been excessively investigated 
for acute PE [22–24, 31, 43, 44] and to a lesser degree for 
CTEPH [27, 29, 30, 45]. Noteworthy, controls revealed 
a considerable amount of malperfused lung areas which 
did not differ compared to patients with acute PE. This 
likely reflects the physiological ventro-dorsal gradient of 
pulmonary blood volume in the supine patient [46, 47]. 
Moreover, given the study’s retrospective design, PH 
exclusion was based on the 2015 ESC guidelines, employ-
ing an mPAP cut-off of 25 mmHg [10]. Yet, according to 
the recently updated guidelines [8], PH is defined by an 
invasively measured mPAP at rest > 20 mmHg. Under 
this criterion, only 7 of the 14 patients from the control 
group with a clinical suspicion of PH would be cleared of 
PH, with an additional 3 showing a borderline mPAP of 
19 or 20 mmHg. Given the known association between 
PH—irrespective of its etiology—and pulmonary perfu-
sion abnormalities [27, 29, 30, 38], it seems plausible that 
the hemodynamic characteristics of our control group 
influenced our results to some degree. Consequently, the 
amount of malperfused lung areas offers limited diagnos-
tic insight.

In contrast,  IDmean,MPA and  IDskewness in malperfused 
lung areas did not only differ between controls and acute 
PE/CTEPH patients but also allowed for the prediction 
of acute PE/CTEPH with considerable accuracy (PPV 
= 90%). However, the overall diagnostic performance 
of the semiautomatic dlDECT-derived parameters was 
lower than for most hitherto reported manual read-
ing approaches [23, 28, 43]. Moreover, given an NPV of 
29% for  IDskewness in malperfused lung areas, applying the 
reported cut-offs would result in a high rate of false nega-
tives hampering their clinical implementation. Notwith-
standing, it is important to note that it was beyond the 
scope of this study to develop a semi-automatic screen-
ing tool for acute PE/CTEPH. Rather, this study was 
intended as a proof-of-concept, which is why we reported 

Fig. 5 Box (25th percentile, median, and 75th percentile) and whisker 
(10th and 90th percentile) plots of  IDmean,LA in malperfused lung 
areas. ID, iodine density; LA, left atrium; APE, acute pulmonary 
embolism; CTEPH, chronic thromboembolic pulmonary hypertension

Table 3 dlDECT-based perfusion characteristics in malperfused 
lung areas in acute PE and central and peripheral CTEPH

Data are given as mean ± standard deviation
* APE vs. cCTEPH, p = 0.85; APE vs. pCTEPH, p = 0.17; cCTEPH vs. pCTEPH, p = 
0.63.  **APE vs. pCTEPH, p < 0.001; APE vs. cCTEPH, p = 0.55; cCTEPH vs. pCTEPH, 
p = 0.34

dlDECT, dual-layer dual-energy CT; PE, pulmonary embolism; CTEPH, chronic 
thromboembolic pulmonary hypertension; APE, acute pulmonary embolism; 
cCTEPH, central chronic thromboembolic pulmonary hypertension; pCTEPH, 
peripheral chronic thromboembolic pulmonary hypertension; ID, iodine density; 
MPA, mean pulmonary artery; LA, left atrium

Parameter APE
(n = 57)

cCTEPH
(n = 14)

pCTEPH
(n = 38)

p

Malperfused lung

IDmean,MPA 0.022 ± 0.005 0.021 ± 0.003 0.024 ± 0.003 0.04 *
IDmean,LA 0.028 ± 0.012 0.035 ± 0.019 0.041 ± 0.016 < 0.001 **
IDskewness 0.03 ± 0.48 0.14 ± 0.29 −0.13 ± 0.39 0.06
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the cut-offs according to Youden’s index. For their clinical 
implementation, these cut-offs would require adjustment 
depending on the clinical question at hand (i.e., rule-in 
vs. rule-out). Therefore, additional studies are warranted 
to identify the optimal cut-off values based on specific 
clinical requirements.

Numerous studies demonstrated promising results for 
computer-aided detection (CAD) or artificial intelligence 
(AI)–based detection of intravascular thrombi [48–50]. 
Taking our findings into account, a DECT approach inte-
grating the conventional-based vascular and the IDO-
based perfusion information might thus hold potential 
to outperform CAD/AI algorithms solely relying on con-
ventional images.

Normal perfused lung areas in patients with acute PE 
stood out due to a higher perfusion compared to CTEPH 
patients, also revealing a trend to higher perfusion com-
pared to controls. These findings indicate that the redis-
tribution of the pulmonary blood flow in acute PE, which 
leads to a relative overperfusion of non-embolic regions 
[51, 52], can be quantified by dlDECT.

Pulmonary blood flow in CTEPH is commonly main-
tained via bronchopulmonary collaterals, which can 
account for up to 30% of the pulmonary blood flow [32]. 
In their two-phase DECT study, Hong et  al elegantly 
demonstrated that this potentially explains the signifi-
cantly higher enhancement of malperfused lung segments 
in delayed-phase images of CTEPH patients as compared 
to acute PE patients [33]. However, routine performance 
of this dual-phase DECT approach in patients suspected 
of acute PE or CTEPH seems hampered due to the addi-
tional X-ray irradiation for the delayed-phase image and 
the second image with a different acceleration voltage, 
respectively [6]. On the contrary, the ability to identify 
characteristic differences in the perfusion without addi-
tional radiation exposure may make dlDECT also appli-
cable for routine practice in these patients. Furthermore, 
the aforementioned study by Hong et al was limited due 
to its small sample size and did not evaluate whether its 
findings influence the diagnostic accuracy in differentiat-
ing between acute PE and CTEPH. In contrast, we could 
demonstrate that the identified dlDECT parameters do 
not only enable differentiation between these two entities 
but also increase the diagnostic abilities of morphological 
CT parameters in distinguishing acute and chronic stages 
of pulmonary thromboembolism.

In contrast to dlDECT, V/Q scintigraphy, the current 
gold standard to rule out CTEPH [10], neither allows 
for a morphological nor for a functional assessment of 
systemic collaterals, because 99mTc-maggroaggregatred 
albumin is trapped in the pulmonary capillary bed. As 
there is evidence that the degree of systemic collat-
eral formation correlates with postsurgical outcome in 

CTEPH [53], dlDECT might thus be advantageous com-
pared to V/Q scintigraphy in preoperative imaging.

Limitations
Besides its retrospective design, this study has several 
limitations. First, the control group did not comprise 
truly healthy individuals but rather patients with either 
the clinical suspicion of PH or acute PE. Even more, 
applying the recently revised hemodynamic definition of 
PH [8], seven out of the control group patients were to 
be diagnosed with PH. Additionally, three patients exhib-
ited a borderline mPAP of 19 or 20 mmHg. However, 
considering the retrospective design of our study, this 
limitation seems inevitable. In this context, it is impor-
tant to highlight that, as of now, no reference values for 
DECT-based pulmonary perfusion exist. Future studies 
aiming at establishing these standard values are therefore 
of paramount importance. Second, the diagnostic perfor-
mance to assess pulmonary perfusion was not evaluated 
against a reference standard, such as V/Q scintigraphy. 
Third, the semiautomatic lung segmentation approach 
did not allow for a differentiation between true perfu-
sion and pseudodefects, e.g., due to beam hardening or 
motion artifacts [54]. Beam hardening artifacts repre-
sent a common problem in the DECT-based assessment 
of pulmonary perfusion [47], which is reflected by our 
results. However, beam hardening artifacts were equally 
frequent across all groups. Noteworthy, as opposed to 
earlier studies, we did not exclude patients with coexist-
ing parenchymal lung disease, which is known to mimic 
CTEPH perfusion defects [30]. Fourth, there was a con-
siderable selection bias, as patients with history or imag-
ing features of subacute PE were excluded from the acute 
PE arm. This patient group potentially causes the biggest 
diagnostic uncertainties. Therefore, future studies on the 
perfusion characteristics in these patients are highly war-
ranted. Fifth, we did not assess diagnostic or prognostic 
implications of our findings, e.g., whether the identified 
parameters affect diagnostic confidence or correlate with 
patient outcome. These questions should consequently be 
addressed in future studies. Lastly, our findings regard-
ing the diagnostic accuracy of the diameter of the bron-
chial arteries need to be interpreted with caution as their 
quantitative evaluation was only feasible in a subset of 
patients due to scan timing or too small vessel diameter.

Conclusion
Acute PE and CTEPH show different pulmonary perfu-
sion patterns that can be semiautomatically assessed 
and quantified by single-phase dlDECT. These perfusion 
characteristics, potentially unveiling the different degrees 
of perfusion through systemic collaterals in both enti-
ties, increase diagnostic accuracy of morphological CT 
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parameters for the differentiation between the two dis-
eases without the need for additional radiation exposure.
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