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Abstract
Objectives To develop a deep learning–based method for contrast-enhanced breast lesion detection in ultrafast screening MRI.
Materials and methods A total of 837 breast MRI exams of 488 consecutive patients were included. Lesion’s location was 
independently annotated in the maximum intensity projection (MIP) image of the last time-resolved angiography with 
stochastic trajectories (TWIST) sequence for each individual breast, resulting in 265 lesions (190 benign, 75 malignant) in 
163 breasts (133 women). YOLOv5 models were fine-tuned using training sets containing the same number of MIP images 
with and without lesions. A long short-term memory (LSTM) network was employed to help reduce false positive predic-
tions. The integrated system was then evaluated on test sets containing enriched uninvolved breasts during cross-validation 
to mimic the performance in a screening scenario.
Results In five-fold cross-validation, the YOLOv5x model showed a sensitivity of 0.95, 0.97, 0.98, and 0.99, with 0.125, 
0.25, 0.5, and 1 false positive per breast, respectively. The LSTM network reduced 15.5% of the false positive prediction 
from the YOLO model, and the positive predictive value was increased from 0.22 to 0.25.
Conclusions A fine-tuned YOLOv5x model can detect breast lesions on ultrafast MRI with high sensitivity in a screening 
population, and the output of the model could be further refined by an LSTM network to reduce the amount of false positive 
predictions.
Clinical relevance statement The proposed integrated system would make the ultrafast MRI screening process more effective 
by assisting radiologists in prioritizing suspicious examinations and supporting the diagnostic workup.
Key Points 
• Deep convolutional neural networks could be utilized to automatically pinpoint breast lesions in screening MRI with high  
   sensitivity.
• False positive predictions significantly increased when the detection models were tested on highly unbalanced test sets  
   with more normal scans.
• Dynamic enhancement patterns of breast lesions during contrast inflow learned by the long short-term memory networks  
   helped to reduce false positive predictions.
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Abbreviations
FROC  Free-response operating characteristic
LSTM  Long short-term memory
MIP  Maximum intensity projections
PPV  Positive predictive value
TWIST  Time-resolved angiography with stochastic 

trajectories

Introduction

As the most sensitive breast imaging modality [1], MRI has 
been used as a supplement tool for high-risk population-
based screening where mammography alone is not sufficient 
[2, 3]. However, the high cost, low availability, and lack of 
dedicated radiologists restrict the application of MRI for an 
intermediate- or even low-risk population [4].

Shortening the protocol has been attempted to increase 
the cost-effectiveness of breast MRI screening [5]. Recently, 
several innovative abbreviated MRI protocols have been 
proposed and evaluated [6–9]. Mann et al investigated the 
feasibility of using ultrafast breast MRI as a standalone tech-
nique for breast MRI screening [10]. A multi-reader study 
showed that this time-resolved angiography with stochastic 
trajectories (TWIST) sequence-based protocol performed 
similarly to the full diagnosed protocol and significantly 
higher screening specificity [11]. Compared with the proto-
col proposed by Kuhl et al [9], the ultrafast MRI-based pro-
tocol produces twenty high spatial acquisitions within 102 s, 
which allows not only morphologic analysis, but also kinetic 
analysis during contrast agent inflow. Recent researches also 
showed the advantages of the early-stage dynamic informa-
tion in the ultrafast MRI [12, 13].

Automatic detection of breast lesions has the potential 
to boost the efficiency of screening given that the majority 
of screening MRIs are lesion free. However, this requires 
the detection model being highly accurate and dependable. 
Lesion detection algorithms were developed and tested in 
prior studies using highly enriched datasets [14–16], where 
the proportion of scans with suspicious lesions (58.3 to 
100%) and cancers (5.7 to 63.8%) is much higher than pre-
viously reported. According to a prospective observational 
study conducted by Kuhl et al [2], a total of 3861 screening 
MRIs resulted in 61 cancers, 175 BI-RADS 3 and 171 BI-
RADS 4 or 5 diagnoses. This yielded a cancer rate of 1.6% 
and a lesion rate of 9.0%, and both were significantly lower 
than the rates aforementioned. To ensure the reliability of 
detection models, it is crucial to test them in a real-world 
screening setting. The difference in the proportion of scans 
with and without suspicious lesions between the model 
development dataset and actual clinical practice can poten-
tially result in misleading performance in lesion detection, 

thereby diminishing the model’s dependability within the 
screening population.

In this study, a deep learning–based detection system was 
developed to identify enhanced lesions in ultrafast MRI. To 
simulate the screening situation, the detection system was 
evaluated with test cohorts that had mostly normal examina-
tions. The proposed detection systems aimed to accelerate 
the screening process by prioritizing MRI scans and reduc-
ing the radiologist’s workload.

Materials and methods

Patients

The breast MRI scans were retrospectively collected at the 
University Medical Center Groningen. The institute’s local 
ethics committee approved this retrospective study (METc 
2018/652) and the need for informed consent was waived. 
The same dataset was used in our earlier work, where a clas-
sification system was invented and tested [17]. Lesions in 
those MRI scans were delicately annotated with bounding 
boxes to develop a detection system in this study.

To be specific, out of 809 consecutive women who under-
went breast MRI examinations at our institute between 
April 2016 and October 2019, 1447 examinations were first 
acquired. Details of the acquisition protocols are provided 
in the Electronic Supplementary Material. Examinations 
were then included if the following conditions are satisfied: 
(1) a complete scan contains TWIST sequences; (2) the 
indication for MRI should be either screening or preopera-
tive assessment; and (3) the identified lesions should have 
been biopsied or had at least a 2-year follow-up to serve as a 
gold standard for benignancy. Breast MRIs without TWIST 
sequences or performed for other reasons (chemotherapy 
response evaluation, post-surgery follow-up, and implant 
check) were excluded. Similar with previous research [14], 
in this study, the left and right breasts of each woman are 
considered different data points and involved in the training 
and validation independently.

Data preprocessing and annotation

An overview of the preprocessing procedure of the breast 
MRI is shown in Fig. 1. A 3D-Unet was used to segment the 
breast area on the T1-weighted acquisition acquired prior to 
contrast agent injection to remove the redundant area behind 
the chest wall and the artifacts surrounding the breasts [18]. 
Scaling and FOV alignment were used to deploy the 3D 
masks to TWIST volumes, resulting in segmented volumes. 
Subtracted volumes were then created by subtracting the 
segmented pre-contrast volume from the segmented post-
contrast volumes. Maximum intensity projection (MIP) 
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images were then generated by applying the MIP operation 
to the segmented subtracted volumes. The MIP images were 
then split in two, to produce separate left and right breast 
images. On the MIP images, lesions were then annotated 
with bounding boxes (X.J., 3 years of experiences). LabelMe 
was used for the annotation process [19]. The location of 
the lesions was derived from the radiology clinical reports 
and confirmed by an experienced breast radiologist (M.D., 
10 years of experience) when in doubt.

Breast lesion detection with YOLOv5

The proposed integrated system for detecting breast lesions 
in ultrafast MRI was composed of two parts: a YOLO model 

for lesion detection and a long short-term memory (LSTM) 
network for false positive reduction. The pipeline of the pro-
posed detection method is illustrated in Fig. 2.

YOLO is a one-stage, global context informed archi-
tecture that could achieve faster execution speed without 
compromising the prediction accuracy [20]. Moreover, the 
YOLO architecture, which allows the use of pure nega-
tive images (images devoid of any target object) as input 
for training, matches the purpose of training models with 
normal breast images to reduce false positive predictions in 
a screening setting. MIP images generated in the data pre-
processing were used to finetune YOLOv5 model that had 
been pretrained using the COCO dataset. Three YOLOv5 
models (v5n with only 1.9 million parameters, v5m with 

Fig. 1  Overview of the image 
preprocessing pipeline. The 
pre-contrast acquisition (t0) was 
subtracted by each post-contrast 
acquisitions (t1 − t14) in the 
time-resolved angiography with 
stochastic trajectories (TWIST) 
sequence to generate corre-
sponding subtraction volumes 
(sub1 − sub14). The mask from 
the 3D-Unet was then multi-
plied with the subtraction vol-
umes to help remove redundant 
background area. Maximum 
intensity projection (MIP) 
operation was then applied to 
the segmented subtraction vol-
umes to get the MIP images

Fig. 2  Pipeline of the proposed 
detection system
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21.1 million parameters, and v5x with 86.7 million param-
eters) were selected and compared in this study to investi-
gate the impact of model size on detection performance. To 
further investigate the impact of magnetic field strength on 
models’ detection performance, a subgroup analysis was also 
conducted in which 1.5-T and 3-T scans were used to train 
and test YOLOv5 models separately. The detailed informa-
tion about model finetuning is described in Electonic Sup-
plementary Material.

Benign lesions usually take longer than malignant lesions 
to be enhanced in the TWIST sequences [12, 21]. To ensure 
the detectability of benign lesions, MIP images of the early 
acquisitions in the TWIST were not involved in the develop-
ment of the detection model. For each ultrafast MRI exami-
nation, only the MIP images of the last acquisition were used 
for the training and validation of the YOLO models.

False positive reduction

Rather than deducing the results from the YOLO models 
directly, the locations of the positive predictions with a prob-
ability above th0 from the output of YOLOv5 models were 
utilized to extract clips across the TWIST sequences. During 
inference, the LSTM network took each predicted bound-
ing box’s clip (the area spanning the 14 yield MIP images 
of the ultrafast DCE sequences) as input. The output was 
a likelihood score of a breast containing a lesion. The pre-
dict scores of the YOLOv5 and LSTM networks were then 
merged to reach the final judgment (Fig. 2). The architecture 
and training process of the LSTM models are provided in the 
Electronic Supplementary Material.

Experiments

Five-fold cross-validation was performed at the breast level 
to train and evaluate each model and the integrated system. 
Especially, to avoid data overlap between training and test 
data from the same breast in patients who had multiple 
examinations, a group-based shuffle split method was used 
to ensure data from different dates of the same breast are 
bound together. Moreover, the YOLO and LSTM networks 
were trained with the same data splits and then integrated 
together to prevent data leakage throughout the pipeline.

The number of samples with and without lesions in this 
analysis was inevitably imbalanced. To overcome this imbal-
ance, all positive samples (breasts with lesions) were merged 
with an equivalent amount of randomly selected negative 
samples (breasts without lesions) to establish a balanced 
development dataset. The rest of the negative samples were 
subsequently grouped as an isolated negative set and were 
not used for the model training. However, in addition to 
assessing the model trained with the balanced dataset, the 
isolated negative set was also merged to the test data during 

validation to evaluate the proposed system’s performance 
with a normal screening prevalence. The performance with 
and without the isolated negative set was compared. A dia-
gram of the data split and validation set formation is shown 
in Electronic Supplementary Material Fig. S3.

Data analysis

Free-response operating characteristic (FROC) analysis was 
adopted to assess the performance of the evaluated YOLOv5 
models and the integrated system. In this study, a false posi-
tive prediction is defined as a non-lesion area that is pre-
dicted to have a lesion, while a false negative prediction 
is defined as a lesion that deep learning models failed to 
detect. To illustrate the effectiveness of the LSTM network 
for false positive reduction, the sensitivity of the YOLO 
models alone and the integrated system (YOLO + LSTM) at 
0.125, 0.25, 0.5, 1, and 2 false positives per breast were also 
calculated. Meanwhile, the detection ability of each model 
to detect malignant lesions was analyzed in the same way. 
The data analysis was performed with Scikit-learn 0.22.1 
and COCO-FROC-analysis 0.2.0 packages in Python pro-
gramming language.

Results

Included lesions

A total of 488 women were included in this study. The mean 
age of the included women (n = 488) was 48.5 years (range, 
27–83 years), for women with breast lesions (n = 133) was 
52.0 years (range, 27–83 years), and for women with malig-
nant lesions (n = 58) was 57.6 years (range, 34–83 years). 
Five women were undergoing MRI examination with an 
indication of preoperative assessment, and all had malig-
nant lesions, which account for 8.6% of the total number 
of women with malignant lesion and 3.8% of women with 
lesion. A flowchart of this process is illustrated in Fig. S4; 
further details of these patients have previously been 
reported [17].

In total, 962 single breasts were derived from the included 
patients; 14 breasts were excluded due to mastectomy. For 
included breasts, 83.0% (n = 799) were reported as lesion 
free, and 315 were derived from 1.5-T scans and 484 were 
derived from 3.0-T scans. Seventeen percent (n = 163) had at 
least one lesion, in which 7.3% (n = 70) contained only one 
lesion, and 9.7% (n = 93) contained multiple lesions. In total, 
265 lesions were annotated, 71 lesions were derived from 
56 1.5-T scans and 194 were derived from 112 3.0-T scans. 
The median size of all reported lesions was 13.0 mm (range, 
5.0–110.0 mm), 9.0 mm (range, 5.0–81.0 mm) for benign 
lesions (n = 190) and 22.0 mm (range, 6.0–110.0 mm) for 
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malignant lesions (n = 75). The detailed information of the 
lesions is illustrated in Table 1.

YOLOv5 model performance

During cross-validation, the fine-tuned YOLOv5x model 
showed a sensitivity of 0.95 (0.85–1.0), 0.97 (0.91–1.0), 
0.98 (0.93–1.0), and 0.99 (0.96–1.0) with 0.125, 0.25, 0.5, 
and 1 false positive per breast, respectively, compared to 
0.94 (0.91–0.98), 0.97 (0.95–1.0), 0.98 (0.96–1.0), and 0.99 
(0.96–1.0) for the YOLOv5m model and 0.77 (0.69–0.86), 
0.87 (0.78–0.94), 0.93 (0.89–0.98), and 0.98 (0.94–1.0) for 
the YOLOv5n model. With two false positives per breast, 
all models obtained a sensitivity of 1.0 for lesion identifi-
cation. For different magnetic field strength subgroup, the 

YOLOv5x model achieved an overall higher sensitivity on 
the 3.0 T subgroup than the 1.5 T subgroup, with a sensi-
tivity of 0.76 (0.65–0.84) and 0.69 (0.59–0.83) with 0.125 
false positives per breast, respectively. Detailed results of 
the model on each subgroup are provided in the Electronic 
Supplementary Material.

For malignant lesion detection, the YOLOv5x model 
had a sensitivity of 0.96 (0.80–1.0), 0.97 (0.86–1.0), 0.98 
(0.90–1.0), and 1.0 with 0.125, 0.25, 0.5, and 1 false positive 
per breast, respectively, compared to 0.97 (0.90–1.0), 1.0, 
1.0, and 1.0 for the YOLOv5m model and 0.94 (0.90–1.0), 
0.97 (0.92–1.0), 0.98 (0.92–1.0), and 0.98 (0.92–1.0) for 
the YOLOv5n model. All models had a sensitivity of 1.0 
for malignant lesion detection, with two false positives per 
breast. The FROC curve of the YOLOv5x models is shown 
in Fig. 3a.

False positive reduction with LSTM

To reduce false positive predictions, an LSTM network was 
used to further identify candidates from the output of the 
YOLOv5 models. The performance of the integrated system 
was evaluated using the same data split as the single YOLO 
model during cross-validation. The FROC curve of the inte-
grated system is shown in Fig. 3b. The integrated system 
retained approximately equivalent sensitivity for both malig-
nant and all lesions detection, after integrating the LSTM 
network (Table 2). To demonstrate the efficacy of the false 
positive reduction, Table 3 shows the number of false posi-
tive predictions of the YOLOv5x model in each fold of the 
cross-validation with and without the LSTM network. The 
findings were obtained using a 0.5 th0 and 0.5 th1 threshold 
setting.

Example of final detection results of the integrated system 
is shown in Fig. 4. Only detections with probability above 
the threshold and with correct location estimates deemed as 

Table 1  Characteristics of the included lesions

* Lesions were indicated in the radiology reports but not biopsied or 
differentiated by radiologists

Characteristics Value Size (mm)

Benign lesions 190 13.4 (5–81)
  Adenosis 74 8.5 (5–15)
  Fibroadenoma 21 18.8 (9–48)
  Hyperplasia 7 21.2 (6–81)
  Cyst 3 9.0 (6–12)
  Inflammation 2 46.0 (32–60)
  Other* 83 15.1 (6–51)

Malignant lesions 75 27.6 (6–110)
  Invasive ductal carcinoma 57 25.6 (6–76)
  Invasive lobular carcinoma 5 49.8 (13–110)
  Ductal carcinoma in situ 7 29.5 (7–62)
  Micropapillary carcinoma 2 14.5 (13–16)
  Apocrine carcinoma 1 24
  Mucinous carcinoma 2 45 (8–82)

Fig. 3  Free-response operating characteristic curves of the (a) YOLOv5x model and (b) the integrated system for all lesions and malignant lesions 
during cross-validation
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true positives (Fig. 4a), while normal breast tissues without 
any lesion predictions deemed as true negatives (Fig. 4b). 
Other tissues, such as nipples, lymph nodes, vessels, and 
enhanced parenchyma, which were incorrectly predicted as 
lesions were considered false positives. Any missed lesions 
and lesions with incorrect location estimations were consid-
ered as false negatives.

Discussion

In this study, we developed a deep learning–based method 
for automated detection of breast lesions for the purpose of 
breast cancer screening. Unlike previous research on breast 
MRI lesion detection, we focused on the performance of 
models with a screening prevalence. The model was evalu-
ated using test sets that included mostly normal scans rather 
than only scans with lesions. The proposed integrated sys-
tem had a sensitivity that was comparable to previous studies 
while producing fewer false positives.

To address the high false positive rate for breast lesion 
detection, an LSTM network aimed at identifying differ-
ent dynamic intensity patterns during contrast inflow was 
employed. Using the YOLOv5x model as an example, the 
LSTM network could help eliminate 15% of the false posi-
tive predictions. This LSTM network operates on the output 
of the YOLOv5 models and has the potential to misclassify 
correctly predicted lesions, resulting in a decreased sensi-
tivity. However, despite a few misclassifications induced by 
the LSTM network, the integrated system retained its high 
sensitivity in general during cross-validation, and the feared 
significant decline in sensitivity was not observed (Fig. 3b 
and Table 3).

This is a follow-up study of our previous work in which 
a classification system was invented to identify lesion-free 
scans that use only TWIST sequences [17]. However, the 
previous study mainly focused on the primary tumors in 
each breast and take no account of minor findings. Instead 
of generating a categorical prediction, we elaborately anno-
tated all lesions with bounding box in the cohort and trained 
detection methods to localize lesions in the breasts, for the 
propose of providing more precise and visible results. Com-
pared with the classification system in our previous work, 
which focused on excluding normal scans to minimize the 
reading list, the detection model developed in this study 
gives more immediate visual assistance, allowing radiolo-
gists to focus on the suspicious breast lesions directly.

The size of YOLOv5 models has impact on the detection 
performance. Three different YOLOv5 models were evaluated 
in this study. Compared with the 0.77 sensitivity achieved 
by the YOLOv5n model, both YOLOv5m and YOLOv5x 
achieved superior sensitivity (0.94 and 0.95) with 0.125 false 
positives per breast. This advantage gradually vanished with Ta
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Table 3  Performance of the YOLOv5x model and the integrated system in each fold

Number in parentheses are the number of lesions. *Number in brackets is the number of breasts with lesion plus number of breasts without 
lesion
PPV, positive predictive value; LSTM, long short-term memory network

Fold Number of breasts* Without LSTM network With LSTM network False positive reduction

Sensitivity PPV Sensitivity PPV

Fold 0 702 [33 + 669] 0.98 (52/53) 0.20 (52/248) 0.98 (52/53) 0.23 (52/228) 0.10 (20)
Fold 1 700 [32 + 668] 0.95 (42/44) 0.17 (42/252) 0.95 (42/44) 0.18 (42/229) 0.11 (23)
Fold 2 700 [32 + 668] 1 (59/59) 0.26 (59/227) 1 (59/59) 0.29 (59/204) 0.14 (23)
Fold 3 700 [32 + 668] 1 (49/49) 0.24 (49/205) 1 (49/49) 0.28 (49/178) 0.17 (27)
Fold 4 700 [32 + 668] 0.90 (54/60) 0.24 (54/222) 0.87 (52/60) 0.28 (52/184) 0.23 (38)
Average – 0.97 (0.90–1.0) 0.22 (0.17–0.26) 0.96 (0.87–1.0) 0.25 (0.18–0.29) 0.15 (0.10–0.23)

Fig. 4  Example of (a) true positive, (b) true negative, (c) false posi-
tive, and (d) false negative detection result of the integrated system. 
The wrongly predicted tissues in c (from left to right): nipple, nipple 
and lymph node, lymph node, nipple. The false negative predictions 

in d (from left to right): foci, adenosis, biopsy-confirmed invasive 
ductal carcinoma, and biopsy-confirmed adenocarcinoma with incor-
rect location estimation (Yellow boxes indicate the ground truth; red 
boxes present the predictions from the integrated system.)



2091European Radiology (2024) 34:2084–2092 

1 3

a higher false positive rate. We also investigate the impact of 
magnetic field strength on detection models’ performance. 
The YOLOv5x model achieved an overall higher sensitivity 
on the 3.0 T subgroup than the 1.5 T subgroup. However, 
despite the model’s poor performance, which likely resulted 
by the insufficient amount of positive training samples in each 
subgroup, it is difficult to draw the conclusion that a stronger 
magnetic field benefits the model’s performance. Collecting 
more data would enable us to conduct a comprehensive sub-
group analysis.

The integrated system is developed to detect all 
enhanced breast masses (> 5  mm), not just malignant 
ones. Several previous studies developed and tested mod-
els for cancer detection in DCE-MRI and were successful 
[22, 23]. However, the diagnosis of malignancy is heavily 
dependent on additional MRI sequences and even biopsies. 
Using a single model to locate and identify just malignan-
cies while ignoring other suspicious findings is risky and 
unreasonable, especially for screening purposes, dedicated 
AI models may be more useful for malignancy identifica-
tion of candidate lesions [24].

One should keep in mind is that ultrafast MRI has not yet 
been evaluated in a real screening cohort [25]. Studies that com-
pared the effectiveness of ultrafast and conventional MRI were 
also mainly retrospective studies involving patients with lesions 
in MRI. Meanwhile, the ultrafast MRI techniques are not stand-
ardized yet; parallel imaging, viewing sharing, and compressed 
sensing are all used to obtain a higher temporal resolution but 
are all referred to ultrafast MRI [26, 27].

This study has several limitations. One of the limita-
tions was that there was no independent test set, instead, 
we used cross-validation to illustrate the effectiveness of 
the integrated system. Meanwhile, due to the rarity of the 
number of cancers in a screening population and the large 
amount of data required to train deep learning models, 
preoperative MRI scans were also included in the data-
set to increase the number of cancers. Hence, the system 
should be further evaluated with additional dedicated mul-
ticenter multivendor databases. Another limitation is that 
only part of benign lesions was histologically examined; 
this reflected the radiologists’ confidence in their ability to 
determine the need for biopsy based on imaging outcomes.

This study demonstrates the ability of a deep learn-
ing–based method to detect candidate findings in ultra-
fast breast MRI. This proposed fully automated method 
could be helpful in detecting breast lesions in the setting 
of breast cancer screening, thereby potentially reducing 
radiologists’ workload. This, in turn, will allow breast 
MRI screening to apply to a larger population, resulting 
in better preventive health care delivery.
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