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Abstract
Objectives  To develop a computed tomography (CT) radiomics-based interpretable machine learning (ML) model to predict 
the pathological grade of pancreatic neuroendocrine tumors (pNETs) in a non-invasive manner.
Methods  Patients with pNETs who underwent contrast-enhanced abdominal CT between 2010 and 2022 were included in 
this retrospective study. Radiomics features were extracted, and five radiomics-based ML models, namely logistic regression 
(LR), random forest (RF), support vector machine (SVM), XGBoost, and GaussianNB, were developed. The performance of 
these models was evaluated using a time-independent testing set, and metrics such as sensitivity, specificity, accuracy, and 
the area under the receiver operating characteristic curve (AUC) were calculated. The accuracy of the radiomics model was 
compared to that of needle biopsy. The Shapley Additive Explanation (SHAP) tool and the correlation between radiomics 
and biological features were employed to explore the interpretability of the model.
Results  A total of 122 patients (mean age: 50 ± 14 years; 53 male) were included in the training set, whereas 100 patients 
(mean age: 48 ± 13 years; 50 male) were included in the testing set. The AUCs for LR, SVM, RF, XGBoost, and GaussianNB 
were 0.758, 0.742, 0.779, 0.744, and 0.745, respectively, with corresponding accuracies of 73.0%, 70.0%, 77.0%, 71.9%, 
and 72.9%. The SHAP tool identified two features of the venous phase as the most significant, which showed significant 
differences among the Ki-67 index or mitotic count subgroups (p < 0.001).
Conclusions  An interpretable radiomics-based RF model can effectively differentiate between G1 and G2/3 of pNETs, 
demonstrating favorable interpretability.
Clinical relevance statement  The radiomics-based interpretable model developed in this study has significant clinical rel-
evance as it offers a non-invasive method for assessing the pathological grade of pancreatic neuroendocrine tumors and holds 
promise as an important complementary tool to traditional tissue biopsy.
Key Points 
• A radiomics-based interpretable model was developed to predict the pathological grade of pNETs and compared with 

preoperative needle biopsy in terms of accuracy.
• The model, based on CT radiomics, demonstrated favorable interpretability.
• The radiomics model holds potential as a valuable complementary technique to preoperative needle biopsy; however, it 

should not be considered a replacement for biopsy.
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AUC​	� Area under the curve
EUS-FNA	� Endoscopic ultrasound-guided fine needle 
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GLCM	� Gray-level co-occurrence matrix
HPF	� High power field
ICC	� Interclass correlation coefficient
LR	� Logistic regression
ML	� Machine learning
mRMR	� Maximum relevance minimum redundancy
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NCCN	� National Comprehensive Cancer Network
pNETs	� Pancreatic neuroendocrine tumors
RF	� Random forest
SD	� Standard deviation
SHAP	� Shapley Additive Explanation
SVM	� Support vector machine

Introduction

Pancreatic neuroendocrine tumors (pNETs) account for 
approximately 5% of all pancreatic tumors and originate 
from neuroendocrine cells of the pancreas, showing hetero-
geneous characteristics [1]. Recent studies have shown that 
the incidence of pNETs has increased steadily in the past 
two decades [2, 3]. The 2019 WHO classification classifies 
pNETs into two categories: well-differentiated neuroen-
docrine tumors and poorly differentiated neuroendocrine 
carcinomas, according to differentiation and cell prolifera-
tion activity. The well-defined tumors could be further cat-
egorized into G1, G2, and G3 based on the Ki-67 index 
and mitotic count [4]. The pathological grade of pNETs is 
strongly correlated with the prognosis [5–8]. The 5-year 
overall survival (OS) rates for G1, G2, and G3 tumors were 
reported as 77.33%, 63.06%, and 20.04%, respectively [3].

Histopathological evaluation plays a crucial role in deter-
mining the prognosis and tailoring the treatment of patients 
with pNETs. Depending on the extent of tumor spread, 
namely locoregional disease, locally advanced disease, 
or distant metastasis, the pathological grade of pNETs is 
particularly important for selecting appropriate initial treat-
ment strategies [9–12]. Therefore, individual assessment of 
the pathological grade is typically needed before treatment. 
Among all currently available examination methods, endo-
scopic ultrasound-guided fine needle aspiration (EUS-FNA) 
biopsy is a valuable technique for obtaining the histological 
grade of the tumors [13]. However, this is an invasive pro-
cedure and requires at least 500 cells for grading, which sets 
a technical threshold for this procedure. Therefore, owing 
to insufficient tissue samples, only about 70% of patients 
undergoing EUS-FNA biopsy can obtain a histologic grade 
[14]. Furthermore, owing to the small size of the biopsy 
samples and the heterogeneity of pNETs, biopsy results are 
often inconsistent with postoperative pathology. A recent 
meta-analysis showed that the concordance rates between 
EUS-FNA/FNB grades and surgical specimens ranged from 
53.8 to 97.1% [15].

Radiomics is an emerging technology that involves the 
extraction of quantitative and reproducible features from 
medical images in high-throughput, sophisticated modali-
ties that are challenging to identify or quantify visually [16]. 
These features, which may be associated with specific dis-
eases, are processed using statistical or machine learning 

(ML) algorithms to establish predictive models for tumor 
diagnosis, grading, efficacy evaluation, and prognosis pre-
diction [17–19]. The main advantages of radiomics are its 
non-invasiveness, objectivity, and reproducibility. However, 
the limited sample sizes and the lack of interpretability of 
the ML-based models have restricted the application of 
radiomics-based studies in clinical practice.

This study aimed to develop a radiomics-based ML model 
that could predict the grade of pNETs in a non-invasive man-
ner using CT images. In addition, the study aimed to explore 
the interpretability of the radiomics model by establishing 
the relationship between the radiomics features and biologi-
cal features of the tumors.

Materials and methods

Patient identification

This study retrospectively included patients with pathologi-
cally confirmed pNETs at the First Affiliated Hospital of Sun 
Yat-sen University from December 2010 to August 2022. As 
illustrated in Fig. 1, The inclusion criteria included the fol-
lowing: (1) histopathological diagnosis of pNETs by surgical 
specimen; (2) availability of contrast-enhanced abdominal CT 
within 1 month before surgery. The exclusion criteria included 
the following: (1) age less than 18 years; (2) absence of patho-
logical grade information; (3) CT images with artifacts; (4) 
CT images without visible lesions; (5) less than 1 cm of 
long diameter of the lesion; (6) patients who only underwent 
exploratory laparotomy. The decision to undertake surgical 
intervention for patients was informed by the most current 
National Comprehensive Cancer Network (NCCN) guidelines 
[20–22]. This retrospective study was approved by the insti-
tutional review board, and the informed consent was waived.

The patients were split into a training set and a time-
independent testing set. Patients between January 2019 and 
August 2022 constituted the training set, and patients between 
December 2010 and December 2018 formed the testing set.

Workflow

CT image acquisition was shown in Appendix E1 (Supple-
mentary Material). Figure 2 illustrates the workflow of this 
study.

Tumor segmentation

The region of interest (ROI) was segmented utilizing 3D 
Slicer software (version 5.0.3; www.​slicer.​org) layer by layer 
in the arterial and venous phases images by two investiga-
tors. Tumor segmentation was independent in the arterial 
and venous phases. Each investigator was unaware of the 

http://www.slicer.org
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other’s segmentation and segmented the lesions indepen-
dently. The clinical information was blinded to the investi-
gators. The ROI defined in the study was the entire tumor 
area within the tumor boundary visible to the radiologists. 
Vessels and bile ducts were excluded from the ROI as much 
as possible. For multiple tumors, the tumor with the largest 
diameter was selected as the representative [23].

Radiomics feature extraction and reproducibility 
analysis

The images were resampled, and grayscale discretized prior 
to feature extraction. CT images were resampled to isometric 
voxels of 3 × 3 × 3 mm3 using spline interpolation. Houns-
field units were binarized to discrete values of 25 HU. CT-
based radiomics features were extracted using the Pyradiom-
ics package [24] (version 3.0) for Python (version 3.7.3). 
The entire procedure conformed to the Image Biomarker 
Standardization Initiative guidelines [25]. A random sample 
of 30 CT images was used to test interobserver reproducibil-
ity for radiomics features. The interclass correlation coeffi-
cient (ICC) was applied to assess the consistency of the ROI 
delineation between the two investigators. Good consistency 
was defined as an ICC greater than 0.75. Radiomics features 
with ICC < 0.75 were excluded.

Feature selection and radiomics model construction

A normalization step was performed before feature selec-
tion to eliminate data value dimensional differences. Each 
feature in the training set was subtracted by the mean value 

and divided by the standard deviation. The features in the 
testing set were normalized using the mean values and 
standard deviations calculated from the training set. The 
remaining significant features after reproducibility analy-
sis were ranked using the maximum relevance minimum 
redundancy (mRMR) algorithm [26]. The Maximum Rel-
evance Minimum Redundancy (mRMR) algorithm is a 
filter-type feature selection method widely used in com-
plicated biological problems, particularly for feature selec-
tion in radiomics analysis. This algorithm selects a subset 
of features that have the highest correlation with the class 
(relevance) and the lowest correlation among themselves 
(redundancy).

Selected features were used to develop radiomics-based 
ML models using five ML algorithms commonly used in 
the biomedical field, including logistic regression (LR), 
GaussianNB, random forest (RF), support vector machine 
(SVM), and XGBoost. The hyperparameters were opti-
mized using GridSearch with fivefold cross-validation. A 
threshold probability of 0.5 was applied in this study. The 
trained radiomics-based ML models were deployed to the 
time-independent testing set. The average AUC, sensitiv-
ity, specificity, accuracy, and 95%CI were calculated from 
1000 bootstrap samples of the training and testing sets. 
The calibration curve with the Brier score loss was uti-
lized to evaluate the calibration of models in the testing 
set. Ultimately, the best-performing model was selected as 
the final model. We compared the accuracy of the needle 
biopsy and the final model in assessing the pathological 
grade of pNETs in five patients who underwent both nee-
dle biopsy and surgical resection.

Fig. 1   Flowchart of the study
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Model interpretability exploration

The SHAP technique enables clinicians to understand 
the results of ML models in an explainable manner [27], 
which enhances model transparency by providing global 
and local explainability. The features are ranked in order 
of importance, with the features ranked higher providing a 
greater contribution to the model. Furthermore, the SHAP 
value plots can illustrate the positive and negative contri-
butions of the features to the model. We used a summary 
SHAP plot to display the most prominent features in the 
final model.

To investigate the correlation between biomarkers 
and radiomics features, we compared the differences in 

radiomics features selected by SHAP between different 
Ki-67 index and mitotic count groups.

Statistical analysis

The mean and standard deviation (SD) were utilized to 
describe normally distributed continuous data, and non-
normally distributed continuous data was expressed as 
the median (upper and lower quartiles). Categorical data 
were expressed as frequencies and percentages, which 
were compared using the chi-square test. Nonnormally 
distributed continuous variables were compared using the 
Mann–Whitney U test, and an independent sample t-test was 
used to compare normal-distributed continuous variables. 

Fig. 2   Workflow of the study
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KNNimputer algorithm was used to handle missing values in 
the study [28]. Accuracy was analyzed via McNemar’s test 
at a significance level of 0.05. All the above analyses were 
completed by R software (version 4.1.1; www.r-​proje​ct.​org) 
and Python software (version 3.7.3). This radiomic study 
was evaluated by calculating a radiomic quality score [29]. 
A p-value less than 0.05 indicated statistical significance.

Results

Patient characteristics

The study included 222 patients with pNETs. The training 
set consisted of 122 patients (mean age:50 ± 14 years; 53 
male), whereas the testing set comprised 100 patients (mean 
age: 48 ± 13 years; 50 male). No significant differences were 
observed before and after the imputation of carbohydrate 
antigen-199, carbohydrate antigen-125, and carcinoembry-
onic antigen between the two sets (Appendix Table 1).

In the training set, 60 patients were diagnosed with G1 
tumors and 62 patients were diagnosed with G2/G3 tumors. 
In the testing set, 64 patients were diagnosed with G1 tumors 
and 36 patients were diagnosed with G2/G3 tumors. Among 
the patients in the training set, 35 had functional tumors, and 
in the testing set, 46 patients had functional tumors. Multiple 
tumors were found in 23 and 16 patients in the training and 
testing sets, respectively (Table 1).

Feature selection

A total of 1316 features were extracted from each of the arte-
rial and venous phase images; 747 of these had an intraclass 
coefficient (ICC) greater than 0.75 for the arterial phase, and 
401 had an ICC greater than 0.75 for the venous phase (Appen-
dix Fig. 1). Out of the extracted features, 1148 were input into 
the maximum relevance minimum redundancy (mRMR) 
algorithm for feature selection. The 10 most relevant features 
selected by the algorithm are listed in Appendix E2. The differ-
ences in these radiomics features between G1 and G2/3 tumors 
were demonstrated using a heatmap (Appendix Fig. 2).

Development and testing of radiomics‑based ML 
model

The hyperparameters for each model used in the study are 
shown in Appendix E3. In the training set, the average AUC 
values for the models were 0.727 (95%CI: 0.725, 0.730) for 
LR, 0.827 (95%CI: 0.825, 0.829) for RF, 0.769 (95%CI: 
0.767, 0.772) for SVM, 0.811 (95%CI: 0.809, 0.813) for 
XGBoost, and 0.705 (95%CI: 0.703, 0.708) for GaussianNB. 
The average sensitivity, specificity, and accuracy values are 
presented in Table 2. In the testing set, the AUC values 

were 0.758 (95%CI: 0.756, 0.761) for LR, 0.742 (95%CI: 
0.740, 0.745) for SVM, 0.779 (95%CI: 0.776, 0.782) for 
RF, 0.744 (95%CI: 0.742, 0.747) for XGBoost, and 0.745 
(95%CI: 0.742, 0.748) for GaussianNB. The accuracy values 
were 73.0% (95%CI: 72.7%, 73.3%) for LR, 70.0% (95%CI: 
69.8%, 70.3%) for SVM, 77.0% (95%CI, 76.8%, 77.3%) for 
RF, 71.9% (95%CI: 71.7%, 72.2%) for XGBoost, and 72.9% 
(95%CI: 72.6%, 73.1%) for GaussianNB (Table 3). The cali-
bration curves for the five models are shown in Fig. 3. The 
Brier score loss was 0.196 for LR, 0.202 for SVM, 0.196 for 
RF, 0.205 for XGBoost, and 0.217 for GaussianNB. The RF 
model was selected as the final model owing to its higher 
AUC and accuracy and lower Brier score loss. However, 
compared to biopsy results (accuracy: 40%, 2 of 5 patients), 
the final model achieved an accuracy of 80% (4 of 5 patients) 
in evaluating the pathological grade of pNETs; however, this 
difference was not statistically significant (p = 0.125, Appen-
dix Table 2). The radiomics quality score of the study was 
15, suggesting a favorable quality (Appendix E4).

To investigate whether different scanners have an impact 
on the predictive power of the model, we predicted the path-
ological grade of pNETs among patients in the test set who 
were examined using different scanners. The results showed 
no statistical difference in the AUC between the two scan-
ners (0.782 vs. 0.758, p = 0.36, DeLong test). This indicated 
that the predictive power of the model remained consistent 
across scanners, suggesting that inter-scanner variability did 
not significantly influence the results.

We explored independent predictors of the pathologi-
cal grade of pNETs based on clinical characteristics using 
univariable and multivariable logistic regression in clinical 
characteristics. The results suggested that tumor size and 
CT-reported liver metastases were independent predictors 
of pathological grade (Appendix Table 3). Accordingly, a 
clinical model was developed utilizing multivariable logistic 
regression, incorporating tumor size and CT-reported liver 
metastases as key factors. Furthermore, we generated pre-
dicted probabilities, referred to as Radscore, from the radi-
omics model and integrated them with the clinical model to 
establish a combined model. Appendix Table 4 presents the 
AUC values for the radiomics model, clinical model, and 
combined model in the testing set. The results demonstrated 
a statistically significant distinction difference in the AUC 
values between the clinical and radiomics models (AUC: 
0.791 vs. 0.711, p = 0.03). However, the difference between 
the combined model and the radiomics model was not statis-
tically significant (AUC: 0.791 vs. 0.788, p = 0.81).

Exploration of model interpretability

As illustrated in Fig. 4, wavelet-LLL_glcm_DifferenceAv-
erage (venous phase) and log-sigma-3–0-mm-3D_glcm_
ClusterShade (venous phase) were the top features that 

http://www.r-project.org
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contributed the most to the model. The log-sigma-3–0-mm-
3D_glcm_ClusterShade (venous phase) feature was sig-
nificantly different between the Ki-67 ≤ 2% and Ki-67 > 2% 
groups (p < 0.001), but not between the mitotic count < 2/10 
high power field (HPF) and mitotic count ≥ 2/10 HPF groups. 

Significant differences were observed in the wavelet-LLL_
glcm_DifferenceAverage (venous phase) feature between the 
two groups with Ki-67 ≤ 2% and Ki-67 > 2% (p < 0.001), as 
well as between the two groups with mitotic count < 2/10 HPF 
and mitotic count ≥ 2/10 HPF (p < 0.001; Fig. 5).

Table 1   Patients characteristics Characteristics Training set
N = 122

Testing set
N = 100

Gender (%) Male 53 (43.4) 50 (50.0)
Female 69 (56.6) 50 (50.0)

Age (years) 49.7 (13.5) 47.7 (13.2)
Body mass index (kg/m2) 22.9 (20.7,25.1) 23.5 (19.8,27.2)
Diabetes (%) No 112 (91.8) 91 (91.0)

Yes 10 (8.2) 9 (9.0)
Hypertension (%) No 96 (78.7) 92 (92.0)

Yes 26 (21.3) 8 (8.0)
Smoking (%) No 102 (83.6) 89 (89.0)

Yes 20 (16.4) 11 (11.0)
Drinking (%) No 108 (88.5) 94 (94.0)

Yes 14 (11.5) 6 (6.0)
CEA (ng/ml) 1.7 (1.1, 2.8) 1.8 (1.3, 2.7)
CA125 (U/L) 10.9 (7.8, 15.7) 11.2 (8.8, 16.2)
CA199 (U/L) 7.6 (3.6, 16.3) 8.9 (4.4, 16.4)
Tumor site (%) Head and (or) neck 41 (33.6) 49 (49.0)

Body and (or) tail 80 (65.6) 44 (44.0)
Others 1 (0.8) 7 (7.0)

Multiple tumors (%) No 99 (81.1) 83 (83.8)
Yes 23 (18.9) 16 (16.2)

Functional tumor (%) No 87 (71.3) 54 (54.0)
Yes 35 (28.7) 46 (46.0)

Ki-67 index (%)  ≤ 2 65 (53.3) 69 (69.0)
3–20 53 (43.4) 29 (29.0)
 > 20 4 (3.3) 2 (2.0)

Mitotic count (%)  < 2 85 (69.7) 83 (83.0)
2–20 34 (27.8) 17 (17.0)
 > 20 3 (2.5) 0 (0.0)

Grade (%) G1 60 (49.2) 64 (64.0)
G2/3 62 (50.8) 36 (36.0)

AJCC stage (%) I 41 (33.6) 42 (42.0)
II 41 (33.6) 38 (38.0)
III 9 (7.4) 13 (13.0)
IV 31 (25.4) 7 (7.0)

Table 2   Diagnostic 
performance of the radiomics-
based machine learning models 
in the training cohort

LR logistic regression, SVM support vector machine, RF random forest, CI confidence interval

AUC (95%CI) Sensitivity (95%CI) Specificity (95%CI) Accuracy (95%CI)

LR (%) 0.727 (0.725, 0.730) 80.2 (79.8, 80.5) 65.3 (65.0, 65.7) 72.7 (72.5, 72.7)
SVM (%) 0.769 (0.767, 0.772) 86.8 (86.5, 87.0) 67.1 (66.8, 67.5) 76.9 (76.7, 77.2)
RF (%) 0.827 (0.825, 0.829) 87.4 (83.5, 91.3) 84.2 (82.2, 86.2) 82.7 (82.5, 82.9)
XGBoost (%) 0.811 (0.809, 0.813) 82.2 (79.6, 84.8) 81.4 (79.2, 83.6) 81.1 (80.9, 81.3)
GaussianNB (%) 0.705 (0.703, 0.708) 73.7 (73.3, 74.0) 67.4 (67.0, 67.7) 70.5 (70.3, 70.8)
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Discussion

In this study, an interpretable ML model was constructed 
and tested to differentiate between G1 and G2/3 of pNETs. 
The model was developed by analyzing radiomic features 
extracted from contrast-enhanced CT images obtained during 
the arterial and venous phases. In the testing set, the radiom-
ics-based ML model demonstrated favorable discrimination 
(AUC, 0.779; accuracy, 77.0%) and calibration. The model 
also exhibited promising interpretability, allowing for a better 
understanding of the factors contributing to its predictions.

Previous studies have highlighted the significant potential 
of texture analysis and radiomics in predicting the pathologi-
cal grade of pNETs [30, 31]. A study involving 137 patients 
with pNETs developed a nomogram model combining radi-
omics features derived from arterial phase images and clini-
cal features to classify G1 and G2/3 tumors [32]. The AUCs 
of the training and validation sets were 0.907 and 0.891, 
respectively, indicating that the model showed good dis-
crimination capability, along with favorable calibration and 

clinical usefulness. Bian et al also developed a CT radiomics 
score that showed a significant association with the grade of 
non-functional pNETs (NF-pNETs) and provided a poten-
tially valuable non-invasive tool for differentiating between 
different grades of NF-pNETs, especially in patients with 
tumors measuring 2 cm or less [33]. With the advancement 
of artificial intelligence, the combination of radiomics analy-
sis and ML algorithms has further enhanced the predictive 
power of ML-based models. ML algorithms can be applied 
to feature selection, model construction, or both. In a previ-
ous study involving 138 patients with pNETs, mRMR and 
RF algorithms were utilized for radiomics feature selection 
and model development for predicting G1 and G2/3 tumors 
[18], resulting in a nomogram that integrated tumor margin 
and radiomics signature. This nomogram showed strong dis-
crimination with AUCs of 0.974 in the training set and 0.902 
in the validation set. Zhang et al [17] constructed diagnos-
tic models for classifying the pathological grades of pNETs 
by integrating five methods for feature selection and nine 
methods for classification. Likewise, all the radiomics-based 

Table 3   Diagnostic 
performance of the radiomics-
based machine learning models 
in the time-independent testing 
cohort

LR logistic regression, SVM support vector machine, RF random forest, CI confidence interval

AUC (95%CI) Sensitivity (95%CI) Specificity (95%CI) Accuracy (95%CI)

LR (%) 0.758 (0.756, 0.761) 86.0 (85.7, 86.4) 65.6 (65.3, 66.0) 73.0 (72.7, 73.3)
SVM (%) 0.742 (0.740, 0.745) 89.2 (88.8, 89.5) 59.3 (59.0, 59.7) 70.0 (69.8, 70.3)
RF (%) 0.779 (0.776, 0.782) 80.8 (80.4, 81.3) 74.9 (74.6, 75.3) 77.0 (76.8, 77.3)
XGBoost (%) 0.744 (0.742, 0.747) 83.2 (82.8, 83.6) 65.6 (65.3, 66.0) 71.9 (71.7, 72.2)
GaussianNB (%) 0.745 (0.742, 0.748) 80.4 (80.0, 80.8) 68.7 (68.3, 69.0) 72.9 (72.6, 73.1)

Fig. 3   Calibration curves of 
five radiomics-based machine 
learning models in the testing 
set. The Brier score loss of each 
model is shown in brackets
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ML models presented in this study had AUCs greater than 
0.74 and an accuracy greater than 0.7, confirming the great 
promise of radiomics analysis combined with ML in predict-
ing the pathological grade of pNETs. Although the accuracy 

of the model developed in this study did not exceed that of 
certain existing studies, its noteworthy contribution lies in 
its interpretability and the direct comparison between the 
accuracy of radiomics models and needle biopsy.

Fig. 4   SHAP summary plot. 
a Ranking the importance of 
each feature in the final model 
output. b SHAP values of 
each feature in the final model. 
The different colors (red and 
blue) represent different levels 
of effect on the output of the 
model

Fig. 5   The relationship between biological and radiomics fea-
tures. a Comparison of V_log-sigma-3–0-mm-3D_glcm_Cluster-
Shade feature between different Ki-67 index groups. b Compari-
son of V_wavelet-LLL_glcm_DifferenceAverage feature between 
different Ki-67 index groups. c Comparison of V_log-sigma-3–

0-mm-3D_glcm_ClusterShade feature between different mitotic 
count groups. d Comparison of V_wavelet-LLL_glcm_Differ-
enceAverage feature between different mitotic count groups. 
V_, venous phase; HPF, high power field; ns, no significance. 
****p < 0.001
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Notably, this study compared the accuracy of radiomics 
models and needle biopsy results in the evaluation of the 
pathological grade of pNETs in a small sample. Although 
the results of the comparison did not lead to a definitive con-
clusion, they served as an important reminder. pNETs can 
show significant heterogeneity between patients and within 
tumor tissue, which is defined as spatial intratumoral hetero-
geneity [34, 35]. Proliferative heterogeneity is an essential 
manifestation of this intratumoral heterogeneity. Tang et al 
evaluated 31 well-differentiated NETs with indications of 
a high-grade tumor composition [36]. Heterogeneity in the 
Ki-67 index was also observed in both primary tumors and 
liver metastases of NETs [37]. Therefore, the pNETs tumor 
tissue may contain several components with different pro-
liferative rates. Due to the random selection of the biopsy 
sites and the limited size of the tissue obtained, it is pos-
sible that needle biopsy results do not accurately reflect the 
proliferative status of the entire tumor (Fig. 6). Although 
previous studies have reported that the coincidence rates 
of pathological grade assessed using the mean and high-
est Ki-67 index in the specimens obtained by EUS-FNA 
with the resected specimens were 74.0% and 77.8% [38], 
the invasive nature of needle biopsy and the risk of puncture 
failure should not be ignored. In contrast, radiomics analysis 
based on non-invasive imaging can provide high-throughput 
and more comprehensive information about the tumor. By 
analyzing the tumor as a whole, radiomics analysis may 
help to resolve some of the challenges associated with the 
pathological examination of small or random biopsy samples 

of heterogeneous tumors, serving as a comprehensive “vir-
tual biopsy” [39], which is gaining recognition in the era of 
advances in imaging technology and is considered a reliable 
complement to traditional tumor biopsy [40].

Although previous studies have reported excellent per-
formance of radiomics-based ML models for preoperative 
prediction of the pathological grade of pNETs, few models 
have been applied to clinical practice, and several factors 
contribute to this limitation. Firstly, the small sample sizes 
reduced the credibility of the results, with no study exceed-
ing 200 cases. Secondly, the lack of exploration of model 
interpretability has resulted in a “black-box” effect, which 
hampers clinical application [41]. Thirdly, current studies 
have not established the correlation between radiomics fea-
tures and biomarkers in pNETs. In addition, the inconsist-
ency in the selection of radiomics features across different 
studies undermines the trust in these models. Thus, estab-
lishing a link between radiomics features and biomarkers is 
essential for the promotion of these models.

To address these challenges, this study attempted to 
answer questions regarding model interpretability and 
explainability. According to previous studies [42], interpret-
ability is the degree to which a human can understand or 
intuit how a model has reached a specific outcome, whereas 
explainability refers to the internal mechanisms and the logic 
of the ML system. As a first step, we used the SHAP tool 
to identify the two most influential gray-level co-occurrence 
matrix (GLCM) features of the venous phase, which demon-
strated the explainability of the model. GLCM features assess 

Fig. 6   Comparison of needle 
biopsy and radiomics analysis 
in the presence of intratumoral 
heterogeneity of pNETs. Due 
to the random nature of biopsy 
sampling and the limited 
samples, biopsy results may not 
be representative of the entire 
tumor. In contrast, radiomics 
analysis can provide compre-
hensive information that encom-
passes the entire tumor (created 
with BioRender.com)
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the texture of an image based on spatial alignment statistics 
of pixel intensity and are known to be common and sensi-
tive texture descriptors [43]. A previous study reported that 
GLCM features provide information about tumor heterogene-
ity and reflect prognostic changes in gastrointestinal stromal 
tumors [44]. The “cluster shade” of GLCM features can be 
interpreted as a measure of skewness, reflecting the presence 
of large variation and high grayscale levels. Additionally, 
GLCM features can characterize the contrast, intricacy, and 
heterogeneity of local strength modes, potentially indicating 
the proliferative heterogeneity of pNETs. Furthermore, we 
believed that annotation of radiomics features by establishing 
relationships between radiomics features and known biologi-
cal features in specific diseases is a viable option for explor-
ing the biological significance of radiomics features. There-
fore, in this study, we found that these two features showed 
significant differences among different groups based on the 
Ki-67 index or mitotic count, demonstrating the interpretabil-
ity of the model. In a radiomic–genomic study of lung can-
cer, researchers found that different radiomic features were 
correlated with diverse biological processes. It was shown 
that texture entropy and clustering features, as well as voxel 
intensity differences, were related to immune function, the 
status of the P53 pathway, and other pathways involved in cell 
cycle regulation [45]. These findings suggest that radiomics 
features can characterize the underlying biological processes. 
Establishing the association between radiomics features and 
biomarkers can enhance the accessibility of radiomics-based 
models for clinicians, as causal inference plays a vital role in 
the biomedical field.

It is important to highlight that this study incorporated 
two filters, resulting in the generation of a substantial num-
ber of filter-transformed features. Dealing with such a large 
number of higher-order features poses the challenge of elim-
inating redundant features while retaining the most informa-
tive ones. To address this, Benedetti et al [46] employed 
a correlation-based filter and identified independent and 
informative radiomics features based on the AUC value, 
enabling further analysis.

In this study, to effectively reduce feature dimensionality, 
we initially used interclass correlation coefficients to select 
features with favorable reproducibility. Subsequently, the 
mRMR algorithm was applied for feature selection. The 
mRMR algorithm considers feature correlations compre-
hensively during the selection process, ensuring the exclu-
sion of highly correlated features to maintain model sim-
plicity. Another important issue that requires attention is 
the statistical challenge arising from the substantial increase 
in features. Specifically, the notable augmentation of high-
order features can render the filter-transformed features more 
susceptible to random selection. Consequently, the judicious 
utilization of statistically rigorous methods during the fea-
ture selection process becomes paramount to mitigate this 

selective bias in radiomics. However, it is worth noting 
that there is currently no standardized procedure for fea-
ture selection. Therefore, it becomes particularly crucial to 
explore the interpretability of the selected features in such 
cases. In our study, we established correlations between 
higher-order features and significant clinicopathologic fea-
tures, providing substantial evidence that the features incor-
porated in the model were not selected by chance.

This study has several limitations that should be acknowl-
edged. Firstly, the data used in this study were obtained 
exclusively from one of the two Canon CT scanners at a sin-
gle medical center. Therefore, it is important to corroborate 
the results of this investigation through a prospective cohort 
study that encompasses multiple centers to ensure the gener-
alizability of the results. Furthermore, owing to the limited 
sample size of patients who both underwent preoperative 
biopsy and surgical resection, this study only compared the 
accuracy of radiomics models and biopsy. In the future, a 
further study with a larger sample size could be conducted 
to compare the AUC, sensitivity, and specificity of these two 
methods. Finally, this study only preliminarily explored the 
relationship between radiomics features and biomarkers in 
predicting the pathological grade of pNETs. Further research 
can be conducted by combining radiomics–genomics and 
pathomics analyses to delve deeper into the biological sig-
nificance of radiomics features.

In conclusion, the radiomics-based interpretable machine 
learning model holds promise for predicting the pathological 
grade in pNETs and establishing a link between radiom-
ics features and biomarkers. As a preoperative assessment 
tool for the pathological grade of pNETs, radiomics models 
could provide a crucial supplementary approach to preopera-
tive needle biopsy.
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