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Abstract
Objective To compare unsupervised deep clustering (UDC) to fat fraction (FF) and relative liver enhancement (RLE) on 
Gd-EOB-DTPA-enhanced MRI to distinguish simple steatosis from non-alcoholic steatohepatitis (NASH), using histology 
as the gold standard.
Materials and methods A derivation group of 46 non-alcoholic fatty liver disease (NAFLD) patients underwent 3-T MRI. 
Histology assessed steatosis, inflammation, ballooning, and fibrosis. UDC was trained to group different texture patterns from 
MR data into 10 distinct clusters per sequence on unenhanced T1- and Gd-EOB-DTPA-enhanced T1-weighted hepatobil-
iary phase (T1-Gd-EOB-DTPA-HBP), then on T1 in- and opposed-phase images. RLE and FF were quantified on identical 
sequences. Differences of these parameters between NASH and simple steatosis were evaluated with χ2- and t-tests, respec-
tively. Linear regression and Random Forest classifier were performed to identify associations between histological NAFLD 
features, RLE, FF, and UDC patterns, and then determine predictors able to distinguish simple steatosis from NASH. ROC 
curves assessed diagnostic performance of UDC, RLE, and FF. Finally, we tested these parameters on 30 validation cohorts.
Results For the derivation group, UDC-derived features from unenhanced and T1-Gd-EOB-DTPA-HBP, plus from T1 in- and 
opposed-phase, distinguished NASH from simple steatosis (p ≤ 0.001 and p = 0.02, respectively) with 85% and 80% accuracy, 
respectively, while RLE and FF distinguished NASH from simple steatosis (p ≤ 0.001 and p = 0.004, respectively), with 83% 
and 78% accuracy, respectively. On multivariate regression analysis, RLE and FF correlated only with fibrosis (p = 0.040) 
and steatosis (p ≤ 0.001), respectively. Conversely, UDC features, using Random Forest classifier predictors, correlated with 
all histologic NAFLD components. The validation group confirmed these results for both approaches.
Conclusion UDC, RLE, and FF could independently separate NASH from simple steatosis. UDC may predict all histologic 
NAFLD components.
Clinical relevance statement Using gadoxetic acid–enhanced MR, fat fraction (FF > 5%) can diagnose NAFLD, and relative 
liver enhancement can distinguish NASH from simple steatosis. Adding AI may let us non-invasively estimate the histologic 
components, i.e., fat, ballooning, inflammation, and fibrosis, the latter the main prognosticator.
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Key Points 
• Unsupervised deep clustering (UDC) and MR-based parameters (FF and RLE) could independently distinguish simple 
   steatosis from NASH in the derivation group.
• On multivariate analysis, RLE could predict only fibrosis, and FF could predict only steatosis; however, UDC could predict 
   all histologic NAFLD components in the derivation group.
• The validation cohort confirmed the findings for the derivation group.

Keywords Non-alcoholic fatty liver disease · Magnetic resonance imaging · Gadolinium ethoxybenzyl DTPA · Artificial 
intelligence · Deep learning

Abbreviations
ALBI score   Albumin-bilirubin score
APRI score  Aspartate aminotransferase to 

platelet ratio index score
CSI  Chemical shift imaging
DCN   Deep clustering network
FF   Fat fraction
FIB-4 score   Fibrosis-4 score
Gd-EOB-DTPA-MRI   Gd-EOB-DTPA-enhanced 

MRI
NAFLD  Non-alcoholic fatty liver 

disease
NASH   Non-alcoholic steatohepatitis
NFS   NAFLD fibrosis score
PDFF  Proton density fat fraction
PostSI  Post-contrast signal intensity
PreSI   Pre-contrast signal intensity
RLE   Relative liver enhancement
SAF score   Steatosis Activity Fibrosis 

score
SIin   SI in-phase
SIout  SI out-of-phase
T1-Gd-EOB-DTPA-HBP   T1-weighted Gd-EOB-DTPA-

enhanced hepatobiliary phase
UDC  Unsupervised deep clustering

Introduction

Non-alcoholic fatty liver disease (NAFLD) has become a 
significant public health problem as its incidence continues 
to increase [1, 2]. NAFLD comprises simple steatosis, with 
relatively low liver-related morbidity, and non-alcoholic stea-
tohepatitis (NASH), which may lead to progressive hepatic 
dysfunction and liver-related mortality [3]. While simple stea-
tosis typically improves with lifestyle changes, NASH may 
require additional pharmacotherapy [1, 2]. The sequelae of 
NASH, i.e., end-stage liver cirrhosis, liver failure, hepatocellu-
lar carcinoma (HCC), and/or eventual liver transplantation, can 
be mitigated through early diagnosis and management [4, 5].

Currently, NASH is still routinely diagnosed by liver 
biopsy, an invasive procedure which increases the risk of 
bleeding in patients already prone to coagulopathy. Thus, 

patient acceptance is poor, restricting its utility for long-term 
monitoring. Further limitations include sampling errors due 
to uneven distribution of steatosis and high inter-observer 
variability [6, 7]. Moreover, universal liver biopsy is not 
feasible in a high-prevalence disease such as NAFLD. In 
addition, serum markers are largely nonspecific and conven-
tional imaging, including US, CT, and gadolinium chelate-
enhanced MRI, cannot differentiate between NASH and 
simple steatosis [8, 9]. Thus, a non-invasive diagnostic test, 
with both high sensitivity and specificity for detection and 
monitoring of NASH, is urgently needed [10].

Multiparametric magnetic resonance imaging (MRI) with 
its ability to quantify proton density fat fraction (PDFF), 
using a gamut of techniques such as dual-echo chemical shift 
imaging (CSI), i.e., in- and opposed-phase [11] [12], multi-
echo technique, or MR proton spectroscopy (MRS) [13], as 
well as detecting fibrosis and inflammation with MR elas-
tography [14], has emerged as a powerful tool.

Gd-EOB-DTPA-MRI, initially used to detect and character-
ize focal liver lesions, such as HCC complicating NAFLD, has 
been shown to distinguish between simple steatosis and NASH 
from the calculated relative liver enhancement (RLE) [15]. Also, 
CSI was able to differentiate between both entities using the 
fat fraction (FF) [16]. Furthermore, artificial intelligence (AI), 
including deep learning, may shed light on the imaging fea-
tures of NAFLD. Recently, an unsupervised predictive texture 
discovery, proposed by Perkonigg et al, was introduced [17]. 
This approach is based on the deep clustering networks (DCN) 
[18] and uses random forests to link the histologically-relevant 
information to the texture patterns extracted by this approach 
[19]. Therefore, the aim of this study was to investigate in a 
derivation group whether a hybrid unsupervised and supervised 
deep learning approach could identify predictive patterns that 
could differentiate simple steatosis from NASH using the CSI 
technique, as well as unenhanced T1 and Gd-EOB-DTPA-MR 
images in the hepatobiliary phase (T1-Gd-EOB-DTPA-HBP). 
Furthermore, we compared the ability of UDC with that of RLE 
and FF, all data derived from identical MR sequences, to distin-
guish between NASH and simple steatosis in NAFLD patients. 
Histopathology was used as the gold standard. After identifying 
simple steatosis vs NASH predictors in the derivation group, we 
applied this model to a validation group.
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Materials and methods

Patients

Written informed consent was obtained from all patients and 
the study protocol approved by the local ethics committee 
for this single-center study. Whereas the derivation cohorts 
were enrolled prospectively, the validation cohorts, imaged 
on another scanner with different software and exam param-
eters, were gathered retrospectively.

Patients with clinical features suspicious for fatty liver 
on ultrasound and elevated serum levels of aspartate and 
alanine aminotransferase were recruited from the Division of 
Gastroenterology and Hepatology of our tertiary academic 
institution. Inclusion criteria included histologic proof of 
simple steatosis or NASH and use of a standardized com-
plete Gd-EOB-DTPA-enhanced MR protocol. Exclusion 
criteria were age < 18 years, pregnancy, alcohol consump-
tion of ≥ 20 g/day, presence of hepatitis B and C infection, 
autoimmune liver diseases, hemochromatosis, Wilson’s 
disease, α-1 antitrypsin deficiency, toxic liver diseases, pri-
mary biliary cirrhosis, and primary sclerosing cholangitis, 
respectively, according to American and European current 
guidelines [1, 2]. There were 49 derivation and 30 valida-
tion patients. We excluded three derivation-group patients, 
two with incomplete MRI and one who refused biopsy. The 
final derivation cohort included 46 patients and 30 valida-
tion patients, all with complete MRI and histology reports.

Reference standard: biopsy and histopathological 
analysis

All liver biopsy specimens were evaluated by an experienced 
pathologist using the Steatosis Activity Fibrosis (SAF) scor-
ing system as the gold standard [20], including steatosis grade 
(mild, moderate, and severe), and two of these three features: 
(1) necro-inflammation with mononuclear cells and/or poly-
morphonuclear leukocytes, (2) ballooning degeneration of 
hepatocytes, and (3) perisinusoidal and/or bridging fibrosis.

Blood markers

For blood markers, we considered common biochemical 
parameters, including levels of total bilirubin, aspartate 
aminotransferase, alanine aminotransferase, alkaline phos-
phatase, g-glutamyl transpeptidase, triglycerides, high-den-
sity lipoprotein cholesterol, and glucose. In all patients, the 
serum markers were measured in the same laboratory within 
1 week of MR imaging. Furthermore, we used the FIB-4 
score, the NAFLD Fibrosis Score (NFS), the ALBI score, 
and the APRI score as established non-invasive biomarkers 
for accurate stratification of patients at higher risk of NASH 
and advanced fibrosis.

MRI protocol

All derivation-group MR examinations were performed 
on a 3-T scanner (Magnetom Trio, A Tim) and all valida-
tion-group exams were done on a 3-T (Magnetom Prisma 
Fit) Siemens Healthineers. The MRI protocol included a 
chemical shift imaging (CSI) technique, with in-phase and 
opposed-phase transverse T1-weighted, dual gradient-echo 
sequence pre-contrast media. Furthermore, unenhanced 
and dynamic contrast-enhanced, three-dimensional, breath-
hold, T1-weighted spoiled gradient-echo volumetric (VIBE) 
sequences, including the hepatobiliary phase, i.e., 20 min 
after CM injection, diffusion-weighted images (DWI), and 
conventional T2-weighted images, were acquired. A stand-
ard dose of Gd-EOB-DTPA (0.025 mmol/kg; Primovist® 
in Europe and Eovist® in the USA; Bayer Healthcare, Ber-
lin, Germany) was administered as a bolus intravenously, 
for all patients of both groups using a power injector at a 
rate of 1.0 mL/s, immediately followed by a 20-mL saline 
flush. MR acquisition parameters are given in Table 1 and 
Table 1S.

Image analysis

Computational image analysis and UDC had two main steps 
combining supervised and unsupervised machine learning, 
as follows [17]:

• First, in a pre-processing step, the liver was auto-
matically segmented on MR sequences in all image 
volumes using a convolutional neural network archi-
tecture called U-Net which is particularly well-suited 
for image segmentation tasks [21].
• Then, unsupervised machine learning, using a com-
bined deep learning and clustering method, identified 
a set of image patterns frequent on liver MRI across 
NAFLD patients. For our 46 NAFLD patients, 50,000 
2D patches in the axial orientation were randomly 
extracted [22]. The clusters of every liver were also 
linked to the histological target variables for that liver.
• Then an autoencoder network that had been trained 
to reconstruct low-dimensional input accurately used 
three convolutional layers and three upsampling opera-
tions to rebuild the liver images in the latent space.
• Simultaneously, the DCN method assigned patches 
with similar appearances in this latent space into 10 
distinct clusters.
• Lastly, we had the trained network use a sliding win-
dow to parse (i.e., search) the entire axial liver slice of 
all 46 NAFLD patients. At each position, it extracted, 
processed, and assigned the patch to one of the 10 clus-
ters derived during the training. The UDC signature 



7732 European Radiology (2023) 33:7729–7743

1 3

of each liver was the relative proportion of that liver 
image that belonged to each of the 10 clusters, i.e., a 
histogram. An overview of the method is illustrated 
in Fig. 1.
• Then, we created 46 × 3 UDC, one for each MRI 
sequence of each cohort: unenhanced T1-, T1-Gd-
EOB-DTPA-HBP, and [unenhanced T1-in-phase and 
unenhanced T1-opposed phase]. To combine infor-
mation from unenhanced T1- and Gd-EOB-DTPA-
HBP scans, we created a 10-component UDC signa-
ture for each, and combined them by concatenation 
resulting in a 20-component UDC signature for each 
patient. UDC signatures for T1 in- and opposed-phase 
images were calculated independently from the Gd-
EOB-DTPA-enhanced images and resulted in an addi-
tional 10-dimensional feature vector per patient.
• In the second step, the UDC signatures of liver scans 
were used as feature vectors to perform supervised 
machine learning with a Random Forest regression 
model [19]. Then, those feature vectors were tested 
to see if and how accurately they could predict his-
tologically-relevant features and grades of steatosis, 
inflammation, fibrosis, and ballooning to classify the 
patient as simple steatosis or NASH. In other words, 
this cross-validation tested the model’s performance.

Conventional MRI quantification analysis used signal 
intensity (SI) measurements performed on a commercially 
available workstation (PACS system, AGFA-Healthcare, 
version 5.2) by two independent observers: a fellowship-
trained radiologist with more than 8 years of experience 
(N.B.) in abdominal MR imaging, and a technologist with 
3 years’ MR experience (R.F.). Both observers were blinded 
to patients’ clinical history, laboratory data, and histopathol-
ogy characteristics.

•The liver parenchymal SI was measured on unen-
hanced (PreSI), then on contrast-enhanced images 
obtained 20 min after contrast medium administration 
(PostSI) [15]. Measurements were performed by posi-
tioning nine separate circular regions of interest (ROIs) 
≥ 1 cm in diameter in each Couinaud liver segment, 
including segments 4a and b separately (Fig. 2). ROIs 
were drawn to avoid vascular motion and abdominal 
wall artifacts and were positioned far from visible 
vascular and biliary structures. Liver SIs were cal-
culated as the relative enhancement reported on the 
unenhanced images, according to the formula: Relative 
Liver Enhancement (RLE) = (PostSI-PreSI)/PreSI, as 
previously described in detail [15].
•The hepatic fat fraction (FF) was calculated by 
both radiologists independently. Again, they placed 
the ROIs as described above in all liver segments on 
the in- and opposed-phase sequences. Liver fat was Ta
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quantified as follows: [(SIin-SIopp)/2 × SIin] × 100 
as the percentage of relative signal intensity loss of 
the liver parenchyma on opposed-phase images. SIin 
and SIopp were liver parenchyma signal intensity on 
in-phase or opposed-phase images, respectively [23].
•Finally, we calculated the average liver SI for RLE 
and FF by adding the mean signal intensity of all Cou-
inaud segments for RLE and FF, respectively.

Statistical analysis

Categorical variables are presented as numbers and percent-
ages, and continuous variables as means and standard devia-
tions. Differences between NASH and simple steatosis were 
evaluated by the χ2 test for categorical data, and differences 
in continuous data between both groups were assessed using 
Student’s t-test. Mean RLE or mean FF was first tested with 
univariate and then with multiple regression analysis to see 
whether there was an association with NAFLD’s histologic 
features and to identify independent imaging predictors to dis-
tinguish NASH from simple steatosis. For UDC signatures, we 
used a Random Forest classifier to link those features to histol-
ogy and evaluate their predictive values. To assess the diagnos-
tic performance of the two methods (UDC features and con-
ventional MRI quantification methods, i.e., mean FF and mean 
RLE) to accurately separate NASH from simple steatosis, a 

receiver-operating characteristic (ROC) curve analysis was 
performed and optimal cutoff values were chosen by using a 
common optimization step that maximized the Youden index 
for predicting which patients had NASH. Subsequently, sensi-
tivity, specificity, accuracy, positive predictive values (PPV), 
and negative predictive values (NPV) for the appropriate cut-
offs and area under the curve (AUC) for both methods were 
calculated. The inter-rater variability was assessed by two-way 
mixed intraclass correlation coefficient (ICC) with absolute 
agreement [24]. The DeLong test was performed to compare 
the AUC for the combined UDC, RLE, and FF features for the 
derivation and validation groups [25]. All statistical analyses 
were performed for the derivation and validation in SPSS 25.0 
(SPSS Inc) or Python v3.7.0. Statistical significance was set at 
a p value of less than 0.05.

Results

Derivation group

Characteristics

Forty-six patients prospectively enrolled, consisting of 
M = 29 (63%), mean age of 49 years (range, 18–78 years). 
The mean age for women was 44.62  years (range, 

Sample patches

Histopathology

1. DCN Training

Clustering in latent space

Relative Cluster
Frequencies All Patients

Random Forest

2. Apply Clustering 3. Link to Histopathology

Fig. 1  A schematic showing the UDC (unsupervised deep clustering) 
analysis of liver imaging texture features on axial unenhanced and 
Gd-EOB-DTPA-enhanced T1-weighted hepatobiliary phase (T1-GA-
HBP) images, as well as dual echo in- and opposed-phase images 
(CSI) to differentiate between NASH and simple steatosis. (1) In the 
course of DCN training, the model studies all images in the training 
set and establishes various prototype clusters based on the spectrum 

of textures represented on the images. (2) During application on a 
cohort, the model translates imaging data into prototype clusters. 
Quantification of their relative abundance on each image results in (3) 
a histogram that serves as a feature representation of that liver MR 
section. A prediction model infers histopathology parameters from 
the features [17]
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18–64 years), and for men 51.52 years (range, 23–81 years). 
Histologically, 28 (61%) met the criteria for NASH, leaving 
18 classified as simple steatosis.

There were more men than women in the NASH group, 
but the differences between gender, age, and BMI were not 
statistically significant (Table 2). The interval between MRI 
and liver biopsy was 1 to 3 days.

The liver enzymes were generally higher in NASH than 
in simple steatosis patients. However, the difference was not 
statistically significant in the majority of these data (Table 2). 
Established clinical scores, including AST/ALT ratio, and 
APRI, ALBI, NFS, and Fib-4 scores, were also higher in 
NASH patients. However, only the NFS score reached statis-
tical significance (Table 2).

The final liver histology diagnosis and the distribution of 
fatty infiltration, lobular inflammation, ballooning, and fibro-
sis stage according to the SAF score (i.e., S ≥ 1, A ≥ 1 + ≥ 
1, any F score for NASH) were used as the gold standard 
(Table 3). The NASH group had a significantly higher number 

of patients with increased lobular inflammation (p < 0.0001), 
steatosis (p = 0.002), and ballooning (p = 0.005), as well as 
fibrosis (p = 0.001), compared to those with simple steatosis.

Results of liver segmentation

The U-Net used for liver segmentation was trained on the 
derivation liver cohort. We randomly sampled 7 of the 46 
patients and created ground truth labels for the evaluation 
of the segmentation accuracy on both T1-Gd-EOB-DTPA-
HBP and unenhanced T1 sequences. We found an increased 
accuracy for T1-Gd-EOB-DTPA-HBP (Dice: 0.960, recall: 
0.945, precision: 0.976) compared to unenhanced T1 
sequence (Dice: 0.897, recall: 0.961, precision: 0.842).

Results of UDC

In the derivation group (p ≤ 0.001) overall, we were able to 
find features that distinguished NASH from simple steatosis 

Fig. 2  a, b Axial chemical shift images (CSI). a, b Dual-echo, in- 
and opposed-phases, showing a diffuse loss of liver signal intensity. 
The fat fraction (FF) calculated as the mean of all nine segments 
(i.e., seg 4 a and b) of the liver according to the formula: [(SIin-SIop-
posed)/2 × SIin] × 100. SIin and SIopposed were the liver parenchyma 
signal intensity on in-phase or opposed-phase images, respectively. 

c Axial unenhanced (PreSI), and d contrast-enhanced (T1-GA-
HBP) images obtained 20  min after Gd-EOB-DTPA injection in 
the hepatobiliary phase (HBP) (PostSI) showing the calculation 
of the RLE according to the formula: Relative Liver  Enhancement 
(RLE) = (PostSI-PreSI)/PreSI
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using Student’s t-test (Table 4). The results derived from 
unenhanced T1- and T1-Gd-EOB-DTPA MRI in the hepa-
tobiliary phase (T1-Gd-EOB-DTPA-HBP) for fibrosis, 
steatosis, lobular inflammation, and hepatocyte ballooning 
using Random Forest regression were calculated. Using the 
UDC in the derivation group, we could predict variables dif-
ferentiating between low- (grade 0, 1) and high-grade stea-
tosis (p < 0.001), low- (grade < 3) and high-grade fibrosis 
(p = 0.0005), and also gradations of lobular inflammation 
(p = 0.001) and ballooning (p = 0.04).

Furthermore, Random Forest classifier was able to differ-
entiate NASH from simple steatosis patients with an accu-
racy of 85.2% [AUROC = 0.854 (95% CI: 0.76–0.98)], a 
sensitivity of 89.2%, a specificity of 72.2%, a PPV of 83.3%, 
and a NPV of 81.3% (Fig. 3a).

In the derivation group, UDC signatures derived from 
CSI (T1-weighted chemical shift imaging, i.e., in- and 
opposed-phases) were able to differentiate between NASH 
and simple steatosis using Student’s t-test (p = 0.02) 
(Table 4). Using Random Forest regression, we could dis-
tinguish only between low- and high-grade of steatosis 
(p = 0.02) and inflammation (p = 0.01). UDC based on CSI 
failed to capture features that could reliably separate the 
various grades of fibrosis (p = 0.13) or hepatocyte balloon-
ing (p = 0.65).

Random Forest classifier allowed us to distinguish NASH 
from simple steatosis patients with an accuracy of 80.4% 
[AUROC = 0.792 (95%CI 0.76–0.98)], a sensitivity of 
89.3%, a specificity of 66.6%, a PPV of 80.6%, and a NPV 
of 80.0%. The ROC curve is depicted in Fig. 3b.

Table 2  Derivation group. Anthropometric, clinical, and laboratory characteristics of 46 patients of the two groups of NAFLD (simple steatosis, 
and NASH)

Data are means and standard deviations with ranges in parentheses, except where indicated otherwise. To convert from units per liter to micro-
grams per liter, multiply by 0.0167. To convert from milligrams per deciliter (for bilirubin) to micromoles per liter, multiply by 17.104. To 
convert from milligrams per deciliter (for triglycerides) to millimoles per liter, multiply by 0.0113. To convert from milligrams per deciliter (for 
high-density lipoprotein cholesterol) to millimoles per liter, multiply by 0.0259. To convert from milligrams per deciliter (for glucose) to mil-
limoles per liter, multiply by 0.0555
Abbreviations: APRI, aspartate aminotransferase to platelet ratio index; ALBI, albumin-bilirubin score; NFS, NAFLD Fibrosis Score; FIB-4 
score, Fibrosis index based on 4 factors
FIB-4 = Age (years)Å ~ AST (U/L)/[PLT(109/L)Å ~ ALT1/2 (U/L)]
NAFLD fibrosis score =  − 1.675 + 0.037  Å ~ age (year) + 0.094  Å ~ BMI (kg/m2) + 1.13  Å ~ IFG/diabetes (yes = 1, no = 0) + 0.99  Å ~ AST/ALT 
ratio—0.013 Å ~ platelet count (Å ~ 109/L)—0.66 Å ~ albumin (g/dL)
ALBI score = (log10 bilirubin [μmol/L] × 0.66) + (albumin [g/L] ×  − 0.0852)
APRI score = [(AST/upper limit of the normal AST range) × 100]/Platelet

Parameter Simple steatosis (18 patients) NASH (28 patients) p value

Age (years)
 All patients (n = 46) 47.6 ± 15.4 (18.1–78.6) 50.1 ± 11.4 (25.2–69.3) 0.529
 Men (n = 29) 50.7 ± 15.40 48.17 ± 12.34 0.854
 Women (n = 17) 43.45 ± 4.11 53.79 ± 8.19 0.553

Body mass index (kg/m2) 29.2 ± 4.7 (19.7–37.8) 29.8 ± 4.5 (22.5–41.1) 0,258
Alanine aminotransferase (ALT) (U/L) 52.1 ± 23.9 (19–218) 87.6 ± 57.1 (22–693) 0.772
Aspartate aminotransferase (AST) (U/L) 31.7 ± 7.9 (17–294) 62.3 ± 60.6 (19–474) 0.816
g-glutamyl transpeptidase (GGT) (U/L) 67.4 ± 44.4 (25–459) 206.9 ± 329.3 (19–1551) 0.154
Alkaline phosphatase (ALT) (U/L) 74.6 ± 27.8 (22–218) 91.9 ± 42.5 (19–693) 0.672
Total proteins (g/ L) 70.2 ± 3.5 (60–81) 71.7 ± 4.2 (62–80) 0.162
Albumin (g/L) 43.4 ± 3.1(25–51) 45.7 ± 4.3 (36–52) 0.084
Total bilirubin (mg/dL) 0.61 ± 0.31 (0–1) 0.76 ± 0.23 (0–2) 0.061
Triglycerides (mg/dL) 134.4 ± 101.7 (0–368) 168.3 ± 106.2 (55–522) 0.106
HDLC (mg/dL) 51.8 ± 10.9 (32–65) 47.4 ± 12.3 (31–74) 0.481
Platelets (/mm3) 235.1 ± 73.5 (136–354) 200.3 ± 76.1 (88–450) 0.186
Glucose (mg/dL) 87.8 ± 44.5 (0–113) 114.7 ± 30.9 (80–202) 0.082
AST/ALT ratio 0.69 ± 0.17 (0.36–0.94) .081 ± 43 (0.33–1.85) 0.288
APRI_limit42male_35female -Score 0.72 ± 0.12(0.12–0.39) 0.76 ± 0.69 (0.16–0.39) 0.707
APRI_limit50male_35female -Score 0.68 ± 0.10 (0.10–0.44) 0.82 ± 0.80 (0.14–0.33) 0.899
ALBI -Score  − 3.04 ± 2.78 (− 3.70 to 2.68)  − 3.17 ± 0.37 (− 3.77 to 2.38) 0.323
NFS-Score  − 26.36 ± 10.85 (− 42.49 to 11.90)  − 15.09 ± . (− 45.04 to 21.05) 0.049
Fib-4-Score 1.05. ± 48 (0.49–0.21) 1.75 ± 1.48 (0.38–0.64) 0.071
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The Random Forest classifier, based on unenhanced 
T1- and T1-Gd-EOB-DTPA-HBP combined with CSI, was 
able to differentiate NASH from simple steatosis patients 
with an accuracy of 78.3% [AUROC = 0.84], a sensitivity 
of 75.0%, a specificity of 83.3%, a PPV of 87.5%, and a 
NPV of 68.2%. The combined ROC curve is depicted in 
Fig. 3c.

Results of MR‑derived measurements (RLE and FF)

MRI parameters, derived from the same images as those 
used in the UDC, i.e., unenhanced T1- and Gd-EOB-DTPA-
enhanced MRI (T1-Gd-EOB-DTPA-HBP) and CSI 
sequences, were significantly different in NASH compared 
to simple steatosis patients for both readers. Moreover, there 

Table 3  Derivation group. 
Histological characteristics of 
NAFLD patients according to 
SAF score

Data are numbers of patients and numbers in parentheses are percentages, except where indicated otherwise, 
p < 0.05 indicates significance
NAFLD, non-alcoholic fatty liver disease; SAF, steatosis activity fibrosis; NASH, non-alcoholic steatohepatitis
All 4 values in the last column are significant (marked in bold) since  p < 0.05

Histology parameters Simple steatosis patients 
(n = 18)

NASH patients
(n = 28)

p

Steatosis grade p < 0.002
 1 (5–33%) 11 (61.1%) 9 (32.1%)
 2 (34–66%) 4 (22.2%) 5 (17.9%)
 3 (> 66%) 3 (16.7%) 14 (50.0%)

Lobular inflammation activity p < 0.0001
0 (none) 13 (72.2%) 0 (0.0%)
1 (≤ 2 foci per × 20 magnification) 5 (27.8%) 18 (64.3%)
2 (> 2 foci per × 20 magnification) 0 (0%) 10 (35.7%)
Ballooning activity p < 0.005
0 (none) 14 (77.8%) 0 (0.0%)
1 (slight) 3 (16.7%) 21 (75.0%)
2 (clear) 1 (5.6%) 7 (25.0%)
Fibrosis p = 0.001
 0 9 (50.0%) 1 (3.6%)
 1a, b, c 4 (22.2%) 11 (39.3%)
 2 4 (22.2%) 4 (14.3%)
 3 0 (0%) 8 (28.6%)
 4 1 (5.6%) 4 (14.3%)

Table 4  Derivation group. MR imaging and UDC parameters demonstrating the differences between simple steatosis and NASH of 46 patients 
with NAFLD according to the SAF score for both readers (R1 and R2) using the t-test

* Data are means with standard deviations
† If the p value was less than the conventional level of .05, the corresponding variable was statistically significant and is written in bold type
RLE, relative liver enhancement; FF, fat fraction; CSI, chemical shift imaging dual echo: in-phase and out-of-phase; UDC (unenhanced T1 and 
HBP): unsupervised deep clustering derived from unenhanced T1 and T1, 20  min after injection of Gd-EOB-DTPA acid in the hepatobiliary 
phase (HBP); UDC (CSI, in- and opposed-phase), unsupervised deep clustering derived from chemical shift imaging (in-phase and out-of-phase)
All 4 values in the last column are significant since p < 0.05

Parameter Simple steatosis
18 patients R1

NASH
28 patients R1

†p value Simple steatosis
18 patients R2

NASH
28 patients R2

†p value ICC

UDC (unenhanced T1 and Gd-EOB-DTPA-
T1-HBP)

0.36 ± 0.23 0.71 ± 0.24  < 0.001

UDC (CSI, in- and opposed-phase) 0.48 ± 0.27 0.67 ± 0.27 0.02
Mean signal intensity unenhanced T1 285.73 ± 52.76 266.54 ± 43.15 0.539 251.16 ± 66.14 244.33 ± 46.19 0.266 0.813
Mean signal intensity Gd-EOB-DTPA-T1-

HBP
761.48 ± 240.40 528.12 ± 83.67 0.001 652.62 ± 22.15 454.61 ± 19.11 0.044 0.958

Mean relative liver enhancement (RLE) 1.58 ± .52 1.01 ± .27  < 0.001 1.49 ± .43 1.12 ± .41 0.005 0.784
FF (PDFF/CSI, in- and opposed-phase) 24.53 ± 6.83 50.56 ± 19.01 0.004 22.82 ± 17.52 39.82 ± 19.26 0.005 0.980
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was excellent inter-reader agreement for these measure-
ments, with high ICC (0.8–0.9) values (Table 4).

Univariate and multivariate analyses of the relationship 
between RLE, FF, and histopathologic parameters are summa-
rized in Table 5. In the univariate analysis, RLE was negatively 
correlated with the degree of liver steatosis (Beta =  − 0.422, 
p = 0.004), lobular inflammation (Beta =  − 0.408, p = 0.005), 
and degree of fibrosis (Beta =  − 0.500, p ≤ 0.001), but not with 
the activity score for ballooning (Beta =  − 0.282, p = 0.059).

In the multiple regression analysis using backward elimi-
nation, only fibrosis (Beta =  − 0.397, p = 0.040, Beta − 0.574, 
p ≤ 0.001) remained a significant predictor of NASH. 

Likewise, in the univariate analysis, FF was positively cor-
related with steatosis (Beta = 0.733, p = 0.001) and inflam-
mation (Beta = 0.367, p = 0.012), but not with ballooning 
(Beta = 0.105, p = 0.485) or fibrosis (Beta = 0.069, p = 0.647). 
In the multiple regression analysis using backward elimination, 
only steatosis (Beta = 0.723, p ≤ 0.001) remained significant.

ROC analysis of RLE, derived from unenhanced T1 and 
Gd-EOB-DTPA-HBP-T1 sequences, and FF quantification, 
yielded the diagnostic performance of differentiating between 
NASH and simple steatosis. For RLE, accuracy was 83.1% 
[AUROC = 0.808 (95% CI: 0.76–0.98)], sensitivity 85.7%, 
specificity 83.3%, PPV 88.9%, and NPV 78.9% (Fig. 4a).

a b

c

Fig. 3  ROC curves showing the random forest-based diagnostic per-
formance of UDC for differentiating NASH from simple steatosis, 
based on histology, using (a) unenhanced and T1-GA-HBP; (b) CSI, 
i.e., in-phase and opposed-phase; and (c) combined unenhanced, 
T1-Gd-EOB-DTPA-HBP and CSI. a The random forest classifier, 
based on (a) unenhanced and T1-GA-HBP, was able to differenti-
ate NASH from simple steatosis patients with an accuracy of 85.2% 
[AUROC = 0.854], a sensitivity of 89.2%, a specificity of 72.2%, a 
PPV of 83.3%, and an NPV of 81.3%. b The Random Forest classi-

fier, based on (b) in- and opposed-phase (CSI), was able to differenti-
ate NASH from simple steatosis patients with an accuracy of 80.4% 
[AUROC = 0.792], a sensitivity of 89.3%, a specificity of 66.6%, a 
PPV of 80.6%, and an NPV of 80.0%. c The Random Forest classi-
fier, based on unenhanced T1- and T1-Gd-EOB-DTPA-HBP com-
bined with CSI, was able to differentiate NASH from simple steatosis 
patients with an accuracy of 78.3% [AUROC = 0.84], a sensitivity of 
75.0%, a specificity of 83.3%, a PPV of 87.5%, and a NPV of 68.2%
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The FF was able to differentiate NASH from simple ste-
atosis patients with an accuracy of 78.3% [AUROC = 0.778 
(95%CI 0.81–0.98)], a sensitivity of 85%, a specificity of 
66.7%, a PPV of 80.0%, and a NPV of 75.0% (Fig. 4b).

Results of combined UDC, RLE, and FF

Finally, with the DeLong method, we compared the efficacy 
of UDC, using unenhanced T1 and T1-Gd-EOB-DTPA-HBP, 
combined with CSI based on the Random Forest classifier, 
as well as RLE and FF [25]. The combined ROC curves, as 
well as the DeLong p values, can be found in Fig. 4c. While 
none of the p values reached the nominal threshold of sta-
tistical significance (p < 0.05), there was a trend showing 
an improvement in classification accuracy when combin-
ing RLE and FF with UDC features from both in-phase and 
opposed-phase images and unenhanced T1-weighted images/
Gd-EOB-DTPA-enhanced HBP images against the UDC fea-
tures alone (AUC UDC features combined + RLE + FF = 0.94, 
AUC UDC features combined = 0.83, DeLong p value = 0.06).

Validation group

Characteristics

The validation group, retrospectively enrolled, consisted of 
30 patients, M = 17 (56.7%), mean age of 57 years (range 
30–78). There was no significant difference in age nor BMI 

between the simple steatosis and NASH subgroups. Among 
the laboratories, only the AST, AST/ALT, and NFS Score 
were significant (p ≤ 0.05) (Table 2S). The interval between 
MRI and biopsy, and MRI and laboratories was 1–3 months. 
Histologically, 13 and 17 patients were classified as simple 
steatosis and NASH, respectively.

All four histologic components of the SAF score, steato-
sis grade (p = 0.211), lobular inflammation (p < 0.001), bal-
looning (p = 0.062), and fibrosis (p ≤ 0.001), distinguished 
between simple steatosis and NASH subgroups. In particu-
lar, the majority of the NASH cohort had high inflammation 
and fibrosis scores but no difference on steatosis (Table 3S).

Results of liver segmentation

For the validation cohort, we randomly sampled 4 of the 
30 patients and created ground truth labels for the evalu-
ation of the segmentation accuracy. The results from vali-
dation cohort (Dice: 0.956, recall: 0.956, precision: 0.955) 
were similar to the results on the T1-Gd-EOB-DTPA-HBP 
sequences from the derivation liver cohort.

Results of unsupervised deep clustering (UDC)

Overall, for the validation group (p ≤ 0.001), we found fea-
tures that distinguished NASH from simple steatosis using 
Student’s t-test (Table 4S). Again, using results from Ran-
dom Forest regression to link MRI and the four histologic 

Table 5  Derivation group. Correlation of conventional MR parameters using RLE/FF and histologic parameters according to univariate and 
multiple regression analyses for reader 1

If the p value is less than the conventional level of .05, the corresponding variable contributes significantly to the prediction of the dependent 
variable (RLE or FF). In multiple regression analysis, only liver fibrosis was significantly associated with the relative enhancement measure-
ments (RLE) and only steatosis was significantly associated with fat fraction (FF)
RLE, relative liver enhancement is the mean RLE derived from the calculation according to the formula: Relative Enhancement (RLE) = (PostSI-
PreSI)/PreSI, of all liver (9 segments including 4a and 4b) segments
FF, fat fraction is the mean value derived from the calculation according to the formula: [(SIin-SIopp)/2 × SIin] × 100. SIin and SIopp were liver 
parenchyma signal intensity on in-phase or opposed-phase images of all liver segments (9 segments including 4a and 4b)
B, unstandardized beta representing the slope of the line between the predictor variable and the dependent variable

Parameter Univariate Multivariate

RLE B p value Beta 95% CI B p value Beta 95% CI

Steatosis  − 0.171 0.004  − 0.422  − 0.283  − 0.059  − 0.099 0.052  − 0.235  − 0.202 0.012

Inflammation  − 0.234 0.005  − 0.408  − 0.393  − 0.075  − 0.144 0.073  − 0.251  − 0.292 0.004
Ballooning  − 0.159 0.059  − 0.281  − 0.325 0.006
Fibrosis  − 0.164  < 0.001  − 0.500  − 0.251  − 0.078  − 0.132 0.040  − 0.397  − 0.213  − 0.048
FF B p value Beta 95% CI B p value Beta 95% CI
Steatosis 13.776  < 0.001 0.733 9.887 17.666 13.600  < 0.001 0.723 9.9382 17.818
Inflammation 9.757 0.012 0.367 2.245 17.269
Ballooning 2.775 0.485 0.105  − 5.173 10.724
Fibrosis 1.055 0.647 0.069  − 3.564 5.674
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Features 1 Features 2 De-Long p 
values

UDC features in- and opposed-
phase images

UDC features unenhanced T1w images, Gd-
EOB-DTPA-enhanced-HBP images

0.56

UDC features in- and opposed-
phase images

UDC features combined 0.67

UDC features in- and opposed-
phase images

UDC features combined + RLE + FF 0.06

UDC features unenhanced T1w 
images, Gd-EOB-DTPA-enhanced 
HBP images

UDC features combined 0.7

UDC features unenhanced T1w 
images, Gd-EOB-DTPA-enhanced 
HBP images

UDC features combined + RLE + FF 0.11

UDC features combined UDC features combined + RLE + FF 0.06

Fig. 4  a ROC curve shows the diagnostic performance of MRI 
parameters using RLE (a) for unenhanced and T1-GA-HBP. The RLE 
was able to differentiate NASH from simple steatosis patients with an 
accuracy of 83.1% [AUROC = 0.808], a sensitivity of 85.7%, a speci-
ficity of 83.3%, a PPV of 88.9%, and an NPV of 78.9%, for a cut-
off value of 1.20. b ROC curve shows the diagnostic performance of 
MRI parameters using in- and opposed-phase (CSI). The FF was able 

to differentiate NASH from simple steatosis patients with an accu-
racy of 78.3% [AUROC = 0.778], a sensitivity of 85%, a specificity of 
66.7%, a PPV of 80.0%, and an NPV of 75.0%, for a cutoff value of 
19.0. c Finally, we compared the efficacy of UDC using unenhanced 
T1 and T1-Gd-EOB-DTPA-HBP combined with CSI based on a 
Random Forest classifier, as well as RLE and FF using the DeLong 
method
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features in the validation group, UDC could differentiate 
between low- (grade < 3) and high-grade fibrosis (p < 0.001), 
and also characterize different grades of lobular inflamma-
tion (p = 0.04) and ballooning (p < 0.001).

In addition, Random Forest classifier was able to differen-
tiate NASH from simple steatosis patients with an accuracy 
of 83.3% [AUROC = 0.87], a sensitivity of 70.6%, a specific-
ity of 100%, a PPV of 100%, and a NPV of 72.2% (Fig. 3aS).

In the validation group, UDC signatures derived from CSI 
(T1-weighted chemical shift imaging) were able to differenti-
ate between NASH and simple steatosis using Student’s t-test, 
p < 0.05 (Table 4S). Using Random Forest regression, UDC 
based on CSI could characterize different grades of lobular 
inflammation (p = 0.013) and ballooning (p < 0.001), and fur-
thermore was able to differentiate NASH from simple steatosis 
patients with an accuracy of 43.3% [AUROC = 0.27], a sensitiv-
ity of 5.9%, a specificity of 92.3%, a PPV of 50%, and an NPV 
of 42.9% (Fig. 3bS). The Random Forest classifier, based on 
unenhanced T1 and T1-Gd-EOB-DTPA-HBP combined with 
CSI, could differentiate NASH from simple steatosis patients 
with an accuracy of 86.7% [AUROC = 0.88], a sensitivity of 
76.5%, a specificity of 100%, a PPV of 100%, and a NPV of 
76.5%. The combined ROC curve is depicted in Fig. 3cS.

Results of MR‑derived measurements (RLE and FF)

MRI parameters, including RLE and FF derived from the 
same images as those used in the UDC, again differed sig-
nificantly between NASH and simple steatosis patients for 
both readers, with excellent inter-reader agreement for the 
measurements and high ICC (0.8–0.9) values (Table 4S).

Univariate and multivariate analyses of the relationship 
between RLE, FF, and histopathologic parameters are sum-
marized in Table 5S. RLE was negatively correlated only with 
lobular inflammation (Beta =  − 0.410, p = 0.025), and degree of 
fibrosis (Beta =  − 0.574, p =  < 0.001), but not with the ballooning 
(Beta =  − 0.205, p = 0.277) nor liver steatosis (Beta =  − 0.005, 
p = 0.977) severity. Multiple regression found only fibrosis 
(Beta − 0.574, p ≤ 0.001) was a significant predictor of NASH.

Similarly, in univariate analysis, FF was negatively cor-
related with inflammation (Beta =  − 0.372, p = 0.043) and 
fibrosis (Beta =  − 0.366, p = 0.047). But on multiple regres-
sion, FF negatively correlated significantly only with inflam-
mation (Beta = 0.476, p = 0.012).

The diagnostic performance of RLE and CSI for the 
differentiation between NASH and simple steatosis was 
evaluated using ROC analysis. For the RLE, the accuracy 
was 86.7% [AUROC = 0.90 (95% CI: 0.79–1)], sensitiv-
ity 88.2%, specificity 84.6%, PPV 88.2%, and NPV 84.6% 
(Fig. 4aS). For FF, the accuracy was 66.7% [AUROC = 0.73 
(95% CI: 0.57–0.90)], sensitivity 41.1%, specificity 100%, 
PPV 100%, and NPV 56.5% (Fig. 4bS).

Results of combined UDC, RLE, and FF

Finally, with the DeLong method, we compared the effi-
cacy of UDC, using unenhanced T1 and T1-Gd-EOB-
DTPA-HBP, combined with CSI based on Random Forest 
classifier, as well as RLE and FF [25]. The combined ROC 
curves, and the DeLong p values, can be found in Fig. 4cS. 
As with the derivation group, we also observed a trend 
showing an improvement in classification accuracy when 
combining RLE and FF with UDC features from chemi-
cal shift images and unenhanced T1-weighted images/Gd-
EOB-DTPA-enhanced HBP images against the UDC fea-
tures combined = 0.88, DeLong p value = 0.09.

Discussion

Using histopathology as gold standard, our prospective data 
from the derivation group showed that, based upon identical 
MRI sequences, i.e., unenhanced T1- and Gd-EOB-DTPA-
enhanced T1-weighted images (T1-Gd-EOB-DTPA-HBP), 
as well as CSI, i.e., in- and opposed-phase sequences, we 
could distinguish simple steatosis from NASH by applying 
two independent methods. These results were confirmed in 
the validation group. The first approach used unsupervised 
deep clustering (UDC) to derive MR imaging features, with 
a Random Forest model to separate simple steatosis from 
NASH. UDC, a relatively new method based upon deep 
clustering networks (DCN), links MRI texture patterns to 
histologic features [17]. The second approach relied upon 
fat fraction (FF) quantification and mean RLE calculation, 
i.e., liver parenchymal signal intensities, which have proven 
utility in NAFLD, as our results corroborated [15] [23, 26, 
27]. The RLE was significantly higher in simple steatosis 
versus NASH cohorts in both derivation and validation 
groups, with a defined cutoff level of ≤ 1 [15, 23]. Further-
more, our readers also calculated significantly higher mean 
FF for NASH compared to simple steatosis patients in the 
derivation group [23], but the results were reversed for the 
validation group, reflecting the described mechanisms and 
sequelae of NAFLD [28]. Thus, our study confirmed the role 
of RLE, FF, and UDC in the diagnostic workup of NAFLD.

Interestingly, RLE based on unenhanced T1 and T1-Gd-
EOB-DTPA-HBP, and FF based on CSI, had accuracies similar 
to those of UDC for separating NASH from simple steatosis. 
More strikingly, by employing UDC based on unenhanced T1 
and T1-Gd-EOB-DTPA-HBP, we found not only that features 
distinguished NASH from simple steatosis, but also that the 
Random Forest classifier technique could also predict variables 
that were able to distinguish low- versus high-grade steatosis, 
low-grade versus high-grade fibrosis, and even grades of lobular 
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inflammation and ballooning. On the contrary, when construct-
ing the Random Forest classifier based on CSI-derived UDC 
data, only low- versus high-grade steatosis and inflammation 
severity could be distinguished, but not fibrosis severity or 
hepatocyte ballooning grade, confirmed in the validation group.

Similarly, on multivariate regression analysis of CSI-
based FF, only steatosis remained an independent predictor 
of NASH, while ballooning, inflammation, and even fibro-
sis were eliminated in the derivation group. Furthermore, 
multivariate analysis of RLE based on unenhanced T1 and 
T1-Gd-EOB-DTPA-HBP images proved that only fibrosis 
was an independent histopathologic predictor of NASH, 
with all other components eliminated in this model.

To explain differences in the degree of steatosis between 
the derivation and validation groups, it should be acknowl-
edged that NASH is caused by lipotoxicity from excess free 
lipid species (e.g., free fatty acids, ceramides) and not tri-
glycerides per se. Therefore, there is no compelling cor-
relation with the degree of steatosis or triglyceride content 
which may be considered a bystander rather than cause of 
lipotoxicity [29]. In line with the concept of lipid partition-
ing, in rodent models, retention of potentially toxic lipid spe-
cies within otherwise inert lipid droplets can paradoxically 
protect the liver from lipid-induced hepatic insulin resistance 
by preventing activation of protein kinase C [28].

It is important to bear in mind that, of the four histo-
logic variables, fibrosis has proven to be the best predictor 
of NASH outcome [30–33]. Whether or not there was any 
correction for confounders, an analysis of over 4,000 patients 
found that fibrosis stage correlates not only with liver-related 
morbidity and mortality, but even also with all-cause mortal-
ity [30]. Thus, to avert poor outcomes, any NAFLD patient 
with severe fibrosis should be closely monitored [1, 34].

Our results show that RLE is a robust method for sepa-
rating simple steatosis from NASH, having both relatively 
high accuracy and accurate grading of fibrosis. Furthermore, 
a cutoff value of ≤ 1.0 has already been established for this 
purpose [15, 23]. However, UDC, particularly using unen-
hanced T1 and T1- Gd-EOB-DTPA-HBP, seems to be an 
even stronger predictor since it was able to detect and stage 
all four histologic features of NAFLD. At the same time, 
UDC segments the liver into areas of tissue comparable to 
that occurring across NAFLD individuals. Therefore, UDC 
may shed light on steatosis, inflammation, ballooning, and 
fibrosis and their response to therapeutic interventions, 
including diet and medication. This may be beneficial in 
longitudinal clinical studies of NAFLD patients.

According to our results, data derived from Gd-
EOB-DTPA-HBP-enhanced MRI can reliably stage NAFLD, 
and predict fibrosis with RLE or all-histologic NASH compo-
nents using UDC. CSI had less merit since it could only predict 
steatosis grade which, although helpful in diagnosing NAFLD, 
fails to inform about the prognosis and severity of the disease.

Generally, there are two systems for semiquantitative 
assessment or grading of NAFLD. The first is the NAFLD 
Activity Score (NAS) from the NASH CRN [35]. Its criteria 
were established using the Brunt classification, including 
steatosis (0–3), lobular inflammation (0–3), hepatocyte bal-
looning (0–2), and fibrosis (0–4) [36]. The second is the 
Steatosis Activity Fibrosis (SAF) score from the European 
Fatty Liver Inhibition of Progression Consortium [20]. We 
used the latter because, although the likelihood of NASH 
increases with NAS, there exists a wide gray zone (NAS 
3–4) where NASH may or may not be present [20]. The SAF 
score is a simple scoring system that seems more relevant 
than simply dichotomizing cases according to the presence 
or absence of NASH [20]. Nevertheless, it is well-known 
that biopsy is prone to sampling error and interobserver vari-
ability in histologic grading of liver biopsies with any scor-
ing system [6, 37]. This may be one reason why the AUROC 
for most validated panels, including the UDC, RLE, and FF, 
is in the 0.7–0.85 range and not higher. The shortfall is not 
these diagnostic tools, but rather the overlap of histologic 
severity of the four variables meant to separate NASH from 
simple steatosis. In addition, SAF and CRN scoring are less 
sensitive to histologic alterations than quantitation, which 
estimates only lobular inflammation rather than both lobular 
and portal inflammation, as with UDC, RLE, or FF [38]. 
There is also an overlap between the histologic ballooning 
score and ballooning quantitation using UDC and RLE, 
probably because pathologists rely more heavily on the qual-
ity rather than quantity. Finally, these imaging algorithms 
define fat percentage as a proportion of steatosis within the 
whole tissue area, rather than purely within hepatic cells as 
does a pathologist, making it subject to sampling variability. 
Therefore, a prospective study designed to directly compare 
UDC features derived from MRI to deep learning features 
derived from histopathology of the biopsy specimen may 
yield better results.

We have to acknowledge several limitations. Although we 
only had 46 patients in the derivation group, which limits the 
generalizability of our results, our independent validation 
group confirmed these results. Moreover, because clustering 
was done at the patch level rather than at the patient level, 
the sample size is 50,000 patches. Thus, the actual sample 
size is much larger than it appears. Furthermore, overfitting 
is reduced by using Random Forest classifier with 10 and 20 
vector features, respectively. The quality of the data is sup-
ported by the fact that our validation group confirmed our 
initial findings. Regarding assessment of FF, a multi-echo 
technique would have provided more information for UDC 
rather than CSI, i.e., dual-echo in- and opposed-phase. How-
ever, because none of our NAFLD cohort had detectable 
hepatic iron, a known confounder that can underestimate 
FF, the dual-echo technique may have been sufficient, even 
if not as ideal as the multi-echo technique [39].
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We used two different statistical methods, namely regres-
sion analysis for RLE and FF as each had only a single 
trait, they required a feature vector with only one degree 
of freedom. However, because UDC assessed several char-
acteristics, we used a Random Forest classifier where the 
feature vector had several degrees of freedom. We suggest 
caution in quantitative comparisons between these methods 
and consider the results as exploratory. Lastly, this study is 
cross-sectional and does not provide evidence about the lon-
gitudinal benefit of MRI clinical prediction rules in detecting 
changes in NAFLD patients. Therefore, further prospective 
studies using AI-based computational analysis on both MRI, 
and histopathology specimen might further inform the rela-
tionship between micro- and macro-scale features.

In conclusion, two different techniques, UDC approach 
and imaging parameters (RLE and FF), could independently 
discriminate between NASH and simple steatosis based on 
identical data derived from unenhanced T1 and T1-Gd-EOB-
DTPA-HBP MR images, as well as CSI. The UDC approach 
was comparable and proved able to predict all NAFLD com-
ponents using unenhanced T1 and T1-Gd-EOB-DTPA-HBP 
images. The similarity of results between the derivation and 
validation groups confirms the robustness of this method.

Importantly, UDC does not require manual annotation of 
ROIs during evaluation, and is thus independent of operator 
bias and experience. The results indicate that machine learn-
ing approaches can identify predictive MRI patterns related 
to histopathology-derived parameters. This potentially allows 
their use to expand our vocabulary of imaging patterns, and 
generate hypotheses regarding their relationship to disease.
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