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Abstract
Objectives Prognostic and diagnostic models must work in their intended clinical setting, proven via “external evaluation”, 
preferably by authors uninvolved with model development. By systematic review, we determined the proportion of models 
published in high-impact radiological journals that are evaluated subsequently.
Methods We hand-searched three radiological journals for multivariable diagnostic/prognostic models 2013–2015 inclusive, 
developed using regression. We assessed completeness of data presentation to allow subsequent external evaluation. We then 
searched literature to August 2022 to identify external evaluations of these index models.
Results We identified 98 index studies (73 prognostic; 25 diagnostic) describing 145 models. Only 15 (15%) index studies 
presented an evaluation (two external). No model was updated. Only 20 (20%) studies presented a model equation. Just 
7 (15%) studies developing Cox models presented a risk table, and just 4 (9%) presented the baseline hazard. Two (4%) 
studies developing non-Cox models presented the intercept. Just 20 (20%) articles presented a Kaplan–Meier curve of the 
final model. The 98 index studies attracted 4224 citations (including 559 self-citations), median 28 per study. We identified 
just six (6%) subsequent external evaluations of an index model, five of which were external evaluations by researchers 
uninvolved with model development, and from a different institution.
Conclusions Very few prognostic or diagnostic models published in radiological literature are evaluated externally, sug-
gesting wasted research effort and resources. Authors’ published models should present data sufficient to allow external 
evaluation by others. To achieve clinical utility, researchers should concentrate on model evaluation and updating rather 
than continual redevelopment.
Clinical relevance statement The large majority of prognostic and diagnostic models published in high-impact radiologi-
cal journals are never evaluated. It would be more efficient for researchers to evaluate existing models rather than practice 
continual redevelopment.
Key Points 
• Systematic review of highly cited radiological literature identified few diagnostic or prognostic models that were evaluated 

subsequently by researchers uninvolved with the original model.
• Published radiological models frequently omit important information necessary for others to perform an external evalu-

ation: Only 20% of studies presented a model equation or nomogram.
• A large proportion of research citing published models focuses on redevelopment and ignores evaluation and updating, 

which would be a more efficient use of research resources.
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How many diagnostic or prognostic models published in 
radiological journals are evaluated externally? 

Information needed for evaluation

47 Cox models 55 non-Cox 
models

External evaluations

• Only 6/98 externally 
validated

• PROBAST risk of 
bias high (3) or 
unclear (3)

Implemented or 
adopted in clinical 
practice

• Only 10 Cox models 
presented risk table or 
baseline hazard
• Only 2 non-Cox models 
presented the intercept

• 20/98 studies presented 
model equation
• 10 of those omitted 
regression 
coefficients/HR/OR

• Very few radiological models are externally 
evaluated.

• Most model publications omit data required 
for external evaluation.

• A research focus on evaluation and updating 
would be more efficient and more likely to 
result in clinical adoption.

Keywords Prognosis · Models statistical · Proportional hazards models · Logistic models · Evaluation study

Abbreviations
IQR  Inter-quartile range
PRISMA  Preferred reporting items for systematic 

reviews and meta-analysis
PROBAST  Prediction model risk of bias assessment tool
TRIPOD  Transparent reporting of a multivariable 

prediction model for individual prognosis or 
diagnosis

Introduction

The medical literature is experiencing a tsunami of 
diagnostic and prognostic models. Radiological journals 
are bursting with models that claim clinical utility, for 
example, the ability of MR imaging to predict subse-
quent outcomes [1–3]. A recent narrative “Viewpoint” 
noted “exponential” model publication, blaming easy 
dataset availability combined with inexpensive compu-
tational power, and stated most were clinically useless 
because researchers lacked methodological expertise to 
develop and evaluate models properly [4]. Specifically, 

poor development encourages bias that risks overfitting, 
culminating in models inaccurate for new patients [5].

To be useful, models must work in their intended clini-
cal setting. The pivotal step towards this is “external evalu-
ation” (“external validation”), whereby model performance 
is evaluated in representative patients not used for devel-
opment. This contrasts with “internal evaluation”, where 
development data is reused for evaluation. It is unlikely 
that clinicians will adopt models unless proven accurate in 
patients similar to their own. Despite this, model research 
emphasises development and ignores evaluation [6]. Most 
models go unused because they have never been evaluated 
externally, or fail this test [7]. It follows that useful models 
will have passed external evaluation. External evaluation 
is especially relevant to radiomic models, where biomark-
ers must be consistent across institutions [8]. To eliminate 
“allegiance bias”, evaluation is best performed by research-
ers who did not develop the model [9], which requires the 
published model to report enough data to allow this [10].

Research effort is wasted if published models are never 
used, but the extent to which this applies to radiological 
journals is unknown. Our primary aim was to determine by 
systematic review how often models underwent external 
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evaluation by others. Secondary aims were to identify 
whether models presented an internal evaluation and/or 
information sufficient to allow external evaluation by others.

Materials and methods

Ethical permission is not required by our institution for sys-
tematic review of primary literature. Our research is reported 
using PRISMA guidelines [11] (Supplementary Material).

Eligibility

We hypothesised that if an index model publication omitted 
external evaluation, researchers or clinicians wishing to use 
the model would perform their own evaluation subsequently. 
If so, it is likely some such evaluations would be published 
and reference the index model. We therefore identified pub-
lished models and searched subsequent literature for external 
evaluations. Eligible index publications described diagnostic 
or prognostic multivariable models in humans, incorporating 
imaging biomarkers (with/without non-imaging biomarkers) 
and claiming potential clinical utility (all disciplines). We 
restricted our search to models developed using regression 
techniques, and did not aim to investigate machine-learning 
methods.

Information sources

Since our primary interest was radiological models, we 
searched the top three indexed (Scopus) general radiology 
journals publishing original research (Radiology, Investigative 
Radiology, European Radiology) hypothesising that models 
published here would be more methodologically sound than 
those of lesser journals. This procedure also reduced the volume 
of data, rendering the search feasible. We searched The Web 
of Science and The National Library of Science via PubMed.

Search

We hypothesised that 50 index models would provide rep-
resentative data. We identified index models published in 
print 2013 to 2015 inclusive then searched until August 2022 
for subsequent external evaluations. M.H. hand searched all 
journal contents pages, while J.Y. and D.B. searched half 
each, independently.

Study selection

We identified titles using the following the terms: “prog-
nostic”, “prognosis”, “prognostically”, “predictive”, 

“prediction”, “predicts”, “predicting”, “predictor”, “pre-
dictors”, “predictable”, “model”, “models”, “modelling”, 
“external validation”, and “external clinical validation” and 
then applied eligibility criteria to the abstract.

Data collection

The following data were extracted from index models 
(refined after a pilot of 10): diagnostic or predictive; model 
type (linear/logistic/Cox); clinical application; outcomes; 
number of patients/events; and total factors assessed (imag-
ing/other). We extracted information necessary for external 
evaluation, e.g. regression coefficients/hazard ratios; model 
equation and/or Kaplan–Meier curve; risk tables for Cox 
models, and terms “prognostic index” and “baseline hazard” 
[10]. We noted if the index model included evaluation and, 
if so, the type. Using “cited by” in Web of Science (Clari-
vate), we then identified all publications citing the index 
model, noting self-citations. Via the abstract, we determined 
whether the subsequent publication described external eval-
uation of the index model, retrieving the full text if so, or 
where there was uncertainty. External evaluation was defined 
by including the factors and weightings used by the index 
model (prior to any updating), in different patients, from a 
different source. Evaluation methodology and any updating/
additional factors were extracted. We noted if authors were 
unrelated to the index model. Uncertainty was resolved by 
face-to-face discussion.

Risk of bias

Risk-of-bias assessment for external evaluations used 
PROBAST [12].

Summary measures and synthesis

We performed descriptive analysis summarising review find-
ings as median, interquartile range (IQR), and range.

Results

Model characteristics

We identified 320 articles describing potential models 
(Fig. 1). Of 152 full texts assessed, 54 were excluded (52 
non-multivariable; 1 non-regression; 1 non-human), leaving 
98 index publications (twice our a priori target; Electronic 
Supplementary Material 1). Publication frequency increased 
with time: 2013, 26; 2014, 33; and 2015, 39. Seventy-three 
(74%) studies were prognostic and 25 (26%), diagnostic. 
Gastrointestinal (including hepato-biliary/pancreatic) was 
the most studied system (21, 21%), followed by thorax (13, 



2527European Radiology (2024) 34:2524–2533 

1 3

13%), with cardiovascular/neurological joint third (11, 11%). 
Malignancy was the commonest topic, 64 (65%) of all studies.

The 98 studies described 145 individual models; 71 
(72%) described one model, 20 (20%) described two mod-
els, 3 (3%) described three models, and 4 (4%) studies 
described 4, 5, 6, and 10 models respectively. Forty-three 
(44%) studies developed Cox models, 39 (40%) developed 
logistic, 11 (11%) developed linear, 1 (1%) developed Pois-
son, and 4 (4%) developed both Cox and logistic models. 
Multiple outcomes were modelled: The three commonest 
were overall survival (37, 38%), disease-free survival (14, 
14%), and cardiovascular events (12, 12%). MRI variables 
were modelled in 44 (45%) studies, CT in 40 (41%), PET/
PET-CT in 10 (10%), and ultrasound in just 3 (3%). Eight 
(8%) studies modelled data from multiple imaging modali-
ties. The median number of patients per study was 98, range 
19 [13] to 11,462 [14]. Most (85, 87%) studies modelled data 
per patient. Thirteen (13%) modelled per lesion (or per eye 
[15], artery [16], procedure [17]).

For 50 of 55 (91%) studies employing non-Cox models, we 
could estimate the number of events (i.e. numerically small-
est outcome group). The median was 28 events (IQR 18 to 
56, range 2 [18] to 279 [19]). The median number of imaging 

variables investigated was 6 (IQR 2 to 9, range 0 [20] to 42 
[21]); the study without imaging variables investigated clinical 
variables to predict CT outcomes [20]. The median number of 
non-imaging variables was 2.5, (IQR 1 to 8, range 0 to 26 [21]). 
Indeed, 18 (36%) studies excluded non-imaging variables. 
Overall, the total number of variables per study was median 9, 
(IQR 6 to 16, range 1 [22] to 47 [17]). Using the “rule of ten” 
[23], only 9 (18%) studies appeared adequately powered [19, 
20, 22, 24–29] (Fig. 2). Details of variables non-significant in 
univariate analysis were omitted by 24 (24%) studies.

Author evaluation

Only 15 (15%) studies presented an evaluation alongside 
index models: 7 used internal cross-evaluation [15, 30–35], 
4 used temporal evaluation [17, 20, 36, 37], 2 combined 
internal and temporal [38, 39], and only 2 used external 
evaluation [40, 41]. No model was updated.

External evaluation

Regarding data necessary to permit external evaluation, 20 
(20%) studies presented the model equation (or nomogram) 

Fig. 1  PRISMA diagram of arti-
cle selection for the systematic 
review [11]
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in print or online [13, 15–17, 26, 29, 36–39, 41–50]. Regres-
sion coefficients/hazard ratios/odds ratios for individual vari-
ables ultimately included in the model were omitted by 10 
(50%) articles [44, 51–59]. Of the 47 studies describing Cox 
models, only 7 (15%) presented the risk table [4, 14, 37, 54, 
60–62] and just 6 (13%) presented the baseline hazard [33, 
41, 43, 63–65]. Of the 55 studies describing non-Cox mod-
els, only 2 (4%) presented the intercept (necessary to evalu-
ate absolute risk probabilities) in the text [17, 26]. While 

the term “prognostic index” appeared in just 2 (2%) articles 
[66, 67], neither specified the value for their own model. A 
Kaplan–Meier curve of the final model was presented in 20 
(20%) articles.

The 98 studies attracted 4224 citations, median 28 per 
study (IQR 19 to 49, range 3 [68] to 270 [69]). Forty-five 
were non-English. Five hundred fifty-nine (13%) were 
self-citations. Only five [17, 20, 35, 37, 41] of the 98 study 
models were subsequently externally evaluated (one evalu-
ated twice [35]), i.e. six (6%) external evaluations [70–75]. 
Three did not state “validation” or “evaluation” in the title or 
abstract [71, 72, 75]. A radiogenomic model of renal cancer 
[37] was evaluated subsequently by the same authors, using 
patients recruited prospectively from a different institution 
[71]. The remaining five evaluations did not include authors 
from the original publication. Two of these developed their 
own model alongside the evaluation: A model to predict 
head CT features from clinical factors [20] was evaluated 
externally on 5296 cases [70], alongside redevelopment of 
a second model. A nomogram to predict survival following 
selective internal radiation therapy [41] was evaluated before 
development of a new model for thermal ablation [72]. A 
model predicting complications following renal cryoablation 
[17] was externally evaluated in 201 patients from another 

Fig. 2  a Scatterplot of studies included in the systematic review. The 
x-axis indicates the number of patient events per study, and the y-axis 
indicates the total number of predictor variables per study. Studies 
above the threshold (crosses) appear underpowered whereas those 
below (dots) appear adequately powered. b Bar chart of individual 
research articles where the x-axis illustrates the number of indi-
vidual radiomic/imaging variables and clinical variables per study. 
The y-axis describes the number of variables that should be studied 
according to the “rule of thumb”, which requires at least 10 patient 
events per variable. Studies above the horizontal line appear under-
powered

Fig. 3  PROBAST assessment [12] of the 6 external evaluations for 
(a) risk of bias and (b) concerns for applicability. Studies are catego-
rised into either low, unclear, or high for each domain (participants, 
predictors, outcomes, analysis, and overall)
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institution [73]. A CT model of blunt abdominal trauma [35] 
was evaluated by two groups, one of whom found it superior 
to other scores [74], and another who supplemented it using 
repeated CT [75].

PROBAST assessment

PROBAST [12] assessment of all six external evaluations 
for risk of bias is shown in Fig. 3a. Overall risk of bias was 
“high” for three evaluations and “unclear” for the remain-
ing three. None attracted a “low” risk of bias. Applicability 
scores are shown in Fig. 3b. Similarly, no external evalua-
tion attracted a “low” overall score for applicability con-
cerns: Two evaluations were considered “high risk” and the 
remaining four “unclear”.

Discussion

Various methods assess model performance. Internal evalu-
ation reuses data already exploited for development while 
temporal evaluation uses patients from the same source, but 
recruited at different times; both overestimate performance. 
External evaluation uses patients from different centres, 
potentially different clinical pathways, and even different 
countries (“geographic” evaluation), and avoids “allegiance 
bias” if researchers are uninvolved with the original devel-
opment [9]. Fundamentally, external evaluation replicates 
research results to ensure they are “true”, a cornerstone of 
the scientific method [10]. We avoid the term “validation”, 
which implies success. “Evaluation” is preferable, resulting in 
a “valid” or “invalid” model, depending on outcome [5, 10].

Multivariable models presently comprise a substantial 
proportion of imaging research, and publication is accel-
erating as access to data processing increases: The number 
of models published annually increased during our search 
period. Our primary objective was to determine if research 
effort is wasted because these models go unused. Ultimately, 
we found that the large majority of published models are 
never evaluated: From 98 index articles, we identified just 
six external evaluations following model publication, five of 
which originated from researchers unrelated to model devel-
opment (two evaluated the same model). This suggests most 
models never enter clinical practice since publications dem-
onstrating “real world” utility are mandatory for implementa-
tion [9]. We found that only 15% of index model publications 
incorporated an evaluation of any description (and most were 
internal and/or temporal), stressing the need for subsequent 
external evaluation. Our findings also suggest that authors do 
not perform later external evaluations of their own models. 
Obtaining external data may be a disincentive and authors 
may lack methodological skills or motivation, especially if 
they believe new models will be easier to publish. One model 

[38] prompted a Letter-To-The-Editor asking why there was 
no evaluation [76]. The authors agreed that implementation 
required “additional experience with its use in a large cohorts 
of patients” but expressed no intention to do this [76].

The dearth of external evaluations also suggest that index 
models lack scientific credibility, do not answer a useful 
clinical question, or report insufficient data to permit evalu-
ation. Regarding scientific credibility, like others [77], we 
found model development usually underpowered, with most 
investigating excessive factors versus patient events. A typi-
cal example examined 47 predictors, but with just 23 events 
in 56 patients, the authors were powered to investigate only 
two [47]. TRIPOD (Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis) is 
explicit that authors, “Present the full prediction model to 
allow predictions for individuals (i.e. all regression coeffi-
cients, and model intercept or baseline survival at a given 
time point)” [78]. The model equation is simply the math-
ematical combination of variables and their weightings. Pub-
lishing a model without the equation is akin to publishing a 
recipe without the quantity of ingredients. Models should 
present regression coefficient/odds ratio for all variables, and 
the intercept [79]. Cox models estimate survival relative to 
baseline survival, so survival at given time-points requires 
the cumulative baseline hazard [10, 78]. It is also desirable 
to present Kaplan-Meier curves for the groups predicted by 
the model (as opposed to for individual predictors) [10]. 
Nevertheless, we found most studies presented insufficient 
data for others to attempt evaluation. Only 20% presented an 
equation/nomogram, and even fewer explained its interpreta-
tion. Just 13% of Cox models reported the baseline hazard. 
Although “prognostic index” is the main product of a Cox 
model [10], we identified this term in just two articles, and 
then only in their discussion. Non-significant univariate anal-
yses were often omitted, something not recommended, espe-
cially with low event rates [80]. Omission means that readers 
cannot determine the complete range of factors investigated 
nor assess power or overfitting risks. Omission also frustrates 
systematic review of investigated factors. Furthermore, using 
a two-step approach to exclude variables based on univariate 
analysis is considered statistically flawed [80].

External evaluation determines “discrimination” for 
new patients, namely how accurately events are separated 
overall, for example disease/no-disease? “Calibration” 
describes accuracy for individual diagnoses/predictions. 
Discrimination is more important because models can be 
re-calibrated. Fundamentally, external evaluation does not 
entail re-development using new data. Rather, evaluation 
employs the same factors and weightings used by the index 
model. The model may then be updated in the light of the 
evaluation, by re-weighting established factors, or adding 
new factors [81]. We identified only two external evaluations 
that attempted recalibration [70, 72]. Statisticians argue it is 
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more efficient to update existing models [6], but this advice 
is usually ignored; over 60 different models predict breast 
cancer outcomes [82]. We found that most workers citing 
published models invariably repeated development, creating 
new models “from scratch” using new univariate analyses. 
This simply creates yet another unevaluated model and does 
not advance the field. For example, a model predicting axil-
lary lymph node metastases from breast cancer via PET/
CT [19] was not evaluated, with subsequent researchers 
choosing instead to redevelop a new model to answer the 
same question [83]. Rather than evaluate their own model 
predicting lung cancer [65], the same authors subsequently 
redeveloped another model with additional variables [84]. 
Instead, it would be more efficient to evaluate the first model 
and then determine if prediction improved when new vari-
ables are added. Failure to evaluate existing models is regret-
table because combining older development data with new 
information increases model stability.

As a secondary aim, we assessed identified external 
evaluations for risk of bias and applicability concerns using 
PROBAST [12]. We found all six attracted “high” or “unclear” 
risk for both these domains, suggesting that evaluations 
themselves are methodologically questionable. For example, 
evaluation of a model developed to predict survival following 
selective internal radiation therapy for liver metastases [41] 
was evaluated in patients treated with thermal ablation, which 
appears illogical [72]. An index model to predict surgical inter-
vention following blunt abdominal trauma [35] was evaluated 
in patients in whom “significant injury” was undefined [74]. 
Via systematic review, Collins found that most external evalu-
ations were poorly designed and reported themselves [85].

Our review does have limitations. We investigated mod-
els developed by radiologists, published in imaging jour-
nals, ignoring imaging models in non-radiological journals. 
However, as radiologists ourselves, we were interested in 
the fate of models published in our journals. We concen-
trated on highly cited journals, hypothesising these were 
most likely to report high-quality models deserving exter-
nal evaluation. Searching all radiological journals would be 
prohibitively intensive for little additional return. We wished 
simply to accrue a representative sample of models sufficient 
to answer our hypothesis (doubling our a priori target of 
50). While we initially intended to concentrate on prognos-
tic models, around one-quarter of models identified were 
diagnostic, and we included these; prediction and diagnosis 
should not be confounded. We allowed a generous time hori-
zon following model publication so as to capture all subse-
quent evaluations: While it is possible index model reporting 
quality improved subsequent to 2015, advancement would 
need to be dramatic to alter our findings. Authors might 
argue that not all multivariable models claim clinical util-
ity, with some simply “predictor finding”. If so, we would 
question the point of predictor finding if clinical utility is 

not the eventual aim. For example, radiomic factors result 
in numerical values with no meaning for individualised 
prognosis/diagnosis unless portrayed in an understandable 
format, e.g. within a multivariable model. Models are also 
required to combine multiple factors in an interpretable fash-
ion. Ultimately, our review suggests that predictor finding 
is not translating to individualised patient care, although we 
accept that failure to identify a published external evaluation 
does not prove that the model was never used clinically. We 
are also aware that some researchers consider “traditional” 
regression-based models inferior to those developed using 
machine learning, claiming the latter are more accurate, 
and a search period subsequent to ours would undoubtedly 
identify a greater proportion of such models. We excluded 
just one model because development did not use regression. 
Also, systematic review suggests that machine-learning 
models are neither more accurate [86] nor reported more 
comprehensively than regression-based models [87].

In summary, systematic review suggests that very few 
prognostic or diagnostic models published in the radiologi-
cal literature are evaluated externally, either by the original 
researchers or by others. This may arise because authors pre-
sent insufficient detail to permit evaluation by others, because 
models are not scientifically credible or do not answer a use-
ful clinical question, or because evaluation is perceived as 
arduous, unproductive, or less likely to culminate in scien-
tific publication. Authors should report models with sufficient 
methods to allow external evaluation, via adherence to TRI-
POD guidelines (78). Ultimately, to best use a scarce research 
resource, it would be more efficient and clinically worthwhile 
for researchers to concentrate on model evaluation and updat-
ing rather than continual re-development.
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