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Abstract
Objectives Existing brain extraction models should be further optimized to provide more information for oncological 
analysis. We aimed to develop an nnU-Net–based deep learning model for automated brain extraction on contrast-enhanced 
T1-weighted (T1CE) images in presence of brain tumors.
Methods This is a multi-center, retrospective study involving 920 patients. A total of 720 cases with four types of intracranial 
tumors from private institutions were collected and set as the training group and the internal test group. Mann–Whitney U test 
(U test) was used to investigate if the model performance was associated with pathological types and tumor characteristics. 
Then, the generalization of model was independently tested on public datasets consisting of 100 glioma and 100 vestibular 
schwannoma cases.
Results In the internal test, the model achieved promising performance with median Dice similarity coefficient (DSC) of 
0.989 (interquartile range (IQR), 0.988–0.991), and Hausdorff distance (HD) of 6.403 mm (IQR, 5.099–8.426 mm). U test 
suggested a slightly descending performance in meningioma and vestibular schwannoma group. The results of U test also 
suggested that there was a significant difference in peritumoral edema group, with median DSC of 0.990 (IQR, 0.989–0.991, 
p = 0.002), and median HD of 5.916 mm (IQR, 5.000–8.000 mm, p = 0.049). In the external test, our model also showed 
to be robust performance, with median DSC of 0.991 (IQR, 0.983–0.998) and HD of 8.972 mm (IQR, 6.164–13.710 mm).
Conclusions For automated processing of MRI neuroimaging data presence of brain tumors, the proposed model can perform 
brain extraction including important superficial structures for oncological analysis.
Clinical relevance statement The proposed model serves as a radiological tool for image preprocessing in tumor cases, 
focusing on superficial brain structures, which could streamline the workflow and enhance the efficiency of subsequent 
radiological assessments.
Key Points 
• The nnU-Net–based model is capable of segmenting significant superficial structures in brain extraction.
• The proposed model showed feasible performance, regardless of pathological types or tumor characteristics.
• The model showed generalization in the public datasets.
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Abbreviations
ACRIN  American College of Radiology Imaging 

Network
BrainMaGe  Brain mask generator
CE  Cross-entropy
CNN  Convolutional neural network
DCS   Dice similarity coefficient
FNR  False-negative rate
FPR  False-positive rate
HD  Hausdorff distance
IQR  Interquartile range
IVS  Invaded venous sinus
MRI  Magnetic resonance image
MSD  Mean surface distance
PACS  Picture Archiving and Communication 

System
PE  Peritumoral edema
ROBEX  Robust Learning-Based Brain Extraction
ROIs  Region of interest
T1CE  Contrast-enhanced T1-weighted
TCGA-GBM  The Cancer Genome Atlas Glioblastoma
TCGA-LGG  The Cancer Genome Atlas Lower Grade 

Glioma
TCIA  The Cancer Imaging Archive
U test  Mann-Whitney U test
Wilcoxon test  Wilcoxon signed rank test

Introduction

Brain extraction, or skull stripping, refers to the process of 
removing skull and non-brain tissue in medical images. It 
is considered as a preliminary but important pre-processing 
step as its accuracy has a direct influence on the quality of 
subsequent image processing and the reliability of statistical 
analysis [1–6]. Manual segmentation of the brain is labo-
rious, tedious, and time-consuming, commonly leading to 
significant inter- and intra-reader variations that may lead to 
analysis deviation [7]. With the development of deep learn-
ing methods in recent years, particularly in convolutional 
neural network (CNN) algorithms, automated methods have 
obtained state-of-the-art results in medical image segmenta-
tion [8–11]. However, the brain extraction models for cases 
present with brain tumors on contrast-enhanced T1-weighted 
(T1CE) magnetic resonance images (MRIs) should be fur-
ther optimized to meet the demands from both clinicians and 
neuroimaging researchers.

Nowadays, the criteria defined by Eskildsen et al were 
widely used in previous studies. It is cited as follows: (a) 
inclusion of cerebrum, cerebellum, brainstem, and inter-
nal vessels and arteries, along with cerebrospinal fluid in 
ventricles, internal cisterns, and deep sulci; (b) exclusion 
of the skin, skull, eyes, dura mater, external blood vessels, 

and nerves [12], whereas, as the most important radiological 
examination for brain tumor evaluation, more information 
should be included in region of interest (ROIs) to provide a 
clear depiction of lesion location, boundary, and the relation-
ship between tumor and adjacent structures.

Generally, the first concern is that the superficial struc-
tures on brain surface are not included in the mask (mainly 
referring to venous sinus and superficial vessels), while 
exclusion of these structures can significantly affect sub-
sequent therapeutic decisions or oncological analysis [6, 
13–16]. For example, in preoperative simulation that uses 
extracted brain for 3D reconstruction, tumoral invasion of 
structures on the brain surface is one of the major concerns 
for neurosurgeons that can significantly determine the surgi-
cal strategy [15, 17]. Exclusion of these structures may be 
inadequate and not appropriate. The second one is that all 
previous CNN models are trained and validated on datasets 
with only glioma cases [18–21]. As acknowledged by pre-
vious studies, the performance of supervised CNN models 
that were exclusively trained on scans of glioma subjects 
may be limited in cases with different types of brain tumors 
[18, 19]. Laborious manual correction and delineation may 
be still needed in these studies. The third one is that whether 
or to what extent can tumor characteristics influence model 
performance has not been answered yet. Obtaining the over-
all highest performance has become the primary objective 
in all previous studies, undermining other clinical concerns 
such as reliability, generalization, and convenience of a new 
method on tumor entities [18–22]. Previous methodological 
studies showed advanced performance with Dice similarity 
coefficients (DSCs) of more than 0.950, while the features 
of different types of brain tumors showed interspecific and 
intraspecific differences that may also lead to performance 
deviation [23, 24].

Therefore, to achieve the objective of clinical translation 
and widespread usage, a CNN model was developed with the 
latest state-of-art CNN architecture to perform automated 
brain extraction on T1CE MRIs in presence of brain tumors. 
Our model was optimized by including more brain surface 
structures in training, and by involving a multi-center dataset 
covering diversified tumor entities. Moreover, a series of 
intra-group analyses were performed to investigate if our 
model could feasibly segment brain images regardless of 
tumor characteristics.

Materials and methods

Datasets

This was a retrospective, multi-center research. Figure 1 
shows the flowchart of patient selection. In private center 
A and center B, 532 cases and 368 cases were initially 
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selected from the radiological department between January 
2016 and December 2021. All of the cases underwent stand-
ard pre-treatment magnetic resonance scans and received 
surgical resection in our institutions. In total, 180 patients 
were excluded based on the following exclusion criteria: (1) 
MRIs with severe motion artifacts (N = 85); 92) intervention 
history before MR scans, such as biopsy and radiotherapy 
(N = 52); 93) recorded history of other brain diseases, such 
as hypertensive intracerebral hemorrhage (N = 43). Eventu-
ally, 429 cases from center A and 291 cases from center B 
were included in the current study.

The T1CE images closest to clinical intervention were 
collected from the Picture Archiving and Communication 
System (PACS), including three orientations of axial, sag-
ittal, and coronal views. Clinical features and radiologi-
cal features were also collected and interpreted, including 
age, gender, pathological diagnosis, and imaging findings. 
Detailed MR scanning parameters are shown in Supplemen-
tal Material 1.

As for public datasets, a total number of 200 patients with 
complete, high-quality MR scans were randomly selected 
from three The Cancer Imaging Archive (TCIA) datasets, 
including The Cancer Genome Atlas Glioblastoma (TCGA-
GBM) [25], The Cancer Genome Atlas Lower Grade Glioma 
(TCGA-LGG) [26], American College of Radiology Imag-
ing Network (ACRIN) 6684 [27], and Vestibular-Schwan-
noma-SEG [28].

Definition of brain mask and ground truth manual 
segmentation

We defined the following criteria for ground truth mask: (a) 
including all cerebral and cerebellar gray and white matter, 

brainstem, cerebrospinal fluid in the ventricles, and the cer-
ebellar cistern, lesion sites in the brain, superficial venous 
sinuses (sagittal sinus and transverse sinus), and (b) exclud-
ing the skin, skull, eyes, dura mater, cavernous sinus area, 
and exterior blood vessels and nerves (such as carotid arter-
ies and optic chiasm).

Manual segmentation was performed using 3D Slicer 
software [29]. The brain masks were segmented by five 
experienced neuroradiologists with more than 10 years of 
experience in image reading. Following the instructions of 
software, the mask was delineated on three orientations in 
consensus reading, followed by reviewing and correction by 
two senior neuroradiologists (F.M.Z. and J.G.X., with more 
than 20 years of experience in image reading). To exam-
ine intra-observer repeatability, thirty cases were randomly 
selected and segmented again with at least 15-day interval.

Deep learning model for automated brain 
extraction

The latest state-of-art segmentation CNN network, nnU-Net, 
was used for modeling. It is an advanced CNN network con-
taining a deep learning–based self-configuration module that 
can automatically configure image pre-processing, network 
architecting, cross-validation training, and post-processing 
[30]. The 3D full-resolution U-Net model was determined 
as the optimal model architecting, and the configuration of 
the model is provided in Supplemental Material 2. As shown 
in Fig. 1, the cases from private datasets were randomly 
divided into the training group and the internal test group in 
a ratio of 4:1. A fivefold cross-validation strategy was used 
in model training.

Fig. 1  Flowchart shows the par-
ticipants selection from internal 
and external groups. TCIA, The 
Cancer Imaging Archive. MRIs, 
magnetic resonance imagings
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Public datasets were used as the independent test group, 
where the generalization of trained model was tested. We 
also validated the performance of existing methods on these 
TCIA datasets, including Robust Learning-Based Brain 
Extraction (ROBEX), HD-BET, and Brain Mask Genera-
tor (BrainMaGe) [18, 19, 31]. All experiments were writ-
ten in Python language, and were performed in the machine 
equipped with four NVIDIA 3090 data center accelerator.

Evaluation metrics and statistical analysis

The imaging findings were interpreted by two senior radiolo-
gists (F.M.Z. and J.G.X.). The CNN models’ performance 
was evaluated by comparing the ground truth and the predic-
tion. A series of commonly used metrics were calculated, 
including median DSC, false-negative rate (FNR), and false-
positive rate (FPR). Two metrics were also introduced to 
make a better demonstration of model performance in seg-
menting brain surface, including Hausdorff distance (HD), 
for measuring the maximal contour distance (mm) between 
the ground truth masks and the predictions, and mean sur-
face distance (MSD), for measuring the average distance 
(mm) between two masks’ boundaries.

Categorical variables were presented with frequencies 
and percentages, and continuous variables were presented 
with medians and interquartile range (IQR). Kolmogo-
rov–Smirnov test, Mann–Whitney U test (U test), and Wil-
coxon signed rank test (Wilcoxon test) were carried out in 
intra-group analysis, as appropriate. Statistical analysis was 
performed with GraphPad Prism. p < 0.05 implicated statis-
tical significance. 3DMeshMetric was used to visualize the 
spatial distribution of errors between the ground truth mask 
and the prediction. Volume rendering of 3D brain image 
was performed by using composite with shading technology 
without surface smoothing.

Results

Patient characteristics

A total number of 720 patients (720 exams) were collected 
from private institution A and institution B. The mean 
age of patients was 53 years old, and the sex ratio was 
male:female = 163:197. As for the pathological distribution, 
505 cases were diagnosed with meningioma, 50 cases with 
low-grade glioma, 78 cases with high-grade glioma, and 87 
cases with vestibular schwannoma. For the 200 cases col-
lected from the public dataset, twenty-one cases were pre-
sent with low-grade glioma, 79 cases were with high-grade 
glioma, and 100 cases were with vestibular schwannoma. 
The clinical characteristics of the internal and external data-
sets are represented in Table 1.

Model performance in internal test

Overall, the automated model performed well in the inter-
nal test, with median DSC of 0.989 (IQR, 0.988–0.991), 
FNR of 0.012 (IQR, 0.009–0.015), FPR of 0.008 (IQR, 
0.006–0.012), HD of 6.403 mm (IQR, 5.099–8.426 mm), 
and MSD of 0.013 mm (IQR, 0.011–0.015 mm). Model seg-
mentation performance of cases from the internal test group 
is shown in Fig. 2 and Supplemental Material 3a.

The models’ performance regarding pathological type 
is presented in Table 2. In particular, the model exhib-
ited slightly inferior but statistically significant perfor-
mance in the meningioma dataset, with a median DSC 
of 0.989 (IQR, 0.987–0.990, p < 0.001) and a median 
HD of 7.000 mm (IQR, 5.477–9.165 mm, p = 0.001). 
Similar outcomes were observed in the vestibular 
schwannoma cohort, which represents another type of 

Table 1  Clinical, histopathological, and radiological characteristics of cases from internal and external datasets

Data in parentheses are percentages

Internal dataset External dataset p value

No. of patients 720 200 -
Pathological type Meningioma (N = 505) Low-grade glioma (N = 21) < 0.001

Low-grade glioma (N = 50) High-grade glioma (N = 79)
High-grade glioma (N = 78) Vestibular schwannoma (N = 100)
Vestibular schwannoma (N = 87)

Gender
 Male 326 (45.3%) Not provided -
 Female 394 (54.7%)

Mean age (range) 53 ± 13 (9–81) Not provided -
Skull base tumor 371 (51.5%) 110 (55.0%) 0.384
Peritumoral edema (PE) 255 (35.4%) 77 (38.5%) 0.422
Invaded venous sinus (IVS) 240 (33.3%) 14 (7.0%) < 0.001
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extra-axial tumor, with a median DSC of 0.990 (IQR, 
0.990–0.991, p = 0.027) and a median HD of 5.385 mm 
(IQR, 4.243–6.708 mm, p = 0.010). However, there was 
no significant difference in the low-grade and high-grade 
glioma groups. The box chart and heat map of this intra-
group analysis are shown in Supplemental Material 4a 
and 4b.

Model performance regarding radiological 
characteristics

Among the cases evaluated, 35.4% presented with peritu-
moral edema (PE). As demonstrated in Table 3, results from 
the U test revealed a significant disparity in the PE group, 
with a median DSC of 0.990 (IQR, 0.989–0.991, p = 0.002), 

Fig. 2  A brain extraction example for skull base meningioma from internal test. A–D Axial views. E–H Sagittal views. I–L Coronal views. Seg-
mentation performance of this case is DSC of 0.991, HD of 5.196 mm. MRIs, magnetic resonance imagings

Table 2  Performance of the 
model in different pathological 
types of tumor groups

The p values indicate if there is the statistical significance of the model performance when comparing one 
type of tumor to others. The p value is computed by comparing the DSC and HD for one type of tumor 
with all other three types of tumors put together
DSC Dice similarity coefficient, HD Hausdorff distance, IQR interquartile range

DSC p value HD (mm) p value

Meningioma 0.989 (IQR, 0.987–0.990) < 0.001 7.000 (IQR, 5.477–9.165) 0.001
Low-grade glioma 0.991 (IQR, 0.990–0.991) 0.094 5.916 (IQR, 4.354–8.475) 0.294
High-grade glioma 0.991 (IQR, 0.987–0.991) 0.132 5.521 (IQR, 4.687–7.849) 0.124
Vestibular schwannoma 0.990 (IQR, 0.990–0.991) 0.027 5.385 (IQR, 4.243–6.708) 0.010
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and a median HD of 5.916 mm (IQR, 5.000–8.000 mm, 
p = 0.049). Invaded venous sinus (IVS) was detected in 
240 cases (33.3%), and 51.5% of tumors were located in 
the skull base. However, intra-group analysis indicated 
non-significant results in cases with IVS (DSC = 0.990 
(IQR, 0.988–0.991, p = 0.124), HD = 6.000  mm (IQR, 
5.000–8.062 mm, p = 0.155)), or in cases with skull base 
tumors (DSC = 0.989 (IQR, 0.987–0.990, p = 0.553); 
HD = 7.211 mm (IQR, 5.385–8.775 mm, p = 0.398)). Sup-
plemental Material 4c shows the box plot that indicates the 

intra-group analysis to investigate whether model perfor-
mance is related to tumor characteristics.

Model generalization

The model achieved robust generalization in the independ-
ent datasets with median DSC of 0.991 (IQR, 0.983–0.998), 
FNR of 0.003 (IQR, 0.000–0.011), FPR of 0.008 (IQR, 
0.004–0.020), HD of 8.972 mm (IQR, 6.164–13.710 mm), 
and MSD of 0.013 mm (IQR, 0.006–0.022 mm). Predictions 

Table 3  nnU-Net model 
performance regarding tumor 
characteristics

DSC Dice similarity coefficient, HD Hausdorff distance, IQR interquartile range

Internal test

DSC p value HD (mm) p value

Skull base tumor 0.989 (IQR, 0.987–0.991) 0.553 6.083 (IQR, 5.196–8.306) 0.398
Non-skull base tumor 0.990 (IQR, 0.988–0.991) 7.000 (IQR, 5.099–8.702)
Peritumoral edema (PE) 0.990 (IQR, 0.989–0.991) 0.002 5.916 (IQR, 5.000–8.000) 0.049
Non-peritumoral edema 0.989 (IQR, 0.987–0.991) 6.708 (IQR, 5.385–8.860)
Invaded venous sinus (IVS) 0.990 (IQR, 0.988–0.991) 0.124 6.000 (IQR, 5.000–8.062) 0.155
Non-invaded venous sinus 0.989 (IQR, 0.988–0.991) 6.557 (IQR, 5.196–8.630)

Fig. 3  A brain extraction example for temporal glioblastoma from external test. A–D Axial views. E–H Sagittal views. I–L Coronal views. Seg-
mentation performance of this case is DSC of 0.984, HD of 7.681 mm. MRIs, magnetic resonance imagings
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of good and poor examples from the external test group are 
shown in Fig. 3 and Supplemental Material 3. However, 
the model exhibited significantly lower performance in the 
glioma dataset compared to the vestibular schwannoma 
group in terms of Dice similarity coefficient (DSC) (0.983 
vs 0.998, p < 0.001) and Hausdorff distance (HD) (7.000 mm 
vs 12.860 mm, p < 0.001).

Performance of the existing models

In the internal test, the DSCs of HD-BET, BrainMaGe, 
Robex were 0.989 (IQR, 0.980–0.993), 0.961 (IQR, 
0.945–0.970), and 0.957 (IQR, 0.948–0.963), respectively. 

The HDs were 9.165  mm (IQR, 7.681–11.550  mm), 
27.330  mm (IQR, 12.240–53.920  mm, p < 0.001), and 
12.530 mm (IQR, 11.000–14.20 mm, p < 0.001), respec-
tively. Similar results were also suggested in the external 
test. The existing models’ performance is summarized in 
Table 4, and more detailed evaluation metrics regarding 
tumor pathological types are shown in Supplemental Mate-
rial 5.

Automated 3D brain surface rendering

Figure 4 shows the samples of 3D brain images using the 
mask generated by the nnU-Net model. The overall review of 

Table 4  Three existing brain extraction models’ performance in internal and external tests

The p-value is computed by comparing the DSC and HD for one type of model with all other three types of models put together
DSC Dice similarity coefficient, HD Hausdorff distance, IQR interquartile range

Model DSC HD

Internal test HD-BET 0.989 (IQR, 0.980–0.993, p = 0.111) 9.165 mm (IQR, 7.681–11.550 mm, p < 0.001)
BrainMaGe 0.961 (IQR, 0.945–0.970, p < 0.001) 27.330 mm (IQR, 12.240–53.920 mm, p < 0.001)
Robex 0.957 (IQR, 0.948–0.963, p < 0.001) 12.530 mm (IQR, 11.000–14.20 mm, p < 0.001)

External test HD-BET 0.983 (IQR, 0.978–0.985, p < 0.001) 10.650 mm (IQR, 9.000–12.750 mm, p = 0.001)
BrainMaGe 0.951 (IQR, 0.920–0.967, p < 0.001) 31.520 mm (IQR, 10.050–42.660 mm, p < 0.001)
Robex 0.959 (IQR, 0.951–0.973, p < 0.001) 12.850 mm (IQR, 11.140–14.470 mm, p < 0.001)

Fig. 4  Two examples of 3D reconstructions based on brain masks by the 3D Slicer, with above, bottom, and lateral anterior views from internal 
(A) and external (B) tests
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brain was shown. Important structures were well displayed, 
including superior sagittal sinus, transverse sinus, superficial 
vein, anterior skull base, brain stem, vertebral artery, and 
basilar artery. The nnU-Net model showed relatively low 
error rates in the segmenting skull base, superior sagittal 
sinus, transverse sinus, and brain stem (Fig. 5).

Intra‑observer reproducibility, and comparison 
of radiologists and models

For each brain mask, it took approximately 1 h and 20 min 
for the manual procedure of delineation, check, and correc-
tion, while the nnU-Net model took 4 min to perform infer-
ence on both CPU and GPU. As for the randomly selected 
30 patients, Bland–Altman plots suggested that there was 
good intra-observer reproducibility of manual segmenta-
tion (Supplemental Material 6A). Bland–Altman plots also 
indicated that the automated method performed as well as 
expert manual segmentation despite lesion characteristics, 
as presented in Supplemental Material 6B and Supplemental 
Material 6C.

Discussion

In the present study, an automated model utilizing deep 
learning technology was developed to achieve rapid and 
robust brain extraction on T1CE MRIs in the presence of 
intracranial tumors. Our model confers an advantage in that 

it incorporates superficial structures into the brain extrac-
tion mask, a crucial factor in oncological analysis that had 
been previously unaddressed in other studies. The proposed 
method is applicable to a wide range of MRI hardware and 
acquisition parameters commonly encountered in both clini-
cal and research practice. The model was trained on a large 
multi-center MRI dataset and subsequently tested for gen-
eralizability on three independent public datasets, resulting 
in DSCs of over 0.980.

Compared to previous methodological studies (summa-
rized in the Supplemental Material 7), the present study 
was more clinically relevant, addressed several shortcom-
ings concerning clinicians, and improved the model perfor-
mances with the latest CNN network. First, we improved 
the brain extraction criterion by incorporating superficial 
brain structures and fine-tuned model performance on these 
regions, which were used during model training. Unlike 
other imaging sequences, for neurosurgeons and neuro-
radiologists, who might primarily rely on a CNN model for 
brain extraction on T1CE MRIs, discerning the anatomical 
correlation between tumors and adjacent structures is a cru-
cial aspect of clinical decision-making [15]. Previous studies 
failed to address this issue, resulting in poor model perfor-
mance in these areas. Secondly, we evaluated the model’s 
performance on four different types of tumors. Although 
previous studies have reported promising results, none has 
tested the trained model on a dataset that covers multiple 
types of contrast-enhanced images of tumors. In contrast, 
our model was trained and tested on both intra-axial and 

Fig. 5  Error distribution map was formed by comparison between 
ground truth mask and prediction of each model. Qualitative and 
quantitative were assessed by point value, and the points range was 

set from 0 to 5.00. The color in the figure corresponds to the point 
error (the red area represents a large error, while the green area repre-
sents a small error)
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extra-axial tumors, and the good performance indicated its 
good generalizability. Thirdly, we conducted an intra-group 
analysis to examine whether the model could be generalized 
despite the diverse image patterns of brain tumors. Finally, 
we assessed the generalizability of our model on four exter-
nal datasets that were independent and publicly available. 
All of these improvements have enhanced the practicality of 
our model and expanded the potential for its clinical transla-
tion and widespread usage.

Shape fidelity of the automated segmentation outline to 
the true brain mask is very important. While the DSC is com-
monly used as a metric for evaluating segmentation perfor-
mance, it is insensitive to differences in edges that have a 
small volumetric effect relative to the total volume. There-
fore, we combined the DSC with the HD in our intra-group 
analysis. In this analysis, we found some intriguing results that 
require further clarification. Overall, the model demonstrated 
promising performance with median DSCs exceeding 0.980 in 
each group, despite the distinct appearances of the four tumor 
entities. However, in the internal dataset, we observed slightly 
decreasing DSCs in the meningioma and vestibular schwan-
noma groups, whereas in the external dataset, the model 
exhibited an increase in HD in the vestibular schwannoma 
group. These two extra-axial tumors originate in the meninges 
and cranial nerves, leading to severe structural abnormalities 
that may account for the decreased model performance. Addi-
tionally, the results suggested that the model performed better 
in tumors presenting with PE, potentially because the swollen 
cortex displayed a darkening intensity, increasing the contrast 
between the brain and enhanced meninges and thereby facili-
tating segmentation. Although the statistical performance 
remained feasible, these findings are significant, as manual 
correction may be necessary in such cases.

Our research has several limitations. First, it was a mul-
ticenter, retrospective study with inherent selection bias. 
Second, compared with previous studies, only contrast-
enhanced images were used, and other sequences, including 
T1WI, T2WI, and FLAIR, were not involved in our research. 
Image co-registration may be required if researchers want 
to perform skull stripping in these sequences. Third, our 
study lacked methodological novelty in terms of the used 
CNN structure. Although the network architecture used in 
this study was based on the classic nnU-net framework, its 
performance was remarkable, and we did not feel it neces-
sary to optimize the network further. Fourth, due to ethical 
constraints, the model was solely trained and evaluated on 
cases with tumors. Therefore, additional studies are required 
to confirm the generalizability of our results.

In conclusion, we have presented a novel fully automatic 
deep learning model for brain extraction on T1CE MR scans. 
The proposed model enables extraction of the brain with 
tumor and provides more detailed information about the 

brain surface. Our study demonstrates that the model has a 
high level of performance and generalization in the segmen-
tation task, which could potentially alleviate the workload of 
radiologists and offer a valuable tool for future neuroimaging 
research and oncological studies.

Supplementary information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00330- 023- 10078-4.
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