Skip to main content

Advertisement

Log in

Hepatocellular carcinoma in patients with non-alcoholic fatty liver disease is associated with heterogeneous pattern of fat infiltration in skeletal muscles

  • Gastrointestinal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the association between fat infiltration in skeletal muscles (myosteatosis) and hepatocellular carcinoma (HCC) in patients with non-alcoholic fatty liver disease (NAFLD).

Methods

In a cross-sectional cohort of 72 histologically proven NAFLD patients (n = 38 with non-alcoholic steatohepatitis; NASH), among which 20 had HCC diagnosed on biopsy, we used proton density fat fraction (PDFF) at MRI to evaluate myosteatosis in skeletal muscles (mean fat fraction and first order radiomic-based pattern) at the third lumbar level, namely in erector spinae (ES), quadratus lumborum (QL), psoas, oblique, and rectus muscles.

Results

PDFFES was 70% higher in patients with HCC when compared to those without HCC (9.6 ± 5.5% versus 5.7 ± 3.0%, respectively, p < 0.001). In multivariate logistic regression, PDFFES was a significant predictor of the presence of HCC (AUC = 0.72, 95% CI 0.57–0.86, p = 0.002) independently from age, sex, visceral fat area, and liver fibrosis stage (all p < 0.05). The relationship between PDFFES and HCC was exacerbated in patients with NASH (AUC = 0.79, 95% CI 0.63–0.86, p = 0.006). In patients with NASH, radiomics features of heterogeneity such as energy and entropy in any of the paraspinal muscles (i.e., ES, QL, or psoas) were independent predictors of HCC. EnergyES identified patients with HCC (n = 13) in the NASH population with AUC = 0.92 (95% CI 0.82–1.00, p < 0.001).

Conclusion

In patients with NAFLD, and more specifically in those with NASH, the degree and heterogeneity of myosteatosis is independently associated with HCC irrespective of liver fibrosis stage.

Clinical relevance statement

Our data suggest that myosteatosis could be used as a biomarker of HCC in the ever-expanding NAFLD population and pave the way for further investigation in longitudinal studies.

Key Points

• HCC in patients with non-alcoholic fatty liver disease, and more specifically in those with non-alcoholic steatohepatitis, is independently associated with severe fatty infiltration (myosteatosis) of paravertebral skeletal muscles.

• Association between myosteatosis and HCC is independent from liver fibrosis stage.

• Histogram-based radiomics features of myosteatosis predicts the risk of HCC in patients with non-alcoholic steatohepatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

AUC:

Area under the receiver operating characteristic curve

BMI:

Body mass index

HCC:

Hepatocellular carcinoma

MRI:

Magnetic resonance imaging

NAFL:

Non-alcoholic fatty liver

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

PDFF:

Proton density fat fraction

ROI:

Region of interest

References

  1. Rumgay H, Arnold M, Ferlay J et al (2022) Global burden of primary liver cancer in 2020 and predictions to 2040. J Hepatol. 77(6):1598–1606. https://doi.org/10.1016/j.jhep.2022.08.021

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin. doi:https://doi.org/10.3322/caac.20107.Available

  3. El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142(6):1264-1273.e1. https://doi.org/10.1053/j.gastro.2011.12.061

    Article  PubMed  Google Scholar 

  4. Sanyal AJ (2019) Past, present and future perspectives in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 16(6):377–386. https://doi.org/10.1038/s41575-019-0144-8

    Article  PubMed  Google Scholar 

  5. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ (2018) Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67(1):123–133. https://doi.org/10.1002/hep.29466

    Article  CAS  PubMed  Google Scholar 

  6. Huang DQ, El-Serag HB, Loomba R (2021) Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 18(4):223–238. https://doi.org/10.1038/s41575-020-00381-6

    Article  PubMed  Google Scholar 

  7. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1):73–84. https://doi.org/10.1002/hep.28431

    Article  PubMed  Google Scholar 

  8. Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M (2019) From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol 16(7):411–428. https://doi.org/10.1038/s41575-019-0145-7

    Article  PubMed  Google Scholar 

  9. Nachit M, Leclercq IA (2019) Emerging awareness on the importance of skeletal muscle in liver diseases: time to dig deeper into mechanisms! Clin Sci 133(3):465–481. https://doi.org/10.1042/CS20180421

    Article  CAS  Google Scholar 

  10. Aleixo GFP, Shachar SS, Nyrop KA, Muss HB, Malpica L, Williams GR (2020) Myosteatosis and prognosis in cancer: systematic review and meta-analysis. Crit Rev Oncol Hematol. 145:102839. https://doi.org/10.1016/j.critrevonc.2019.102839

    Article  CAS  PubMed  Google Scholar 

  11. Martin L, Birdsell L, MacDonald N et al (2013) Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol 31(12):1539–1547. https://doi.org/10.1200/JCO.2012.45.2722

    Article  PubMed  Google Scholar 

  12. Hamaguchi Y, Kaido T, Okumura S et al (2016) Muscle steatosis is an independent predictor of postoperative complications in patients with hepatocellular carcinoma. World J Surg 40(8):1959–1968. https://doi.org/10.1007/s00268-016-3504-3

    Article  PubMed  Google Scholar 

  13. Fujiwara N, Nakagawa H, Kudo Y et al (2015) Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J Hepatol 63(1):131–140. https://doi.org/10.1016/j.jhep.2015.02.031

    Article  CAS  PubMed  Google Scholar 

  14. Tachi Y, Kozuka A, Hirai T et al (2018) Skeletal muscle fat deposition is associated with hepatocellular carcinoma development in patients with chronic liver disease. Nutrition 54:83–88. https://doi.org/10.1016/j.nut.2018.03.011

    Article  PubMed  Google Scholar 

  15. Kitajima Y, Eguchi Y, Ishibashi E et al (2010) Age-related fat deposition in multifidus muscle could be a marker for nonalcoholic fatty liver disease. J Gastroenterol 45(2):218–224. https://doi.org/10.1007/s00535-009-0147-2

    Article  PubMed  ADS  Google Scholar 

  16. Kitajima Y, Hyogo H, Sumida Y et al (2013) Severity of non-alcoholic steatohepatitis is associated with substitution of adipose tissue in skeletal muscle. J Gastroenterol Hepatol Aust 28(9):1507–1514. https://doi.org/10.1111/jgh.12227

    Article  Google Scholar 

  17. Nachit M, Kwanten WJ, Thissen JP, et al (2021) Muscle fat content is strongly associated with NASH: a longitudinal study in patients with morbid obesity. J Hepatol. doi:https://doi.org/10.1016/j.jhep.2021.02.037

  18. Nachit M, Lanthier N, Rodriguez J et al (2021) A dynamic association between myosteatosis and liver stiffness: results from a prospective interventional study in obese patients. JHEP Rep. 3(4):100323. https://doi.org/10.1016/j.jhepr.2021.100323

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hsieh YC, Joo SK, Koo BK et al (2023) Myosteatosis, but not sarcopenia, predisposes NAFLD subjects to early steatohepatitis and fibrosis progression. Clin Gastroenterol Hepatol. 21:388–397.e10. https://doi.org/10.1016/j.cgh.2022.01.020

  20. Bedossa P, Poitou C, Veyrie N et al (2012) Histopathological algorithm and scoring system for evaluation of liver lesions in morbidly obese patients. Hepatology 56(5):1751–1759. https://doi.org/10.1002/hep.25889

    Article  PubMed  Google Scholar 

  21. Bedossa P, Burt AA, Gouw AHA et al (2014) Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology. https://doi.org/10.1002/hep.27173

    Article  PubMed  Google Scholar 

  22. Wanless IR (1995) Terminology of nodular hepatocellular lesions. Hepatology 22(3):983–993. https://doi.org/10.1002/hep.1840220341

    Article  Google Scholar 

  23. Loumaye A, de Barsy M, Nachit M et al (2015) Role of Activin A and myostatin in human cancer cachexia. J Clin Endocrinol Metab 100(5):2030–2038. https://doi.org/10.1210/jc.2014-4318

    Article  CAS  PubMed  Google Scholar 

  24. Loumaye A, de Barsy M, Nachit M et al (2017) Circulating activin A predicts survival in cancer patients. J Cachexia Sarcopenia Muscle 8(5):768–777. https://doi.org/10.1002/jcsm.12209

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bachmann R, Leonard D, Nachit M et al (2018) Comparison between abdominal fat measured by CT and anthropometric indices as prediction factors for mortality and morbidity after colorectal surgery. Acta Gastroenterol Belg 81(4):477–483

  26. Keddar M, Muylle T, Carrie E et al (2020) Non-invasive quantification of fat deposits in skeletal muscle predicts cardiovascular outcome in kidney failure. Front Physiol 11:1–11. https://doi.org/10.3389/fphys.2020.00130

  27. Nachit M, Lanthier N, Rodriguez J et al (2021) A dynamic association between myosteatosis and liver stiffness: results from a prospective interventional study in obese patients. JHEP Rep. 3(4):100323. https://doi.org/10.1016/j.jhepr.2021.100323

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. https://doi.org/10.1148/radiol.2020191145

    Article  PubMed  Google Scholar 

  29. Heckman KM, Otemuyiwa B, Chenevert TL et al (2019) Validation of a DIXON-based fat quantification technique for the measurement of visceral fat using a CT-based reference standard. Abdom Radiol (NY) 44(1):346–354. https://doi.org/10.1007/s00261-018-1678-x

  30. Hu HH, Chen J, Shen W (2016) Segmentation and quantification of adipose tissue by magnetic resonance imaging. MAGMA 29(2):259–276. https://doi.org/10.1007/s10334-015-0498-z

    Article  CAS  PubMed  Google Scholar 

  31. Meister FA, Lurje G, Verhoeven S et al (2022) The role of sarcopenia and myosteatosis in short- and long-term outcomes following curative-intent surgery for hepatocellular carcinoma in a European cohort. Cancers (Basel) 14(3):720. https://doi.org/10.3390/cancers14030720

  32. Chen BB, Liang PC, Shih TTF et al (2023) Sarcopenia and myosteatosis are associated with survival in patients receiving immunotherapy for advanced hepatocellular carcinoma. Eur Radiol 33(1):512–522. https://doi.org/10.1007/s00330-022-08980-4

    Article  CAS  PubMed  Google Scholar 

  33. Yi X, Fu Y, Long Q et al (2022) Myosteatosis can predict unfavorable outcomes in advanced hepatocellular carcinoma patients treated with hepatic artery infusion chemotherapy and anti-PD-1 immunotherapy. Front Oncol. 12:892192. https://doi.org/10.3389/fonc.2022.892192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Correa-de-Araujo R, Addison O, Miljkovic I et al (2020) Myosteatosis in the context of skeletal muscle function deficit: an interdisciplinary workshop at the National Institute on Aging. Front Physiol 11. doi:https://doi.org/10.3389/fphys.2020.00963

  35. Ahn H, Kim DW, Ko Y et al (2021) Updated systematic review and meta-analysis on diagnostic issues and the prognostic impact of myosteatosis: a new paradigm beyond sarcopenia. Ageing Res Rev. 70:101398. https://doi.org/10.1016/j.arr.2021.101398

  36. Amini B, Boyle SP, Boutin RD, Lenchik L (2019) Approaches to assessment of muscle mass and myosteatosis on computed tomography: a systematic review. J Gerontol A Biol Sci Med Sci 74(10):1671–1678. https://doi.org/10.1093/gerona/glz034

  37. Andreoli A, Garaci F, Cafarelli FP, Guglielmi G (2016) Body composition in clinical practice. Eur J Radiol 85(8):1461–1468. https://doi.org/10.1016/j.ejrad.2016.02.005

    Article  PubMed  Google Scholar 

  38. Montano-Loza AJ, Mazurak VC, Ebadi M et al (2018) Visceral adiposity increases risk for hepatocellular carcinoma in male patients with cirrhosis and recurrence after liver transplant. Hepatology 67(3):914–923. https://doi.org/10.1002/hep.29578

    Article  PubMed  Google Scholar 

  39. Imai K, Takai K, Maeda T et al (2018) Increased visceral fat volume raises the risk for recurrence of hepatocellular carcinoma after curative treatment. Oncotarget 9(18):14058–14067. https://doi.org/10.18632/oncotarget.24500

    Article  PubMed  PubMed Central  Google Scholar 

  40. Meza-Junco J, Montano-Loza AJ, Baracos VE et al (2013) Sarcopenia as a prognostic index of nutritional status in concurrent cirrhosis and hepatocellular carcinoma. J Clin Gastroenterol. https://doi.org/10.1097/MCG.0b013e318293a825

    Article  PubMed  Google Scholar 

  41. Zwanenburg A, Vallières M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338. https://doi.org/10.1148/radiol.2020191145

  42. Mannion AF, Dumas GA, Cooper RG, Espinosa FJ, Faris MW, Stevenson JM (1997) Muscle fibre size and type distribution in thoracic and lumbar regions of erector spinae in healthy subjects without low back pain: normal values and sex differences. J Anat. 190(4):505–513. https://doi.org/10.1017/S0021878296001914

    Article  PubMed  PubMed Central  Google Scholar 

  43. Van Loon LJC, Koopman R, Manders R, Van Der Weegen W, Van Kranenburg GP, Keizer HA (2004) Intramyocellular lipid content in type 2 diabetes patients compared with overweight sedentary men and highly trained endurance athletes. Am J Physiol Endocrinol Metab. doi:https://doi.org/10.1152/ajpendo.00464.2003

  44. Rantanen J, Rissanen A, Kalimo H (1994) Lumbar muscle fiber size and type distribution in normal subjects. Eur Spine J 3(6):331–335. https://doi.org/10.1007/BF02200146

    Article  CAS  PubMed  Google Scholar 

  45. Burian E, Syväri J, Holzapfel C et al (2018) Gender-and age-related changes in trunk muscle composition using chemical shift encoding-based water–fat MRI. Nutrients. https://doi.org/10.3390/nu10121972

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kiefer LS, Fabian J, Rospleszcz S et al (2018) Assessment of the degree of abdominal myosteatosis by magnetic resonance imaging in subjects with diabetes, prediabetes and healthy controls from the general population. Eur J Radiol 105:261–268. https://doi.org/10.1016/j.ejrad.2018.06.023

    Article  PubMed  Google Scholar 

  47. Arbanas J, StarcevicKlasan G, Nikolic M, Jerkovic R, Miljanovic I, Malnar D (2009) Fibre type composition of the human psoas major muscle with regard to the level of its origin. J Anat 215(6):636–641. https://doi.org/10.1111/j.1469-7580.2009.01155.x

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gumucio JP, Qasawa AH, Ferrara PJ et al (2019) Reduced mitochondrial lipid oxidation leads to fat accumulation in myosteatosis. FASEB J 33(7):7863–7881. https://doi.org/10.1096/fj.201802457RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Benador IY, Veliova M, Mahdaviani K et al (2018) Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab 27(4):869-885.e6. https://doi.org/10.1016/j.cmet.2018.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gemmink A, Daemen S, Brouwers B et al (2018) Dissociation of intramyocellular lipid storage and insulin resistance in trained athletes and type 2 diabetes patients; involvement of perilipin 5? J Physiol 596(5):857–868. https://doi.org/10.1113/JP275182

    Article  CAS  PubMed  Google Scholar 

  51. Bosma M (2016) Lipid droplet dynamics in skeletal muscle. Exp Cell Res 340(2):180–186. https://doi.org/10.1016/j.yexcr.2015.10.023

    Article  CAS  PubMed  Google Scholar 

  52. Severinsen MCK, Pedersen BK (2020) Muscle–organ crosstalk: the emerging roles of myokines. Endocr Rev 41(4):594–609. https://doi.org/10.1210/endrev/bnaa016

  53. Rome S, Forterre A, Mizgier ML, Bouzakri K (2019) Skeletal musclereleased extracellular vesicles: state of the art. Front Physiol 10.. doi:https://doi.org/10.3389/fphys.2019.00929

  54. Whitham M, Parker BL, Friedrichsen M et al (2018) Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab 27(1):237-251.e4. https://doi.org/10.1016/j.cmet.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  55. Arfianti A, Pok S, Barn V et al (2020) Exercise retards hepatocarcinogenesis in obese mice independently of weight control. J Hepatol 73(1):140–148. https://doi.org/10.1016/j.jhep.2020.02.006

    Article  CAS  PubMed  Google Scholar 

  56. Reig M, Gambato M, Man NK et al (2019) Should patients with NAFLD/NASH Be surveyed for HCC? Transplantation 103(1):39–44. https://doi.org/10.1097/TP.0000000000002361

    Article  PubMed  Google Scholar 

  57. Younes R, Bugianesi E (2018) Should we undertake surveillance for HCC in patients with NAFLD? J Hepatol 68(2):326–334. https://doi.org/10.1016/j.jhep.2017.10.006

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by a Ph.D. fellowship from FRIA (FNRS, Belgium) (grant number 31618719 (to M.N.)), by a post-doctoral fellowship of Bpifrance (grant PSPC HECAM to A.A.)), and by an FNRS PDR grant (T.0141.19 (to I.A.L.)). The study was performed by a laboratory member of France Life Imaging network (grant ANR-11-INBS-0006).

Author information

Authors and Affiliations

Authors

Contributions

M.N. conceived and designed the study; M.D.B., VV, and BVB recruited the patients and carried out data collection in human studies. M.N. and AA analyzed and interpreted the data. VP analyzed liver biopsies. IL and BVB critically discussed the study design, data, and manuscript for scientific content. M.N., M.D.B., IL, and BVB wrote the manuscript, with contribution from all authors.

Corresponding author

Correspondence to Maxime Nachit.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Maxime Nachit.

Conflict of interest

The authors have no conflict of interest to disclose.

Statistic and biometry

The authors thank Lieven Desmet (Louvain Institute of Data Analysis and Modeling in economics and statistics, Louvain-la-Neuve, Belgium) for assistance for statistical analyses.

Informed consent

Informed consent was waived because of the retrospective nature of the study.

Ethical approval

This retrospective study (project no. 2017–030) obtained local IRB approval.

Study subjects or cohorts overlap

Some patients were reported in https://link.springer.com/article/10.1007/s00330-021-08261-6. The paper is unrelated to the present work.

Methodology

• retrospective study

• performed at one institution

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 520 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nachit, M., Dioguardi Burgio, M., Abyzov, A. et al. Hepatocellular carcinoma in patients with non-alcoholic fatty liver disease is associated with heterogeneous pattern of fat infiltration in skeletal muscles. Eur Radiol 34, 1461–1470 (2024). https://doi.org/10.1007/s00330-023-10131-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-023-10131-2

Keywords

Navigation