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Abstract
Objectives  To develop and validate a radiomics-based model (ADGGIP) for predicting adult-type diffuse gliomas (ADG) 
grade by combining multiple diffusion modalities and clinical and imaging morphologic features.
Methods  In this prospective study, we recruited 103 participants diagnosed with ADG and collected their preoperative 
conventional MRI and multiple diffusion imaging (diffusion tensor imaging, diffusion kurtosis imaging, neurite orientation 
dispersion and density imaging, and mean apparent propagator diffusion-MRI) data in our hospital, as well as clinical infor-
mation. Radiomic features of the diffusion images and clinical information and morphological data from the radiological 
reports were extracted, and multiple pipelines were used to construct the optimal model. Model validation was performed 
through a time-independent validation cohort. ROC curves were used to evaluate model performance. The clinical benefit 
was determined by decision curve analysis.
Results  From June 2018 to May 2021, 72 participants were recruited for the training cohort. Between June 2021 and Febru-
ary 2022, 31 participants were enrolled in the prospective validation cohort. In the training cohort (AUC 0.958), internal 
validation cohort (0.942), and prospective validation cohort (0.880), ADGGIP had good accuracy in predicting ADG grade. 
ADGGIP was also significantly better than the single-modality prediction model (AUC 0.860) and clinical imaging mor-
phology model (0.841) (all p < .01) in the prospective validation cohort. When the threshold probability was greater than 
5%, ADGGIP provided the greatest net benefit.
Conclusion  ADGGIP, which is based on advanced diffusion modalities, can predict the grade of ADG with high accuracy 
and robustness and can help improve clinical decision-making.
Clinical relevance statement  Integrated multi-modal predictive modeling is beneficial for early detection and treatment 
planning of adult-type diffuse gliomas, as well as for investigating the genuine clinical significance of biomarkers.
Key Points 
• Integrated model exhibits the highest performance and stability.
• When the threshold is greater than 5%, the integrated model has the greatest net benefit.
• The advanced diffusion models do not demonstrate better performance than the simple technology.
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Abbreviations
ADG	� Adult-type diffuse gliomas
ADGGIP	� Adult-type diffuse gliomas grade integrated 

prediction model
AUC​	� Area under the curve
ClinicRad	� Model incorporating clinical factors and 

interpretations from radiologists
CliRadDTI	� Model incorporating clinical factors, radi-

ologist interpretations and DTI data
CNS	� Central nervous system
DKI	� Diffusion kurtosis imaging
DSI	� Diffusion spectrum magnetic resonance 

imaging
DTI	� Diffusion tensor imaging
HGG	� High-grade glioma
LGG	� Low-grade glioma
MAP-MRI	� Mean apparent propagation diffusion-MRI
NODDI	� Neurite orientation dispersion and density 

imaging
rMRI	� Radiomics MRI
WHO	� World Health Organization

Introduction

Adult-type diffuse gliomas (ADGs) are the most common 
subtype of glioma [1]. Because of the large nuclear heteroge-
neity of tumor cells, the biological behavior of ADG features 
invasive growth, and clinically, the tumors are character-
ized by high disability-adjusted life years. The outcome of 
the tumor patient depends on a number of genetic traits as 
well as the histological grade [2]. Additionally, hereditary 
traits may play a bigger role in the overall development of 
the disease. However, the 2021 World Health Organiza-
tion (WHO) Classification of Tumors of the Central Nerv-
ous System (CNS) successfully combines the two, and the 
resulting WHO grade may be a superior clinical biologi-
cal indicator than an independent predictor (e.g., isocitrate 
dehydrogenase) in earlier studies [3]. With the continuous 
exploration and discovery of tumor growth mechanisms and 
new genetic biomarkers, some new treatment methods have 
shown great potential, such as immunotherapy [4]. Such 
advancements are expected to improve long-term survival 
and quality of life for the subset of patients who cannot be 
treated surgically, such as those with brainstem or multifocal 
lesions. Therefore, there is an urgent need for a reliable and 
noninvasive method to predict ADG grade to help develop 
precision medicine protocols.

MRI has long been the main method for the diagnosis 
of brain tumors. Moreover, with the development of vari-
ous advanced imaging technologies, the clinical application 
of MRI technology is highly promising [5]. However, such 
biomarkers have not been widely used in clinical practice 

due to their complex theoretical composition and lack of 
effective prospective validation. Previous studies [6–9] have 
shown that advanced diffusion technologies can help to iden-
tify biological tumor markers, evaluate the damage of fiber 
tracts, or display the microstructure in the brain. We believe 
that multiple diffusion technologies can provide informa-
tion reflecting pathological features, which can complement 
tumor heterogeneity and existing clinical applications.

Radiomics has made rapid progress in its applications 
in the medical field [10], especially in supporting decisions 
to enable machine-assisted diagnosis and prognosis assess-
ments [11]. Previous studies [12] have shown that radiomic-
based methods can be used to analyze the genetic charac-
teristics of gliomas with improved performance. However, 
these studies were usually limited to conventional MRI, did 
not involve advanced imaging modalities [13] such as mean 
apparent propagation diffusion-MRI (MAP-MRI), or had 
low reproducibility due to the lack of prospective validation. 
Thus, we hypothesized that advanced diffusion technologies 
can be used for ADG grade prediction. To our knowledge, 
no similar study has been published.

In this study, we aimed to develop and validate a new 
integrated model for predicting ADG grade (adult-type dif-
fuse gliomas grade integrated prediction model (ADGGIP)) 
by combining radiomic, clinical, and imaging morpho-
logical features. Additionally, the differences between the 
advanced diffusion technology and the simple technology 
were compared.

Materials and methods

We conducted a prospective study in accordance with the 
Declaration of Helsinki. The ethics committee of our hos-
pital approved the study protocol (No. 2022038), and all 
participants signed informed consent forms prior to enroll-
ment in the cohort.

Participants and clinical data

In this study, we prospectively and consecutively enrolled 
participants who visited our hospital from June 2018 to 
February 2022. All participants were suspected of ADG 
due to clinical symptoms or previous imaging reports. Then, 
all participants underwent preoperative conventional MRI 
(T2, T1, T2-FLAIR, and contrast-enhanced T1) and diffu-
sion imaging (DWI and diffusion spectrum magnetic reso-
nance imaging [DSI]), and surgery was performed within 
3 months after the scan to obtain sufficient pathological 
tissue for the diagnosis of ADG (in accordance with the 
2021 WHO Classification of Tumors of the CNS). Most 
participants received only general symptomatic care, 
such decreasing cranial pressure, between the MRI scan 
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and surgery. For detailed scanning equipment, scanning 
parameters and pathological diagnosis information, see 
pages 1–2 in the Appendix and Supplementary Table S1. 
Certain participants were excluded based on the exclusion 
criteria (Fig. 1). Finally, 103 participants with ADG (mean 
age, 52 years; range, 21–77; 54 [52%] male) were enrolled. 
Because this was a single-center study, the time-validation 
method was used to validate the model [14], and partici-
pants were assigned to the training and prospective valida-
tion cohorts according to enrollment time. Seventy-two par-
ticipants between June 2018 and May 2021 were assigned to 
the training cohort, including 38 low-grade glioma (LGG, 
CNS WHO Grades 2–3) participants and 34 high-grade gli-
oma (HGG, CNS WHO Grade 4) participants. Thirty-one 
participants between June 2021 and February 2022 were 
assigned to the prospective validation cohort, including 8 
participants with LGG and 23 participants with HGG.

Model development and validation

We developed and compared the performance and stabil-
ity of various models, with the aim of comparing the abili-
ties of the advanced diffusion technology and the simple 

technology in identifying ADG grade and to establish a 
clinically applicable and more complete prediction model.

After image preprocessing and region of interest selec-
tion (Appendix, p. 3–4), feature extraction and model build-
ing were performed using FeAture Explorer (FAE v0.5.2, 
https://​github.​com/​salan​668/​FAE) [15]. A total of 2782 
radiomic features were extracted from the MRI data of 3 
advanced technologies (including diffusion kurtosis imag-
ing [DKI], neurite orientation dispersion and density imag-
ing [NODDI], and MAP-MRI), 1 simple technology (diffu-
sion tensor imaging [DTI]) and B0 map (Appendix p. 4–5, 
Supplementary Figure S1 and Table S2). In addition, sex 
and age were extracted as clinical features, and 9 morpho-
logical features (necrosis, cystic, calcification, hemorrhage, 
tumor enhancement pattern, location, side, clarity of the 
solid tumor boundary, and edema) were extracted from the 
imaging reports (Appendix p. 5–6). Then, multiple pipeline 
combinations were considered during model development, 
including 3 feature normalization methods (mean, min–max 
and Z score normalization), 2 data dimensionality reduction 
methods (principal component analysis and Pearson cor-
relation coefficients) (Supplementary Figure S2 and S3), 4 
feature selection methods (analysis of variance, recursive 

Fig. 1   Recruitment pathway for 
study participants. Based on the 
date of enrolment, participants 
were divided into various 
datasets. The ADGGIP was 
developed and validated before 
being formed. DSI, diffusion 
spectrum magnetic resonance 
imaging

https://github.com/salan668/FAE
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feature elimination, Kruskal‒Wallis, and Relief), and 10 
classifiers (linear [logistic regression, logistic regression 
via least absolute shrinkage and selection operator, linear 
discriminant analysis, and support vector machine] and 
nonlinear [autoencoder, decision tree, random forest, ada-
boost, Gaussian process, and naïve Bayes]), for a total of 
240 pipelines (Appendix p. 7–9). Model evaluation was per-
formed using an internal validation cohort (by leave-one-
out cross-validation) and an independent validation cohort. 
The flowchart of this study is shown in Fig. 2.

Finally, a total of 9 diagnostic models were established, 
including 5 single-modality prediction models (B0, DTI, 
DKI, NODDI, and MAP-MRI models) based on single dif-
fusion technology, 1 fusion prediction model incorporat-
ing all diffusion technologies (radiomics MRI [rMRI]), 1 
prediction model with clinical and imaging morphological 
features (ClinicRad), and 2 multimodal prediction models 
(the single-modality model with the highest diagnostic per-
formance in the prospective validation cohort and the more 
theoretically relevant prediction model incorporating multi-
ple diffusion features were selected) (incorporating clinical 
factors, radiologists’ interpretations, and DTI or rMRI data 
[CliRadDTI/ADGGIP] to predict ADG grade) (Supplemen-
tary Figure S4).

Statistical analysis

The performance of the model in predicting ADG grade was 
evaluated with the receiver operating characteristic curve. 
The 95% confidence intervals of the area under the curve 
(AUC) were generated by bootstrap with 1000 samples. 
We used the DeLong test, net reclassification improvement 
and integrated discrimination improvement to compare the 
performances of different models. Deviations between the 
model and the real results were visualized by calibration 
curves and quantified by the Brier score. Decision curve 
analysis was used to compare the net benefits of different 
models at different threshold probabilities to increase the 
possibility of practical application in clinical practice.

Quantitative data are expressed as the mean ± standard 
deviation. Student’s t test was used to compare age, and the χ2 
test, Fisher test, or Mann‒Whitney U test were used to com-
pare categorical variables. All statistical analyses were two-
sided, and p < 0.05 was considered statistically significant. All 
statistical analyses were performed using SPSS (version 24.0); 
R with the irr, pROC, and PredictABEL packages installed 
(version 4.1.2); or Python (version 3.9.12) and Scikit-Learn 
(version 0.24.2). Sample size and power calculations are 
shown in the additional materials (Appendix p. 9–10).

Fig. 2   Workflow of the study. Information from preprocessed mul-
tilayer diffusion models, raw conventional MRI scans, and clinical 
features of the study cohort were collected and analyzed to sum-
marize the underlying feature matrices that could be used to build 
the machine learning models. Model construction was performed 
using FeAture Explorer (V0.5.2), in which a variety of modeling 
approaches were tried. The mean receiver operating characteristic 
(ROC) curves, decision analysis curves and calibration curves were 
used to construct an integrated diagnostic model (ADGGID). DTI, 
diffusion tensor imaging; DKI, diffusion kurtosis imaging; NODDI, 
neurite orientation dispersion and density imaging; MAP-MRI, mean 
apparent propagation diffusion-MRI; ROI, region of interest; GLCM, 

gray level co-occurrence matrix; GLRLM, gray level run length 
matrix; GLSZM, gray level size zone matrix; GLDM, gray level 
dependence matrix; NGTDM, neighborhood gray tone difference 
matrix; PCC, Pearson correlation coefficient; PCA, principal com-
ponent analysis; ANOVA, analysis of variance; KW, Kruskal-Wallis; 
RFE, recursive feature elimination; SVM, support vector machine; 
AE, auto-encoder; LDA, linear discriminant analysis; RF, random 
forest; Lasso, logistic regression via least absolute shrinkage and 
selection operator; LR, logistic regression; Ab, ada-boost; DT, deci-
sion tree; GP, Gaussian process; NB, native Bayes; ADGGIP, adult-
type diffuse gliomas grade integrated prediction model
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Results

Participant characteristics

The baseline characteristics of all participants are summa-
rized in Table 1 and Supplementary Table S3. There were no 
significant differences in baseline characteristics between the 
training and prospective validation cohorts, except for WHO 
grade (p = 0.012), tumor location (0.011), and side of the 
tumor (0.046). We attribute this to the increasing incidence 
of glioblastoma and to new WHO criteria that have elevated 

some histological grades based on genetic characteristics. 
However, the imbalanced classification still reflects the 
severity of gliomas (2/3 of ADG are HGG) in the real world.

In the training cohort, only sex (p = 0.637), cystic changes 
(0.592), tumor boundary (0.979), and side of the tumor 
(0.083) showed no significant differences between the LGG 
and HGG groups. In the prospective validation cohort, there 
were no significant differences in baseline characteristics 
between the LGG and HGG groups except for necrosis 
(p = 0.027), tumor location (0.034), and enhancement mode 
(0.034).

Table 1   Participants characteristics

Data are the mean ± standard deviation or n/N (%), where N is the total number of patients with available data. p values were calculated with the 
chi-square test, Fisher’s test, Student’s t test, and Mann‒Whitney U test
LGG low-grade glioma, HGG high-grade glioma

Variable Training and internal validation cohort (n = 72) Prospective validation cohort (n = 31)

LGG (n = 38) HGG (n = 34) p value LGG (n = 8) HGG (n = 23) p value

Age (years) 46.21 ± 10.08 57.88 ± 10.35  < .001 49.38 ± 14.30 53.65 ± 13.12 .444
Sex     .637 .412
  Male 20/38 (52.63%) 16/34 (47.06%) 6/8 (75.00%) 12/23 (52.17%)
  Female 18/38 (47.37%) 18/34 (52.94%) 2/8 (25.00%) 11/23 (47.83%)
Necrosis     .001 .027
  Present 22/38 (57.89%) 31/34 (91.18%) 3/8 (37.50%) 19/23 (82.61%)
  Absent 16/38 (42.11%) 3/34 (8.82%) 5/8 (62.50%) 4/23 (17.39%)
Hemorrhage     .001 .660
  Present 22/38 (57.89%) 31/34 (91.18%) 5/8 (62.50%) 17/23 (73.91%)
  Absent 16/38 (42.11%) 3/34 (8.82%) 3/8 (37.50%) 6/23 (26.09%)
Calcification     .043 .335
  Present 12/38 (31.58%) 4/34 (11.76%) 3/8 (37.50%) 4/23 (17.39%)
  Absent 26/38 (68.42%) 30/34 (88.24%) 5/8 (62.50%) 19/23 (82.61%)
Cyst or cysts     .592 .999
  Present 32/38 (84.21%) 31/34 (91.18%) 7/8 (87.50%) 21/23 (91.30%)
  Absent 6/38 (15.79%) 3/34 (8.82%) 1/8 (12.50%) 2/23 (8.70%)
Edema (≤ 1.5 cm)  < .001 .412
  Yes 29/38 (76.32%) 12/34 (35.29%) 3 (37.50%) 14 (60.87%)
  No 9/38 (23.68%) 22/34 (64.71%) 5 (62.50%) 9 (39.13%)
Tumor borders     .979 .999
  Sharp 18/38 (47.37%) 16/34 (47.06%) 5/8 (62.50%) 13/23 (56.52%)
  Blurry 20/38 (52.63%) 18/34 (52.94%) 3/8 (37.50%) 10/23 (43.48%)
Tumor location category  < .001 .034
  Frontal or insula 32/38 (84.21%) 12/34 (35.29%) 5 (62.50%) 4 (17.39%)
  Other 4/38 (10.53%) 20/34 (58.82%) 2 (25.00%) 16 (69.57%)
  Basal nucleus or corpus callosum 2/38 (5.26%) 2/34 (5.88%) 1 (12.50%) 3 (13.04%)
Side     .083 .999
  Left 18/38 (47.37%) 23/34 (67.65%) 3 (37.50%) 8 (34.78%)
  Right 20/38 (52.63%) 11/34 (32.35%) 5 (62.50%) 15 (65.22%)
Enhancement category  < .001 .034
  Patchy enhancing 15/38 (39.47%) 2/34 (5.88%) 5/8 (62.50%) 3/23 (13.04%)
  Ringlike enhancing 12/38 (31.58%) 31/34 (91.18%) 3/8 (37.50%) 19/23 (82.61%)
  Nonenhancing 11/38 (28.95%) 1/34 (2.94%) 0/8 (0.00%) 1/23 (4.35%)
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Feature selection and pipeline

ADGGIP was established using a support vector machine. 
Unlike the single-modality radiomics model, the multi-
modal model incorporates clinical and imaging morpho-
logical features. ADGGIP was composed of four features, 
including one radiomics feature and three clinical features, 
among which the radiomics feature was the prediction 
probability of settlement on rMRI, and the three clinical 
features were calcification, tumor location, and edema; the 
contributions of the four features were 1.41, 0.94, 0.82, 
and 0.41, respectively. The radiomics feature had the high-
est correlation with tumor grade. Edema had the lowest 
correlation with tumor grade (Supplementary Figure S5). 
rMRI was composed of four radiomics features, all of 
which were first-order features. The energy and median 
values of the DTI fractional anisotropy and MAP non-
Gaussianity axial are included, respectively. The feature 
distribution is shown in Supplementary Figure S6. The 
detailed constituent factors and pipelines of all models are 
shown in Table 2.

Briefly, ADGGIP was constructed as an integrated pre-
diction model by integrating radiomic, clinical, and imag-
ing morphological features of the training cohort and was 
considered as the optimal model in this study. The ADG-
GIP provided a probabilistic forecast of ADG grade (rang-
ing from 0 to 1), and the probability of LGG inversely 
correlated with the value of the anticipated probability 
output. Then, the result was artificially converted into a 
binary prediction, either LGG or HGG, where the thresh-
old value relied on the maximum Youden index.

Development, performance, and validation 
of prediction models

ADGGIP showed the strongest ability to discriminate 
tumor grades in the training cohort (AUC 0.958 [95% CI 
0.907–0.992]) and internal validation cohort (0.942 [95% CI 
0.885–0.982]) (Table 3 and Fig. 3). ADGGIP also showed 
superior performance in predicting tumor grade in the pro-
spective validation cohort. Among 8 participants with LGG 
predicted by ADGGIP, 7 (87.5%) were pathologically con-
firmed to have LGG. In addition, among 23 HGG partici-
pants predicted by ADGGIP, 19 participants (82.6%) were 
confirmed to have HGG by pathology (Supplementary Fig-
ure S7). Overall, ADGGIP achieved a favorable AUC of 
0.880 (95% CI 0.685–1) in the prospective validation cohort. 
The prospective validation cohort performed slightly worse, 
possibly due to the small sample size (n = 31). In addition, 
ADGGIP also had the highest precision-recall AUC, which 
ranged from 0.942 to 0.963. The AUCs of the single-modal-
ity model and ClinicRad model were slightly lower than that 

of ADGGIP (AUC range: 0.721–0.860). For the diagnostic 
model based on a single diffusion technology, the DTI model 
(simple model) showed the highest diagnostic performance 
(AUC range: 0.821–0.851) in all cohorts (Supplementary 
Table S4). In the training cohort, each predictor contained in 
the rMRI, ClinicRad, CliRadDTI, and ADGGIP was used to 
independently predict tumor grade, with AUC values rang-
ing from 0.502 to 0.821 (Supplementary Figure S5).

The DeLong test, integrated discrimination improve-
ment, and net reclassification improvement were used to 
compare the diagnosis efficacy of the various models. 
Since net reclassification improvement requires artifi-
cial presetting of the cutoff point and the DeLong test is 
insensitive to small samples, integrated discrimination 
improvement was used as the gold standard when results 
were not matched. The results demonstrated that ADGGIP 
was superior to all other models (p < 0.05; except for the 
prospective validation group for the DTI model), while the 
DTI model was the best of the five single-modality models. 
The rMRI model performed worse than the DTI model 
(integrated discrimination improvement < 0) (Supplemen-
tary Tables S5-7).

The calibration curve showed that with ADGGIP, the 
data generated in the training cohort had the highest con-
sistency between the predicted value and the observed value 
compared with all other models (Fig. 4 and Supplementary 
Figure S8). In further quantitative analysis, ADGGIP had 
the smallest Brier score (0.084), which also verified the 
results of the calibration curve (Supplementary Table S8), 
indicating that ADGGIP composed of multimodal features 
was more consistent with the real situation, thus improving 
the prediction performance.

Clinical value

Decision curve analysis was performed for the nine diag-
nostic models, and the findings are shown in Fig. 4 and 
Supplementary Figure S8. At threshold probabilities greater 
than 5%, ADGGIP provided a greater net benefit than the 
other eight models in predicting the grade of ADG com-
pared with the case in which no predictive model was used 
(i.e., all or none).

Discussion

In this study, we developed and validated a radiomics-based 
model that can assess ADG grade before treatment by combin-
ing quantitative diffusion radiomics features and clinical and 
radiographic morphological features. The integrated model 
for predicting ADG grade (ADGGIP) accurately predicted 
the ADG grade, had the best diagnostic efficacy and stability 
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Table 2   Selected features for model construction

Feature origin (N)a Pipelinec (normalization/dimension reduction/ 
feature selector/classifier)

Feature names

B0b features
(N = 5)

Z Score/PCC/KW/AE gldm_DependenceVariance
glszm_LargeAreaHighGrayLevelEmphasis
ngtdm_Busyness
ngtdm_Coarseness
shape_MajorAxisLength

DTIb features
(N = 3)

MinMax/PCC/RFE/NB AD_ firstorder_Minimum
FA_ firstorder_Energy
FA_ firstorder_Median

DKIb features
(N = 7)

Z Score/PCA/RFE/AE PCA_feature_3
PCA_feature_9
PCA_feature_13
PCA_feature_15
PCA_feature_21
PCA_feature_39
PCA_feature_72

NODDIb features
(N = 4)

MinMax/PCA/Rel/LR-Lasso PCA_feature_18
PCA_feature_27
PCA_feature_25
PCA_feature_68

MAP-MRIb features
(N = 6)

Z Score/PCA/RFE/AE PCA_feature_1
PCA_feature_3
PCA_feature_4
PCA_feature_19
PCA_feature_22
PCA_feature_28

rMRIb features
(N = 4)

MinMax/PCC/RFE/AE DTI_FA_ firstorder_Energy
DTI_FA_ firstorder_Median
MAP_NGAx_ firstorder_Energy
MAP_NGAx_ firstorder_Median

ClinicRadb features
(N = 5)

Z Score/PCC/RFE/AE Age
Necrosis
Hemorrhage
Calcification
Tumor location category

CliRadDTIb features
(N = 8)

MinMax/PCC/ANOVA/AE Rad score-DTId

Age

Necrosis

Hemorrhage

Calcification

Edema

Tumor location category

Side
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compared to other combination models, and showed good net 
benefits in decision curve analysis. And first-order traits may 
be a more correlated biomarker for grade prediction.

A previous study [16] identified the potential application 
of preoperative DWI and DTI in combination with machine 
learning for identifying multiple genetic traits aimed at 
improving the treatment of patients with glioma, particularly 
primary glioblastoma. They compared multiple prediction 
models and concluded that a comprehensive model based on 
radiomics and deep learning could be used to predict genetic 
biomarkers. However, the application of deep learning 
reduces the interpretability of the model, and without addi-
tional verification, there is a potential risk of overfitting. In a 
parallel study, several scholars carried out similar work and 
established four models capable of providing information 
correlating to different single genetic traits [13]. However, 
the classification criteria applied to the cohort did not fully 
conform to the clinical situation [17], leading to unclear 
clinical applicability. In this study, compared with previ-
ous studies, more accurate glioma subgroup classification 
methods were applied, and the model based on a single dif-
fusion technology showed better performance (AUC range: 
0.721–0.851) than the DWI (AUC range: 0.631–0.725). It 
is suggested that an advanced diffusion technology may be 
a better clinical choice. The poor correlation between ADC 
and histopathological features can be considered one expla-
nation for this phenomenon [18].

The excellent predictive performance of ADGGIP may 
be due to the comprehensive incorporation of tumor macro-
structural and microstructural features versus being limited 
to heterogeneous radiomics features. Gao et al [7] applied 
four diffusion technologies to study the main genetic infor-
mation of glioma. They found that single-modality models 

showed similar diagnostic performances among each other, 
and the diagnostic models that integrated multiple diffusion 
modality features did not show better application value. 
However, they did not carry out additional clinical or higher-
order feature extraction. This was improved in our study, 
considerably enhancing the therapeutic application potential. 
Even so, their integrated prediction model still showed the 
contribution of DTI and MAP-MRI, which was similarly 
reflected in our results. In addition, in our study, multiple 
pipelines were used to select the optimal model, versus being 
limited to a certain method or model, i.e., “No Free Lunch 
Theorem” [19]. Finally, the calibration curve and Brier 
scores between the models confirmed that the higher diag-
nostic performance of ADGGIP was more consistent with 
the real situation.

As advanced non-Gaussian diffusion technologies, the 
MAP-MRI, NODDI, and DKI should theoretically reflect 
the real situation of water molecular diffusion more accu-
rately than simple Gaussian diffusion technology (DTI) and 
better characterize the complexity and inhomogeneity of the 
tissue microenvironment [20]. However, the DTI prediction 
model is more accurate than other single-modality predic-
tion models. This finding means that the advantages of the 
integrated diffusion model may be currently only theoretical, 
and point-to-point studies are necessary to analyze the inter-
nal association between the predictive integrated diffusion 
model and pathological features. Interestingly, ADGGIP 
showed the highest diagnostic efficacy and stability when 
combined with clinical and morphologic features and was 
superior to the best single-modality model (DTI) combined 
with clinical and morphologic features. That result indicates 
the importance of multimodal features, and even omitting 
one type of feature can degrade prediction performance [21].

Eight different modeling approaches were tried in the study, and a comprehensive evaluation analysis was carried out
a The total number of features in a distinct group
b We included 9 different modeling approaches for identifying adult-type diffuse gliomas grades
c The processing of valid data features for modeling was called a pipeline
d, eThe prediction results of the DTI or rMRI model. The resulting predictive features were defined as a new feature matrix for further develop-
ment of the multimodal prediction model
B0 diffusion b0 parameter diagram, DTI diffusion tensor imaging, DKI diffusion kurtosis imaging, NODDI neurite orientation dispersion and 
density imaging, MAP-MRI mean apparent propagation diffusion-MRI, rMRI radiomics MRI, ClinicRad model incorporating clinical factors and 
interpretations from radiologists, CliRadDTI model incorporating clinical factors, radiologist interpretations and DTI data, ADGGIP adult-type 
diffuse gliomas grade integrated prediction model, PCC Pearson correlation coefficient, PCA principal component analysis, KW Kruskal‒Wal-
lis, RFE recursive feature elimination, Rel relief, ANOVA analysis of variance, AE autoencoder, NB native Bayes, LR-Lasso logistic regression 
via least absolute shrinkage and selection operator, SVM support vector machine

Table 2   (continued)

Feature origin (N)a Pipelinec (normalization/dimension reduction/ 
feature selector/classifier)

Feature names

ADGGIPb features
(N = 4)

Z Score/PCC/Rel/SVM Rad score-rMRIe

Calcification
Tumor location category
Edema
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Some scholars believe that first-order features have 
more substantial associations with tumor characteristics 
than higher-order features [18], and energy often shows the 
strongest radio-tissue association. In our study, the energy 
of fractional anisotropy, as independent factor, was incorpo-
rated into both the DTI and rMRI models, which proved the 
point. Energy was distributed differently between LGG and 
HGG groups, which may be explained as the residual white 
matter fiber bundle [6, 22] and represents a more invasive 
pathological feature [23].

Repeatability and reproducibility are necessary for 
machine learning model building [10, 24]. Some scholars 
have found that simultaneous multi-slice technology had an 
impact on the extraction of diffusion features [25]. The field 

strength also causes some effects [26], and the higher the 
correlation of features to the actual situation, the smaller the 
effect of field strength [18]. During data collection, we did 
not conduct additional simultaneous multi-slice technology 
to reduce scanning time, but to obtain more accurate diffu-
sion information. Nevertheless, the advanced DSI-based pre-
processing technique, which involved fitting four diffusion 
models by scanning a single sequence, ensured the viability 
of clinical application. Simultaneous multislice can be used 
to significantly reduce the scan time in the future, although 
it may affect the settlement of diffusion parameters [25]. 
Naturally, it is likely that some centers will not be able to 
comply with some of the model’s requirements, such scan-
ning for DSI. DTI might be an alternative at this stage. The 

Table 3   Prediction performance of ADGGIP compared with other integrated prediction models

Data in parentheses are the numerator/denominator of participants included for each parameter, unless otherwise indicated. Values correspond to 
the optimal threshold according to the maximum Youden index
* Data are the mean (95% CI)
AUC​ area under the curve, PPV positive predictive value, NPV negative predictive value, ACC​ accuracy, ADGGIP adult-type diffuse gliomas 
grade integrated prediction model (integrated model for predicting adult-type diffuse gliomas grade), CliRadDTI model incorporating clinical 
factors, radiologist interpretations and DTI data, ClinicRad model incorporating clinical factors and interpretations from radiologists, rMRI radi-
omics MRI

Training cohort Internal validation cohort Prospective validation cohort

ADGGIP
  AUC* 0.958 (0.907–0.992) 0.942 (0.885–0.982) 0.880 (0.685–1.000)
  Sensitivity 0.853 (29/34) 0.824 (28/34) 0.826 (19/23)
  Specificity 0.974 (37/38) 0.947 (36/38) 0.875 (7/8)
  PPV 0.967 (29/30) 0.933 (28/30) 0.950 (19/20)
  NPV 0.881 (37/42) 0.857 (36/42) 0.636 (7/11)
  ACC​ 0.917 (66/72) 0.889 (64/72) 0.839 (26/31)
CliRadDTI
  AUC* 0.913 (0.851–0.968) 0.891 (0.803–0.962) 0.924 (0.821–1.000)
  Sensitivity 0.794 (27/34) 0.824 (28/34) 0.826 (19/23)
  Specificity 0.921 (35/38) 0.921 (35/38) 0.875 (7/8)
  PPV 0.900 (27/30) 0.903 (28/31) 0.950 (19/20)
  NPV 0.833 (35/42) 0.854 (35/41) 0.636 (7/11)
  ACC​ 0.861 (62/72) 0.875 (63/72) 0.839 (26/31)
ClinicRad
  AUC* 0.841 (0.735–0.926) 0.823 (0.727–0.923) 0.837 (0.641–0.973)
  Sensitivity 0.882 (30/34) 0.853 (29/34) 0.913 (21/23)
  Specificity 0.790 (30/38) 0.763 (29/38) 0.625 (5/8)
  PPV 0.790 (30/38) 0.763 (29/38) 0.875 (21/24)
  NPV 0.882 (30/34) 0.853 (29/34) 0.714 (5/7)
  ACC​ 0.833 (60/72) 0.806 (58/72) 0.839 (26/31)
rMRI
  AUC* 0.860 (0.767–0.933) 0.773 (0.661–0.875) 0.870 (0.739–0.967)
  Sensitivity 0.853 (29/34) 0.559 (19/34) 0.870 (20/23)
  Specificity 0.737 (28/38) 0.895 (34/38) 0.625 (5/8)
  PPV 0.744 (29/39) 0.826 (19/23) 0.870 (20/23)
  NPV 0.849 (28/33) 0.694 (34/49) 0.625 (5/8)
  ACC​ 0.792 (57/72) 0.736 (53/72) 0.807 (25/31)
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diagnostic efficacy of a comprehensive predictive model 
based on DTI is still quite good.

Despite the promising results, our study has some limita-
tions. First, the comprehensive diagnostic model was based 
on data from a single center. However, comprehensive and 
effective statistical analysis methods ensure the accuracy 
and stability of the model. Second, manual delineation of 
tumor regions of interest is the current gold standard, but it 
takes considerable time and effort. In the future, fully auto-
mated tumor segmentation based on machine learning will 
be incorporated into practical applications, such as neural 

networks. Third, there were not enough prognostic data to 
support the usability of the model, which needs to be further 
explored and validated in future studies.

In conclusion, we present ADGGIP, a noninvasive and 
accurate radiomic model that combines radiomic, clini-
cal, and imaging morphological features to facilitate the 
preoperative assessment of WHO grade in patients with 
adult-type diffuse gliomas. The performance and stability 
of ADGGIP highlight the potential of advanced diffusion 
models for precision therapy in patients with adult-type dif-
fuse gliomas.

Fig. 3   ROC curves (a) and PR curves (b) of ADGGIP and other inte-
grated prediction models in the training and validation cohorts. Clini-
cRad, model incorporating clinical factors and interpretations from 

radiologists; rMRI, radiomics MRI; CliRadDTI, model incorporating 
clinical factors, radiologist interpretations and DTI data; ADGGIP, 
adult-type diffuse gliomas grade integrated prediction model

Fig. 4   Decision curve analysis (a) and calibration curve (b) of ADG-
GIP versus other integrated prediction models in the training cohorts. 
Decision curves show that ADGGIP predicts adult-type diffuse glio-
mas grade better than intervention all, no intervention and other sin-
gle models when the threshold is above 5%. ADGGIP predictions 

were closer to the real situation and had the lowest Brier score (b). 
ClinicRad, model incorporating clinical factors and interpretations 
from radiologists; rMRI, radiomics MRI; CliRadDTI, model incorpo-
rating clinical factors, radiologist interpretations and DTI data; ADG-
GIP, adult-type diffuse gliomas grade integrated prediction model
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