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Abstract 
Glomerular filtration rate (GFR) is considered the best overall index of kidney function in health and disease and its use 
is recommended to evaluate the risk of iodine contrast medium-induced acute kidney injury (CI-AKI) either as a single 
parameter or as a ratio between the total contrast medium dose (gram iodine) and GFR. GFR may be expressed in absolute 
terms (mL/min) or adjusted/indexed to body surface area, relative GFR (mL/min/1.73 m2). Absolute and relative GFR 
have been used interchangeably to evaluate the risk of CI-AKI, which may be confusing and a potential source of errors. 
Relative GFR should be used to assess the GFR category of renal function as a sign of the degree of kidney damage and 
sensitivity for CI-AKI. Absolute GFR represents the excretion capacity of the individual and may be used to calculate the 
gram-iodine/absolute GFR ratio, an index of systemic drug exposure (amount of contrast medium in the body) that relates 
to toxicity. It has been found to be an independent predictor of AKI following percutaneous coronary angiography and 
interventions but has not yet been fully validated for computed tomography (CT). Prospective studies are warranted to 
evaluate the optimal gram-iodine/absolute GFR ratio to predict AKI at various stages of renal function at CT. Only GFR 
estimation (eGFR) equations based on standardized creatinine and/or cystatin C assays should be used. eGFRcystatin C/
eGFRcreatinine ratio < 0.6 indicating selective glomerular hypofiltration syndrome may have a stronger predictive power 
for postcontrast AKI than creatinine‐based eGFR.
Clinical relevance statement  Once the degree of kidney damage is established by estimating relative GFR (mL/min/1.73 
m2), contrast dose in relation to renal excretion capacity [gram-iodine/absolute GFR (mL/min)] may be the best index to 
evaluate the risk of contrast-induced kidney injury.
Key Points 
• Relative glomerular filtration rate (GFR; mL/min/1.73 m2) should be used to assess the GFR category as a sign of the 
degree of kidney damage and sensitivity to contrast medium-induced acute kidney injury (CI-AKI).
• Absolute GFR (mL/min) is the individual’s actual excretion capacity and the contrast-dose/absolute GFR ratio is a measure 
of systemic exposure (amount of contrast medium in the body), relates to toxicity and should be expressed in gram-iodine/
absolute GFR (mL/min).
• Prospective studies are warranted to evaluate the optimal contrast medium dose/GFR ratio predicting the risk of CI-AKI 
at CT and intra-arterial examinations.
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Abbreviations
ABS	� Absolute
AKI	� Acute kidney injury
AUC​	� Area under the plasma 

concentration–time-curve
BSA	� Body surface area
CG	� Cockcroft-Gault
CI-AKI	� Contrast medium-induced acute kidney injury
CKD-EPI	� Chronic Kidney Disease Epidemiology col-

laboration equation
CM	� Contrast media
CT	� Computed tomography
eGFR	� Estimated glomerular filtration rate
EKFC	� European Kidney Function Consortium 

equation
GFR	� Glomerular filtration rate
g-I	� Gram iodine
KDIGO	� Kidney Disease: Improving Global Outcomes
LMR	� Lund-Malmö Revised equation
MDRD	� Modification of Diet in Renal Disease 

equation
mGFR	� Measured glomerular filtration rate
PCA	� Percutaneous coronary angiography
PC-AKI	� Post contrast medium-induced acute kidney 

injury
PCI	� Percutaneous coronary interventions
REL	� Relative
SGHS	� Selective glomerular hypofiltration syndromes

Introduction

GFR (glomerular filtration rate) is considered the best overall 
index of kidney function in health and disease [1]. In a radiology 
context, its use is recommended to evaluate the risk of iodine 
contrast medium-induced acute kidney injury (CI-AKI) [2–4], 
either as a single parameter or as a ratio between the total con-
trast medium (CM) dose and GFR [3, 5]. The CM dose/GFR 
ratio is a pharmacokinetic index for systemic drug exposure [6, 
7] and has been validated for the estimation of CI-AKI risk at 
percutaneous coronary angiography (PCA) and interventions 
(PCI) [8–10] but not yet for computed tomography (CT). Since 
the actual risk of CI-AKI at CT still remains uncertain in patients 
with moderate-severe and severe kidney disease and without 
considering individual CM doses [2, 11], a more accurate risk 
prediction may be obtained if combining the two basic risk fac-
tors, CM dose and renal function, into one variable.

GFR may be measured (mGFR) indirectly by analyzing 
plasma or renal clearance of externally injected biomarkers [12, 
13], but is not practical to use in a busy daily radiology prac-
tice. Instead, GFR may be estimated (eGFR) using equations 
based on plasma/serum creatinine, cystatin C or both [1, 14]. 
Both mGFR and eGFR may be expressed in absolute terms, 

mL/min, or adjusted to body surface area (BSA), relative GFR 
in mL/min/1.73 m2. Absolute and relative GFR have been used 
interchangeably to evaluate the risk of CI-AKI, both in terms of 
the GFR value itself [3, 5] and CM-dose/GFR ratio [8, 10]. The 
lack of a clear distinction when to use absolute and relative GFR 
may be confusing and a potential source for errors. European 
Medicines Agency, US Food and Drug Administration, and Kid-
ney Disease: Improving Global Outcomes (KDIGO) states that 
the dosing of drugs excreted by glomerular filtration should be 
based on absolute GFR, i.e., without adjustment/indexation for 
BSA [15–17]. However, this is only partly correct. With regard 
to nephrotoxic CM, the patient’s GFR adjusted to BSA (relative 
GFR) should also be evaluated to establish the level of renal 
function as a sign of possible renal damage [18] and a measure 
of nephrotoxic sensitivity of the present agent.

The purpose of the present paper is to discuss and clarify 
the role of absolute and relative GFR when evaluating the 
risk of CI-AKI, if experiences of CM dose/GFR ratio from 
PCA/PCI may also be used for CT and to encourage the 
use of dose/GFR ratio in CI-AKI research of CM-enhanced 
CT. We also report on a new way of evaluating CI-AKI risk 
using the eGFRcystatin C/eGFRcreatinine ratio.

Glomerular filtration rate

Absolute GFR (mL/min)

Plasma clearance of an injected filtration marker such as 
iohexol is illustrated in Fig. 1. It illustrates a one-compart-
ment model where the plasma concentration of the marker 
is obtained at four time points when equilibrium has been 
achieved after the initial redistribution into the interstitial 
space followed by the excretion phase [19]. GFR may then 
be calculated accordingly:

where AUC denotes the area under the plasma concentra-
tion–time curve.

The calculated measure describes GFR in absolute terms 
(GFRABS, mL/min), i.e., regardless of body size, and repre-
sents the excretion capacity of the individual. Since absolute 
GFR (GFRABS) equals injected dose/AUC, then AUC equals 
injected dose/GFRABS.

AUC = systemic exposure

According to the pharmacokinetics of drugs that are distrib-
uted and eliminated according to linear kinetics such as contrast 
media, AUC​ represents a measure of systemic exposure [6–8]. 
From Eq. 1, it can be deduced that AUC is equal to injected 
dose/GFRABS. Systemic exposure is often well correlated with 

(1)
GFR (mL∕min) = Injected dose(μg)∕AUC (min×μg∕mL)
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the toxicity of a drug and hence generally used as an index for 
dose optimization. Thus, the toxicity of a drug is related to the 
total injected dose and the excretion capacity (absolute GFR) of 
the individual. The higher the injected dose and the lower the 
excretion capacity, the longer time is required until the elimina-
tion of the offending drug and the higher the risk of side effects. 
When it comes to CM, this relation may be summarized as 
gram-iodine/GFR ratio based on absolute GFR [7, 20].

Relative GFR (mL/min/1.73 m.2)

Renal function is proportional to body size. To establish normal 
reference intervals and categories of decreased kidney function 
and damage, GFR must be adjusted/indexed to a certain body 
size, commonly denominated relative GFR [18]. By tradition 
1.73 m3 body surface area (BSA) has been used for indexing, 
the mean BSA value for 25-year-old men and women in the 
USA in the 1920s [21]. Thus, after obtaining a measured abso-
lute GFR it is indexed to 1.73 m2 by the following calculation:

Notably modern creatinine-based GFR estimating equa-
tions such as MDRD, CKD-EPI, EKFC, and LMR [22, 23] 
primarily estimate relative GFR. To obtain absolute GFR 
values deindexation must be performed according to:

(2)
Relative GFR (mL∕min∕1.73 m2) = (absolute GFR∕BSA) × 1.73

According to the Civilian American and European Surface 
Anthropometry Resource project published in 2001, the mean 
BSA for women and men is 1.73 m2 and 2.03 m2, respectively 
[24]. However, the indexation of GFR to BSA is not without 
criticism and may be misleading in certain populations, such 
as those with body mass index < 18.5 or > 30 kg/m2 [21, 25].

The most commonly used formula for determining BSA still 
today is the one presented by Du Bois and Du Bois 1916 [26]:

Though a number of formulas have been developed 
since 1916, their superiority to the Du  Bois formula 
remains to be clearly proven [21, 24].

Chemical laboratories most commonly report GFR in 
mL/min/1.73 m2 and it is the unit used to classify GFR 
categories as a sign of possible kidney damage (Table 1). 
The classification based on relative GFR should primarily 
be used when evaluating the risk of CI-AKI. Depending on 
the GFR category, the vulnerability of the kidneys may then 
vary with the amount of CM circulating in the body, i.e., 
systemic exposure. As mentioned above, systemic exposure 
can be described by the gram-iodine dose/GFRABS ratio. 
Table 2 illustrates how relative GFR and systemic exposure 
may vary with body size despite the same absolute GFR.

Notably, equations to estimate GFR are only meaningful 
to use in patients with a steady state renal function. There-
fore, they will perform less accurately in acute conditions 
with unstable renal function, e.g., cardiac failure or hypoten-
sion, since it will take time for both cystatin C and especially 
creatinine to reach a new steady state plasma level [27].

Contrast medium dose/GFR ratio

Mounting evidence from PCA/PCI studies (Table S1 and S2) 
[8, 9, 28–39] indicate that a ratio between CM-volume (mL) or 
gram-iodine (g-I) and estimated GFR represents a significant and 
independent predictor of post-contrast medium AKI (PC-AKI), 

(3)
Absolute GFR (mL∕min) = (relative GFR∕1.73) × BSA

(4)BSA = weight0.425(kg) × height(cm)0.725 × 0.007184

Fig. 1   Plasma clearance of an externally injected biomarker such as 
iohexol at time zero based on the plasma concentration curve (solid 
line) as a function of time. The plasma concentration rapidly reaches 
a peak followed by an exponential fall as the biomarker is diluted in 
circulating plasma, diffuses into the interstitial space (volume distri-
bution), and reaches an equilibrium after about 2  h at normal renal 
function. Thereafter follows the elimination phase where the plasma 
concentration of the biomarker falls at a constant rate. According to 
the one-compartment model, the area under the plasma concentra-
tion time-curve (AUC, dashed line) can be calculated based on four 
plasma samples (diamond points) obtained 100–250  min after the 
bolus injection. The absolute glomerular filtration rate (GFRABS, mL/
min) can be calculated by injected dose (μg)  /  AUC (min × μg/mL) 
from which follows that AUC = dose/GFRABS, a measure of systemic 
exposure of the injected agent

Table 1   GFR categories as a sign of kidney damage according to 
KDIGO 2013 (Kidney Disease: Improving Global Outcomes) [18]

GFR glomerular filtration rate

GFR categories (mL/min/1.73 m2) Renal function

G1  ≥ 90 Normal or high
G2 60–89 Mildly decreased
G3a 45–59 Mildly to moderately decreased
G3b 30–44 Moderately to severely decreased
G4 15–29 Severely decreased
G5  < 15 Kidney failure
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first suggested by Altmann et al 1997 [40]. Though the CM dose/
GFR ratio indicating an increased risk of PC-AKI may vary sub-
stantially between studies, from a g-I/GFR ratio of about 0.5 to 
2.0. The weighted mean cut-off value to predict an increased risk 
of PC-AKI was 1.0 for the entire group, 1.24 for studies based on 
absolute GFR with the Cockcroft-Gault (CG) equation, and 0.77 
for studies based on relative GFR with the MDRD and CKD-EPI 
equations (Table S2). The variation among the studies may be 
the result of differences in e.g. study design, indication, patient 
selection, and variation in comorbidities.

To merge data from studies using absolute and relative 
GFR to establish a weighted cut-off dose/GFR ratio to pre-
dict PC-AKI may be questioned. However, a comparison 
of the area under the receiver-operator characteristic curve 
demonstrated no difference in predicting AKI between CM-
dose/absolute GFR based on the CG equation and CM-dose/
relative GFR based on the 186-MDRD equation [10]. This 
may be explained by the fact that though the difference 
between relative and absolute GFR varies with BSA, the 
difference was relatively small in the majority of patients 
and with an average difference of only about five units in 
a Western population with a median BSA of 1.84 kg/m2 
(Fig. 2A). In three of the Asian CM-dose/GFR ratio studies, 
BSA was reported or calculated by us to be 1.67–1.70 kg/
m2 [36, 38, 39] indicating an even smaller average difference 
between absolute and relative GFR. Still, when applying the 
ratio to small and large individuals to predict the risk of CI-
AKI, significant ratio differences may occur depending on 
whether relative or absolute GFR (Fig. 2B). The ratio should 
express the amount of potentially toxic CM (systemic expo-
sure) relative to injected dose and individual kidney func-
tion. This is not reflected by relative GFR since it is adjusted 

to a fixed body size, 1.73 m2 BSA. Only absolute GFR gives 
the true excretion capacity of the individual.

Among the studies, there was only one large retrospec-
tive registry study (n = 2306) observing a high ratio threshold 
(2.15 g-I/GFR ratio) [29], while two other large retrospective 
registry studies (n > 1000) [8, 33], one large prospective single-
center study (n = 3273) [31] and one large multicenter study 
(n = 4254) [37] all reported lower thresholds, ranging from 
0.62 to 1.30. When applying the observed threshold of 0.62 on 
subsets of patients with different risk factors in the multicenter 
study by Nie et al [37], the incidence of PC-AKI in almost all 
subsets was about 4 times higher in those with a ratio above 
the threshold (Table 3). In a study on hydration, Liu et al [31] 
found a higher sensitivity to the g-I/GFR ratio in dehydrated 
patients with an optimal threshold of 0.69 at insufficient hydra-
tion, but of 1.08 in those who were sufficiently hydrated.

In the Blue Cross Blue Shield of Michigan Cardiovascu-
lar Consortium registry study [10], not included in Table S1 
and S2, evaluating the risk of PC-AKI and the need for in-
hospital dialysis in 58,957 patients undergoing PCI, it was 
recommended to restrict the CM-volume (concentration not 
specified) to less than thrice and preferably less than twice 
the GFR-value. That corresponds to a g-I/GFR ratio of 1.05 
and 0.70, respectively, anticipating a mean CM concentra-
tion of 350 mg I/mL during PCI. Follow-up studies from 
the same registry showed that the use of high CM doses 
(g-I/GFR ratio > 1.0) at the time of PCI was associated with 
increased risk of PC-AKI and need for dialysis, regardless 
of their baseline predicted risk of these complications [43]. 
Post hoc analyses have later estimated that an across-the-
board 30% reduction of CM dose would be expected to pre-
vent one-eighth of the AKI cases [44].

Table 2   Indexed renal function and systemic exposure of CM for abdomi-
nal CT in individuals with increasing body size, but with the same renal 
excretion capacity. Note that an excretion capacity of 45 mL/min (absolute 
GFR) indicates only a mildly decreased renal function (relative GFR 75 
mL/min/1.73 m2)  in a small individual (130 cm/30 kg) but moderately-
severely damaged kidneys (relative GFR 36 mL/min/1.73 m2) in a large 

individual (190 cm/90 kg). When providing the same dose of CM per kg 
body weight there is a low g-I/GFR ratio (0.33) for the small individual 
and an anticipated minimal risk of CI-AKI while for the large individual, 
it results in a relatively high ratio (1.00) and thus a greater CI-AKI risk

 ABS absolute, BSA body surface area, CI-AKI contrast medium-induced acute kidney injury, CM contrast medium, GFR glomerular filtration 
rate, mg/g-I milligram/gram iodine

Body size Renal excretion capacity Indexed renal function Computed
tomography

Systemic exposure

Height
(cm)

Weight
(kg)

BSA
(m2)

Absolute GFR
(mL/min)

Relative GFR
(mL/min/1.73 m2)

CM-dose
(mg-I/kg)

g-I/GFRABS ratio

130 30 1.04 45 75 500 0.33
140 40 1.24 45 63 500 0.44
150 50 1.43 45 54 500 0.56
170 63 1.73 45 45 500 0.70
180 80 2.00 45 39 500 0.89
190 90 2.18 45 36 500 1.00
200 100 2.37 45 33 500 1.11
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Gurm et al [10] also showed that the risk of PC-AKI 
may vary with the GFR stage for the same CM-dose/GFR 
ratio [10]. At a g-I/GFR ratio of 0.7–1.0, the incidence 
increased from less than 2% at GFR ≥ 60 mL/min/1.73 
m2 to about 4% (dialysis ≈0.25%) at GFR 30–59 mL/
min/1.73 m2 and to about 15% (requiring dialysis ≈2%) at 
GFR < 30 mL/min/1.73 m2. When the ratio was kept < 0.7, 
the risk of PC-AKI in patients with GFR < 30 mL/min/1.73 
m2 decreased to about 6% with no one requiring dialysis.

CM‑dose/GFR ratio faultiness

Studies evaluating the CM dose/GFR ratio suffer from 
certain principal inaccuracies. Among studies using abso-
lute GFR to express CM-dose/GFR ratio, all have used the 
CG equation (Table S1). The CG equation was developed 
in 1976 to estimate endogenous creatinine clearance [45], 

today a non-acceptable method as a measure of GFR [46]. 
It was also based on a non-standardized creatinine assay, 
not compatible with today’s assays traceable to international 
reference materials [47]. The CG formula has been dem-
onstrated to have substandard accuracy with a systematic 
overestimation of GFR [41] and may thus result in falsely 
too-low ratios. Likewise, if the MDRD equation is used, it 
should be noted that the one containing the 175 coefficient 
is based on standardized creatinine assays but not the one 
containing 186. Thus, only equations based on standardized 
creatinine assays should be used to estimate both relative 
and absolute GFR, the latter by deindexing relative GFR. 
The performance of the equation should also have suffi-
cient accuracy in the applied population. It should also be 
noted that creatinine-based GFR estimating equations may 
be grossly inaccurate in e.g. patients with abnormal muscle 
mass or liver failure. In such patients, a cystatin C–based 
equation or clearance measurements may be preferable [14].

Those applying modern GFR equations based on stand-
ardized creatinine assays do not seem to consider the fact 
that they primarily estimate relative GFR (Table S1). This 
results in falsely high and low GFR values relative to the true 
excretion capacity (absolute GFR) in small and large individu-
als, respectively. Consequently, this will result in falsely low 
ratios in small individuals and falsely high ratios in large ones, 
most commonly men in the Western world with an average 
BSA of about 2.0 m2. To calculate the g-I/GFRABS ratio with 

Fig. 2   Diagrams to illustrate the differences between (A) relative GFR 
(mL/min/1.73  m2) and absolute GFR (mL/min) and (B) gram-iodine/
GFR ratio based on relative and absolute GFR in relation to body sur-
face area. A simulated CT contrast medium dose of 500 mg I/mL was 
applied to a cohort of adult patients in reference [41] with a wide range 
of GFR and body surface area. The original study [41] concerned the 
performance of creatinine-based GFR estimating equations in the con-
text of drug dosage adjustment. Mean/median difference between rela-
tive and absolute GFR -4/-5 units. Median body surface area women 
1.72 m2 (n = 7328) and men 1.96 m.2 (n = 7476)

Table 3   Incidence of acute kidney injury (serum creatinine 
rise ≥ 0.5  mg/dL) below and above the optimal gram-iodine/GFR 
ratio (using relative GFR) to predict acute kidney injury in subsets of 
patients undergoing percutaneous coronary angiography or interven-
tions (PCI) according to Fig. 3 in reference [37]. Regarding Mehran 
score see reference [42]

* Based on a CM-volume/GFR ratio < 1.78 and anticipating a concen-
tration of 350 mg I/mL
Italic = non-significant; CM contrast medium, LVEF left ventricular 
ejection fraction, STEMI ST-elevated myocardial infarction

Incidence of acute kidney 
injury (%)

p values

Gram-iodine/GFRREL ratio  < 0.62*  ≥ 0.62*
Age < 60 0.5 2.7  < 0.001
Age ≥ 60 1.1 4.3  < 0.001
Elective PCI 0.7 3.6 0.029
Emergent PCI 1.8 4.6  < 0.001
No STEMI 0.8 3.2  < 0.001
STEMI 1.0 5.6  < 0.001
No cardiogenic shock 0.6 2.9  < 0.001
Cardiogenic shock 3.5 10.6 0.709
LVEF ≥ 40% 0.7 4.9  < 0.001
LVEF < 40% 3.9 14.1 0.010
Low Mehran score 0.5 0.8 0.322
High Mehran score 1.7 6.2 0.0015
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modern GFR equations expressing relative GFR, they must 
first undergo a BSA deindexation (see Eq. 3 above).

A final default of studies evaluating CM dose/GFR ratio 
is that information about the used creatinine assay and its 
standardization is not defined, a crucial point with regard to 
the selected GFR estimating equation.

Expressing contrast medium dose

Expressing CM dose in terms of gram iodine should be pre-
ferred to simply using volume since concentrations of com-
mercially available CM may vary from 140 to 400 mg I/mL. 
Furthermore, common g-I doses at CT and angiography-
based procedures may vary from 15 g-I (= 50 mL × 300 mg 
I/mL) to 100 g-I (≈300 mL × 320 mg I/mL) and are in 
the same numerical range as the patients’ GFRABS, i.e., 
15–100 mL/min. Thus, forming a g-I/GFRABS ratio provides 
the examiner with a simple numerical relationship to predict 
the risk of PC-AKI as pointed out almost 20 years ago [20].

Second‑pass renal CM exposure examinations

CM-dose/GFRABS ratio thresholds for increased risk of PC-AKI 
derived from PCA/PCI studies may also be applied to other 
procedures where CM reaches the renal arteries after dilution 
by circulation through the right heart and pulmonary circula-
tion or a systemic capillary bed, s.c. second-pass renal exposure 
[3]. This includes intra-arterial CM injections into the coro-
nary, carotid, subclavian, mesenteric and iliofemoral arteries, 
and infrarenal aorta as well as intravenous injections [3, 48].

It may be argued that backflow of CM into the aorta, as 
well as a left ventriculogram during PCA/PCI, implies that 
CM may reach the kidneys during its first pass in a relatively 
undiluted form and with a more toxic effect compared to a 
pure intravenous injection. However, only about 20% of car-
diac output reaches the renal arteries. This means that only a 
small amount of the CM backflow and, e.g., 6 of 30 mL for 
a left ventriculogram, will reach the kidneys during its first 
pass. Thus, first-pass renal CM exposure constitutes only a 
minor part of a not uncommonly total dose of 200–300 mL 
given during PCA/PCI [9, 10], probably also fairly diluted 
when reaching the kidneys. Also note that the injection dose 
rate may be up to a factor 100 times higher during CT, due to 
much shorter injection time (typically 30 s) compared with 
PCA/PCI where repeated small doses may be given over a 
span of 30–60 min [49], which is another factor to consider 
regarding toxicity [50]. Unfortunately, there is not a single 
CT study analyzing the value of the CM-dose/GFRABS ratio.

Computed tomography

The incidence of PC-AKI has been shown to be similar for 
CT and PCA/PCI in four retrospective studies [51–54] and 

with the patient as its own control in three of them [51–53]. 
One retrospective study with propensity score matching [55] 
and one prospective hydration study [56] came up with simi-
lar results. In a retrospective study by From et al, a higher 
risk of PC-AKI-associated 30-day mortality was observed 
after intravenous injections as compared to intra-arterial 
injections after adjustment for risk factors [57]. However, 
in one small single-center randomized study comparing 
coronary CT-angiography (median 23-g iodine) with PCA 
(median 27-g iodine including 9.6-g iodine for left heart 
ventriculography in 86% of the patients) and PCI in 12% of 
the patients, PC-AKI was significantly more common fol-
lowing PCA, 13.2% vs. 5.6% [58].

Based on these studies and the fact that intravenous 
CM injections at CT imply an indirect (second pass) renal 
exposure similar to that from PCA/PCI, the Contrast 
Media Committee of the Swedish Society of Uroradiol-
ogy recommends keeping the g-I/GFRABS ratio < 1.0 also 
at CT [5]. In patients at risk of CI-AKI (Table 4) [59] 
the committee recommends aiming at a ratio < 0.5 at CT 
by reducing the CM dose according to the 10-to-10 rule 
[60]. This can be achieved by applying a low kilovolt-
age technique combined with tube loading compensation 
to prevent an increase in image noise [61–67]. No other 
organization gives any specific recommendations regard-
ing CM dose in relation to GFR at CT. The Swedish Soci-
ety recommendations have been implemented in a dose 
calculator called OmniVis, which has been used in Sweden 
for twenty years and is also available in Norway, the UK, 
and the Benelux Union.

Future CT CI‑AKI studies

Today’s controversies regarding the true risk of CI-AKI at 
CT are to a large extent due to the lack of any randomized 
controlled studies. Present international guidelines are 
mainly based on retrospective propensity score-matched 
controlled studies [2–4], which has been regarded as low-
grade evidence [68] with an obvious risk for selection bias 
between the CM and non-CM groups [69, 70]. It has been 
suggested that a more appropriate approach would be to 
restrict the analysis to the CM-enhanced CT group and 
propensity match patients at various relative GFR inter-
vals (e.g., < 30, 30–44, and 45–59 mL/min/1.73 m2) with 
different CM-dose/GFRABS ratios [69]. However, this 
requires documentation of CM doses and concentrations, 
laboratory-reported relative eGFR, and height and weight 
to calculate BSA and achieve deindexed absolute GFR. 
Another option would be to prospectively study patients 
with malignant diseases undergoing regular surveillance 
with both non-enhanced and CM-enhanced CT and to per-
form the two phases with a week apart. Then the patient 
would also be under its own control.
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eGFRcystatin C/eGFRcreatinine and glomerular 
hypofiltration syndromes

Estimation of GFR using both creatinine- and cysta-
tin C–based equations has resulted in an anticipated new set 
of kidney disorders, selective glomerular hypofiltration syn-
drome (SGHS) [71] as first suggested by Grubb et al [72]. 
The syndrome is characterized by a selective reduction in the 
filtration of medium-sized 5–30-kDa molecules, such as cys-
tatin C (13.3 kDa), compared to the filtration of small mol-
ecules < 1 kDa such as creatinine (0.113 kDa). The syndrome 
has been defined as an eGFRcystatin C/eGFRcreatinine ratio < 0.6 
or 0.7 in the absence of extrarenal influences on cystatin C 
(e.g., moderate or high doses of glucocorticoids) or creati-
nine (e.g., low muscle mass). SGHS has been associated with 
a substantial increase in morbidity and mortality including 
patients with normal mGFR [73] which might be caused by 
accumulation of atherosclerosis-promoting proteins [74].

In a recent retrospective study in patients undergoing PCI, 
multivariate logistic regression analysis indicated that SGHS 
(eGFRcystatin C/eGFRcreatinine ratio < 0.6) was significantly 
associated with AKI and had stronger predictive power 
for AKI than creatinine‐based eGFR [75]. Notably, SGHS 
was associated with an increased AKI risk irrespective of 
whether chronic kidney disease (eGFRcreatinine < 60 mL/
min/1.73 m2) was present or not.

Take home messages

1.	 Relative GFR (mL/min/1.73 m2) should be used to assess 
the GFR category as a sign of the degree of kidney dam-
age and sensitivity for CI-AKI.

2.	 Absolute GFR (mL/min) is the individual’s actual excre-
tion capacity. It can be used to calculate an upper limit 
of the total CM dose in relation to this capacity (i.e., the 
CM-dose/GFRABS ratio) to minimize the risk of CI-AKI 
depending on the degree of kidney damage.

3.	 CM-dose/GFRABS ratio is directly related to systemic CM 
exposure and in turn to toxicity. The total dose should be 
expressed in grams of iodine and not in mL because CM 
concentrations have a great variation. A gram-I/GFRABS 
ratio < 1.0 has been recommended for intra-arterial sec-
ond-pass renal exposures and may also be adapted for 
intravenous injections. In patients at risk of CI-AKI, 
it may be advisable to keep the ratio < 0.5 if possible, 
without degrading the diagnostic quality. This may be 
achieved with a low-kilovoltage technique for CT.

4.	 Estimation of GFR should only use equations based on 
internationally standardized creatinine or cystatin  C 
assays.

5.	 Unstable renal function makes accurate estimation of 
GFR with creatinine- or cystatin C–based equations 
impossible.

6.	 Prospective studies are warranted to evaluate the opti-
mal CM-dose/GFRABS ratio to predict CI-AKI at various 
stages of kidney damage for CT and intra-arterial exami-
nations based on modern GFR estimating equations.

7.	 Selective glomerular hypofiltration syndrome defined as 
eGFRcystatin C/eGFRcreatinine < 0.6 may represent a new 
and more powerful phenotype of renal dysfunction to 
predict AKI following CM examinations but needs to 
be confirmed in further trials.
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Table 4   GFR thresholds indicating a risk of contrast medium-induced acute kidney injury following intravenous injections according to various 
organization

eGFR estimated glomerular filtration rate, ICU intensive care unit, NSAID non-steroidal anti-inflammatory drugs, NYHA New York Heart Association

Organization Risk factors

American College of Radiology [2] • GFR < 30 mL/min/1.73 m2

• In individual high-risk circumstances (eg, numerous risk factors, recent AKI, borderline 
GFR), prophylaxis may be considered in patients with GFR of 30–44 mL/min/1.73 m2 at 
the discretion of the ordering clinician

European Society of Urogenital Radiology [3, 4] • GFR < 30 mL/min/1.73 m2

Swedish Society of Uroradiology, revised guide-
lines 2022 [59]

• eGFR < 30 mL/min/1.73 m2

• eGFR 30–44 mL/min/1.73 m2 when gram-iodine/GFRAbsolute ratio > 0.5
• eGFR 45–59 mL/min/1.73 m2, ≥ 2 risk factors* and when gram-iodine/GFRABS ratio > 0.5,
*eg, diabetes, chronic heart failure NYHA III/IV, NSAID or nephrotoxic drugs
• eGFR ≥ 60 mL/min/1.73 m2 when gram-iodine/GFRABS ratio > 1.0
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