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Abstract
Objectives Non-contrast computed tomography of the brain (NCCTB) is commonly used to detect intracranial pathology 
but is subject to interpretation errors. Machine learning can augment clinical decision-making and improve NCCTB scan 
interpretation. This retrospective detection accuracy study assessed the performance of radiologists assisted by a deep learn-
ing model and compared the standalone performance of the model with that of unassisted radiologists.
Methods A deep learning model was trained on 212,484 NCCTB scans drawn from a private radiology group in Australia. 
Scans from inpatient, outpatient, and emergency settings were included. Scan inclusion criteria were age ≥ 18 years and series 
slice thickness ≤ 1.5 mm. Thirty-two radiologists reviewed 2848 scans with and without the assistance of the deep learning 
system and rated their confidence in the presence of each finding using a 7-point scale. Differences in AUC and Matthews 
correlation coefficient (MCC) were calculated using a ground-truth gold standard.
Results The model demonstrated an average area under the receiver operating characteristic curve (AUC) of 0.93 across 144 
NCCTB findings and significantly improved radiologist interpretation performance. Assisted and unassisted radiologists 
demonstrated an average AUC of 0.79 and 0.73 across 22 grouped parent findings and 0.72 and 0.68 across 189 child find-
ings, respectively. When assisted by the model, radiologist AUC was significantly improved for 91 findings (158 findings 
were non-inferior), and reading time was significantly reduced.
Conclusions The assistance of a comprehensive deep learning model significantly improved radiologist detection accuracy 
across a wide range of clinical findings and demonstrated the potential to improve NCCTB interpretation.
Clinical relevance statement This study evaluated a comprehensive CT brain deep learning model, which performed strongly, 
improved the performance of radiologists, and reduced interpretation time. The model may reduce errors, improve efficiency, 
facilitate triage, and better enable the delivery of timely patient care.
Key Points 
• This study demonstrated that the use of a comprehensive deep learning system assisted radiologists in the detection of a  
   wide range of abnormalities on non-contrast brain computed tomography scans.
• The deep learning model demonstrated an average area under the receiver operating characteristic curve of 0.93 across  
   144 findings and significantly improved radiologist interpretation performance.
• The assistance of the comprehensive deep learning model significantly reduced the time required for radiologists to interpret  
  computed tomography scans of the brain.
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AUC   Area under the receiver operating characteristic 
curve

CI  Confidence interval
CNN  Convolutional neural networks
CT  Computed tomography
CTB  Computed tomography of the brain
DBS  Deep brain stimulation
DICOM  Digital Imaging and Communications in 

Medicine
DWI  Diffusion-weighted imaging
ED  Emergency department
FDA  US Food and Drug Administration
HREC  Human Research Ethics Committee
ICH  Intracranial haemorrhage
ID  Identification number
MCC  Matthews correlation coefficient
MRI  Magnetic resonance imaging
MRMC  Multi-reader multi-case
NCCTB  Non-contrast computed tomography of the 

brain
ROC  Receiver operating characteristic (curve)

Introduction

Computed tomography (CT), invented in the 1970s, was the 
first method available for direct imaging of the brain and is 
still the primary imaging modality used for this purpose. 
Non-contrast computed tomography of the brain (NCCTB) 
is commonly used for patients with suspected intracranial 
pathology, primarily due to its accessibility and short acqui-
sition time [1]. In emergency medicine, NCCTB enables 
rapid diagnosis and the provision of timely care to patients 
who might otherwise suffer substantial morbidity or mortal-
ity [1, 2]. Over 15 million NCCTB studies were conducted 
in 2016 in the USA [3]. Even amongst expert radiologist 
readers, error patterns have been reported for infarct detec-
tion, extra-axial masses, and vessel thrombosis [4, 5], with 
clinician inexperience, fatigue, and interruptions appearing 
to increase error likelihood [6]. To address these issues, 
attempts have been made to develop artificial intelligence 
(AI) systems to mitigate errors and assist clinicians with 
interpretation [7].

Deep learning convolutional neural networks (CNNs) are 
a class of neural network designed to process multi-dimen-
sional image data. CNNs have been applied successfully to 
many domains of medicine [8, 9] and have demonstrated 
strong image classification performance in radiology [10, 
11]. Deep learning systems in radiology appear to improve 
the clinical finding detection ability of radiologists [10], par-
ticularly junior clinicians [11], and have facilitated reduc-
tions in mean interpretation time [10, 12]. Most NCCTB 
deep learning systems developed, however, have been 

limited in scope, capable of detecting just a single or a 
small number of clinical findings. Chilamkurthy et al (2018) 
trained and validated a model that could accurately detect 
four critical clinical findings (including multiple haemor-
rhage types), using a dataset consisting of 313,318 NCCTBs 
automatically labelled using radiology reports [7]. Other 
deep learning systems have been developed to accurately 
detect intracranial haemorrhage [13], traumatic brain injury 
[14], acute infarction [15], and dementia [16]. However, the 
narrow scope of extant systems limits their clinical utility. 
There is a trend toward increasing the clinical comprehen-
siveness of deep learning systems for other modalities [10, 
17] and considerable opportunity exists to improve the scope 
of deep learning systems designed to facilitate NCCTB 
interpretation.

We developed and evaluated a comprehensive deep learn-
ing system designed to assist clinicians with the interpreta-
tion of NCCTB studies and provide notification of suspected 
findings. The system is indicated for use with non-contrast 
brain CT scans (brain kernel) of adult patients. Research 
questions included the following: (1) How does radiologist 
interpretation performance change when the deep learning 
system is used as an assistant? (2) How does the comprehen-
sive deep learning model perform in comparison to experi-
enced practising radiologists?

Method

Study design

A retrospective multi-reader multi-case (MRMC) study was 
designed to evaluate the detection accuracy of 32 radiolo-
gists with and without the aid of the deep learning system. 
Radiologists first interpreted cases without access to the 
deep learning tool, and then re-interpreted the same set of 
cases with assistance from the deep learning tool following 
a minimum 4-month (124-day) wash-out period.

Model development and evaluation involved NCCTB 
dataset labelling and interpretation by three mutually exclu-
sive groups of radiologists performing distinct functions:

(1) Initial classification labelling of the wider dataset that 
included both test and training data was performed by 
143 consultant radiologists from Vietnam,

(2) Dawid-Skene consensus of the labels on the test dataset 
was calculated and ground-truth adjudication of these 
labels was performed by three specialist neuroradiolo-
gists from Australia, and

(3) Interpretation of the test dataset in the MRMC study 
was performed by 32 consultant radiologists from Viet-
nam.
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Classification labelling of the wider dataset identified 
the radiological findings present on each case, as defined 
by an ontology tree prospectively developed by consultant 
neuroradiologists that contained 214 clinical findings (192 
child findings and 22 parents; Supplementary Materials). 
Ground-truth labelling identified the radiological findings 
present in the test dataset cases used in this MRMC study.

Ethics approvals

This study was approved by the Bellberry Human Research 
Ethics Committee (HREC; approval numbers: 2021–02-123 
and 2021–03-259), the University of Notre Dame Australia’s 
HREC (approval number: 2020-127S), and the University 
of Medicine and Pharmacy at Ho Chi Minh City’s Board of 
Ethics in Biomedical Research (IRB-VNO1002). A waiver 
of consent for use of the de-identified CT data in this study 
was approved with consideration of Australia’s National 
Statement of Ethical Conduct in Human Research.

Ontology tree

An ontology tree was developed, specifying clinical findings 
and describing relationships between these findings (Sup-
plementary Materials). Each of the 214 findings was defined 
by a consensus of three Australian subspecialist neuroradi-
ologists. Radiologists engaged in labelling and evaluation 
were trained to identify the NCCTB findings according to 
these definitions.

Data

This study involved the use of 215,332 NCCTBs, from 
170,745 unique patients, which were drawn from a private 
radiology group in Australia. Cases included scans from 
inpatient, outpatient, and emergency settings. Inclusion cri-
teria were age ≥ 18 years and series slice thickness ≤ 1.5 mm. 
NCCTBs underwent classification labelling for each child 
finding of the ontology tree and each was labelled by three 
to eight radiologists. Labellers completed training prior to 
commencing, which involved familiarisation with the anno-
tation tool, reviewing the definitions of each finding, and 
practice on a curated dataset of 183 NCCTBs. Labeller per-
formance was assessed with the F1 metric [18] and each 
demonstrated an F1 score > 0.50 before commencement. 
Each radiologist was given the same data for each case but 
was blinded to labels generated by the other radiologists. 
The radiology report, patient age, and sex were provided, 
along with all series in the study, and paired CT or magnetic 
resonance imaging (MRI) scans. A consensus classification 
label for each finding in each case was generated as a score 
between 0 and 1 using the Dawid-Skene algorithm [19]. 
Localisation labelling (3D segmentation and lateralisation) 

was performed for a subset of findings (Supplementary 
Materials). Labellers were provided with the positive local-
izable findings and were instructed to segment/lateralize 
only those findings. Segmentation maps were each labelled 
by three radiologists.

Training dataset

A subset of the data, comprising 212,484 NCCTBs (168,326 
unique patients), was used for training. Classification labels 
were used to train the model to detect findings. Parent find-
ings were automatically labelled based on child labels. The 
model learned from the original labels and the structure of 
the ontology tree. The segmented maps were used to train 
the model to produce overlay outputs.

Test dataset

A power analysis determined that a minimum MRMC test 
dataset of 2848 cases (2419 unique patients) was required 
to detect a mean difference in area under the receiver oper-
ating characteristic curve (AUC) of 0.02 in the detection 
accuracy of 30 radiologists (alpha = 0.05, beta = 0.8). Cases 
were drawn from the labelled dataset to achieve a sufficient 
number of cases per finding while keeping the total number 
of cases as low as possible. MRMC test dataset cases were 
excluded from model training at the patient level. Each case 
in the test dataset underwent an adjudicated ground-truth 
labelling process to ensure a high-quality gold standard. 
Ground-truth labels were determined by one of three fellow-
ship-trained subspecialist neuroradiologists who reviewed 
the Dawid-Skene consensus labels and the classification 
labels chosen by the initial three labellers. These neurora-
diologists had access to anonymized clinical information, 
past and future radiological investigations, and radiology 
reports. They did not have access to the outputs of the deep 
learning model.

Deep learning model development

The deep learning model consisted of an ensemble of five 
CNNs trained using fivefold cross-validation. The model 
had three heads: one for classification, one for left–right 
localisation, and one for segmentation. Models were based 
on the ResNet [20], Y-Net [21], and ViT [22] architec-
tures. A single ensemble model was trained on all findings 
simultaneously. Class imbalance was mitigated using class-
balanced loss weighting and super-sampling of instances 
with segmentation labels. Study endpoints addressed the 
performance of the classification model (v1.0). A total of 
144 findings were selected for inclusion in the AI model 
during the MRMC study based on clinical and statistical 
considerations during model development. Included findings 
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were required to (1) achieve an AUC of at least 0.80; (2) be 
able to achieve a minimum precision of 0.20 at the chosen 
operating threshold; (3) have at least 50 cases in the train-
ing set; and (4) demonstrate performance that was not lower 
than previously published AI performance for comparable 
clinical findings. Beta values were chosen by the team of 
subspecialist neuroradiologists based on the criticality of the 
finding. The higher the criticality, the less tolerance for miss-
ing a finding and thus a higher beta was chosen to improve 
the sensitivity of the model.

MRMC test dataset interpretation

Thirty-two radiologists, each with 2 to 21 years of clinical 
experience after completion of radiology specialist training 
(median = 8 years), each interpreted all 2848 cases in the 
MRMC dataset. Patient age, sex, and the clinical stem of the 
radiology request were shown but no radiological report or 
other comparison images were provided. Radiologists were 
asked to rate their confidence in the presence of each of 
the 214 findings in the ontology tree using a 7-point scale. 
The AI tool displayed findings detected by the deep learning 
model, along with a measure of the model’s confidence. For 
a subset of findings, a segmentation overlay was displayed. 
Radiologist interaction was performed on diagnostic-quality 
monitors and hardware. Interpretation times were recorded 
by the DICOM viewing platform. Radiologists were trained 
on ontology tree definitions and the labelling methodology. 
They then independently evaluated all 2848 studies without 
model assistance. After a wash-out period, training on use 
of the AI tool was provided, and the same radiologists inde-
pendently evaluated the studies again with model assistance.

Analysis

The primary objective of this study was to quantify the 
difference in radiologist detection performance with and 
without assistance from the model. The secondary objec-
tive was to compare the performance metrics of unassisted 
readers with the standalone deep learning model. For the 
primary objective, differences in AUC and Matthews cor-
relation coefficient (MCC) were calculated. AUC and 
MCC were reported as primary metrics because AUC is 
a widely accepted machine learning performance metric 
and the MCC provides a more informative indication of 
classifier performance than other metrics. Receiver operat-
ing characteristic (ROC) curves were plotted; US Food and 
Drug Administration (FDA) iMRMC v4.0.3 software and 
the generalized Roe and Metz model were used to analyse 
radiologist performance (AUCs) with and without assis-
tance from the model [23, 24]. Bootstrapping was used to 
determine if there was a statistically significant difference 
in average radiologist performance for each finding between 

arms. The Benjamini–Hochberg procedure (alpha = 0.05) 
was used to control the false discovery rate accounting for 
multiple comparisons [25]. A difference in AUC greater 
than 0.05 was considered clinically significant [26]; clini-
cal non-inferiority was defined as the lower tail of the two-
sided 95% CI being greater than − 0.05, and clinical inferi-
ority was defined as the upper tail of the two-sided 95% CI 
being less than − 0.05. Statistical superiority was defined as 
the lower tail of the two-sided 95% CI being greater than 
zero and statistical inferiority was defined as the upper tail 
being less than zero [10]. A clinically significant MCC was 
considered as a difference greater than 0.1. For the second-
ary objective, the AUC of the model was compared to the 
average unassisted radiologist AUC for each finding using 
the same bootstrapping technique. Analyses were conducted 
and verified by multiple researchers (C.T., J.S., L.D.S.P.). 
The methodology was verified by an independent professor 
of biostatistics (G.H.).

Results

Training and test dataset characteristics are outlined in 
Table 1. Model assistance improved radiologist interpre-
tation performance. Unassisted and assisted radiologists 
demonstrated an average AUC of 0.73 and 0.79 across the 
22 parent findings, respectively. Three child findings had 
too few cases to calculate reader performance (“enlarged 
vestibular aqueduct”: 0, “intracranial pressure monitor”: 0, 
and “longus colli calcification”: 1). Unassisted radiologists 
demonstrated an average AUC of 0.68 across the remaining 
189 child findings. The lowest AUC was obtained for “intra-
ventricular debris” (0.50, 95% CI = 0.49–0.51). The highest 
AUCs were obtained for “deep brain stimulation (DBS) elec-
trodes” (0.97, 95% CI = 0.95–0.99), “ventriculoperitoneal 
(VP) shunt” (0.96, 95% CI = 0.95–0.97), and “aneurysm 
coils” (0.95, 95% CI = 0.93–0.98). Assisted radiologists 
demonstrated an average AUC of 0.72 across the 189 child 

Table 1  Training and testing (i.e. MRMC) dataset details. Data are 
displayed as n (%), mean (SD), or median (IQR)

Training dataset Testing dataset

Studies 212,484 2848
Patients 168,326 2419
Sex

  Male 90,299 (53.6%) 1292 (53.4%)
  Female 77,911 (46.3%) 1125 (46.5%)
  Unknown/other 116 (0.1%) 2 (0.1%)

Mean age, years 66.9 y (SD 18.5 y) 64.4y (SD 18.2 y)
Median number of  

findings per study
4 (IQR 2–6) 7 (IQR 4–10)
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findings. The lowest AUC was obtained for “intraventricular 
debris” (0.50, 95% CI = 0.500.50). The highest AUCs were 
obtained for “DBS electrodes” (0.99, 95% CI = 0.99–1.00), 
“aneurysm coils” (0.97, 95% CI = 0.94–0.99) and “VP 
shunt” (0.97, 95% CI = 0.95–0.98).

Change in radiologist AUC when assisted by the model 
was positive and statistically significant for 91 child find-
ings. The three findings that demonstrated the largest AUC 
increase were “uncal herniation” (AUC increase 0.19, 95% 
CI = 0.14–0.24), “sulcal effacement” (AUC increase 0.19, 
95% CI = 0.16–0.21), and “tonsillar herniation” (AUC 
increase 0.19, 95% CI = 0.12–0.25). Seventeen AUC 
decrements were identified when the model was used as 
an assistant, sixteen of which were statistically inferior. 
One hundred and fifty-eight findings were clinically non-
inferior and only one statistically significant decrement 

was clinically significant (“cerebellar agenesis”). Figure 1 
presents assisted and unassisted radiologist AUCs for the 
22 parent findings. All statistics are presented in Supple-
mentary Materials.

Model use was associated with a statistically signifi-
cantly lower mean interpretation time (26.5 s faster with 
model assistance, 95% CI = 13–41 s, p < 0.01). The mean 
interpretation time in study arm one was 236.0 s (median 
198.0 s, IQR 140.8–282.2 s), whereas the mean interpre-
tation time in arm two was 209.5 s (median 163.5 s, IQR 
106.5–254.8 s).

Eighty-one child findings demonstrated a statistically 
significant improvement in MCC when radiologists used 
the deep learning model as an assistant. One hundred 
and sixty-nine child findings were clinically non-inferior 
(lower tail of the ∆MCC 95% CI greater than − 0.1). 

Fig. 1  Change in AUC of parent findings when radiologists were 
assisted by the deep learning model. Mean AUCs of the model, unas-
sisted, and assisted radiologists and change in (i.e. delta) AUC, along 
with adjusted 95% CIs, are shown for each parent finding. Findings 

were considered clinically significant where the lower limit of the 
95% CI was greater than 0.05, and statistically significant where the 
lower limit of the 95% CI was greater than zero
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Fig. 2  ROC curves for the parent findings demonstrating the performance of the model, and the mean performance of the assisted and unassisted 
radiologists
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There was one statistically inferior finding (“cerebellar 
agenesis”).

Standalone model performance

Forty-eight findings were excluded from the final model 
due to inadequate performance (Supplementary Materials), 
resulting in a total of 144 model findings. The model alone 
demonstrated an average AUC of 0.93 across all 144 model 
findings and 0.90 across the parent findings. Lowest AUCs 
were obtained for “non-aggressive bone lesion” (0.74, 95% CI 
0.68–0.80) and “non-aggressive extra-axial fat density” (0.74, 
95% CI 0.63–0.85). The highest AUCs of 1.00 were obtained 
for “DBS electrodes” (95% CI 1.00–1.00), and “cochlear 
implant” (95% CI 1.00–1.00). Model AUC was statistically 
superior to unassisted radiologist performance for 142 clini-
cal findings. The two remaining findings were inconclusive. 
ROC curves comparing the performance of the model with 
the mean performance of radiologists are presented in Fig. 2 
(parent findings).

Figure 3 demonstrates the effect of the model on radiolo-
gist recall and precision for all findings, averaged within 
the three groups based on the beta values chosen for each 
finding. Figure 4 presents an example case of acute cerebral 
infarction (A–C) with subtle NCCTB changes that were 
missed by most unassisted radiologists. This infarct was, 
however, identified by most radiologists when they used the 
deep learning tool. A subtle subacute subdural haematoma 
case (D–F) is also presented, along with model output and 
a scan from 7 days later. A colloid cyst case is presented, 
along with the model’s confidence (G–H). Figure 5 presents 
an intraventricular haemorrhage case. Figure 6 demonstrates 
the 3D functionality of the model, visualising a single case 
with multiple findings.

Discussion

Since CT was invented there has been substantial improve-
ment in spatial and contrast resolution, making it easier for 
clinicians to detect abnormalities. This study demonstrates 
a further advance in CT diagnostics through the use of com-
prehensive AI to aid a clinician’s detection of a range of 
abnormalities on NCCTBs. The developed model encom-
passed 144 clinical findings and was validated in a large-
scale MRMC study. Reader performance when not assisted 
by the model, varied enormously depending on the subtlety 
and inherent subjectivity of the finding. The average AUC 
for unassisted readers across all findings was 0.68. The aver-
age AUC for the model alone was considerably higher at 
0.93. When assisted by the model, radiologists significantly 
improved their performance across 91 clinical findings. One 
driver of high model accuracy was the large training dataset 
of 212,484 studies, each individually labelled for 192 find-
ings by multiple radiologists.

Model benefits were most pronounced when aiding 
radiologists in the detection of subtle findings. The low 
unassisted radiologist AUC of 0.57 for “watershed infarct” 
indicated a performance that was little better than random 
guessing. Ground-truth labelling for acute infarcts was 
usually aided by diffusion-weighted MRI scans or follow-
up CTs. Diffusion weighting is the most accurate method 
for detecting acute infarcts as it detects signal related to 
microscopic tissue changes. CT relies on macroscopic tis-
sue changes to produce a change in density. However, as 
infarcts age, they become more visible, allowing for clearer 
detection on follow-up CT studies. Model performance 
for “watershed infarct,” with an AUC of 0.92 (0.88–0.94), 
indicated that although this finding proved difficult for 
radiologists to detect, subtle abnormalities were generally 

Fig. 3  Performance improve-
ment using the deep learning 
model. Precision and recall (i.e. 
sensitivity) for the unassisted 
and assisted radiologists aver-
aged across all findings, based 
on the chosen beta levels for 
each finding. Arrows indicate 
the shift in recall and precision 
of the radiologists when assisted 
by AI. On average, model 
assistance resulted in increased 
recall (sensitivity) with no 
decrement in precision
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Fig. 4  A Non-contrast CT brain 
study of a 79-year-old female 
who presented with acute stroke 
symptoms. Subtle hypodensity 
in the right occipital lobe was 
missed by 30 of the 32 read-
ers in the unassisted arm of 
the study, but detected by 26 
readers when using the deep 
learning tool as an assistant. 
B Output of the model. The 
model accurately localized 
the large area of infarction 
within the right occipital lobe 
(purple shading). C DWI 
image clearly showing the 
area of acute infarction in this 
patient. D An example of small 
bilateral isodense subacute 
subdural haematomas. E The 
haematomas were character-
ized by the model as subacute 
subdural haematomas and 
localized with purple shading. 
F A CT scan performed 7 days 
later. The haematoma is more 
conspicuous on the later scan as 
it evolves to become hypodense. 
G Non-contrast CT brain study 
demonstrating a colloid cyst. 
H The same colloid cyst case 
along with an example of the 
model’s segmentation and high 
confidence
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present on the CT scan that allowed detection by the model. 
The AUC for augmented readers was 0.68, while unaug-
mented readers demonstrated an average AUC of 0.57. The 
considerable improvement of the radiologists in detecting 
these infarcts when assisted by the model suggests that the 
findings on these studies were visible to the human eye 
even though they were often missed in the unassisted arm 
of the study. Further work is required to investigate the 
mechanisms driving the gap between augmented reader 
and model performance.

Interestingly, the model influenced the readers beyond 
just improving their accuracy. In radiology, there is often 
a trade-off between recall (i.e. sensitivity) and precision. 
The balance is usually struck with the level of precision 
being higher than the level of recall, typically because the 

majority of errors in radiology are errors of visual percep-
tion [27], which cause false negatives, and reduce recall. 
Visual search by clinicians favours some parts of the image 
over others. In contrast, CNNs tend to treat all parts of an 
image with the same level of scrutiny and can alert the radi-
ologist to findings they would otherwise miss, raising their 
level of recall. We found that by changing the beta level of 
the model for the thresholds for different findings, which 
altered the balance of recall and precision of the model 
for those findings, we could alter the balance of recall and 
precision for the radiologists when assisted by the model. 
Beta levels were chosen based on the criticality of the find-
ing. The logic was that for critical findings, the cost of a 
false positive is less than the cost of a false negative, so 
ideally, readers should favour recall over precision. For low 

Fig. 5  Non-contrast CT brain study demonstrating an intraventricular haemorrhage, along with an example of the decision support system’s user 
interface
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criticality findings, precision would be favoured, and if the 
beta level was set to one, then recall and precision were 
weighted equally. As expected, readers favoured precision 
over recall in the unassisted arm of the study. In the assisted 
arm of the study, the ratio of precision to recall was deter-
mined largely by the beta levels chosen for the findings. For 
high criticality findings, recall was favoured over precision 
as desired, whereas for low criticality findings, precision 
remained favoured. Without losing precision, the recall 
of the high criticality findings markedly increased when 
assisted by the model. Thus, many of the largest gains in 
performance by the radiologists when assisted by the AI 
tool were for clinically critical findings.

The AUC of the model was greater for most findings 
than the mean AUC of assisted radiologists. This effect is 
well-recognized and is extensively described in the clinical 
decision support literature [10, 28]. Many findings in radiol-
ogy are not entirely binary, and their presence or absence 
may be equivocal. The observation that radiologists did 
not always follow the predictions of the model most likely 
reflects the equivocal appearance of the findings on those 
cases. Many articles describe interobserver disagreement 
in radiology, which is particularly true of acute infarction 
[29, 30]. For findings such as extra-axial collection where 
appearance is less often equivocal, radiologist performance 
was similar to the model.

Fig. 6  A three-dimensional 
(3D) visualisation of a single 
case containing multiple clinical 
findings demonstrating the 3D 
functionality of the model. The 
findings predicted by the model 
are presented alongside the 
ground-truth
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Limitations and future directions

Despite the use of real-world data across multiple sites with 
varying demographics and different CT scanners, the study 
is retrospective in nature. A further limitation is that due 
to the comprehensive anonymisation of the study dataset, 
we were unable to perform consecutive case selection to 
better replicate real-world practice. Cases were instead ran-
domly selected. A reduction in AUC of 0.05 was defined as 
clinically significant and only cerebellar agenesis reached 
this level of inferiority. The remaining 16 findings that were 
statistically inferior showed only minor reductions in AUC 
that were not clinically significant according to subspecialist 
neuroradiologists. The model’s benefits must be weighed 
against the possible general risks associated with the use of 
AI tools. Such risks (e.g. automation bias) could be realized 
if the user has little understanding of the tool or if the tool 
is used in an incorrect manner. It is ultimately the physician 
who must decide if a finding predicted by the model is truly 
present on the scan.

The main use for the CTB deep learning system will be 
to assist radiologists in their reporting of NCCTBs. The sys-
tem could also be used for triage and in inpatient settings 
to assist clinicians in their decision-making at the point of 
care, particularly in low resource environments where expert 
radiologist advice may not be readily available.

Conclusion

This study demonstrated that the use of a comprehensive 
AI-based software system in a controlled setting assisted 
radiologists in the detection of a range of abnormalities on 
non-contrast CT scans of the brain.
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