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Abstract
Objectives  To verify the reliability of the volumes automatically segmented using a new artificial intelligence (AI)-based 
application and evaluate changes in the brain and CSF volume with healthy aging.
Methods  The intracranial spaces were automatically segmented in the 21 brain subregions and 5 CSF subregions using the 
AI-based application on the 3D T1-weighted images in healthy volunteers aged > 20 years. Additionally, the automatically 
segmented volumes of the total ventricles and subarachnoid spaces were compared with the manually segmented volumes 
of those extracted from 3D T2-weighted images using the intra-class correlation and Bland–Altman analysis.
Results  In this study, 133 healthy volunteers aged 21–92 years were included. The mean intra-class correlations between 
the automatically and manually segmented volumes of the total ventricles and subarachnoid spaces were 0.986 and 0.882, 
respectively. The increase in the CSF volume was estimated to be approximately 30 mL (2%) per decade from 265 mL 
(18.7%) in the 20s to 488 mL (33.7%) in ages above 80 years; however, the increase in the volume of total ventricles was 
approximately 20 mL (< 2%) until the 60s and increased in ages above 60 years.
Conclusions  This study confirmed the reliability of the CSF volumes using the AI-based auto-segmentation application. 
The intracranial CSF volume increased linearly because of the brain volume reduction with aging; however, the ventricular 
volume did not change until the age of 60 years and above and then gradually increased. This finding could help elucidate 
the pathogenesis of chronic hydrocephalus in adults.
Key Points 
• The brain and CSF spaces were automatically segmented using an artificial intelligence-based application.
• The total subarachnoid spaces increased linearly with aging, whereas the total ventricle volume was around 20 mL (< 2%) 

until the 60s and increased in ages above 60 years.
• The cortical gray matter gradually decreases with aging, whereas the subcortical gray matter maintains its volume, and 

the cerebral white matter increases slightly until the 40s and begins to decrease from the 50s.
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Abbreviations
ADNI	� Alzheimer’s Disease Neuroimaging Initiative
AI	� Artificial intelligence
CI	� Confidential interval
ICC	� Intra-class correlation
MPRAGE	� Magnetization prepared rapid gradient echo
P	� Probability
r	� Pearson’s correlation coefficient
SD	� Standard deviation
VSRAD	� Voxel-based specific regional analysis system 

for Alzheimer’s disease

Introduction

Brain atrophy defined as a loss of neurons and connecting 
fibers is caused by aging and several neurodegenerative dis-
orders. As a representative disease, Alzheimer’s disease is 
characterized by atrophy of the medial temporal lobe includ-
ing the hippocampus [1–4]. Several software for automatic 
computer-aided brain segmentation have been used as a med-
ical device that assists in diagnosing Alzheimer’s disease. For 
example, the voxel-based specific regional analysis system 
for Alzheimer’s disease (VSRAD) software has been widely 
used as a reference for diagnostic imaging of Alzheimer’s 
disease in Japan [5, 6]. Additionally, age-related volume 
changes in the gray and white matters and cerebrospinal fluid 
(CSF) segmented using manual or voxel-based morphometry 
methods have been investigated [7–16]. Our previous volu-
metric study on three-dimensional (3D) T2-weighted images 
reported that the mean volume of intracranial CSF in healthy 
volunteers aged 60 years or older was more than 330 mL, 
of which the ventricular volume was more than 60 mL and 
the subarachnoid space volume was approximately 270 mL 
[17–19]. It is natural that the total volume of intracranial CSF 
increases as a compensation for brain volume decreases with 
aging. However, many studies and reviews have reported that 
the mean volume of intracranial CSF is approximately 150 
mL with 25 mL in the ventricles and 125 mL in the suba-
rachnoid spaces in adults [20–22]. Recently, the automatic 
method for segmenting the brain from 3D MRI has rapidly 
shifted from voxel-based morphometry to deep learning 
based on convolutional neural networks. For example, deep 
learning methods for measuring the medial temporal lobe or 
hippocampus have been reported to be useful for predicting 
or diagnosing Alzheimer’s disease [23–26]. A new applica-
tion named Brain Subregion Analysis launched in the SYN-
APSE 3D workstation (FUJIFILM Corporation), which has 
been the most widely used workstation (approximately 1300 
facilities) in Japan, was released in 2020. In this application, 
the brain and CSF in the skull on 3D T1-weighted images 

are automatically segmented into 21 brain subregions and 5 
CSF subregions within 1 min using deep learning. This study 
was designed to verify the reliability of the automatically 
segmented CSF volumes and investigate trends in volume 
reduction of the segmented brain and compensatory increases 
in CSF volume because of healthy aging.

Materials and methods

Ethical approvals

The design and protocol of this study were approved by the 
Ethics Committee for Human Research of our institution 
(IRB number: R2019-227). Healthy volunteers underwent 
MRI after providing written informed consent, and we par-
ticularly explained the potential for detecting diseases in the 
brain. MRI data were extracted after the private information 
of the volunteers was anonymized in a linkable manner. The 
study design was prospective and observational. This study 
was conducted according to the approved guidelines of the 
Declaration of Helsinki.

Study population

From November 2020 to April 2022, approximately 20 or 
more healthy volunteers aged ≥ 20 years with no upper age 
limit for every decade were recruited from medical staff and 
their families by open recruitment. The inclusion criteria for 
this study were as follows: participants who had no history 
of brain injury, brain tumor, or cerebrovascular disease on 
previous brain MRI or those who had never undergone brain 
CT or MRI and no neurological symptoms. The exclusion 
criteria were as follows: the artifacts in the head, particu-
larly dentures, were large and affected the MRI results. After 
brain MRI, three volunteers were incidentally determined to 
have small unruptured intracranial aneurysms with a maxi-
mum diameter of < 2 mm. They were included in this study 
because small unruptured aneurysms might not affect the 
volumes of the brain and CSF.

Image acquisitions

All MRI examinations were performed using a 3-tesla 
MRI machine (Signa Architect 3.0T or Discovery MR 
750W, GE Healthcare). The 3D T1-weighted magneti-
zation-prepared rapid gradient-echo (MPRAGE) and 3D 
T2-weighted fast spin-echo Cube sequences were obtained 
in a sagittal orientation. The sequence parameters for 
MPRAGE were as follows: repetition time (TR), 2,471 
ms; time to echo (TE), 3.13 ms; inversion time, 1,000 ms; 
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flip angle, 8°; matrix 256 × 256; voxel size, 0.9 × 0.9 × 
0.9 mm; and acquisition time, approximately 4 min. The 
sequence parameters for Cube were as follows: TR, 2,000 
ms; TE, 85.3 ms; matrix 288 × 288; voxel size, 0.8 × 0.8 × 
0.8 mm; and acquisition time, approximately 4 min.

Data processing

The Brain Subregion Analysis application on an independ-
ent 3D volume analyzer workstation (SYNAPSE 3D; FUJI-
FILM Corporation) was approved as a medical device by 
the Pharmaceuticals and Medical Devices Agency of Japan 
in 2020. It uses a novel image recognition technology based 
on Fujifilm’s AI-enabled platform REiLI to accurately rec-
ognize and consistently extract specific regions of the brain. 
As training data for deep learning, the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database (adni.loni.usc.
edu) was used [23–26]. The ADNI MRI dataset included 
653 individuals, including 255 healthy individuals, 179 indi-
viduals diagnosed with mild cognitive impairment, and 219 
individuals diagnosed with Alzheimer’s disease. In addition, 
5 healthy individuals from ADNI data and 29 individuals 
from in-house data were used for validation. The region 
segmentation maps for the training and validation data sets 
were created manually, referring to the publicly available 
Mindboggle atlas (https://​mindb​oggle.​info/) and checking 
with a neuroradiologist. The deep learning model employed 
a 3D U-Net structure, consisting of 3D convolution, batch 
normalization, ReLU activation layer, max pooling layer, 
and 3D up-convolution (Fig. 1A). At the end of the last con-
volutional layer, the final features were fed to a softmax acti-
vation function to generate probability scores for each class. 
The dice coefficient was used for loss function in the deep 
learning. The image intensities of the input images were 
normalized to [0, 1] by their maximum and minimize values. 
Batch size for training was 4, and optimaiza was set at a 
learning rate of 0.0001 in Adam. To improve generalizability 
and segmentation accuracy, the following augmentation was 
randomly performed for each input image: similar transfor-
mation with rotation (0–15 degrees in each axis), scaling 
(0.95–1.05 times) and translation (0–5%), flipping, sharp-
ness or blur filter with standard deviations (SDs) of 0.5–2, 
Gaussian noise with SDs of 0–0.05, image intensity shifting 
(± 0–10% of the signal range), and perturbation (± 0–15% 
of the signal range). These augmentations can reduce the 
effects of differences in manufacturers, imaging protocol, or 
individuals. As a result of deep learning up to 100,000 steps, 
the feature map at the step with the best validation result was 
finally adopted for the Brain Subregion Analysis application, 
with the highest average dice coefficient of 0.928, accuracy 

of 0.998, precision of 0.921, and repeatability of 0.934 for 
the 26 regions (Fig. 1B).

Segmentation and measurement

Using the Brain Subregion Analysis application, the brain on 
the 3D T1-weighted MPRAGE sequence was automatically 
segmented, and their segmented volumes were quantified 
within approximately 1 min in the following 21 brain sub-
regions: the frontal cortex; parietal cortex; temporal cortex; 
occipital cortex; insular cortex; cerebral white matter; hip-
pocampus, including the parahippocampal gyrus (entorhinal 
cortex); basal ganglia, including the caudate nucleus; puta-
men; globus pallidus; limbic system, including the cingulate 
gyrus and amygdala; brainstem, including the thalamus, 
hypothalamus, midbrain, pons, and medulla oblongata; and 
cerebellum (Fig. 2, Videoclip in Supplementary Material). 
In this study, cortical gray matter was defined as the com-
bined region of the frontal, temporal, parietal, occipital, and 
insular cortex, and subcortical gray matter was defined as 
the combined region of the hippocampus, basal ganglia, and 
brainstem. Additionally, CSF spaces were divided into the 
following five subregions: the bilateral lateral ventricles, third 
ventricle, fourth ventricle, and subarachnoid spaces.

To evaluate the reliability of the volumes segmented 
using the Brain Subregion Analysis application on the 3D 
T1-weighted MPRAGE sequence, the total ventricles and 
subarachnoid spaces in the same volunteers were segmented 
from the 3D T2-weighted Cube sequence in our original 
method, combining a simple threshold algorithm and manual 
segmentation, as previously reported [17–19]. The intra reli-
ability of the AI segmentation method is perfect because it 
is fully automated. In contrast, our original segmentation 
method takes time to segment, and the reproducibility is 
not high. The reliability and validity of the segmented CSF 
volumes measured using our original method were assessed 
and described in a previous article [17–19].

Statistical analysis

The sex and left–right differences in the segmented vol-
umes and volume ratios, which were defined as the vol-
ume divided by intracranial volume, were compared using 
the Mann–Whitney–Wilcoxon test. The volunteers were 
divided into the following three subgroups according to 
their ages at the time of MRI examination: under 40 years 
old, 40–59 years old, and 60 years old and above. The mean 
volumes and volume ratios ± SDs in three age subgroups 
were compared using the Kruskal–Wallis rank sum test. 
The chi-square test was used to compare the proportions 
of the groups. To evaluate the consistency of the volumes 

https://mindboggle.info/
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measured using the AI-based and manual segmentation 
methods, the intra-class correlation (ICC) for two-way 
models and Bland–Altman analysis were applied. An ICC 

of ≥ 0.9 was interpreted as excellent reliability, 0.8–0.9 as 
good, 0.7–0.8 as acceptable, 0.6–0.7 as questionable, and 
< 0.6 as poor. The difference (bias) between the segmented 

Fig. 1   3D U-Net model with four layers and validation result for 
Brain Subregion Analysis application. a Each blue box corresponds 
to a multi-channel feature map. The number of channels is denoted 
on top of the box. White boxes indicate copied feature maps. The 
color arrows indicate each process: sky blue arrows indicate convolu-
tion (Conv) with kernel size (3, 3, 3) in addition to batch normaliza-
tion (BN) and rectified linear unit (ReLU) activation layer, red arrows 
indicate max-pooling with kernel size (2, 2, 2), green arrows indicate 

up-convolution (Up-Conv) with kernel size (3, 3, 3) and dilation rate 
(2, 2, 2) in addition to BN and ReLU, and gray arrows indicate direct 
concatenation from each encoding layer of feature map extracted by 
downsampling to the corresponding decoding layer of feature map 
by upsampling. b Dice coefficients for each validation step of the 3D 
U-Net model. The dice coefficient exceeded 0.9 at 10,000 steps and 
remained consistently high until 100,000 steps
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volumes was defined as significant when the distribution 
of the difference was not within the 1.96 ± SD of the mean 
difference in the Bland–Altman plot. A small bias within 
the acceptable range was defined as an average difference in 
volume measured using two different methods that was less 
than 10% of the original volume. The relationships between 
segmented volumes or volume ratios and age were examined 
using Pearson’s correlation coefficient (r) and 95% confiden-
tial intervals (CIs). Additionally, statistical significance was 
assumed at a probability (P) value of < 0.05. All missing 
data points were treated as deficit data that did not affect 
other variables. Statistical analyses were performed using R 
(version 4.1.1; The R Foundation for Statistical Computing; 
http://​www.R-​proje​ct.​org).

Results

Clinical characteristics and sex difference

In this study, 133 healthy volunteers (mean age, 43.9 ± 
14.7 years; range, 21–92 years; 46 males and 87 females) 

were included. We recruited healthy senior volunteers in 
their 70s and older, but were unable to attract a sufficient 
number because many seniors had some imaging findings 
or physical symptoms. Therefore, those aged 60 or older 
were categorized into one age group for comparison. Males 
had significantly larger intracranial volumes and segmented 
volumes of the brain and CSF than females. However, all 
volume ratios divided by their intracranial volume were not 
significantly different between males and females, except for 
the parietal cortex, cerebellum, lateral ventricle, and third 
ventricle (Table 1).

Reliability of segmentation

The total volume of the lateral, third, and fourth ventricles 
segmented using the AI-based automated segmentation 
method on the 3D T1-weighted MPRAGE sequence had 
an excellent agreement with the total ventricular volume 
manually segmented using our original method on the 3D 
T2-weighted Cube sequence (mean ICC, 0.986; 95% CI, 
0.981–0.990) (Fig. 3A). The volume of the total subarach-
noid space also showed a good reliability (mean ICC, 0.882; 

Fig. 2   Screenshot of automatic 
segmentation using Brain 
Subregion Analysis application. 
This screenshot shows the result 
of a 48-year-old male healthy 
brain on the Brain Subregion 
Analysis application of the 3D 
volume analyzer SYNAPSE 3D 
workstation (FUJIFILM Cor-
poration). By default, the axial 
view is displayed in the upper 
left, the sagittal view is in the 
upper right, the coronal view is 
in the lower left, and 3D is in 
the lower right

http://www.R-project.org
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Table 1   Differences in the 
volume and volume ratio of the 
segmented regions according 
to sex

p-values of the sex difference based on the Mann–Whitney–Wilcoxon test

All Female Male p value

Total number 133 87 46
Age (years) 47.7 ± 16.8 46.7 ± 16.2 49.8 ± 17.9 0.372
  20s 22 16 6
  30s 25 15 10
  40s 24 14 10
  50s 25 20 5
  60s 22 15 7
  70s 13 7 6
  80s < 2 0 2

Intracranial space (volume, mL) 1443.3 ± 129.0 1393.2 ± 91.2 1538.2 ± 137.3 < 0.001
  Total brain (mL) 1100.3 ± 113.3 1067.7 ± 88.1 1162.1 ± 129.9 < 0.001
  Cortical gray matter (mL) 457.6 ± 50.0 445.6 ± 43.9 480.4 ± 53.4 < 0.001
  Frontal cortex (mL) 168.0 ± 19.2 163.8 ± 17.3 176.0 ± 20.3 0.002
  Parietal cortex (mL) 115.0 ± 12.7 112.5 ± 11.9 119.8 ± 13.1 0.006
  Temporal cortex (mL) 118.5 ± 14.1 115.0 ± 11.9 125.1 ± 15.7 < 0.001
  Occipital cortex (mL) 56.1 ± 7.3 54.3 ± 6.4 59.5 ± 7.8 < 0.001
  Cerebral white matter (mL) 417.9 ± 50.9 405.0 ± 38.0 442.3 ± 62.4 < 0.001
  Cerebellum (mL) 135.8 ± 13.8 132.6 ± 11.7 141.8 ± 15.5 < 0.001
  Brainstem (mL) 42.7 ± 3.8 41.4 ± 3.2 45.0 ± 3.7 < 0.001
  Insula cortex (mL) 12.8 ± 1.4 12.3 ± 1.2 13.7 ± 1.4 < 0.001
  Hippocampus (mL) 6.8 ± 0.7 6.6 ± 0.5 7.2 ± 0.8 < 0.001
  Basal ganglia (mL) 13.6 ± 1.5 13.2 ± 1.3 14.4 ± 1.5 < 0.001
  Limbic system (mL) 33.2 ± 3.8 32.2 ± 3.3 35.3 ± 4.0 < 0.001
  Total ventricle (mL) 25.2 ± 12.2 22.6 ± 10.4 30.1 ± 13.8 < 0.001
    Lateral ventricle (mL) 22.6 ± 11.6 20.2 ± 10.0 27.1 ± 13.0 < 0.001
    Third ventricle (mL) 1.0 ± 0.6 0.9 ± 0.5 1.3 ± 0.7 < 0.001
    Fourth ventricle (mL) 1.6 ± 0.4 1.5 ± 0.3 1.7 ± 0.4 0.030
  Total subarachnoid space (mL) 297.7 ± 55.9 281.6 ± 42.3 328.1 ± 65.7 < 0.001
  Intracranial CSF space (mL) 322.9 ± 64.9 304.2 ± 49.2 358.2 ± 76.1 < 0.001
  Total ventricle on 3D T2 (mL) 26.9 ± 12.1 24.5 ± 10.6 31.6 ± 13.5 < 0.001
  Total subarachnoid space on 3D T2 (mL) 251.1 ± 62.0 232.6 ± 51.2 286.7 ± 66.1 < 0.001
  Intracranial CSF space on 3D T2 (mL) 278.0 ± 70.0 257.2 ± 57.5 318.3 ± 74.8 < 0.001
    Total brain (volume ratio, %) 76.2 ± 3.4 76.6 ± 3.0 75.5 ± 4.1 0.176
    Cortical gray matter (%) 31.7 ± 2.0 32.0 ± 1.9 31.2 ± 2.0 0.058
    Frontal cortex (%) 11.6 ± 0.8 11.7 ± 0.8 11.4 ± 0.8 0.073
    Parietal cortex (%) 8.0 ± 0.6 8.1 ± 0.6 7.8 ± 0.5 0.013
    Temporal cortex (%) 8.2 ± 0.6 8.2 ± 0.6 8.1 ± 0.7 0.350
    Occipital cortex (%) 3.9 ± 0.3 3.9 ± 0.4 3.9 ± 0.3 0.665
    Cerebral white matter (%) 28.9 ± 2.0 29.1 ± 1.6 28.7 ± 2.5 0.485
    Cerebellum (%) 9.4 ± 0.8 9.5 ± 0.7 9.2 ± 0.8 0.029
    Brainstem (%) 3.0 ± 0.2 3.0 ± 0.2 2.9 ± 0.2 0.123
    Insula cortex (%) 0.89 ± 0.06 0.88 ± 0.06 0.89 ± 0.06 0.769
    Hippocampus (%) 0.48 ± 0.03 0.48 ± 0.03 0.47 ± 0.04 0.271
    Basal ganglia (%) 0.94 ± 0.08 0.95 ± 0.07 0.94 ± 0.09 0.936
    Limbic system (%) 2.3 ± 0.1 2.3 ± 0.1 2.3 ± 0.1 0.645
    Total ventricle (%) 1.7 ± 0.8 1.6 ± 0.7 1.9 ± 0.8 0.017
    Lateral ventricle (%) 1.5 ± 0.7 1.4 ± 0.7 1.7 ± 0.8 0.018
    Third ventricle (%) 0.07 ± 0.04 0.06 ± 0.03 0.08 ± 0.04 0.008
    Fourth ventricle (%) 0.11 ± 0.02 0.11 ± 0.02 0.11 ± 0.03 0.867
  Intracranial CSF space (%) 22.4 ± 3.9 21.9 ± 3.5 23.3 ± 4.6 0.131
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Fig. 3   Reliability of the 
cerebrospinal fluid volumes 
segmented using two methods. 
The upper graphs show the scat-
terplots and linear regression 
lines (red) with 95% confi-
dential intervals (green) of the 
segmented volumes of the total 
ventricles (a) and subarachnoid 
spaces (b) using the two meth-
ods. The lower graphs show the 
Bland–Altman analysis for the 
segmented volumes of the total 
ventricles (c) and subarach-
noid spaces (d) using the two 
methods

Fig. 4   A case of failed segmentation of ventricles and subarachnoid 
spaces. The cerebral aqueduct, the boundary between the third and 
fourth ventricles, was missing (white arrowhead). The subarachnoid 
space at the convexity region contained some parts of the inner plate 

of the skull (white arrow).  a  Sagittal midplane, (b) sagittal section 
passing through the right eye center, (c) axial section in the high-con-
vexity part
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95% CI, 0.837–0.915) (Fig. 3B). The total ventricular volume 
using the AI-based segmentation method was 1.7 mL smaller 
on average (25.2 mL vs. 26.9 mL) than that using the manual 
segmentation method (Fig. 3C), whereas the total subarach-
noid space volume was 46.6 mL larger (297.7 mL vs. 251.1 
mL, Fig. 3D). The systematic error in ventricle segmenta-
tion was caused by the loss of ventricular boundaries in the 
AI-based segmentation method, while that in subarachnoid 
space segmentation was caused by the inclusion of part of 
the inner plate of the skull in the superficial subarachnoid 
spaces (Fig. 4).

Laterality and age‑related volume changes

Although the total brain volumes on the right and left sides 
were almost the same, the volumes and volume ratios of the 
frontal cortex, insula cortex, and hippocampus were signifi-
cantly smaller on the left side, and those of the basal ganglia, 
limbic system, and lateral ventricle were significantly larger 
on the left side than on the right side (Table 2).

 All segmented volumes and volume ratios, except for 
the hippocampus, basal ganglia, brain stem, and fourth 

ventricle, were significantly different among the three age 
groups (Table 3). All parts of the cortex were significantly 
and gradually smaller, whereas the lateral and third ventri-
cles and subarachnoid spaces were significantly larger in 
the older group than in the younger group. The distributions 
of the segmented volumes and volume ratios for each age 
stratified according to sex are shown in Figs. 5 and 6, respec-
tively. With aging, the volume and volume ratio of the entire 
brain linearly decrease, and those of the total intracranial 
CSF linearly increase. The increase ratio in the CSF volume 
(volume ratio) was estimated to be approximately 30 mL 
(2%) per decade, from 265 mL (18.7%) in the 20s to 488 mL 
(33.7%) in ages above 80 years. However, the increase ratio 
in the ventricular volume with aging was not constant com-
pared with that in the subarachnoid space. The volume and 
volume ratio of the total ventricle were approximately 20 
mL and < 2% on average until the 60s and increase in ages 
above 60 years. The cortical gray matter gradually decreased 
with aging, whereas the subcortical gray matter maintained 
its volume, and the cerebral white matter increased slightly 
until the 40s and began to decrease from the 50s. The 
volume ratio of the cortical gray matter had the strongest 

Table 2   Left–right difference in 
the volume and volume ratio of 
the segmented regions

p-value of the right–left difference based on the Mann–Whitney–Wilcoxon test

Left Right Difference p value

Total brain (mL) 551.1 ± 56.9 549.2 ± 56.7 1.9 ± 7.2 0.705
Frontal cortex (mL) 82.3 ± 9.4 85.7 ± 10.0 −3.5 ± 2.7 0.004
Parietal cortex (mL) 57.7 ± 6.5 57.3 ± 6.4 0.4 ± 1.9 0.674
Temporal cortex (mL) 59.4 ± 7.1 59.1 ± 7.2 0.2 ± 2.0 0.738
Occipital cortex (mL) 27.5 ± 3.6 28.6 ± 4.0 −1.0 ± 2.2 0.040
Cerebral white matter (mL) 208.8 ± 25.3 209 ± 25.6 −0.2 ± 3.0 0.943
Cerebellum (mL) 68.4 ± 7.2 67.4 ± 6.6 1.0 ± 1.6 0.201
Insula cortex (mL) 6.3 ± 0.7 6.5 ± 0.7 −0.3 ± 0.3 0.002
Hippocampus (mL) 3.3 ± 0.3 3.5 ± 0.4 −0.2 ± 0.1 < 0.001
Basal ganglia (mL) 7 ± 0.8 6.6 ± 0.8 0.4 ± 0.3 < 0.001
Limbic system (mL) 18.1 ± 2.1 15.1 ± 1.8 3.0 ± 1.2 < 0.001
Lateral ventricle (mL) 12.3 ± 6.2 10.3 ± 5.6 2.0 ± 2.3 < 0.001
Total brain (volume ratio, %) 38.2 ± 1.7 38.0 ± 1.7 0.1 ± 0.5 0.607
Frontal cortex (%) 5.7 ± 0.4 5.9 ± 0.4 −0.2 ± 0.2 < 0.001
Parietal cortex (%) 4.0 ± 0.3 4.0 ± 0.3 0.03 ± 0.13 0.444
Temporal cortex (%) 4.1 ± 0.3 4.1 ± 0.3 0.01 ± 0.14 0.744
Occipital cortex (%) 1.9 ± 0.2 2.0 ± 0.2 −0.07 ± 0.15 0.003
Cerebral white matter (%) 14.5 ± 1.0 14.5 ± 1.0 −0.01 ± 0.21 0.880
Cerebellum (%) 4.7 ± 0.4 4.7 ± 0.4 0.07 ± 0.11 0.119
Insula cortex (%) 0.43 ± 0.03 0.45 ± 0.03 −0.02 ± 0.02 < 0.001
Hippocampus (%) 0.23 ± 0.01 0.25 ± 0.02 −0.02 ± 0.01 < 0.001
Basal ganglia (%) 0.49 ± 0.04 0.46 ± 0.04 0.03 ± 0.02 < 0.001
Limbic system (%) 1.3 ± 0.1 1.1 ± 0.1 0.2 ± 0.1 < 0.001
Lateral ventricle (%) 0.8 ± 0.4 0.7 ± 0.4 0.1 ± 0.2 < 0.001
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negative correlation with age (r: −0.852; 95% CI: −0.893 to 
−0.789), and that of the total CSF had the strongest positive 
correlation (r: 0.824; 95% CI, 0.760–0.872), although those 

of the subcortical gray matter, hippocampus, basal ganglia, 
and brain stem were not significantly associated with age 
(Figs. 5 and 6).

Table 3   Differences in the 
volume and volume ratio of the 
segmented regions among the 
three age groups

p-value of the differences between the three age groups based on the Kruskal–Wallis rank sum test

< 40 years 40–59 years ≥60 years p value

Total number (female:male) 47 (31:16) 49 (34:15) 37 (22:15)
Intracranial space (volume, mL) 1468.7 ± 105.7 1427.0 ± 141.0 1432.7 ± 137.5 0.066
  Total brain (mL) 1155.5 ± 90.8 1096.2 ± 115.3 1035.8 ± 102.8 < 0.001
  Cortical gray matter (mL) 490.2 ± 33.6 452.7 ± 48.4 422.8 ± 44.1 < 0.001
  Frontal cortex (mL) 180.1 ± 13.5 166.7 ± 19.1 154.4 ± 15.8 < 0.001
  Parietal cortex (mL) 123.1 ± 9.5 113.5 ± 11.9 106.7 ± 11.4 < 0.001
  Temporal cortex (mL) 127.4 ± 9.6 117.5 ± 13.6 108.5 ± 12.6 < 0.001
  Occipital cortex (mL) 59.5 ± 6.4 55.0 ± 7.2 53.2 ± 7.0 < 0.001
  Cerebral white matter (mL) 435.1 ± 47.2 424.4 ± 50.2 387.4 ± 43.4 < 0.001
  Cerebellum (mL) 143.8 ± 13.8 134.2 ± 11.3 127.8 ± 11.4 < 0.001
  Brainstem (mL) 43.5 ± 3.6 42.6 ± 3.7 41.6 ± 3.8 0.166
  Insula cortex (mL) 13.4 ± 1.1 12.7 ± 1.5 12.2 ± 1.5 < 0.001
  Hippocampus (mL) 6.9 ± 0.5 6.8 ± 0.7 6.8 ± 0.8 0.302
  Basal ganglia (mL) 13.9 ± 1.4 13.2 ± 1.4 13.8 ± 1.6 0.035
  Limbic system (mL) 35.0 ± 3.2 32.8 ± 3.9 31.6 ± 3.7 < 0.001
  Total ventricle (mL) 19.6 ± 7.5 21.9 ± 8.0 36.6 ± 14.1 < 0.001
    Lateral ventricle (mL) 17.3 ± 7.2 19.4 ± 7.5 33.4 ± 13.4 < 0.001
    Third ventricle (mL) 0.8 ± 0.3 0.9 ± 0.4 1.5 ± 0.7 < 0.001
    Fourth ventricle (mL) 1.6 ± 0.4 1.5 ± 0.4 1.7 ± 0.4 0.078

Total subarachnoid space (mL) 267.3 ± 35.0 285.7 ± 43.5 352.1 ± 54.3 < 0.001
Intracranial CSF space (mL) 287.0 ± 38.3 307.6 ± 47.8 388.7 ± 63.8 < 0.001
Total ventricle on 3D T2 (mL) 21.5 ± 7.1 23.7 ± 8.2 38.0 ± 14.1 < 0.001
Total subarachnoid space on 3D T2 (mL) 215.2 ± 43.5 243.5 ± 51.9 305.6 ± 57.2 < 0.001
Intracranial CSF space on 3D T2 (mL) 236.7 ± 47.0 267.2 ± 55.6 343.6 ± 64.5 < 0.001
  Total brain (volume ratio, %) 78.7 ± 2.0 76.8 ± 2.3 72.3 ± 2.6 < 0.001
  Cortical gray matter (%) 33.4 ± 1.4 31.7 ± 1.2 29.5 ± 1.1 < 0.001
  Frontal cortex (%) 12.3 ± 0.6 11.7 ± 0.6 10.8 ± 0.5 < 0.001
  Parietal cortex (%) 8.4 ± 0.5 8.0 ± 0.4 7.4 ± 0.4 < 0.001
  Temporal cortex (%) 8.7 ± 0.5 8.2 ± 0.4 7.6 ± 0.4 < 0.001
  Occipital cortex (%) 4.1 ± 0.3 3.9 ± 0.3 3.7 ± 0.3 < 0.001
  Cerebral white matter (%) 29.6 ± 1.6 29.7 ± 1.3 27.1 ± 2.1 < 0.001
  Cerebellum (%) 9.8 ± 0.7 9.4 ± 0.7 8.9 ± 0.6 < 0.001
  Brainstem (%) 3.0 ± 0.2 3.0 ± 0.2 2.9 ± 0.2 0.090
  Insula cortex (%) 0.9 ± 0.1 0.89 ± 0.05 0.85 ± 0.06 < 0.001
  Hippocampus (%) 0.47 ± 0.03 0.48 ± 0.03 0.47 ± 0.03 0.376
  Basal ganglia (%) 0.95 ± 0.09 0.92 ± 0.07 0.97 ± 0.08 0.039
  Limbic system (%) 2.38 ± 0.14 2.3 ± 0.1 2.2 ± 0.1 < 0.001
  Total ventricle (%) 1.3 ± 0.5 1.5 ± 0.5 2.5 ± 0.8 < 0.001
    Lateral ventricle (%) 1.2 ± 0.5 1.3 ± 0.5 2.3 ± 0.8 < 0.001
    Third ventricle (%) 0.05 ± 0.02 0.06 ± 0.03 0.11 ± 0.04 < 0.001
    Fourth ventricle (%) 0.11 ± 0.02 0.11 ± 0.02 0.12 ± 0.02 0.114
  Intracranial CSF space (%) 19.5 ± 2.2 21.5 ± 2.4 27.1 ± 3.0 < 0.001
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Discussion

Our cross-sectional MRI study using the AI-based auto-
mated segmentation method has shown that the brain vol-
ume in the healthy subjects began to decline after the 20s 
and continued to decline over their entire lifespan, with 
which the CSF volume continued to increase linearly. The 
mean volume of the intracranial CSF in the 20s was 265 
mL, whereas that in the 70s was more than 400 mL. How-
ever, the ventricle maintained its volume at approximately 
20 mL under the age of 60 years. Although these results in 
this study are consistent with the results of other volumet-
ric studies [7–16] and our previous MRI studies involving 
a different population [17–19], they are far from the com-
mon knowledge [20–22]: 150 mL in the intracranial CSF 
and 25 mL in the ventricles in adults. Unless this central 
dogma is denied, the understanding of the pathophysiology 
of CSF-related diseases will not progress. Even if the total 
intracranial CSF volume increases with aging, the ventricles 
are unlikely to expand in healthy persons under the age of 
60 years. After the age of 60 years, the ventricle is more 
likely to expand for some reasons; for example, the opening 
foramina of Magendie and Luschka induce increases in the 
influx of CSF into the ventricle [27–29].

The AI-based automated segmentation has numerous 
advantages over the conventional voxel-based morpho-
metry or manual 3D segmentation method. The most 
important advantage is the reproducibility without a spa-
tial normalization technique that fits into a normal brain 
anatomy on the computer-aided voxel-based morphom-
etry [7–16]. An additional advantage is that the AI-based 
automated segmentation method takes a short time for 
analysis (approximately 1 min). Manual 3D segmentation 
is time-consuming, requires special expertise in anatomi-
cal knowledge, and is less reproducible [17–19]. Because 
the AI-based automated segmentation method using high-
resolution brain 3D MRI data is convenient for evaluat-
ing brain regional atrophy by referring to the published 
BrainChart [8], it will be widely clinically applied as a 
next-generation diagnostic imaging technique, particularly 
for Alzheimer’s disease.

This study has some limitations. First, the study 
design was cross-sectional, involving healthy volun-
teers with wide ranging ages at one point, who were 
assessed on a 3-tesla MRI machine. Essentially, longitu-
dinal assessments should be ideal to prove the increase 
in the intracranial CSF volume because of the brain 
volume loss with aging; however, such studies require 
a long study period and are difficult to conduct using 
the same high-resolution MRI machine. Second, in this 
study, the cognitive function of the participants was 
not measured, although all volunteers were independ-
ent in their daily lives without any problems in walking, 
writing, memory, and judgment and participated in this 
study on their own initiative. Third, we had not assessed 
the reliability of the AI-based automated segmentation 
volumes obtained using other 1.5-tesla or 3-tesla MRI 
scanners made by other companies; however, FUJIFILM 
Corporation verified the aforementioned application. 
Finally, we assessed the reliability of the segmented 
volumes in the total ventricles and subarachnoid spaces 
only, not in the cortical gray and white matter. In our 
original manual segmentation method, CSF spaces were 
accurately segmented from 3D T2-weighted images, as 
previously reported [17–19]. However, segmenting the 
cortical gray and white matter or the frontal and tem-
poral cortex in 3D is difficult using the manual method. 
Further work is needed to verify the accuracy of the 
hippocampal volume obtained using the AI-based auto-
mated segmentation method to replace the widespread 
software for automatic computer-aided voxel-based seg-
mentation systems.

In conclusion, the brain and intracranial CSF could 
be automatically segmented, and their volumes and vol-
ume ratios can be measured within 1 min using a new 
application worked on the most popular 3D workstation in 
Japan. This study confirmed the reliability of the volumes 
segmented using this application. The intracranial CSF 
volume increased linearly because of the decrease in the 
brain volume with aging from the 20s to 90s; however, the 
ventricular volume was maintained until the 60s and then 
gradually increased. This finding could help elucidate the 
pathogenesis of chronic hydrocephalus in adults. Further-
more, the volume and volume ratio of the brain could be 
automatically quantified in 21 subregions. By referring to 
the BrainChart (http://​www.​brain​chart.​io/) [8], the quan-
titative evaluation of disease-specific brain atrophy based 
on the segmented brain volume would spread rapidly, and 
a new era of clinical neuroimaging diagnosis may come 
in the near future.

Fig. 5   Segmented region volume. Each graph is a combination of 
violin plots for the distribution of the segmented volume and line 
graphs for the mean volume in each decade stratified by sex. Red 
indicates female, blue indicates male, and black indicates all. The red 
and blue vertical lines contain the volumes between the 25th and 75th 
percentiles. The mean volume in each decade is shown under the vio-
lin plot. The relationship between segmented volume and age in each 
region was examined using Pearson’s correlation coefficient (r)

◂

http://www.brainchart.io/
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