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Abstract 

Objectives To use pericardial adipose tissue (PAT) radiomics phenotyping to differentiate existing and predict future 
heart failure (HF) cases in the UK Biobank.

Methods PAT segmentations were derived from cardiovascular magnetic resonance (CMR) studies using an auto‑
mated quality‑controlled model to define the region‑of‑interest for radiomics analysis. Prevalent (present at time 
of imaging) and incident (first occurrence after imaging) HF were ascertained using health record linkage. We created 
balanced cohorts of non‑HF individuals for comparison. PyRadiomics was utilised to extract 104 radiomics features, 
of which 28 were chosen after excluding highly correlated ones (0.8). These features, plus sex and age, served as pre‑
dictors in binary classification models trained separately to detect (1) prevalent and (2) incident HF. We tested seven 
modeling methods using tenfold nested cross‑validation and examined feature importance with explainability 
methods.

Results We studied 1204 participants in total, 297 participants with prevalent (60 ± 7 years, 21% female) and 305 
with incident (61 ± 6 years, 32% female) HF, and an equal number of non‑HF comparators. We achieved good discrimi‑
native performance for both prevalent (voting classifier; AUC: 0.76; F1 score: 0.70) and incident (light gradient boost‑
ing machine: AUC: 0.74; F1 score: 0.68) HF. Our radiomics models showed marginally better performance compared 
to PAT area alone.

Increased PAT size (maximum 2D diameter in a given column or slice) and texture heterogeneity (sum entropy) were 
important features for prevalent and incident HF classification models.

Conclusions The amount and character of PAT discriminate individuals with prevalent HF and predict incidence 
of future HF.

Clinical relevance statement This study presents an innovative application of pericardial adipose tissue (PAT) 
radiomics phenotyping as a predictive tool for heart failure (HF), a major public health concern. By leveraging 
advanced machine learning methods, the research uncovers that the quantity and characteristics of PAT can be 
used to identify existing cases of HF and predict future occurrences. The enhanced performance of these radi‑
omics models over PAT area alone supports the potential for better personalised care through earlier detection 
and prevention of HF.
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Key Points 

•PAT radiomics applied to CMR was used for the first time to derive binary machine learning classifiers to develop models for  
 discrimination of prevalence and prediction of incident heart failure.

•Models using PAT area provided acceptable discrimination between cases of prevalent or incident heart failure and  
 comparator groups.

•An increased PAT volume (increased diameter using shape features) and greater texture heterogeneity captured by radiomics   
 texture features (increased sum entropy) can be used as an additional classifier marker for heart failure.

Keywords Machine learning, Magnetic resonance imaging, Pericardium, Adipose tissue, Radiomics

Introduction
Pericardial adipose tissue (PAT) is the visceral adipose 
tissue compartment surrounding the heart and coronary 
vasculature. An increasing body of evidence highlights 
associations between greater amounts of PAT and poorer 
cardiovascular outcomes [1–5]. Furthermore, higher PAT 
has been linked to adverse cardiovascular phenotypes, 
independent of multiple other measures of adiposity 
[6]. These associations are highly suggestive of a distinct 
mechanistic role of PAT in driving adverse cardiac remod-
elling, which are precursors of heart failure [6].

The mechanisms through which PAT influences myo-
cardial structure and function are likely multifacto-
rial, involving paracrine, vasocrine, and inflammatory 
pathways. PAT is known to secrete inflammatory fac-
tors and lipid metabolites [7], and this metabolic and 
secretory activity has been highlighted as an important 
factor driving adverse cardiovascular outcomes. At a 
cellular level, the secretome of PAT has been shown 
to adversely impact cardiomyocyte contractility [8], 
metabolism [9], and disrupt adhesion molecule expres-
sion in cardiac endothelial cells [10]. In the setting of 
ischemic heart disease, patterns of coronary atheroscle-
rosis have been shown to closely follow superficial PAT 
distribution [11, 12]. Thus, existing evidence suggests 
that both the amount and character of PAT are impor-
tant in determining its pathogenicity.

PAT can be quantified via CT and MRI cardiac 
imaging. Given the metabolic activity’s impact on 
myocardial structure and function, assessing tissue 
characteristics along with PAT volume might offer cru-
cial insights into disease risk. Recent use of radiom-
ics analysis methods on CT scans for characterising 
perivascular adipose tissue has greatly enhanced pre-
dictions of major cardiovascular events, outperforming 
traditional risk factors, coronary calcium scoring, coro-
nary stenosis quantification, and high-risk plaque fea-
tures [13]. Radiomics uses signal intensity (SI)–based 
data at a voxel level to provide quantitative information 
about patterns and distribution. Given that SI levels 
in cardiovascular magnetic resonance (CMR) reflect 

underlying tissue properties, it has been hypothesised 
that these metrics may reflect properties of the tissue 
from which they are extracted [14].

In previous work, we developed and validated an 
automated tool with in-built quality-control func-
tions to allow extraction of PAT areas from over 40,000 
UK Biobank CMR scans [15]. The availability of these 
data provides a key opportunity to further explore PAT 
character through radiomics analysis in a large-scale 
population-based cohort with rigorous prospective and 
retrospective clinical endpoint data. The aim of this study 
is to extend our work by performing deeper phenotyping 
of the pericardial adipose tissue character using radiom-
ics analysis, to ascertain its value for classification and 
prediction of heart failure. This will involve extraction of 
radiomics phenotypes from PAT segmentation regions 
of interest, including information about the amount and 
geometry of PAT, as well as SI distribution and patterns. 
These phenotypes will then be used as predictor variables 
in machine learning models for (1) discriminating preva-
lent heart failure and (2) predicting incident heart failure. 
To aid clinical interpretation of the models, global and 
local explainability methods will be used to identify the 
key informative features from each model.

Material and methods
We provide a schematic illustration of the study pipeline 
in Fig. 1.

Setting and study population
The UK Biobank is a cohort study incorporating more 
than 500,000 individuals from across the UK, aged 40–69 
years old at recruitment between 2006 and 2010. Baseline 
assessment included socio-demographics, lifestyle, envi-
ronmental factors, medical history, and a range of physi-
cal measures. Extensive electronic health record (EHR) 
linkages permit prospective tracking of health outcomes 
for all participants. The UK Biobank Imaging Study, 
which includes CMR, aims to scan a randomly selected 
20% subset of the original participants.
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Ascertainment of heart failure status
HF status was ascertained using diseases codes from 
UK Biobank assessments and linked EHRs (Supplemen-
tary Table 1). Prevalent HF was defined as HF present at 
the time of imaging. Incident HF was considered as first 
occurrence of HF after imaging. The censor date was 
30 September 2021 for incident HF outcomes giving an 
average follow-up of 3.7 ± 1.5 years from imaging.

Definition of the comparator group
Participants with CMR available and no record of HF 
(prevalent or incident) were eligible for inclusion in the 
control group (n = 42,327). There was substantial imbal-
ance between cases and eligible controls. Such imbal-
ance results in poor model performance as the model 
prediction will be dominated by the majority class [16]. 
Given the extreme imbalance in our dataset, with a large 
number of controls compared to cases, and considering 
computational constraints we applied random under-
sampling to reduce the frequency of the controls relative 
to the cases. This approach randomly removes subjects 
from the majority classes to reach a final set of subjects 
in the majority class that are similar to the minority class. 
The final sample contained an equal number of randomly 
selected non-HF controls for both the prevalent and inci-
dent HF groups.

Characterising the study sample
We accessed self-reported fields for participants’ educa-
tional level and smoking status. Material deprivation is 
reported as the Townsend index. Physical activity was 
measured via self-reported responses to the International 
Physical Activity Questionnaire. Diabetes, hypertension, 
and high cholesterol status were ascertained using infor-
mation from self-report questions, physical measure-
ments, and EHR data (Supplementary Table 2).

Image acquisition
CMR scans were performed according to a pre-defined 
acquisition protocol using 1.5-Tesla scanners (MAG-
NETOM Aera, Syngo Platform VD13A, Siemens Health-
care) [17]. Cardiac function was assessed using standard 
long- and short-axis balanced steady-state free preces-
sion cine sequences.

Extraction of pericardial fat segmentations
PAT segmentation was performed using an automated 
quality-controlled pipeline developed and validated in 
the UK Biobank and in an external cohort, as described 
by Bard et  al [15]. In brief, PAT was measured from 
standard four-chamber cine images (single 2D slice) at 
phase 1 of the image cycle, which approximates end-
diastole (ED). The contour was drawn to select areas of 

Fig. 1 Schematic illustration of the study pipeline. A The segmentation of pericardial adipose tissue (PAT); color overlay represents 
the segmentation results as derived by Bard et al. B The radiomics feature extraction: PAT segmentation output was used to extract radiomics 
features from cardiovascular magnetic resonance imaging data. C The final cohort, which was assembled from prevalent and incident heart failure 
cases and randomly selected control individuals from the UK Biobank dataset
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high signal intensity bordering the epicardial surface 
of the left and right ventricular myocardia. The ground 
truth manual segmentation was based on a sample of 
500 randomly selected UK Biobank imaging sub-study 
participants using CVI42 post-processing software (Ver-
sion 5.11, Circle Cardiovascular Imaging Inc.). Using the 
manual segmentation, a MultiResUNet neural network 
with Bayesian modification was trained for automated 
PAT segmentation with inbuilt quality control. Over-
all, the performance of the algorithm in test set relative 
to manual segmentations was good and very similar to 
the agreement between human observers (mean Dice 
score = 0.8) [15]. Automated PAT analysis was performed 
for all participants with adequate CMR imaging available 
(n = 42,929).

Background to radiomics
Radiomics is an analysis technique permitting the com-
putation of multiple descriptors of shape and texture 
[18]. The relevant information present in the image is 
extracted using three classes of features, namely (i) shape, 
(ii) first-order, and (iii) texture-based features. First-order 
features are histogram-based and relate to the distribu-
tion of the grey-level values in the tissue. Shape features 
capture the geometrical properties of the region of inter-
est (ROI), including volume, diameter, minor/major axis, 
or sphericity. Texture features are derived from images 
using five matrices that encode the global texture infor-
mation. They aim to describe patterns using mathemati-
cal formulae based on the spatial arrangement of pixels.

Lately, CMR radiomics features have been utilised to 
appreciate the heart’s complexity derived from the left 
and right ventricles, revealing patterns invisible to the 
naked eye [14]. There are as yet no existing reports of 
clinical models based on PAT radiomics features, likely 
due to the absence of appropriate datasets.

PAT radiomics feature extraction
We used the PAT segmentation defined on the long-axis 
four-chamber images in the ED phase using the auto-
mated pipeline described above to derive our regions of 
interest (ROI) for radiomics analysis. We converted the 
contour points into binary masks, using a tool developed 
in-house, which we have made publicly available [19]. 
This software transformed delineated contour points for 
each ROI into a filled polygon in the coordinate space to 
form the binary mask. The harmonisation of the images 
was conducted using a histogram-matching technique 
applied to a reference image. The grey value discretisa-
tion was performed using a bin width of 25 to pull the 
intensity-based and texture radiomics features. The ref-
erence image for histogram matching was randomly 
selected, with careful consideration to ensure the chosen 

image did not contain artifacts. Histogram matching has 
been utilised effectively in prior radiomics-based mod-
els to standardise the intensity scale, thereby enhancing 
the model’s generalisation and classification capabilities 
[20–22]. In this study, imaging data was acquired using 
the same protocol (i.e., identical scanners and param-
eters) [17]. Therefore, we selected a single participant at 
random as the template for histogram harmonisation. 
This approach has been previously demonstrated to yield 
successful results in similar studies [20, 22]. The PyRadi-
omics platform (version 2.2.0) was adopted to extract 104 
shape (n = 12), first-order (n = 17), and texture (n = 75) 
features from all PAT ROIs.

Feature selection
To mitigate the risk of multicollinearity and increase the 
interpretability of our models, after feature extraction 
we performed a correlation analysis among radiomics 
features. Pairs of features exhibiting a correlation coeffi-
cient with an absolute value of 0.8 or above were identi-
fied. From each pair, we removed one feature to maintain 
the distinctiveness of the predictors in our model. Fol-
lowing this correlation-based feature selection process, 
we retained 28 features from the original 104. We also 
included age and sex in our model as they are known to 
significantly influence cardiac health. For comparative 
purposes, we also developed another model which incor-
porated overall PAT area, age, and sex as predictors.

Predictive models
All the methods were implemented using Python ver-
sion 3.9 and Scikit-learn [23] version 1.0.2. PAT radiom-
ics features were used as predictors to classify prevalent 
HF and predict incident HF from non-HF controls. The 
features were normalised to zero mean and unit vari-
ance. We used seven binary classifiers followed by a vot-
ing classifier. We included the following classifiers to 
consider a wide variety of potential approaches: logistic 
regression (LR) [24], support vector classifier (SVC) [25], 
random forest (RF) [26], K-nearest neighbours (KNN) 
[27], decision tree (DT) [28], light gradient boosting 
machine (LGBM) [29], and multi-layer perceptron (MLP) 
[30]. To obtain each classifier’s optimal parameters, we 
used hyperparameter tuning and tenfold nested cross-
validation, which consists of two loops [31]. The “inner” 
loop optimises model parameters using nine subsets for 
training and one for validation, repeating this process ten 
times to utilise every subset as a validation set once. The 
“outer” loop evaluates the optimised model on a separate 
test set, also iterated ten times.

Averaging these iterations provides an unbiased meas-
ure of the model’s ability to generalise to unseen data 
[32]. Supplementary Table  3 shows the parameters and 



Page 5 of 14Szabo et al. European Radiology 

their values of each model used to tune the parameters. 
The accuracy metric was used as a criterion to get opti-
mal parameters from each model. Then the optimal 
parameters for each model were used to test the model. 
Accuracy, recall, precision, and F1 were used to assess 
the model performance within the test set. Finally, the 
voting ensemble was applied to combine and improve 
the performance of each individual prediction model 
using the hard voting approach. Voting classifier predicts 
the outcome based on the aggregation of the outcomes 
of each model. The following criteria were met to imple-
ment our voting classifier: (1) all classifiers produced rea-
sonably good results; (2) all models within the ensemble 
generally already agree. Finally, we visualised the receiver 
operating characteristic (ROC) curves and area under the 
curve (AUC).

Explainability methods
We used two explainability methods to highlight the most 
informative predictors in our machine learning models, 
including the magnitude and direction of their effect in 
relation to the outcome. The SHaply Additive exPlana-
tions (SHAP) [33] method was used to interpret the 
model globally for all subjects. SHAP is a model agnos-
tic method that can be applied to any model. It is based 
on game theory and reveals the effect of each predictor 
on the outcome. It calculates a score for each feature in 
the model which shows the size and direction effects of 
the feature on the outcome. In addition, we used Local 
Interpretable Model-Agnostic Explanations (LIME) [34] 
to explain the model locally for individual subjects. LIME 
is a local surrogate model that approximates the pre-
diction of a given model. It does not train a global sur-
rogate model, instead it trains a surrogate model locally 
for a subject. Thus, we applied both SHAP and LIME to 
explain the model globally and locally. For that purpose, 
we used the best performing classifier from each set of 
models to explain how the model works and predict an 
outcome for the test data.

Results
Description of baseline characteristics
The imaging dataset was available for 43,226 UK Biobank 
participants (Fig. 2). Overall, 1204 participants from the 
UK Biobank Imaging Study were included in this study. 
The sample comprised 297 prevalent HF cases (60 ± 7 
years, 21% female) and 305 cases of incident HF (61 ± 6 
years, 32% female), with randomly selected non-HF 
controls of similar size for each group. Baseline char-
acteristics and risk factors for each group are depicted 
in Table  1. Generally, randomly selected non-HF con-
trols were younger, and more likely to be female and 

well-educated. They had less deprivation and overall 
lower burden of risk factors compared to the diseased 
groups. Fewer participants with diabetes, hypertension, 
and high cholesterol were present in the prevalent HF 
comparator group than the disease group. In contrast, 
the incident HF control group had an equal number of 
participants with these risk factors.

Prevalent heart failure prediction using pericardial adipose 
tissue radiomics
The classification models, incorporating radiomics fea-
tures along with sex and age, demonstrated good dis-
crimination between participants with prevalent HF and 
controls (Table  2, Fig.  3). The voting classifier method, 
among the tested models, exhibited the highest discrimi-
native power, achieving an AUC of 0.76 and an F1 score 
of 0.70 in our test set. Consistency in performance was 
observed across various models including SVC, KNN, 
RF, LGBM, and the voting classifier, while DT, LR, and 
MLP models showed slightly lower discriminative power. 
However, significant performance variation was only 
observed between the DT and LR models (Supplemen-
tary Table 4). Our radiomics feature-based models con-
sistently showed slightly better performance compared 
to models using mean PAT area as the predictor (voting 
classifier AUC: 0.73).

To interpret feature importance, we employed the 
SHAP, focusing on the results from the voting classifier 
model (Fig. 4). According to the SHAP analysis, sex and 
age were the most influential features. Among the shape 
features, minor axis length and major axis length, which 
describe the overall amount of pericardial fat, were high-
lighted as important. Regarding texture features, robust 
mean absolute deviation (statistical measure of the dis-
persion of intensity values) and GLCM sum entropy 
(measure of the complexity of the distribution of paired 
pixel intensities) were identified as key metrics differen-
tiating prevalent HF from controls. The LIME explain-
ability model demonstrates our model’s performance, 
highlighting instances of correct classifications in Fig. 5, 
and misclassifications in Supplementary Fig. 1.

Incident heart failure prediction using pericardial adipose 
tissue radiomics
Our models for incident HF prediction demonstrated 
slightly lower performance as compared to those for 
prevalent HF classification. The model utilising the 
LGBM classifier emerged as the most effective for inci-
dent HF prediction, attaining an AUC of 0.74 and an F1 
score of 0.68 (Table  3, Fig.  6). Despite some minor dif-
ferences, overall model performance remained relatively 
stable across the various classifiers. Although the KNN 
and DT classifiers exhibited marginally lower AUC and 
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F1 scores, these differences did not achieve statistical 
significance between any two methods (Supplementary 
Table 5). Predictive models using PAT area alone reached 
lower predictive values compared to our radiomics mod-
els across all ML methods (LGBM classifier AUC 0.71).

Based on the SHAP analysis performed on the LGBM 
classifier, age emerged as the most influential predictor 
(Fig. 4). It was followed by size measures, with shape fea-
tures such as increased maximum 2D diameter column 
and maximum 2D diameter row (indicative of elevated 
PAT value) serving as significant predictors of incident 
HF. Following size measures, sex was determined to be 

the next important predictor. The texture features, specif-
ically the first-order ten percentile and GLRLM grey-level 
non-uniformity, were found to be important, but less 
influential when compared to the preceding predictors.

Discussion
In this proof-of concept study, we set up a pipeline using 
radiomics feature extraction and machine learning to 
predict high-risk PAT phenotypes among UK Biobank 
participants undergoing CMR. We demonstrate for the 
first time that PAT radiomics can be used to discriminate 
prevalent HF cases from controls and predict incident 

Fig. 2 Study flowchart showing how final study sample size was derived. HF, heart failure; PAT, pericardial adipose tissue; UKB, UK Biobank
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HF. We found that shape and texture features showing an 
increased PAT volume and greater texture heterogeneity 
captured by radiomics can be used as an additional clas-
sifier marker for HF.

Interestingly, our study observed a significant differ-
ence in the prevalence of key risk factors such as dia-
betes, hypertension, and high cholesterol between the 
comparator group and the prevalent HF group. In con-
trast, the incident HF group had an equal distribution 
of participants with these risk factors, which is a direct 

result of our random undersampling approach, rather 
than indicative of differing risk profiles. Despite these 
disparities in risk factor prevalence, the classification 
models for existing HF performed only slightly better 
than those for predicting new-onset disease. This under-
scores the robustness of our models in handling variable 
distributions of risk factors and highlights the potential 
applicability of our approach in diverse clinical settings 
where the presence and distribution of comorbidities 
may vary significantly.

Table 1 Baseline characteristics

Counts variables are presented as number [percentage] of non-missing values; continuous variables as mean (standard deviation)

Abbreviations: BMI body mass index, CSE Certificate of Secondary Education, GCSE General Certificate of Secondary Education, HND Higher National Diploma, HNC 
Higher National Certificate, MET metabolic equivalent of task, NVQ National Vocational Qualification

Characteristics Prevalent HF group 
(n = 297)

Prevalent HF control 
group (n = 297)

Incident HF group 
(n = 305)

Incident HF 
control group 
(n = 305)

Age, years (± SD) 59.9 (± 6.7) 55.2 (± 7.5) 61.11 (± 6.3) 54.94 (± 7.3

Female sex, n [%] 63 [21.4%] 165 [55.9%] 95 [32.3%] 152 [50.3%]

Townsend deprivation index  − 1.2 (± 3.2)  − 2 (± 2.8)  − 1.7 (± 2.8)  − 1.81 (± 2.7)

Post‑secondary education, n [%]

  • None 40 [13.8%] 11 [3.9%] 45 [15.2%] 16 [5.4%]

  • CSE or equivalent 12 [4.2%] 14 [4.8%] 4 [1.7%] 13 [4.4%]

  • O levels/GCSEs or equivalent 59 [20.4%] 58 [19.9%] 72 [24.3%] 62 [20.9%]

  • NVQ or HND or HNC or equivalent 31 [10.7%] 19 [6.5%] 22 [7.4%] 9 [3%]

  • Other professional qualifications 20 [6.9%] 8 [2.8%] 10 [3.4%] 19 [6.4%]

  • A levels/AS levels or equivalent 33 [11.4%] 36 [12.4%] 35 [11.8%] 29 [9.8%]

  • College or university degree 94 [32.5%] 145 [49.8%] 107 [36.2%] 149 [50.2%]

BMI, kg/m2 (± SD) 28.7 (± 5) 26.4 (± 4.1) 28 (± 4.9) 26.30 (± 4.1)

Physical activity, summed MET‑min/week (± SD) 2038 (± 2127) 2646 (± 2514) 2329 (± 2281) 2421 (± 2225)

Current smoker, n [%] 11 [3.7%] 8 [2.7%] 12 [4%] 14 [4.6%]

Diabetes status, n [%] 65 [22%] 13 [4.4%] 43 [14.1%] 21 [7%]

Hypertension status, n [%] 251 [85.1%] 103 [34.9%] 104 [34.2%] 110 [36.4%]

High cholesterol status, n [%] 233 [79%] 101 [34.2%] 125 [41.1%] 123 [40.7%]

Table 2 Model output for prevalent HF classification

The models’ performance for prevalent heart failure discrimination for each classification method applied. Voting classifier predicts the outcome based on the 
aggregation of the outcomes of each individual binary classification model

Abbreviations: LR logistic regression, SVC support vector classifier, RF random forest, KNN K-nearest neighbours, DT decision tree, LGBM light gradient boosting 
machine, MLP multi-layer perceptron

Model AUC Accuracy F1 Recall Precision

Support vector machine 0.751 (± 0.05) 0.695 0.688 0.682 0.697

Random forest 0.727 (± 0.05) 0.676 0.670 0.665 0.680

K‑nearest neighbour 0.728 (± 0.04) 0.668 0.668 0.734 0.650

Decision tree 0.703 (± 0.06) 0.678 0.711 0.789 0.665

LightGBM 0.758 (± 0.06) 0.683 0.673 0.658 0.692

Logistic regression 0.756 (± 0.05) 0.697 0.690 0.682 0.699

Multi‑layer perceptron 0.757 (± 0.05) 0.703 0.699 0.700 0.704

Voting 0.761 (± 0.05) 0.707 0.704 0.706 0.705
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SHAP outputs based on the LGBM classifier illustrated 
that shape features showing greater PAT volume were the 
key predictors of incident HF in our study. This finding is 
in line with the results from Kenchaiah et al [5] who have 
demonstrated the pericardial fat volume was associated 

with an increased risk of HF in the Multi-ethnic Study of 
Atherosclerosis (MESA) cohort. Our results are addition-
ally consistent with previous work from the UK Biobank, 
demonstrating association of greater PAT area with 
adverse cardiovascular phenotypes [6]. We significantly 

Prevalent heart failure classification models using PAT
Fig. 3 The first panel shows the results from prevalent heart failure classification using sex, age and PAT area. The second panel illustrates the results 
from prevalent heart failure classification using sex, age and radiomics features derived from PAT
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extend these existing observations by demonstrating 
the additional importance of PAT character in defining 
both prevalent and incident HF. The overall amount of 
pericardial fat captured either by PAT area or radiomics 
descriptors of shape helped explain the majority of dif-
ferences between prevalent HF patients and comparator 
group. Furthermore, our explainability model applied at 

the output of the voting classifier showed that texture 
features capturing the greater local entropy of intensity 
values suggesting greater tissue heterogeneity within the 
pericardial fat were also dominant features in prevalent 
disease discrimination. This suggests that local SI hetero-
geneity, which might reflect on the fat tissue properties, is 
an important distinguishing feature of HF patients. Our 

Fig. 4 Ten most informative predictors based on the Shapley explainability models. The beeswarm plots show the ten most informative predictors 
from the voting classifier for each prevalent heart failure and from the LGBM classifier for incident heart failure prediction in order of decreasing 
feature importance. The y‑axis represents the name of the features chosen by the model as predictors, while the x‑axis indicates the contribution 
of each feature to the outcome. Each dot represents a subject and the color indicates the feature value. For instance, the increasing the value 
of the first feature (Minor Axis Length) would lead to and increased probability of a subject having prevalent heart failure at the time of CMR 
imaging

Fig. 5 Two cases illustrating the output from the LIME explainability models. Output from LIME explainability models for two subjects in our dataset. 
In the first case where the ground truth labeling is “prevalent heart failure”, the model is 81% certain that the subject is indeed a prevalent hear failure 
patient, while still showing a 19% probability that the case could be a control. The second plot shows that the model is 73% certain that the subject 
is from the control group, which is indeed true based on the ground truth labeling. For both subjects, the figure shows the contribution of each 
radiomics feature. Moreover, the numerical value beside each feature shows the magnitude effect of each feature in each class
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findings support mechanistic research and highlight the 
importance of both amount and character of PAT in their 
potential to drive adverse cardiovascular complications.

The noted association between PAT and risk of HF 
has multiple potential explanations. First, it might 
relate to localised, long-term exposure of the myo-
cardium to an inflammatory milieu. Deposition of 
PAT has been shown to be bidirectionally related to 
inflammation, and the extent of inflammation result-
ant from PAT deposition might be a key determinant 
of subsequent cardiovascular disease. Radiomics char-
acterisation of PAT might thus improve the distinc-
tion between relatively “quiescent” PAT stores from the 
more “inflammatory” ones. Indeed, individuals with 
chronic inflammatory conditions are known to deposit 
more PAT relative to whole body fat mass when com-
pared to controls [35]. On the other hand, PAT itself 
is also known to be highly metabolically active, and 
pre-clinical studies have demonstrated that it secretes 
multiple cytokines and inflammatory mediators that 
might contribute to a local, paracrine inflammatory 
effect [36]. To support this hypothesis, asymmetric, 
localised pockets of PAT have been noted to follow the 
distribution of coronary artery disease (CAD) in previ-
ous studies [11, 12, 37]. This suggests that either CAD 
or the resultant localised inflammation increases PAT 
deposition, or vice versa. This localised proinflam-
matory milieu contributing to regional inflammation 
would reasonably promote localised myocardial dam-
age, which can contribute to myocardial dysfunction 
and HF [1, 7]. Second, the association between PAT and 
HF might relate to the widely recognised phenomenon 
of intracellular steatosis. Previous studies have identi-
fied an association between myocardial triglyceride 
content and cardiovascular events including heart fail-
ure hospitalisations [38]. To support this hypothesis, a 

previous investigation on the UK Biobank cohort iden-
tified triglycerides as major mediators of the associa-
tion between PAT and adverse left ventricular measures 
on CMR [6].

Radiomics has been increasingly used and vali-
dated to improve the diagnostic and prognostic accu-
racy of medical imaging. Within CMR radiomics, 
features derived from the ventricular shape and myo-
cardial tissue have been applied to the discrimination 
of ischaemic heart disease [39–41] and different car-
diomyopathies [42–44]. Pericardial fat radiomics repre-
sents an additional layer of information we can derive 
from standard of care CMR scans. Critically, our results 
demonstrate that radiomics can be used to discriminate 
HF cases from controls, signifying a potential novel 
avenue for better diagnostic and prognostic assessment.

Limitations
Our study provides initial insights into PAT radiomics for 
predicting HF though it has some important limitations. 
The models are preliminary and need further independ-
ent external validation. We used random undersampling 
due to extreme dataset imbalance, potentially lead-
ing to bias and overoptimistic performance estimates. 
While our models used a range of radiomics features and 
demographic variables, other relevant factors were not 
included, warranting comprehensive patient information 
in future research to enhance model performance.

Conclusions
Machine learning classifiers built upon radiomics fea-
tures depicting the amount (larger PAT diameters) and 
texture character (greater tissue heterogeneity) of peri-
cardial fat can be used to discriminate individuals with 
prevalent heart failure and predict incidence of future 
heart failure.

Table 3 Model output for incident HF prediction

The models’ performance for incident heart failure prediction for each classification method applied. Voting classifier predicts the outcome based on the aggregation 
of the outcomes of each individual binary classification model

Abbreviations: LR logistic regression, SVC support vector classifier, RF random forest, KNN K-nearest neighbours, DT decision tree, LGBM light gradient boosting 
machine, MLP multi-layer perceptron

Model AUC Accuracy F1 Recall Precision

Support vector machine 0.723 (± 0.07) 0.651 0.646 0.640 0.656

Random forest 0.720 (± 0.07) 0.672 0.673 0.679 0.672

K‑nearest neighbour 0.674 (± 0.09) 0.630 0.611 0.584 0.643

Decision tree 0.669 (± 0.07) 0.634 0.625 0.623 0.639

LightGBM 0.738 (± 0.06) 0.684 0.682 0.685 0.683

Logistic regression 0.721 (± 0.07) 0.649 0.645 0.639 0.654

Multi‑layer perceptron 0.726 (± 0.07) 0.656 0.650 0.642 0.662

Voting 0.731 (± 0.07) 0.679 0.678 0.675 0.681
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Fig. 6 Incident heart failure prediction models using PAT. The first panel shows the results from incident heart failure prediction using sex, age, 
and PAT area. The second panel illustrates the results from incident heart failure prediction using sex, age, and radiomics features derived from PAT
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