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Abstract
Objectives COVID-19 pandemic seems to be under control. However, despite the vaccines, 5 to 10% of the patients with 
mild disease develop moderate to critical forms with potential lethal evolution. In addition to assess lung infection spread, 
chest CT helps to detect complications. Developing a prediction model to identify at-risk patients of worsening from mild 
COVID-19 combining simple clinical and biological parameters with qualitative or quantitative data using CT would be 
relevant to organizing optimal patient management.
Methods Four French hospitals were used for model training and internal validation. External validation was conducted in 
two independent hospitals. We used easy-to-obtain clinical (age, gender, smoking, symptoms’ onset, cardiovascular comor-
bidities, diabetes, chronic respiratory diseases, immunosuppression) and biological parameters (lymphocytes, CRP) with 
qualitative or quantitative data (including radiomics) from the initial CT in mild COVID-19 patients.
Results Qualitative CT scan with clinical and biological parameters can predict which patients with an initial mild presenta-
tion would develop a moderate to critical form of COVID-19, with a c-index of 0.70 (95% CI 0.63; 0.77). CT scan quanti-
fication improved the performance of the prediction up to 0.73 (95% CI 0.67; 0.79) and radiomics up to 0.77 (95% CI 0.71; 
0.83). Results were similar in both validation cohorts, considering CT scans with or without injection.
Conclusion Adding CT scan quantification or radiomics to simple clinical and biological parameters can better predict 
which patients with an initial mild COVID-19 would worsen than qualitative analyses alone. This tool could help to the fair 
use of healthcare resources and to screen patients for potential new drugs to prevent a pejorative evolution of COVID-19.
Clinical Trial Registration NCT04481620.
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Clinical relevance statement CT scan quantification or radiomics analysis is superior to qualitative analysis, when used with 
simple clinical and biological parameters, to determine which patients with an initial mild presentation of COVID-19 would 
worsen to a moderate to critical form.
Key Points 
• Qualitative CT scan analyses with simple clinical and biological parameters can predict which patients with an initial  
   mild COVID-19 and respiratory symptoms would worsen with a c-index of 0.70.
• Adding CT scan quantification improves the performance of the clinical prediction model to an AUC of 0.73.
• Radiomics analyses slightly improve the performance of the model to a c-index of 0.77.

Keywords COVID-19 · Tomography, X-ray computed · Clinical decision rules · Artificial intelligence

has a pivotal role in detecting complications such as throm-
boembolism [8], which can occur even in mild diseases [9]. 
Also, a prognostic role of chest CT has been reported in evalu-
ating the extent of COVID-19 lung abnormalities [10, 11] 
while previous data have shown that it could predict severe 
outcomes [12–14]. Besides, clinical and biological param-
eters with artificial intelligence (AI) analyses of imaging data 
seemed to identify patients with severe outcomes in COVID-
19 pneumonia [15]. However, most publications are based on 
small cohorts or severe forms [16–18], and there is no data 
about mild COVID-19, which are dramatically more frequent.

The goals of this multicenter study were to develop and 
validate clinical prediction models for the risk of progres-
sion from mild to moderate, severe, or critical COVID-19 
combining simple clinical and biological parameters with 
qualitative or quantitative data (including radiomics) from 
the initial chest CT in mild COVID-19 patients with respira-
tory symptoms. This strategy could help to identify patients 
with low-risk worsening of SARS-CoV-2 pneumonia despite 
respiratory symptoms. Early identifying at-risk patients may 
address a major issue of a fair use of healthcare resources 
and would allow better screening for new expansive thera-
peutics to prevent a pejorative evolution of COVID-19.

Materials and methods

Ethics considerations

The study was conducted by international guidance and 
approved by a national Ethics Committee on 06/18/2020 
(NCT04481620). The study conducts adhere to the TRIPOD 
statement recommended for developing and validating a pre-
diction model. Study data were collected and managed using 
REDCap electronic data capture tools hosted at the Univer-
sity Hospital of Bordeaux [19].

Study design and participants

In the development cohort (from 3 university hospitals in 
Bordeaux, Grenoble, and Montpellier and a private hospital 
in Bordeaux, France), patients were eligible if they were 

Abbreviations
BMI  Body mass index
CI  Confidence interval
COPD  Chronic obstructive pulmonary disease
COVID-19  Coronavirus disease 2019
CRP  C-reactive protein
CT  Computed tomography
DLP  Dose length product
HU  Hounsfield Unit
ILD  Interstitial lung disease
kV  Kilovoltage
LR  Logistic regression
mAs  Milliampere second
NA  Not applicable
OR  Odds ratio
SD  Standard deviation
SVM  Support vector machine

Introduction

Few patients infected with coronavirus disease 2019 (COVID-
19) rapidly develop acute respiratory distress leading to res-
piratory failure, with high short-term mortality rates [1]. How-
ever, only 5% of patients infected with COVID-19 experienced 
this pejorative evolution [2]. Despite the vaccines, the pan-
demic is not over yet and a progression from a mild to moder-
ate or severe form could not be excluded for at-risk subjects 
[3]. However, there is still no reliable risk stratification tool 
for non-severe COVID-19 patients at admission especially 
among those with respiratory symptoms further overwhelm-
ing the health system [4]. Patients with a mild disease typically 
recover at home [5], especially, because there is no fully proven 
therapy for these mild COVID-19 to prevent adverse evolution 
[6]. Nevertheless, new expansive strategies are emerging to 
prevent worsening from mild to severe COVID-19 [7], without 
distinction of a specific population likely to worsen.

Chest computed tomography (CT) is widely used to man-
age COVID-19 pneumonia because of its availability and 
rapid acquisition; it remains crucial in case of prolonged 
symptoms or new emergency signs. In addition to its role in 
early diagnoses during the first months of the pandemic, CT 
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at least 18 years old, and had a first chest CT performed 
without injection of contrast agent for respiratory symptoms 
which led to highly suspicious or compatible according to 
standardized visual analysis of COVID-19. Besides, they 
should have either a biological diagnosis (RT-PCR) or a 
clinical suspicion (cough and/or dyspnea and/or fever and/
or need to use oxygenotherapy as part of routine care) of 
COVID-19 at the time of the CT scan, between March 1, 
2020, and May 5, 2021 (Figure S1). Non-inclusion crite-
ria were patients with moderate or severe forms (defined as 
oxygenotherapy ≥ 3 L/min to obtain a  SpO2 > 97%) or criti-
cal forms of COVID-19 (defined by the need for non-inva-
sive or invasive ventilation and/or orotracheal intubation) 
on the date of the first chest CT. In the validation cohort 
(university hospitals in Nancy and Poitiers, France), eligibil-
ity criteria were similar, except that half of the patients had 
chest CT with a contrast agent injection.

Outcome of interest and predictors

The composite outcome of significant clinical deterioration 
from a mild form of COVID-19 within 30 days after chest 
CT was defined by the occurrence of a moderate, severe 
(defined as oxygenotherapy > 5 L/min to obtain  SpO2 > 97%), 
or critical form of COVID-19 or death [20]. The clinical and 
biological candidate predictors were selected from a lit-
erature review [8, 11, 21–23] and retrieved from the elec-
tronic medical records: age, gender, smoking, time elapsed 
since symptoms’ onset, and any pre-existing cardiovascular 
comorbidities such as coronary artery disease, hypertension, 
diabetes, obesity, respiratory diseases (COPD or interstitial 
lung disease), or immunosuppression. Clinical and biological 
parameters were collected in a 24-h window after CT scans.

Validation cohort

We internally validated the model and estimated its perfor-
mance in an independent validation cohort. Half of the vali-
dation cohort (n = 228) used participants with non-injected 
CT scans included between March 19, 2020, and January 
28, 2021. The other half (n = 246) included participants with 
injected CT scans, between March 23, 2020, and April 23, 
2021 (Figure S1).

Chest CT

CT were acquired on 9 CT models (Table S1, supplemen-
tal data). The standardized report proposed by the French 
Society of Radiology (https:// ebull etin. radio logie. fr/ compt 
es- rendus- covid- 19) was largely used by French radiologists 
across the participating centers. It includes a 5-scale score 
of severity (0% = absent; < 10% = mild; 10–25% = moderate; 
25–50% = extended; 50–75% = severe; > 75% = critical) and 

a 4-point scale to categorize the risk of COVID-19: highly 
suspicious, compatible, not suspicious, and normal. Differ-
ent patterns of COVID-19 lung lesions and their distribu-
tions were reported (ground-glass opacities, consolidations, 
and crazy paving) [24, 25].

Quantitative assessment of CT

An AI-based software tool for chest CT analysis (syngo.via 
CT Pneumonia Analysis prototype) from Siemens Health-
ineers (Version 1.0.4.2) was used to assess the severity of 
COVID-19. It automatically segments the lungs/lobes and 
delineates lung opacities (ground-glass and consolidations) 
based on a convolutional neural network trained with data 
manually labeled by expert radiologists [26]. If needed, lung 
segmentation was adjusted manually. Low attenuation areas 
were defined when below -950 HU (LAA-950).

Radiomics analyses of CT

Before extracting radiomics features, images were resam-
pled on a 1 mm × 1 mm × 1 mm grid by PyRadiomics [27]. 
Preprocessing, harmonization, and normalization of features 
were scaled using the RobustScaler from scikit-learn frame-
work [31], which removes the median and scales the data 
according to the quantile range.

Then, from the CT of each patient, PyRadiomics was used 
to extract two sets of radiomics features on two different 
ROIs for each patient: the COVID-19 lesion and the lung 
region not including the COVID-19 part. For each of these 
ROIs, we extracted a total of 107 radiomics features—with 
a bin width of 34—corresponding to first-order (n = 18), 
shape (n = 14), and second-order (gray-level co-occurrence 
matrix with 1-voxel distance to neighbors, gray-level run 
length matrix, neighborhood gray-level different matrix, and 
gray-levels zone length matrix, n = 75) groups of radiomics 
features. With the development cohort, the best model (i.e., 
a chain of preprocessing, selection, oversampling, model 
methods) was selected using mean values of the c-indexes 
metric over the repeated (n = 30) tenfold cross-validation 
[28]. The complete procedure was then retrained on the 
whole cohort and used for obtaining the predictions on the 
validation cohort. An additional filter was applied to the 
images before extraction (Laplacian of Gaussian filter with 
sigma = 2 mm), giving 186 extra features from each ROI. As 
these additional features did not significantly improve the 
results, we chose to discard them from our analysis. Thus, 
for each CT, 214 radiomics features were extracted.

An ablation study was also performed to investigate the 
importance of the different groups of imaging features. 
Results are shown in the two cohorts of the validation set 
(Table S5). “Lesion radiomics” considers only the set of 
radiomics features (107 features) extracted from the lesion; 

https://ebulletin.radiologie.fr/comptes-rendus-covid-19
https://ebulletin.radiologie.fr/comptes-rendus-covid-19
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“Lesion + Lung radiomics” considers radiomics extracted 
from the lesion and parenchyma (214 features) and “Complete 
radiomics” was the model obtained with the full set of imag-
ing features and clinical and biological features (226 features).

Statistical analyses

A sample size of the development cohort was calculated 
using Riley and colleagues’ approach [29]. We hypoth-
esized an incidence of significant clinical deterioration 
within 30 days at 20%; among mild COVID-19 [1, 2], 16 
parameters included in the clinical prediction models and an 
expected Harrell’s c-index of 0.78 (Nagelkerke’s R2 of 0.25). 
The resulting sample size was at least 826 patients. For the 
external validation, we aimed to recruit at least one hundred 
clinical deterioration events for each validation cohort, as 
recommended by Vergouwe [30].

Three clinical prediction models were developed, com-
bining clinical and biological factors with imaging param-
eters of increasing complexity: 5-scale score of severity 
based on CT visual assessment (model 1 or qualitative 
model); quantitative assessment of ground-glass, consoli-
dation, and low attenuation areas on CT (model 2 or quan-
titative model); radiomics features (model 3) where 6 fea-
tures were selected among the COVID lesions and lungs 
ROIs as the best features from the univariate analysis of 
the development cohort in each of the classical radiomics 
classes (shape-based features, first-order intensity features, 
and second-order intensity features), 2 features per group. In 
addition, we predefined the percentage of consolidation as a 
characteristic of interest to retain in the model.

The development of the prediction models was based on 
a logistic regression model whose response variable was 
defined by the outcome of interest described above. The 
missing data on outcome and predictors (Table S2) were 
handled as appropriate (supplemental data).

The predictive performances of the clinical prediction 
models were evaluated on samples of participants recruited 
in independent study centers (external validation). Finally, 
to estimate sensitivities, specificities, and predictive values 
of clinical prediction models, we dichotomized the outcome 
probability by using the median of the thresholds calculated 
in each imputed dataset in the development process to obtain 
a minimal desired specificity of 0.90 to select patients to 
avoid unnecessary hospitalizations/treatments.

Development and exploration of machine learning 
model

We evaluated the predictive capacity of a larger set of radi-
omics features with machine learning algorithms. They were 
trained on the development cohort using repeated cross-vali-
dations. Model selection was performed on the development 

cohort and its performance was evaluated in the validation 
cohort. The computations were run in Python using the Scikit-
learn platform [31]. Feature selection: first, the pairwise cor-
relation between features was computed using Spearman rank 
correlation. When two features were highly correlated (cor-
relation coefficient > 0.95), the last one was dropped (columns 
were randomly shuffled beforehand, and no significant change 
in performance was observed). Then, we kept the 50 best fea-
tures from the univariate analysis (the procedure was done 
separately for each cross-validation fold, yielding potentially 
a different set of selected features for each fold).

Results

Baseline characteristics and outcomes 
of the development cohort

A total of 827 participants were included in the develop-
ment cohort (Fig. 1). The study demographics are presented 
in Table 1 and Table S3. Briefly, mean age was 65.5 [IQR 
54; 79] years; there were 495 (59.9%) men, with a median 
BMI of 27.4 [23; 30] kg/m2 and a median time between first 
symptoms and CT of 6 [2; 10] days. Comorbidities were 
mainly hypertension (373, 45.1%), obesity (178, 21.7%), and 
diabetes mellitus (170, 20.6%). Asthma and COPD affected 
respectively 9.3 and 8.5% of the population. A positive RT-
PCR during the acute phase was reported for 461 (64.8%) 
participants. Mean lymphocyte level was 1.16 ± 1.35 G/L, 
CRP 86 ± 82 mg/L. CT features were distributed as follows: 
ground-glass opacities affecting 805 (97.3%). The extent of 
the COVID-19 suspected lesions were mild (182, 22.0%), 
moderate (389, 47.0%), extended (200, 24.2%), severe (52, 
6.3%), or critical (4, 0.5%). Finally, 440 (53.2%) participants 
were graded highly suspicious for COVID-19 diagnosis, the 
others being compatible.

Significant clinical degradation was observed in 212 
(28.4%) participants (Table S2). Severe and critical forms 
occurred respectively in 105 (14.1%) and 46 (6.2%) partici-
pants. The 30-day mortality rate was 9.3%, with a mean time 
from COVID-19 diagnosis of 11.5 (± 8.8) days (Table 1).

Baseline characteristics and outcomes 
of the external validation cohort

A total of 474 patients were included from two independ-
ent centers (in the external validation cohort (228 patients 
with non-injected and 246 with injected CT, Fig. 1). Clini-
cal characteristics were similar, as shown in Table 1, except 
for the gender with fewer men, a higher rate of obesity in 
both validation cohorts and more occasional smokers in the 
validation cohort with injected scans. A significant clinical 
degradation occurred in 90 (40.5%) participants from the 
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Fig. 1  Flow chart of PREDICT-COVID in the validation cohort (A) and the development cohort with non-injected CT scans (B) and injected CT 
scans (C). CT, computed tomography
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non-injected validation cohort and 102 (41.8%) participants 
from the injected validation cohort. The 30-day mortality 
rate was 16.3% in the non-injected validation cohort and 
7.4% in the injected validation cohort (Table 1).

Performance of the qualitative model (model 1)

Model 1 (Table 5 and S8) showed good overall internal and 
external validation performance. The optimism-corrected 
c-index of the model was 0.68 (95% CI 0.62; 0.71). Dis-
crimination was similar in both external validation cohorts: a 

c-index of 0.70 (95% CI 0.63; 0.77) for the cohort with non-
injected scans and 0.66 (95% CI 0.59; 0.72) for the cohort 
with injected scans (Table 2, Fig. 2). Figure 2 C and D dis-
play the calibration graph of prediction models.

Performance of the quantitative model (model 2)

Using CT quantification (Table 5 and S8) improved the dis-
crimination of the clinical prediction model up to a c-index 
of 0.72 (95% CI, 0.67; 0.74). The improvement from model 
1 to model 2 was 0.04 (95% CI, 0.01; 0.07). Discrimination 

Table 1  Patient characteristics 
in the development and 
validation cohort

COPD chronic obstructive pulmonary disease, CRP C-reactive protein, CT computed tomography, RT-PCR 
real-time polymerase chain reaction, SD standard deviation
Missing data in Table S2

Development cohort
(n = 827)

Validation cohort
(n = 474)

CT without injection
(n = 228)

CT with injection
(n = 246)

Clinical parameters
 Age (years), mean (SD) 65.5 (17.7) 66.6 (18.1) 64.6 (17.1)
 Male gender, N (%) 495 (59.9) 110 (48.2) 126 (51.2)
 BMI (kg/m2) 27.4 (6.3) 28.5 (6.6) 29.2 (5.5)
 Time to symptoms onset (days),
mean (SD)

7.4 (8.2) * 7.0 (5.6) 7.2 (4.3)

 Active smokers, N (%) 77 (14.5) 24 (16.3) 7 (3.9)
 Hypertension, N (%) 373 (45.1) 126 (55.3) 115 (46.7)
 Coronary artery disease, N (%) 165 (20.0) 36 (15.8) 23 (9.3)
 Obesity, N (%) 178 (21.7) 72 (36.0) 74 (39.2)
 Respiratory diseases
 Asthma, N (%)
 COPD, N (%)
 Interstitial lung disease, N (%)

77 (9.3)
70 (8.5)
17 (2.1)

19 (8.3)
21 (9.2)
3 (1.3)

13 (5.3)
10 (4.1)
1 (0.4)

 Diabetes, N (%) 170 (20.6) 59 (25.9) 62 (25.2)
 Immunosuppression, N (%) 83 (10.0) 25 (11.0) 10 (4.1)

Biological parameters
 Lymphocyte level (g/L) 1.16 (1.35) 1.13 (0.93) 1.09 (0.58)
 CRP (mg/L) 86.5 (82.1) 88.0 (75.8) 88.6 (73.4)
 RT-PCR positive for COVID-19, N (%) 461 (64.8) 172 (80.4) 226 (95.8)

Radiological parameters
 Disease extent on CT scan
 Mild < 10%, N (%)
 Moderate 10–25%, N (%)
 Extended 25–50%, N (%)
 Severe 50–75%, N (%)
 Critical > 75%, N (%)

182 (22.0)
389 (47.0)
200 (24.2)
52 (6.3)
4 (0.5)

50 (21.9)
95 (41.7)
63 (27.6)
17 (7.5)
3 (1.3)

32 (13.0)
111 (45.1)
74 (30.1)
28 (11.4)
1 (0.4)

Outcomes
 Primary outcome in the 30 days 241 (32.3) 96 (43.2) 106 (43.3)
 Moderate form
 Severe form
 Critical form
 Death

212 (28.4)
105 (14.1)
46 (6.2)
67 (9.3)

90 (40.5)
60 (27.0)
32 (14.5)
36 (16.3)

102 (41.8)
62 (25.4)
31 (12.7)
18 (7.4)
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was similar in both external validation cohorts: a c-index of 
0.73(95% CI 0.67; 0.80) with non-injected scans and 0.72(95% 
CI 0.66; 0.79) with injected scans (Table 2, Fig. 2).

A risk threshold of 0.49 was selected to achieve a speci-
ficity of at least 90% [6, 7] in the development cohort. Using 
this threshold for identification of high-risk population in 
the validation cohorts, sensitivity and negative predictive 
value were improved (0.23, 95% CI: 0.14; 0.32 and 0.07, 
95% CI: 0.02; 0.11) at the expense of specificity (− 0.09, 
95% CI: − 0.16; − 0.03) in comparison with model 1 in the 
cohort with injected scans (Table S4). The adjusted associa-
tion of predictors with the outcome is detailed in Table 5.

Performance of the model 3

In addition to the percentage of consolidation, six radi-
omics features were selected (namely volume of lesion 
and shape sphericity of lungs ROI from the shape 
groups, first order_Energy for lesion and lungs ROIs 

from the first order groups, and gldm_Dependence 
Entropy from lesion ROI, ngtdm_Busyness from lungs 
ROI from the second order groups, using pyradiomics 
canonical names). Using these 6 selected radiomics fea-
tures instead of CT scan quantification of ground-glass 
and low attenuation areas (Table 5 and S8, Figure S2) 
improved slightly discrimination of the prediction model 
(optimism-corrected c-index 0.74, 95% CI: 0.69; 0.76). 
The improvement from model 1 to model 3 was 0.06 
(95% CI, 0.03; 0.10). However, the improvement from 
model 2 to model 3 was not significant at 0.02 (95% CI, 
0.00; 0.05). Discrimination was consistent in both exter-
nal validation cohorts, although slightly lower among 
patients with injected scans: c-index of 0.77 (95% CI 
0.71; 0.83) with non-injected scans and 0.72 (95% CI 
0.66; 0.79) with injected scans (Table 2, Fig. 2).

Similarly, a risk threshold of 0.52 was selected to achieve 
a specificity of at least 90% in the development cohort. In 
the cohort with non-injected scans, sensitivities and negative 

Fig. 2  Performance of the quali-
tative (model 1), quantitative 
(model 2), and radiomics model 
(model 3), assessed by c-index 
representation (A) for non-
injected CT scans and (B) for 
injected CT scans. The calibra-
tion of prediction models was 
also studied for non-injected CT 
scans (C) and injected CT scans 
(D). CT, computed tomography
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predictive values were improved in comparison with models 1 
and 2 (0.17, 95% CI: 0.07; 0.27, 0.06, 95% CI: 0.01; 0.11, 0.17, 
95% CI: 0.08; 0.27 and 0.04, 95% CI: 0.01; 0.09 respectively), 
at the expense of specificity (− 0.08, 95% CI: − 0.15; − 0.02) in 
comparison with model 2. In the cohort with injected scans, 
sensitivity was increased (0.10, 95% CI: 0.00; 0.23) in compar-
ison with model 1 whereas sensitivity was decreased (− 0.12, 
95% CI: − 0.20; − 0.05) and specificity was increased (0.08, 
95% CI: 0.03; 0.14) in comparison with model 2 (Table S4).

Performance of the machine learning model

Using the development cohort, we selected the procedure (impu-
tation, feature selection, oversampling classification) that gave 
the best mean c-index (Table 3, Table S6). We only show results 
for feature selection by taking the 50 best features after univari-
ate analysis, taking a fixed percentile of features, or keeping the 
first components of a PCA yield inferior or similar c-index. We 
retrained the best-selected procedure on the whole development 
cohort. A threshold was selected for predictions to achieve a spec-
ificity of at least 90% in the development cohort. We obtained 
a c-index similar to the ones of the development cohort, which 
may hint at a good generalization ability of this model (Table 4). 
To analyze multi-centric variability, we have also evaluated the 
results on each center of the development cohort with no signifi-
cant difference (Table S7). The ablation study (Table S5) shows 
the interest of considering imaging features from the parenchyma 

in addition to those from the lesion. Yet the results of this model 
are a bit worse than model 3 (Table 5).

Discussion

While the COVID-19 pandemic is not over yet, identify-
ing at-risk of worsening patients from mild COVID-19, by 
developing easy-to-use prediction models, remains a major 
issue, especially for potential new patient management strat-
egies. Here, qualitative CT scan analyses combined with 
simple clinical and biological parameters could predict the 
worsening of COVID-19 pneumonia from mild forms with a 
c-index of 0.70. Using CT scan quantification improves the 
discrimination of the prediction model up to 0.73 and radi-
omics data up to 0.77. Discrimination was similar in both 
external validation cohorts with non-injected and injected 
CT scans. We also defined thresholds with high specificity 
in order to avoid false positive findings in order to optimize 
healthcare resources and/or to screen patients who would 
undergo new therapeutic options.

One may suggest that the prediction of clinical deteriora-
tion could be disappointing. However, similar data in more 
severe COVID-19 population reached the same performance 
of predicted clinical deterioration towards critical forms at 
day 14, varying from c-index 0.70 (95% CI 0.68; 0.72) to 
0.78 (95% CI 0.74; 0.82) [11, 32]. Even when adding blood 

Table 3  Results obtained with various machine learning procedures (imputation, feature selection, oversampling classification) on the develop-
ment cohort. We selected the model with the best mean c-index over 30 repeated tenfold cross-validations

CI confidence interval, LR logistic regression, SVM support vector machine, Hgboost histogram-based gradient boosting classification tree, Vote 
soft vote of the SVM and LR classifiers

Procedure/metrics Balanced accuracy F1 Brier score Precision Recall C-index

Vote (SVM, LR) 0.66 [0.6545, 
0.6668]

0.56 [0.5523, 
0.5663]

0.21 [0.2097, 
0.2140]

0.48 [0.4738, 
0.4869]

0.68 [0.6659, 
0.6877]

0.73 [0.7208, 
0.7328]

Hgboost 0.61 [0.6036, 
0.6168]

0.47 [0.4623, 
0.4814]

0.25 [0.2474, 
0.2552]

0.47 [0.4638, 
0.4818]

0.48 [0.4661, 
0.4900]

0.70 [0.6889, 
0.7013]

SVM 0.65 [0.6484, 
0.6602]

0.56 [0.5502, 
0.5630]

0.21 [0.2108, 
0.2153]

0.46 [0.4570, 
0.4685]

0.71 [0.6949, 
0.7168]

0.72 [0.7180, 
0.7302]

Random forests 0.65 [0.6407, 
0.6530]

0.54 [0.5369, 
0.5511]

0.21 [0.2099, 
0.2140]

0.47 [0.4591, 
0.4717]

0.66 [0.6507, 
0.6732]

0.72 [0.7091, 
0.7218]

LR 0.66 [0.6554, 
0.6675]

0.56 [0.5536, 
0.5672]

0.21 [0.2088, 
0.2130]

0.48 [0.4745, 
0.4874]

0.68 [0.6679, 
0.6891]

0.73 [0.7233, 
0.7358]

Table 4  Performance of the machine learning model on the two validation cohorts. Cutoff value for predictions was selected to ensure a specific-
ity above .9 on the development cohort

Cohort/metrics Balanced accuracy F1 Brier score Precision Recall C-index

Injected 0.67 [0.6649, 
0.6686]

0.62 [0.6189, 
0.6239]

0.24 [0.2422, 
0.2439]

0.62 [0.6180, 
0.6240]

0.62 [0.6211, 
0.6270]

0.72 [0.7160, 
0.7201]

Non-injected 0.64 [0.6380, 
0.6419]

0.54 [0.5418, 
0.5476]

0.22 (0.2171, 
0.2187]

0.65 [0.6484, 
0.6557]

0.47 [0.4668, 
0.4732]

0.74 [0.7411, 
0.7453]
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Table 5  Association of each 
predictor with the outcome in 
models 1, 2, and 3

CI confidence interval, COPD chronic obstructive pulmonary disease, CRP C-reactive protein, ILD inter-
stitial lung disease, HU Hounsfield Unit, OR odds ratio

Models Predictor OR 95% CI p-value

Model 1
Age (+ 1 year) 1.03 [1.01; 1.04]  < 0.0001
Gender (female vs male) 0.74 [0.53; 1.05] 0.088
Lesion extent (moderate vs mild) on CT scan 2.26 [1.35; 3.79]  < 0.0001
Lesion extent (extended vs mild) 3.53 [2.02; 6.16]
Lesion extent (severe vs mild) 6.96 [3.37; 14.4]
Active smoking 0.59 [0.30; 1.16] 0.128
Time elapsed since the onset of symptoms (+ 1 day) 0.97 [0.94; 1.00] 0.026
Pre-existing cardiovascular diseases 1.08 [0.74; 1.57] 0.690
Obesity 1.63 [1.07; 2.48] 0.024
Pre-existing respiratory disease (COPD or ILD) 1.26 [0.80; 1.97] 0.317
Diabetes 1.27 [0.85; 1.89] 0.246
Immunosuppression 1.32 [0.76; 2.28] 0.330
CRP (+ 1 mg/L) 0.38 [0.03; 4.11] 0.423
Lymphocytes (+ 1 G/L) 1.02 [0.90; 1.15] 0.743

Model 2
Age (+ 1 year) 1.02 [1.01; 1.04] 0.0005
Gender (female vs male) 0.79 [0.55; 1.13] 0.1929
Ground glass extent (+ 5%) 1.19 [1.10; 1.28]  < .0001
Consolidation (+ 5%) 1.40 [1.02; 1.91] 0.038
Low attenuation areas below − 950 HU (LAA-950) (+ 5%) 1.21 [0.81; 1.82] 0.352
Active smoking 0.63 [0.32; 1.23] 0.176
Time elapsed since the onset of symptoms (+ 1 day) 0.97 [0.94; 0.99] 0.018
Pre-existing cardiovascular diseases 1.06 [0.72; 1.55] 0.773
Obesity 1.48 [0.96; 2.28] 0.078
Pre-existing respiratory disease (COPD or ILD) 1.17 [0.73; 1.87] 0.511
Diabetes 1.23 [0.82; 1.86] 0.324
Immunosuppression 1.31 [0.74; 2.29] 0.351
CRP (+ 1 mg/L) 0.45 [0.06; 3.68] 0.458
Lymphocytes (+ 1 G/L) 1.03 [0.91; 1.16] 0.637

Model 3
Age (+ 1 year) 1.02 [1.01; 1.04] 0.002
Gender (female vs male) 0.78 [0.54; 1.14] 0.203
Volume of COVID lesions 0.15 [0.01; 2.94] 0.213
Consolidation (+ 0.01 unit) 1.01 [0.94; 1.09] 0.822
1st order energy (+ 1 trillion units) 2.02 [0.52; 7.82] 0.306
Entropy (+ 0.1 unit) 1.21 [1.10; 1.32]  < 0.001
Sphericity (+ 0.1 unit) 0.53 [0.32; 0.85] 0.009
1st order energy in lungs (+ 10 billion units) 0.96 [0.93; 0.98] 0.001
Agitation (+ 1000 units) 1.14 [0.48; 2.69] 0.768
Active smoking 0.72 [0.35; 1.48] 0.370
Time elapsed since the onset of symptoms (+ 1 day) 0.96 [0.93; 0.99] 0.011
Pre-existing cardiovascular diseases 1.19 [0.80; 1.76] 0.395
Obesity 1.60 [1.02; 2.51] 0.040
Pre-existing respiratory disease (COPD or ILD) 1.30 [0.81; 2.07] 0.273
Diabetes 1.19 [0.78; 1.81] 0.427
Immunosuppression 1.29 [0.72; 2.30] 0.395
CRP (+ 1 mg/L) 1.01 [0.99; 1.03] 0.469
Lymphocytes (+ 1 G/L) 1.06 [0.94; 1.20] 0.327
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and physiological parameters, prognosis performance mod-
estly improved discrimination (c-index = 0.735; 95% CI 
0.715; 0.75) [21]. More recently, Davies et al developed a 
model to predict the need for intensive oxygen supplemen-
tation during hospitalization, including seven clinical and 
biological variables [22]. However, contrary to our study, 
validation on an external cohort was missing, probably 
inducing overestimated results. Kamran et al developed 
another model based on nine clinical characteristics which 
achieved a c-index of 0.80 (95% CI 0.77; 0.84). Performance 
was consistent when validated in external centers [23]. How-
ever, similar to most published studies, these patients, all 
needing hospitalization, are more severe than those selected 
in the present study, probably explaining these discrepancies 
[14, 33]. Besides, we have also decided to select easily avail-
able clinical and biological data to improve the feasibility of 
our models in the future. Prediction performance remained 
consistent despite temporal changes in management and 
treatment during the different COVID-19 waves. Applica-
tion within the validation cohorts shows that this tool could 
guide clinician decisions, including treatment escalation.

Most of the already reported prediction scores were built 
on hospitalized cohort with more severe forms than our 
cohort, in addition to the use of a large number of parameters 
that are not systematically recorded in routine [8, 21–23]. 
We paid a particular attention to only include mild forms 
of COVID-19 and to use in our prediction model simple 
clinical and biological parameters along with chest CT data. 
Indeed, CT, apart from precluding thromboembolism com-
plication, might have a predictive value on the progression to 
moderate/severe forms of COVID, helping for the develop-
ment of new strategies.

One of the strengths of the present study was to com-
pare the performance of two validation cohorts: first 
among patients with non-injected CT scans and second 
with injected CT scans. Interestingly, discrimination per-
formance was similar in both external validation cohorts. 
We only noticed a decrease in discrimination performance 
in radiomics model. These results are important as an 
injection is now recommended regarding thromboembo-
lism risk [8], which can occur even in mild COVID-19 
[9] and will help to extrapolate our prediction model to 
larger real-life cohorts.

The frequent use of corticosteroids, based on its inter-
est in lowering 28-day mortality, among patients with 
severe forms of COVID-19 [34, 35] but also in milder 
forms [36] must be considered. Indeed, patients from the 
validation cohort were more often treated with corticos-
teroids, as included later in the pandemic (Figure S1). 
The prediction performance of our models remains simi-
lar even though the therapeutic management of COVID-
19 has improved, which supports the robustness of this 
model.

Contrary to previously published data [15], AI-
enhanced imaging and clinical and biological informa-
tion did not significantly improve the capacity to identify 
patients with pejorative outcomes. Direct comparison is 
difficult as we used a different dataset. External vali-
dation using an independent dataset is critical before 
implementation in a real-world environment and has 
been performed in the present study. Besides, opaque 
machine-learning algorithm black-box models have been 
avoided as much as possible by controlling valid clinical 
endpoints.

Limitations

First, other clinical and biological characteristics not 
always available in standard practice [21–23] have been 
described as predictors of adverse outcomes, although 
in severe COVID-19 population. We thus decided not 
to include all these parameters in our predictive model 
which focuses on ambulatory patients. Second, the bio-
logical confirmation of COVID-19 was not systematically 
available, with 35% not having an initial positive RT-PCR. 
This might have negatively affected our evaluation, since 
several patients with negative RT-PCR but positive CT 
findings were considered having COVID-19. However, 
this limitation reflects real-life events where RT-PCR is 
not performed systematically in outdoor patients. Further-
more, previous data have shown that patients with a nega-
tive first RT-PCR test do not differ considering mortality 
or hospital stay length [37]. Besides, we selected patients 
with highly suspicious or compatible lesions on scans. 
Although the models showed consistent performance 
across five various centers, the ongoing performance 
of our models will need to be assessed in the context of 
increasing deployment of immunomodulatory agents [7, 
38] and COVID-19 vaccines, as well as emerging SARS-
CoV-2 variants.

Conclusion

Models to predict clinical deterioration from mild to mod-
erate forms were developed in response to the COVID-
19 pandemic at five different hospitals, and were applied 
externally and performed well across the different medical 
centers, showing its potential as a tool for use in optimiz-
ing healthcare resources and selecting at-risk patients for 
new therapeutic strategies. Qualitative CT scan analyses 
combined with simple clinical and biological parameters 
could predict the worsening of COVID-19 pneumonia. The 
use of CT scan quantification or radiomics increased the 
performance of this prediction model.
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