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Abstract
Objectives  Non-contrast computed tomography (NCCT) markers are robust predictors of parenchymal hematoma expan-
sion in intracerebral hemorrhage (ICH). We investigated whether NCCT features can also identify ICH patients at risk of 
intraventricular hemorrhage (IVH) growth.
Methods  Patients with acute spontaneous ICH admitted at four tertiary centers in Germany and Italy were retrospectively 
included from January 2017 to June 2020. NCCT markers were rated by two investigators for heterogeneous density, hypoden-
sity, black hole sign, swirl sign, blend sign, fluid level, island sign, satellite sign, and irregular shape. ICH and IVH volumes 
were semi-manually segmented. IVH growth was defined as IVH expansion > 1 mL (eIVH) or any delayed IVH (dIVH) 
on follow-up imaging. Predictors of eIVH and dIVH were explored with multivariable logistic regression. Hypothesized 
moderators and mediators were independently assessed in PROCESS macro models.
Results  A total of 731 patients were included, of whom 185 (25.31%) suffered from IVH growth, 130 (17.78%) had eIVH, 
and 55 (7.52%) had dIVH. Irregular shape was significantly associated with IVH growth (OR 1.68; 95%CI [1.16–2.44]; 
p = 0.006). In the subgroup analysis stratified by the IVH growth type, hypodensities were significantly associated with eIVH 
(OR 2.06; 95%CI [1.48–2.64]; p = 0.015), whereas irregular shape (OR 2.72; 95%CI [1.91–3.53]; p = 0.016) in dIVH. The 
association between NCCT markers and IVH growth was not mediated by parenchymal hematoma expansion.
Conclusions  NCCT features identified ICH patients at a high risk of IVH growth. Our findings suggest the possibility to 
stratify the risk of IVH growth with baseline NCCT and might inform ongoing and future studies.
Clinical relevance statement  Non-contrast CT features identified ICH patients at a high risk of intraventricular hemorrhage 
growth with subtype-specific differences. Our findings may assist in the risk stratification of intraventricular hemorrhage 
growth with baseline CT and might inform ongoing and future clinical studies.
Key Points 
• NCCT features identified ICH patients at a high risk of IVH growth with subtype-specific differences.
• The effect of NCCT features was not moderated by time and location or indirectly mediated by hematoma expansion.
• Our findings may assist in the risk stratification of IVH growth with baseline NCCT and might inform ongoing and future 

studies.
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EVD	� External ventricular drain
GCS	� Glasgow Coma Scale
HE	� Hematoma expansion
HET density	� Heterogeneous density
HU	� Hounsfield units
ICC	� Intraclass correlation coefficient
ICH	� Intracerebral hemorrhage
IQR	� Interquartile range
IRR shape	� Irregular shape
IVH	� Intraventricular hemorrhage
LSW	� Last seen well
mRS	� Modified Rankin Scale
NCCT​	� Non-contrast computed tomography
NifTI	� Neuroimaging Informatics Technology 

Initiative
OR	� Odds ratio
PACS	� Picture archiving and communication 

system
ROI	� Regions of interest
SD	� Standard deviation
VIF	� Variance inflation factor

Introduction

More than 5.5 million patients suffer from intracerebral 
hemorrhage (ICH) annually [1] and ICH represents the 
most severe form of stroke, with mortality and severe dis-
ability rates approaching 50% at 1 month and exceeding 75% 
at 1 year, respectively [2, 3]. Therapeutic strategies have 
failed to show overall beneficial treatment effects in previ-
ous ICH trials over the past years. Therefore, new candidates 
for potential treatment strategies are holding vast research 
attention. Intraventricular extension of intracerebral hemor-
rhage (IVH) occurs in 40% of ICH patients and is a well-
established predictor of poor functional outcome [4]. IVH is 
a dynamic and potentially modifiable process (IVH growth) 
[5, 6] which can present either as interval increases in IVH 
volume (expansion IVH, eIVH) or as a delayed develop-
ment of IVH (dIVH) on subsequent neuroimaging [7, 8]. 
Furthermore, both have shown a strong relationship with a 
poor functional outcome [5, 6] and hold potential to improve 
outcome prediction models for clinical ICH management 
[9]. Recent evidence suggested that non-contrast computed 
tomography (NCCT) features might help identify patients 
at risk of IVH growth; however, the exact relationship with 
eIVH and dIVH remains unclear [10]. Therefore, we hypoth-
esized that both subgroups are independently predicted by 
distinct NCCT features. Recognizing that eIVH and dIVH 
vary in terms of chronological order and ICH location on the 
one hand, and on the other hand are common phenomena 
in patients with acute HE, we additionally hypothesized a 

potential link with the effects exerted by the NCCT features 
[8]. To test and evaluate our hypotheses, we performed a 
three-fold approach: Firstly, we tested and validated the 
association of NCCT features and IVH growth in an inde-
pendent multicenter cohort. Secondly, we conducted two 
subgroup analyses to identify differences in NCCT mark-
ers independently associated with eIVH and dIVH. Thirdly, 
we evaluated if the effects were mediated by acute HE and 
moderated by ICH location and time.

Material and methods

This multicenter retrospective study was approved by the 
ethics committee (Charité Berlin, Germany [protocol num-
ber EA1/035/20], University Medical-Center Hamburg, Ger-
many [protocol number WF-054/19], University Hospital 
Muenster, Germany [protocol number 2017–233-f-S], and 
IRCCS Mondino Foundation, Pavia, Italy [protocol number 
20190099462]), and written informed consent was waived 
by the institutional review boards. All study protocols and 
procedures were conducted in accordance with the Declara-
tion of Helsinki. Patient consent was not needed due to the 
retrospective nature of the study.

Study population

We retrospectively selected ICH patients admitted at four 
tertiary stroke centers in Germany and Italy (Charité Uni-
versity Hospital, Berlin, Germany (2015–2019); Univer-
sity Medical Center Hamburg-Eppendorf (2015–2019), 
Germany; University Hospital Muenster (2011–2015), 
Germany; and IRCCS Mondino Foundation, Pavia, Italy 
(2017–2019)). Patients were selected according to the fol-
lowing inclusion criteria: (1) primary, spontaneous ICH, 
(2) age > 18 years, (3) baseline NCCT images acquired 
within 24 h from onset/last seen well (LSW) with or with-
out CT angiography (CTA); patients with (1) secondary 
ICH, (2) missing follow-up imaging or (3) follow-up NCCT 
performed after 72 h, and (4) surgical procedures includ-
ing craniotomy and placement of external ventricular 
drain (EVD). A patients’ selection flowchart is provided 
in Fig. 1.

Clinical variables

Clinical data obtained from medical records included age, 
sex, history of hypertension and diabetes mellitus, sys-
tolic blood pressure, anticoagulation and antiplatelet treat-
ment, Glasgow Coma Scale (GCS) at admission, time from 
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Fig. 1   Patient flowchart. ICH, 
intracerebral hemorrhage; IVH, 
intraventricular hemorrhage; 
EVD, extraventricular drainage
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symptom onset/LSW to imaging, and modified Rankin Scale 
(mRS) at 90 days.

Image analysis

NCCT images were acquired based on local CT protocols at 
each participating site. Imaging data were retrieved in Digi-
tal Imaging and Communications in Medicine (DICOM) 
format from the local picture archiving and communication 
system (PACS) servers and anonymized in compliance with 
the local guidelines. DICOM data were transformed into 
Neuroimaging Informatics Technology Initiative (NifTI) for-
mat and were independently reviewed by two stroke imaging 
experienced readers (Berlin: J.N. and L.V.; Hamburg: J.N. 
and S.E.; Muenster: J.N. and S.E.; Pavia: J.N. and F.M.). All 
readers independently reviewed images in a random order, 
were blinded to all demographic and outcome data, and 
were not directly involved in the clinical care of the enrolled 
patients. Images were analyzed for the presence of IVH and 
ICH location. Supratentorial bleedings in cortical and sub-
cortical locations were classified as lobar whether hemor-
rhages involving the thalamus, basal ganglia, internal cap-
sule, and deep periventricular white matter were classified 
as deep [11]. Brainstem and cerebellar bleedings were clas-
sified as infratentorial [12].Volume quantifications of ICH 
and IVH were performed on NCCT images with semimanual 
planimetric measurements. The region of interest (ROI) his-
togram for ICH and IVH segmentation was sampled between 
20 and 80 Hounsfield units (HU) to exclude voxels that 
likely belonged to the cerebrospinal fluid or calcification. 
ROIs were delineated using the Analyze 11.0 Software and 
ITK-SNAP 3.8.0 Software (Penn Image Computing and Sci-
ence Laboratory, 2019) [13, 14]. All NCCT markers were 
rated on axial NCCT images by two raters (J.N. with 6 years 
of experience in ICH imaging research and L.V. with 3 years 
of experience in ICH research) to determine the following 
nine markers as previously reported [15]: (1) irregular shape, 
(2) satellite sign, (3) island sign which were characterized as 
markers of shape [16]. Markers of density consisted of (1) 
heterogeneous density, (2) swirl sign, (3) black hole sign, 
(4) blend sign, (5) fluid sign, and (6) hypodensities [16]. 
All markers were rated inconsideration of the consensus 
definitions proposed by the International NCCT ICH Study 
Group [16]: In brief, irregular shape was defined as foci 
of hematoma margin irregularities in the largest hematoma 
region according to the Barras shape scales I–V [16, 17]. 
The presence of irregular shape was defined after dichoto-
mization with a Barras scale of ≥ III [16]. Satellite sign was 
defined as a hematoma separate from the main hematoma 
(1–20 mm distance) with a maximum diameter of 10 mm 
[16, 18]. The island sign consisted of at least three scattered 
small hematomas all separate from the main hematoma or 
at least four small hematomas, some or all of which may 

connect with the main hematoma [16, 19]. Heterogeneous 
density was evaluated as foci of hypoattenuation in within 
the largest hematoma compared to the brain parenchyma 
according to the Barras density scales I–V [16, 17]. The 
presence of heterogeneous density was defined after dichoto-
mization with a Barras scale of ≥ III [16]. The swirl sign was 
defined as a region of hypo- or isoattenuation compared with 
the brain parenchyma. The region may be rounded, streak-
like, or irregular and does not require a strict encapsulation 
within the hematoma [20, 21]. The black hole sign consisted 
of a relatively hypodense area which is encapsulated within 
a hyperdense area and which is not connected with the adja-
cent brain tissue [21, 22]. The relatively hypodense area has 
an identifiable border and a difference of at least 28 HU 
between the two density regions [22, 23]. Blend sign was 
defined as a hypoattenuating area adjacent to a hyperattenu-
ating area of the hematoma, with a clear separation between 
them at a density difference of at least 18 Hounsfield Units 
(HU) [23, 24]. Fluid sign referred similarly to the presence 
of one distinct hypoattenuating area above and one hyperat-
tenuating area below a discrete straight line of separation, 
yet irrespective of its density measurements [16, 25]. The 
imaging sign hypodensities were defined as any hypodense 
region strictly encapsulated within the hemorrhage with 
any shape, size, and density which does not require a den-
sity measurement [16, 26]. Illustrative examples on NCCT 
marker ratings are provided in Supplementary Figure 1. A 
subset of patients (n = 100) was randomly selected and pre-
sented again for a second reading to one rater (J.N. with 
6 years of experience in ICH imaging research). Images 
for the second reading were presented in a random order 
3 months later to minimize the recall of the images.

Outcomes

The main outcome of the analysis was the occurrence of 
any IVH growth. In secondary analysis, the same regression 
models were repeatedly stratified by the IVH growth type, 
distinguishing eIVH from dIVH.

Statistical analysis

Data were tested for normality and homogeneity of vari-
ance using histogram plots and the Shapiro–Wilk test. 
Descriptive statistics are presented as counts (percent-
ages [%]) for categorical variables and compared with 
the χ2 test, mean (standard deviation [SD]) for continuous 
normally distributed variables, and medians (interquar-
tile range [IQR]) for non-normal continuous variables and 
compared with the Mann–Whitney test, respectively. Inter-
rater agreement for ICH and IVH volume quantifications 
was calculated and expressed as intraclass correlation 
coefficient (ICC) with 95% upper and lower confidence 
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intervals (CI) from pairs of two readers (E.V. and L.V.) 
[27, 28]. Interrater and intrarater agreements for the read-
ings of NCCT markers were calculated and expressed as 
Cohen’s κ statistic with 95% upper and lower CI [29].

Logistic regression analysis

Multivariate regression analysis was performed to iden-
tify independent variables associated with eIVH and 
dIVH in patients with IVH growth. Candidate variables 
were selected based on prior knowledge of clinical sig-
nificance and sample size for the following: age, sex, 
hypertension, admission GCS, use of oral anticoagula-
tion, and supratentorial ICH location [30]. Collinear 
covariates, as expressed by a variance inflation factor 
(VIF) of greater than 3, were identified and removed 
from the model if necessary [31]. Variables were fit-
ted together using backward elimination with a p value 
criterion of less than 0.05 [32]. Given for selected vari-
ables are odds ratios (OR) with 95%CI and correspond-
ing beta coefficients. For visual display, adjusted beta 
coefficients of significant independent variables were 
plotted. A statistically significant difference was set at 
a p value of less than 0.05.

Moderation and mediation analysis

Time [8, 33] and location [34] were hypothesized to mod-
erate the effect of the NCCT markers on IVH growth and 
subgroups (eIVH and dIVH). The PROCESS SPSS macro 
version 2.13 model 2 for moderation analysis was used 
to calculate the regression coefficients for the respective 
NCCT marker in each group (IVH growth, eIVH, dIVH) 
independently (Supplementary Material) [35]. Hematoma 
expansion (defined as continuous growth > 6 mL or rela-
tive growth > 33%) hypothesized to mediate the effect 
of NCCT markers on IVH growth and subgroups was 
assessed in a mediation model (Supplementary Material). 
The PROCESS SPSS macro version 2.13 model 4 for 
mediation analysis was used to calculate three pathways 
(Supplementary Material) [36]. Pathway a determined 
the regression coefficients for the effect of the NCCT 
marker on the mediator, pathway b examined the associa-
tion between the mediator and IVH growth or subgroups, 
and pathway c estimated the total and direct effect of the 
NCCT marker on IVH growth and subgroups, respectively. 
Pathway ab calculated the indirect intervention effects. To 
test the significance of the indirect effect, the macro gener-
ated bias-corrected bootstrapped 95%CI [36]. Significant 
mediation was determined if the CI around the indirect 
effect did not include zero [36]. Analyses were performed 
using the statistical software package SPSS version 25® 

(IBM Corporation, 2019) and R Statistics® Version 3.5.1 
(R Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Comput-
ing, 2018).

Supplementary analysis

A second multivariate regression analysis was performed 
to identify the effect of eIVH and dIVH on the functional 
outcome (Supplementary Table 4). A receiver operating 
curve (ROC) analysis was performed to evaluate and com-
pare the discriminatory accuracies of IVH growth, HE, 
and revised HE in the prediction of functional outcome 
and mortality (Supplementary Material Table 5).

Data availability statement

The datasets that support the findings of our study are avail-
able upon reasonable request from the corresponding author; 
however, prior approval of proposals may apply by our insti-
tution’s data security management and a signed data sharing 
agreement will then be approved.

Results

A total of 731 out of 1399 patients met the inclusion crite-
ria, as shown in Fig. 1, and 185 (25.31%) patients suffered 
from IVH growth, of whom 130 (17.78%) had an eIVH and 
55 (7.52%) a dIVH. Patients with IVH growth had a lower 
admission GCS, shorter time from symptom onset/LSW to 
imaging, smaller hematoma volumes on both admission and 
follow-up imaging, and a higher frequency of hematomas 
in the basal ganglia. Within the IVH growth subgroups, 
patients with eIVH also had more deep bleedings, in con-
trast to dIVH that showed with higher frequencies of lobar 
hematomas. IVH volumes were higher in patients with 
eIVH compared to those in patients with dIVH on follow-
up imaging. A detailed summary of the study population’s 
characteristic is provided in Table 1. Interobserver agree-
ment for both ICH and IVH segmentations was excellent, 
as presented in the supplementary material. Interrater agree-
ments for the NCCT features were substantial to excellent 
(n = 731; Cohen’s κ from 0.74 to 0.95) with good to excellent 
intrarater agreements (n = 100; Cohen’s κ from 0.81 to 0.98), 
as presented in the supplementary material. The presence 
of irregular shape was associated with 1.68 higher odds of 
IVH growth after adjustment for potential confounders in 
multivariable logistic regression (Table 2). In the subgroup 
analysis, irregular shape remained independently associ-
ated with an almost three times higher risk for dIVH (OR 
2.72; 95%CI 1.91–3.33; p value 0.016), as shown in Table 3, 
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Table 1   Baseline demographic and clinical characteristics by patients with intraventricular hemorrhage growth (IVH growth) associated with 
intracerebral hemorrhage and no IVH growth (no IVH growth)

All (n = 731) No IVH growth 
(n = 546)

IVH growth 
(n = 185)

p Expansion IVH 
(n = 130)

Delayed IVH 
(n = 55)

p

Age (years), 
median (IQR)

73 (62–80) 73 (61–78) 74 (63–81) 0.701 79 (60.8) 37 (67.3) 0.346

Female, n (%) 318 (43.5) 297 (54.4) 116 (62.7) 0.05 79 (60.8) 37 (67.3) 0.403
Hypertension, n 

(%)
613 (83.9) 463 (84.8) 150 (81.1) 0.391 106 (81.5) 44 (80) 0.807

Diabetes mellitus, 
n (%)

125 (17.1) 98 (17.9) 27 (14.6) 0.483 19 (14.6) 8 (14.5) 0.99

SPB (mmHg), 
median (IQR)

165 (145–195) 166 (145–194) 170 (147.5–200) 0.244 169 (147–200) 173 (147.5–212) 0.714

Anticoagulation, 
n (%)

193 (26.4) 137 (25.1) 56 (30.3) 0.155 40 (30.8) 16 (29.1) 0.796

Antiplatelet, n (%) 335 (45.8) 243 (44.5) 92 (49.7) 0.598 64 (49.2) 28 (50.9) 0.835
GCS, median 

(IQR)
13 (8–15) 11 (4–14) 11 (6–14)  < 0.001 11 (6–14) 12 (7–15) 0.129

Δ symptom onset 
to imaging 
(hours), median 
(IQR)

4.39 (1.8–15.09) 5.2 (1.85–17.3) 3.53 (1.36–13.72) 0.009 4.47 (1.4–14.38) 1.93 (1.25–12.29) 0.124

ICH volume on 
admission (mL), 
median (IQR)

16.12 (6.15–35.85) 24.13 (10.94–
53.59)

14.58 (5.88–32.21)  < 0.001 26.27 (8.43–
47.51)

24.44 (11.1–53.7) 0.525

ICH volume on 
follow-up (mL), 
median (IQR)

17.52 (6.74–41.47) 30.31 (11.53–
77.08)

14.13 (6.13–34.27)  < 0.001 36.25 (22.9–
84.41)

34.65 (11.15–
73.96)

0.177

IVH volume on 
admission (mL), 
median (IQR)

0 (0–7.96) 0 (0–5.25) 2.10 (0–14.68)  < 0.001 8.03 (1.94–
26.06)

0 -

IVH volume 
follow-up, (mL), 
median (IQR)

0.28 (0–9.17) 0 (0–3.47) 12.31 (3.6–39.63)  < 0.001 17.95 (7.75–
50.28)

3.11 (0.9–19.25)  < 0.0001

IVH on admission, 
n (%)

331 (45.3) 201 (36.8) 130 (70.3)  < 0.001 130 (100) 0 (0) -

IVH on follow-up, 
n (%)

382 (52.3) 200 (36.6) 182 (98.4)  < 0.001 130 (100) 55 (100) -

Hematoma and IVH growth
  HE, n (%) 162 (22.2) 90 (12.31) 72 (38.27)  < 0.001 49 (37.7) 23 (41.8) 0.599
  gIVH, n (%) 18 (25.31) 0 185 (100)  < 0.001 130 (100) 55 (100) -
  Revised HE, 

n (%)
273 (37.3) 88 (16.1) 185 (100)  < 0.001 130 (100) 55 (100) -

NCCT marker
  IRR shape 388 (53.08) 266 (48.72) 122 (65.95)  < 0.001 84 (64.62) 38 (69.09) 0.481
  Satellite sign, 

n (%)
284 (38.9) 202 (37.0) 82 (44.3) 0.182 29 (22.3) 10 (18.2) 0.529

  Island sign, n 
(%)

100 (13.7) 66 (12.1) 34 (18.4) 0.085 13 (10) 5 (9.1) 0.849

  HET density 121 (16.55) 78 (14.29) 43 (23.24) 0.266 29 (22.31) 14 (25.4) 0.402
  Swirl sign, n 

(%)
464 (63.5) 328 (60.1) 136 (73.5) 0.001 115 (88.5) 46 (83.6) 0.372

  BHS, n (%) 174 (23.8) 121 (22.2) 53 (28.6) 0.073 14 (10.8) 11 (20) 0.093
  Blend sign, n 

(%)
88 (12.0) 68 (12.5) 20 (10.8) 0.553 3 (2.3) 5 (9.1) 0.038

  Fluid sign, n 
(%)

56 (7.7) 44 (8.1) 12.0 (6.5) 0.487 3 (2.3) 5 (9.1) 0.038
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whereas hypodensities were associated with increased odds 
of eIVH (OR 2.06; 95%CI 1.48–2.64; p value 0.0015). 
Finally, the moderator analysis demonstrated that the two 
interaction terms (Int. 1: NCCT marker × time; Int. 2: NCCT 

marker × location) had no significant effect on the direct 
association between the respective NCCT marker and IVH 
growth. The effect of the respective NCCT marker on IVH 
growth and its subtypes was not indirectly mediated by HE. 
Detailed results are presented in the supplementary material.

Discussion

In this study, we aimed to validate findings on the asso-
ciation of NCCT features with IVH growth and to deter-
mine subgroup-specific association with eIVH and dIVH in 
patients with acute spontaneous ICH. Our results confirmed 
that NCCT features were strong predictors of IVH growth 
[10]. In our subgroup analysis, eIVH was significantly asso-
ciated with hypodensities whereas dIVH was significantly 
associated with irregular shape. Illustrative examples are 
given in Figures 2 and 3. Further, two important previous 
findings on the relationship of IVH growth and functional 
outcome were confirmed: Both eIVH and dIVH had a nega-
tive effect on the functional outcome as seen in our multivar-
iate regression analysis (Supplementary Material Table 4) 
[7, 8]. Secondly, the revised HE definition had a significantly 
higher diagnostic accuracy in the prediction of poor func-
tional outcome compared to the conventional definition of 
HE (Supplementary Table 5) [9, 10]. The pathophysiologi-
cal mechanisms underlying these associations still remain 
unclear. Therefore, we hypothesized a mediation effect of 
parenchymal hematoma expansion, but our findings did not 
confirm this hypothesis, suggesting that the link between 

Table 1   (continued)

All (n = 731) No IVH growth 
(n = 546)

IVH growth 
(n = 185)

p Expansion IVH 
(n = 130)

Delayed IVH 
(n = 55)

p

Location
  Supratentorial, 

n (%)
620 (84.82) 481 (88.1) 165 (89.19) 0.567 117 (90.0) 48 (87.27) 0.363

  Lobar, n (%) 280 (38.36) 214 (39.2) 65 (35.1) 0.445 37 (28.5) 28 (50.9) 0.003
  Basal ganglia, 

n (%)
292 (39.95) 208 (38.1) 84 (45.4) 0.023 66 (50.8) 18 (32.7) 0.006

  Thalamic, n (%) 48 (6.66) 32 (5.9) 16 (8.6) 0.094 14 (10.8) 2 (3.6) 0.016
  Brainstem, n 

(%)
44 (6.02) 38 (7.0) 6 (3.2) 0.206 5 (3.8) 1 (1.8) 0.465

  Cerebellar, n 
(%)

67 (9.2) 53 (9.7) 14 (7.6) 0.206 8 (6.2) 6 (10.9) 0.985

Clinical outcome
  mRS 0–3, n (%) 187 (25.58) 145 (26.6) 27 (14.59)  < 0.001 18 (13.85) 9 (16.36) 0.324
  mRS 4–6, n (%) 544 (74.41) 365 (66.8) 158 (85.41)  < 0.001 112 (86.2) 46 (83.64) 0.487

BHS, black hole sign; NCCT markers, non-contrast computed tomography markers; HE, hematoma expansion; eIVH, expansion; FU, follow-up; 
gIVH, IVH growth; HET density, heterogeneous density; ICH, intracerebral hemorrhage; IQR, interquartile range; IRR shape, irregular shape; 
IVH, intraventricular hemorrhage; GCS, Glasgow Coma Scale; EED, edema extension distance; mRS, modified Rankin Scale; p, p value; SBP, 
systolic blood pressure

Table 2   Multivariate logistic regression analysis of predictors of 
intraventricular hemorrhage (IVH) growth

β, beta regression coefficient; CI, confidence interval; GCS, Glasgow 
Coma Scale; HET density, heterogeneous density; IVH, intraven-
tricular hemorrhage; IRR shape, irregular shape; OR, odds ratio; p, p 
value; ref, reference

IVH growth

OR (95%CI) β p

Age 1.01 (1.0–1.03) 0.01 0.055
Gender (ref: female) 1.50 (1.04–2.17) 0.4 0.032
Hypertension (ref: no) 0.79 (0.49–1.28)  − 0.23 0.343
Anticoagulation (ref: no) 1.14 (0.76–1.72) 0.13 0.52
Admission GCS 0.90 (0.87–0.94)  − 0.1  < 0.001
Supratentorial (ref: no) 0.55 (0.38–0.8)  − 0.601 0.002
IRR Shape (ref: no) 1.68 (1.16–2.44) 0.52 0.006
Satellite sign (ref: no) 0.79 (0.53–1.19)  − 0.23 0.264
Island sign (ref: no) 1.08 (0.73–1.59) 0.08 0.698
HET density (ref: no) 1.51 (0.96–2.37) 0.41 0.072
Swirl sign (ref: no) 1.20 (0.76–1.90) 0.18 0.442
Black hole sign (ref: no) 0.97 (0.56–1.69)  − 0.03 0.914
Blend sign (ref: no) 0.78 (0.44–1.37)  − 0.25 0.383
Fluid sign (ref: no) 0.58 (0.29–1.17)  − 0.54 0.127
Hypodensities (ref: no) 1.25 (0.83–1.88) 0.22 0.289
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Table 3   Multivariate logistic 
regression analysis of predictors 
of intraventricular hemorrhage 
(IVH) growth given separately 
for patients with IVH expansion 
and delayed IVH

β, beta regression coefficient; CI, confidence interval; GCS, Glasgow Coma Scale; HET density, heterogeneous 
density; IVH, intraventricular hemorrhage; IRR shape, irregular shape; OR, odds ratio; P, p value; ref, reference

IVH expansion Delayed IVH

OR (95%CI) β p OR (95%CI) β p

Age 1.0 (0.98–1.02)  − 0.0001 0.991 1.05 (1.02–1.09) 0.05 0.001
Gender (ref: female) 1.60 (1.06–2.14) 0.47 0.088 2.51 (1.79–3.21) 0.92 0.011
Hypertension (ref: no) 0.95 (0.28–1.62)  − 0.05 0.875 0.68 (− 0.19–1.55)  − 0.38 0.39
Anticoagulation (ref: no) 1.13 (0.59–1.67) 0.12 0.656 0.88 (0.12–1.64)  − 0.13 0.734
Admission GCS 1.02 (0.97–1.08) 0.02 0.430 0.88 (0.80–0.96)  − 0.13 0.0013
Supratentorial (ref: no) 0.60 (0.06–1.14)  − 0.51 0.060 0.56 (− 0.14–1.26)  − 0.58 0.104
IRR shape (ref: no) 1.05 (0.46–1.63) 0.05 0.876 2.72 (1.91–3.53) 1.0 0.016
Satellite sign (ref: no) 0.72 (0.06–1.38)  − 0.33 0.332 0.55 (− 0.43–1.53)  − 0.59 0.236
Island sign (ref: no) 0.87 (0.06–1.67)  − 0.15 0.726 0.94 (− 0.20–2.08)  − 0.06 0.915
HET density (ref: no) 1.11 (0.48–1.75) 0.11 0.743 1.48 (0.70–2.23) 0.40 0.158
Swirl sign (ref: no) 1.27 (0.48–2.07) 0.24 0.55 0.77 (− 0.23–1.78)  − 0.25 0.622
Black hole sign (ref: no) 1.16 (0.57–1.74) 0.15 0.622 0.98 (0.20–1.76)  − 0.02 0.968
Blend sign (ref: no) 0.63 (− 0.74–1.99)  − 0.47 0.502 1.23 (0.12–2.34) 0.21 0.714
Fluid sign (ref: no) 0.50 (− 0.85–1.84)  − 0.70 0.307 1.32 (0.19–2.45) 0.28 0.628
Hypodensities (ref: no) 2.06 (1.48–2.64) 0.72 0.015 1.76 (0.62–2.89) 0.56 0.158

Fig. 2   An illustrative example of non-contrast computed tomogra-
phy (NCCT) markers associated with intraventricular hemorrhage 
expansion in patients with acute intracerebral hemorrhage. An illus-
trative example of a patient with intraventricular hemorrhage expan-
sion (eIVH) defined as absolute volume increase of intraventricular 
hemorrhage (IVH) between admission (left side) and follow-up 

NCCT imaging (right side); given with the presence of hypodensities 
and corresponding volumes for intracerebral hemorrhage (ICH) and 
IVH, admission Glasgow Coma Scale (GCS), and clinical outcome at 
90 days with modified Rankin Scale. ICH, intracerebral hemorrhage; 
GCS, Glasgow Coma Scale; IVH, intraventricular hemorrhage; mL, 
milliliters; NCCT, non-contrast computed tomography
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NCCT features and IVH growth is not a simple epiphenom-
enon of parenchymal bleeding [37]. Consistent with this 
finding, we also noted that most patients experiencing IVH 
growth did not have parenchymal hematoma expansion. We 
also explored a potential interaction with ICH location and 
time from onset to initial imaging but found no significant 
effect of these potential confounders on the association 
between NCCT features and increased risk of IVH growth 
[8, 33, 34]. From a clinical perspective, NCCT features may 
help clinicians in the stratification and early identification of 
patients at a high risk of neurological deterioration because 
of IVH growth. Recent results from the STOP-AUST trial 
indicate that the severity of IVH growth may be attenuated 
by tranexamic acid treatment following ICH [5]. Therefore, 
NCCT features may improve patients’ selection in future 
clinical trials, identifying subjects at a high risk of IVH 
growth and therefore more likely to benefit from hemostatic 
treatment. Some limitations of our analysis should be con-
sidered. First, our findings were derived from a retrospec-
tive analysis and require prospective validation. Second, the 
imaging protocol was not standardized across participating 
sites, although there is no evidence that the NCCT acqui-
sition technique influences NCCT markers’ detection [16]. 
Third, imaging data were collected at two time points only 

and we are unable to assess potential dynamics of IVH vol-
umes beyond this time frame. Fourth, NCCT markers were 
rated by well-experienced ICH researchers and may vary in 
raters with different levels of experience; however, results 
agreed well with our previous findings [15]. Finally, blood 
pressure control and coagulopathy reversal might have influ-
enced the risk of IVH growth and were not accounted for. 
Finally, the described associations between NCCT markers 
and IVH growth may not necessarily imply causality, and 
further research is needed to characterize the underlying 
biological mechanisms.

Conclusions

NCCT features independently predict IVH growth, and this 
association was independent of imaging time and ICH loca-
tion and not mediated by parenchymal hematoma growth 
HE. Our findings suggest the possibility to stratify the risk of 
IVH growth with baseline NCCT and might inform ongoing 
and future studies.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00330-​023-​09707-9.

Fig. 3   An illustrative example of non-contrast computed tomography 
(NCCT) markers associated with delayed intraventricular hemor-
rhage in patients with acute intracerebral hemorrhage. An illustra-
tive example of a patient with delayed intraventricular hemorrhage 
(dIVH) defined as not present on admission imaging (left side) and 
any newly occurring IVH on follow-up NCCT imaging (right); given 

with the presence of irregular shape and corresponding volumes for 
intracerebral hemorrhage (ICH) and IVH, admission Glasgow Coma 
Scale (GCS), and clinical outcome at 90 days with modified Rankin 
Scale. ICH, intracerebral hemorrhage; GCS, Glasgow Coma Scale; 
IRR shape, irregular shape; IVH, intraventricular hemorrhage; mL, 
milliliters; NCCT, non-contrast computed tomography
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