Skip to main content

Advertisement

Log in

Clinical applications of photon counting detector CT

  • Review
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

The X-ray detector is a fundamental component of a CT system that determines the image quality and dose efficiency. Until the approval of the first clinical photon-counting-detector (PCD) system in 2021, all clinical CT scanners used scintillating detectors, which do not capture information about individual photons in the two-step detection process. In contrast, PCDs use a one-step process whereby X-ray energy is converted directly into an electrical signal. This preserves information about individual photons such that the numbers of X-ray in different energy ranges can be counted. Primary advantages of PCDs include the absence of electronic noise, improved radiation dose efficiency, increased iodine signal and the ability to use lower doses of iodinated contrast material, and better spatial resolution. PCDs with more than one energy threshold can sort the detected photons into two or more energy bins, making energy-resolved information available for all acquisitions. This allows for material classification or quantitation tasks to be performed in conjunction with high spatial resolution, and in the case of dual-source CT, high pitch, or high temporal resolution acquisitions. Some of the most promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value. These include imaging of the inner ear, bones, small blood vessels, heart, and lung. This review describes the clinical benefits observed to date and future directions for this technical advance in CT imaging.

Key Points

• Beneficial characteristics of photon-counting detectors include the absence of electronic noise, increased iodine signal-to-noise ratio, improved spatial resolution, and full-time multi-energy imaging.

• Promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value and applications requiring multi-energy data simultaneous with high spatial and/or temporal resolution.

• Future applications of PCD-CT technology may include extremely high spatial resolution tasks, such as the detection of breast micro-calcifications, and quantitative imaging of native tissue types and novel contrast agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CTA:

CT angiography

EID:

Energy integrating detector

ILD:

Interstitial lung disease

PCD:

Photon counting detector

SNR:

Signal-to-noise ratio

VMI:

Virtual monoenergetic image

VNC:

Virtual non-contrast

References

  1. McCollough C, Rajendran K, Leng S et al (2022) The technical development of photon counting detector CT. Eur Radiol. https://doi.org/10.1007/s00330-023-09545-9

    Article  PubMed  Google Scholar 

  2. Benjaminov O, Perlow E, Romman Z et al (2008) Novel, energy-discriminating photon counting CT system (EDCT): first clinical evaluation—CT angiography: Carotid Artery StenosisRadiological Society of North America 2008 Scientific Assembly and Annual Meeting, Chicago, Il

  3. Leng S, Rajendran K, Gong H et al (2018) 150-μm spatial resolution using photon-counting detector computed tomography technology: technical performance and first patient images. Invest Radiol 53:655–662

    PubMed  PubMed Central  Google Scholar 

  4. Pourmorteza A, Symons R, Sandfort V et al (2016) Abdominal imaging with contrast-enhanced photon-counting CT: first human experience. Radiology 279:239–245

    PubMed  Google Scholar 

  5. Yu Z, Leng S, Jorgensen SM et al (2016) Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array. Phys Med Biol 61:1572–1595

    PubMed  PubMed Central  Google Scholar 

  6. Si-Mohamed S, Bar-Ness D, Sigovan M et al (2017) Review of an initial experience with an experimental spectral photon-counting computed tomography system. Nucl Instrum Methods Phys Res A 873:27–35

  7. Ferda J, Vendis T, Flohr T et al (2021) Computed tomography with a full FOV photon-counting detector in a clinical setting, the first experience. Eur J Radiol 137:109614

    PubMed  Google Scholar 

  8. Rajendran K, Petersilka M, Henning A et al (2021) Full field-of-view, high-resolution, photon-counting detector CT: technical assessment and initial patient experience. Phys Med Biol 66:205019

  9. Rajendran K, Petersilka M, Henning A et al (2022) First clinical photon-counting detector CT system: technical evaluation. Radiology 303:130–138

    PubMed  Google Scholar 

  10. Yu Z, Leng S, Kappler S et al (2016) Noise performance of low-dose CT: comparison between an energy integrating detector and a photon counting detector using a whole-body research photon counting CT scanner. J Med Imaging (Bellingham) 3:043503

    PubMed  Google Scholar 

  11. Symons R, Cork TE, Sahbaee P et al (2017) Low-dose lung cancer screening with photon-counting CT: a feasibility study. Phys Med Biol 62:202–213

    CAS  PubMed  Google Scholar 

  12. Symons R, Pourmorteza A, Sandfort V et al (2017) Feasibility of dose-reduced chest CT with photon-counting detectors: initial results in humans. Radiology 285:980–989

    PubMed  Google Scholar 

  13. Leng S, Bruesewitz M, Tao S et al (2019) Photon-counting detector CT: system design and clinical applications of an emerging technology. Radiographics 39:729–743

    PubMed  Google Scholar 

  14. Hagen F, Walder L, Fritz J et al (2022) Image quality and radiation dose of contrast-enhanced chest-CT acquired on a clinical photon-counting detector CT vs. second-generation dual-source CT in an oncologic cohort: preliminary results. Tomography 8:1466–1476

    PubMed  PubMed Central  Google Scholar 

  15. Jungblut L, Euler A, von Spiczak J et al (2022) Potential of photon-counting detector CT for radiation dose reduction for the assessment of interstitial lung disease in patients with systemic sclerosis. Invest Radiol. https://doi.org/10.1097/RLI.0000000000000895

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rajendran K, Baffour F, Powell G et al (2022) Improved visualization of the wrist at lower radiation dose with photon-counting-detector CT. Skeletal Radiol. https://doi.org/10.1007/s00256-022-04117-2

    Article  PubMed  Google Scholar 

  17. Rajendran K, Voss BA, Zhou W et al (2020) Dose reduction for sinus and temporal bone imaging using photon-counting detector CT with an additional Tin Filter. Invest Radiol 55:91–100

    PubMed  PubMed Central  Google Scholar 

  18. Zhou W, Bartlett DJ, Diehn FE et al (2019) Reduction of metal artifacts and improvement in dose efficiency using photon-counting detector computed tomography and tin filtration. Invest Radiol 54:204–211

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sawall S, Klein L, Amato C et al (2020) Iodine contrast-to-noise ratio improvement at unit dose and contrast media volume reduction in whole-body photon-counting CT. Eur J Radiol 126:108909

    CAS  PubMed  Google Scholar 

  20. Euler A, Higashigaito K, Mergen V et al (2022) High-pitch photon-counting detector computed tomography angiography of the aorta: intraindividual comparison to energy-integrating detector computed tomography at equal radiation dose. Invest Radiol 57:115–121

    CAS  PubMed  Google Scholar 

  21. Harvey EC, Feng M, Ji X et al (2019) Impacts of photon counting CT to maximum intensity projection (MIP) images of cerebral CT angiography: theoretical and experimental studies. Phys Med Biol 64:185015

    PubMed  PubMed Central  Google Scholar 

  22. Symons R, Reich DS, Bagheri M et al (2018) Photon-counting computed tomography for vascular imaging of the head and neck: first in vivo human results. Invest Radiol 53:135–142

    PubMed  PubMed Central  Google Scholar 

  23. Benson JC, Rajendran K, Lane JI et al (2022) A new frontier in temporal bone imaging: photon-counting detector CT demonstrates superior visualization of critical anatomic structures at reduced radiation dose. AJNR Am J Neuroradiol 43:579–584

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou W, Lane JI, Carlson ML et al (2018) Comparison of a photon-counting-detector CT with an energy-integrating-detector CT for temporal bone imaging: a cadaveric study. AJNR Am J Neuroradiol 39:1733–1738

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Si-Mohamed S, Boccalini S, Rodesch PA et al (2021) Feasibility of lung imaging with a large field-of-view spectral photon-counting CT system. Diagn Interv Imaging 102:305–312

    PubMed  Google Scholar 

  26. Bartlett DJ, Koo CW, Bartholmai BJ et al (2019) High-resolution chest computed tomography imaging of the lungs: impact of 1024 matrix reconstruction and photon-counting detector computed tomography. Invest Radiol 54:129–137

    PubMed  PubMed Central  Google Scholar 

  27. Mergen V, Sartoretti T, Baer-Beck M et al (2022) Ultra-high-resolution coronary CT angiography with photon-counting detector CT: feasibility and image characterization. Invest Radiol. https://doi.org/10.1097/RLI.0000000000000897

    Article  PubMed  PubMed Central  Google Scholar 

  28. Si-Mohamed SA, Boccalini S, Lacombe H et al (2022) Coronary CT angiography with photon-counting CT: first-in-human results. Radiology 303:303–313

    PubMed  Google Scholar 

  29. Sandstedt M, Marsh J Jr, Rajendran K et al (2021) Improved coronary calcification quantification using photon-counting-detector CT: an ex vivo study in cadaveric specimens. Eur Radiol 31:6621–6630

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Symons R, De Bruecker Y, Roosen J et al (2018) Quarter-millimeter spectral coronary stent imaging with photon-counting CT: Initial experience. J Cardiovasc Comput Tomogr 12:509–515

    PubMed  Google Scholar 

  31. Baffour FI, Rajendran K, Glazebrook KN et al (2022) Ultra-high-resolution imaging of the shoulder and pelvis using photon-counting-detector CT: a feasibility study in patients. Eur Radiol. https://doi.org/10.1007/s00330-022-08925-x

    Article  PubMed  Google Scholar 

  32. Bette SJ, Braun FM, Haerting M et al (2022) Visualization of bone details in a novel photon-counting dual-source CT scanner-comparison with energy-integrating CT. Eur Radiol 32:2930–2936

    CAS  PubMed  Google Scholar 

  33. Klintström B, Henriksson L, Moreno R et al (2022) Photon-counting detector CT and energy-integrating detector CT for trabecular bone microstructure analysis of cubic specimens from human radius. Eur Radiol Exp 6:31

    PubMed  PubMed Central  Google Scholar 

  34. McCollough CH, Boedeker K, Cody D et al (2020) Principles and applications of multienergy CT: report of AAPM Task Group 291. Med Phys 47:e881–e912

    CAS  PubMed  Google Scholar 

  35. McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276:637–653

    PubMed  Google Scholar 

  36. Tao A, Huang R, Tao S, Michalak GJ, McCollough CH, Leng S (2019) Dual-source photon counting detector CT with a tin filter: a phantom study on iodine quantification performance. Phys Med Biol 64:115019

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sartoretti T, Mergen V, Jungblut L, Alkadhi H, Euler A (2022) Liver iodine quantification with photon-counting detector ct: accuracy in an abdominal phantom and feasibility in patients. Acad Radiol. https://doi.org/10.1016/j.acra.2022.04.021

    Article  PubMed  Google Scholar 

  38. Roessl E, Proksa R (2007) K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol 52:4679–4696

    CAS  PubMed  Google Scholar 

  39. Do TD, Sawall S, Heinze S et al (2020) A semi-automated quantitative comparison of metal artifact reduction in photon-counting computed tomography by energy-selective thresholding. Sci Rep 10:21099

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Long Z, DeLone DR, Kotsenas AL et al (2019) Clinical assessment of metal artifact reduction methods in dual-energy CT examinations of instrumented spines. AJR Am J Roentgenol 212:395–401

    PubMed  Google Scholar 

  41. Campeau NG, Farnsworth PJ, Diehn FE et al (2022) High resolution CTA of the orbit using a photon counting CT scanner108th scientific assembly and annual meeting. Radiological Society of North America (RSNA), Chicago, IL

  42. Inoue A, Johnson TF, White D et al (2022) Estimating the clinical impact of photon-counting-detector CT in diagnosing usual interstitial pneumonia. Invest Radiol. https://doi.org/10.1097/rli.0000000000000888:10.1097/RLI.0000000000000888

    Article  PubMed  Google Scholar 

  43. Lu GM, Zhao Y, Zhang LJ, Schoepf UJ (2012) Dual-energy CT of the lung. AJR Am J Roentgenol 199:S40-53

    PubMed  Google Scholar 

  44. Sandfort V, Persson M, Pourmorteza A, Noel PB, Fleischmann D, Willemink MJ (2021) Spectral photon-counting CT in cardiovascular imaging. J Cardiovasc Comput Tomogr 15:218–225

    PubMed  Google Scholar 

  45. Allmendinger T, Nowak T, Flohr T et al (2022) Photon-counting detector CT-based vascular calcium removal algorithm: assessment using a cardiac motion phantom. Invest Radiol 57:399–405

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kalisz K, Halliburton S, Abbara S et al (2017) Update on cardiovascular applications of multienergy CT. Radiographics 37:1955–1974

    PubMed  Google Scholar 

  47. Symons R, Cork TE, Lakshmanan MN et al (2017) Dual-contrast agent photon-counting computed tomography of the heart: initial experience. Int J Cardiovasc Imaging 33:1253–1261

    PubMed  Google Scholar 

  48. Decker JA, Bette S, Lubina N et al (2022) Low-dose CT of the abdomen: Initial experience on a novel photon-counting detector CT and comparison with energy-integrating detector CT. Eur J Radiol 148:110181

    PubMed  Google Scholar 

  49. Higashigaito K, Euler A, Eberhard M, Flohr TG, Schmidt B, Alkadhi H (2022) Contrast-enhanced abdominal CT with clinical photon-counting detector CT: assessment of image quality and comparison with energy-integrating detector CT. Acad Radiol 29:689–697

    PubMed  Google Scholar 

  50. Marcus RP, Fletcher JG, Ferrero A et al (2018) Detection and characterization of renal stones by using photon-counting-based CT. Radiology 289:436–442

    PubMed  Google Scholar 

  51. Mergen V, Racine D, Jungblut L et al (2022) Virtual noncontrast abdominal imaging with photon-counting detector CT. Radiology. https://doi.org/10.1148/radiol.213260:213260

    Article  PubMed  Google Scholar 

  52. Leng S, Zhou W, Yu Z et al (2017) Spectral performance of a whole-body research photon counting detector CT: quantitative accuracy in derived image sets. Phys Med Biol 62:7216–7232

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Michalak G, Grimes J, Fletcher J et al (2016) Technical note: improved CT number stability across patient size using dual-energy CT virtual monoenergetic imaging. Med Phys 43:513

    PubMed  Google Scholar 

  54. Voss BA, Khandelwal A, Wells ML et al (2022) Impact of dual-energy 50-keV virtual monoenergetic images on radiologist confidence in detection of key imaging findings of small hepatocellular carcinomas using multiphase liver CT. Acta Radiol 63:1443–1452

    PubMed  Google Scholar 

  55. Zhou W, Michalak GJ, Weaver JM et al (2020) A universal protocol for abdominal CT examinations performed on a photon-counting detector CT system: a feasibility study. Invest Radiol 55:226–232

    PubMed  PubMed Central  Google Scholar 

  56. Flohr TG, Stierstorfer K, Suss C, Schmidt B, Primak AN, McCollough CH (2007) Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT. Med Phys 34:1712–1723

    CAS  PubMed  Google Scholar 

  57. Baffour FI, Huber NR, Ferrero A et al (2022) Photon-counting detector CT with Deep learning noise reduction to detect multiple myeloma. Radiology. https://doi.org/10.1148/radiol.220311:220311

    Article  PubMed  Google Scholar 

  58. Gosangi B, Mandell JC, Weaver MJ et al (2020) Bone marrow edema at dual-energy CT: a game changer in the emergency department. Radiographics 40:859–874

    PubMed  Google Scholar 

  59. Rajendran K, Löbker C, Schon BS et al (2017) Quantitative imaging of excised osteoarthritic cartilage using spectral CT. Eur Radiol 27:384–392

    PubMed  Google Scholar 

  60. Nowak T, Eberhard M, Schmidt B et al (2021) Bone mineral density quantification from localizer radiographs: accuracy and precision of energy-integrating detector CT and photon-counting detector CT. Radiology 298:147–152

    PubMed  Google Scholar 

  61. Huber N, Anderson T, Missert A et al (2022) Clinical evaluation of a phantom-based deep convolutional neural network for whole-body-low-dose and ultra-low-dose CT skeletal surveys. Skeletal Radiol 51:145–151

    PubMed  Google Scholar 

  62. Wehrse E, Sawall S, Klein L et al (2021) Potential of ultra-high-resolution photon-counting CT of bone metastases: initial experiences in breast cancer patients. NPJ Breast Cancer 7:3

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cao J, Bache S, Schwartz FR, Frush D (2022) Pediatric applications of photon-counting detector CT. AJR Am J Roentgenol. https://doi.org/10.2214/ajr.22.28391

    Article  PubMed  Google Scholar 

  64. Wang X, Zamyatin A, Shi D (2012) Dose reduction potential with photon counting computed tomographyMedical Imaging 2012: Physics of Medical Imaging. SPIE, San Diego, California, United States, pp 1193-1198

  65. Kino A, Zucker EJ, Honkanen A et al (2019) Ultrafast pediatric chest computed tomography: comparison of free-breathing vs. breath-hold imaging with and without anesthesia in young children. Pediatr Radiol 49:301–307

    PubMed  Google Scholar 

  66. Wootton-Gorges SL, Soares BP, Alazraki AL et al (2017) ACR Appropriateness Criteria(®) Suspected Physical Abuse-Child. J Am Coll Radiol 14:S338-s349

    PubMed  Google Scholar 

  67. Horst K, Hull N, Thacker P et al (2022) Pilot study to determine if reduced-dose photon counting detector (PCD) chest CT can reliably display Brody II score imaging findings for children with cystic fibrosis at radiation doses that approximate radiographs. Pediatr Radiol. https://doi.org/10.1007/s00247-022-05574-6

    Article  PubMed  Google Scholar 

  68. Berger N, Marcon M, Frauenfelder T, Boss A (2020) Dedicated spiral breast computed tomography with a single photon-counting detector: initial results of the first 300 women. Invest Radiol 55:68–72

    PubMed  Google Scholar 

  69. Berger N, Marcon M, Saltybaeva N et al (2019) Dedicated breast computed tomography with a photon-counting detector: initial results of clinical in vivo imaging. Invest Radiol 54:409–418

    CAS  PubMed  Google Scholar 

  70. Huber NR, Ferrero A, Rajendran K et al (2022) Dedicated convolutional neural network for noise reduction in ultra-high-resolution photon-counting detector computed tomography. Phys Med Biol 67:175014

  71. Cormode DP, Roessl E, Thran A et al (2010) Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology 256:774–782

    PubMed  PubMed Central  Google Scholar 

  72. Cormode DP, Si-Mohamed S, Bar-Ness D et al (2017) Multicolor spectral photon-counting computed tomography: in vivo dual contrast imaging with a high count rate scanner. Sci Rep 7:4784

    PubMed  PubMed Central  Google Scholar 

  73. Muenzel D, Daerr H, Proksa R et al (2017) Simultaneous dual-contrast multi-phase liver imaging using spectral photon-counting computed tomography: a proof-of-concept study. Eur Radiol Exp 1:25

    PubMed  PubMed Central  Google Scholar 

  74. Ren L, Huber N, Rajendran K, Fletcher JG, McCollough CH, Yu L (2022) Dual-contrast biphasic liver imaging with iodine and gadolinium using photon-counting detector computed tomography: an exploratory animal study. Invest Radiol 57:122–129

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ren L, Rajendran K, Fletcher JG, McCollough CH, Yu L (2020) Simultaneous dual-contrast imaging of small bowel with iodine and bismuth using photon-counting-detector computed tomography: a feasibility animal study. Invest Radiol 55:688–694

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Symons R, Krauss B, Sahbaee P et al (2017) Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: an in vivo study. Med Phys 44:5120–5127

    PubMed  PubMed Central  Google Scholar 

  77. Tao S, Rajendran K, McCollough CH, Leng S (2019) Feasibility of multi-contrast imaging on dual-source photon counting detector (PCD) CT: an initial phantom study. Med Phys 46:4105–4115

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Muenzel D, Bar-Ness D, Roessl E et al (2017) Spectral photon-counting CT: initial experience with dual-contrast agent K-edge colonography. Radiology 283:723–728

    PubMed  Google Scholar 

  79. Ren L, Rajendran K, McCollough CH, Yu L (2019) Radiation dose efficiency of multi-energy photon-counting-detector CT for dual-contrast imaging. Phys Med Biol 64:245003

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Taguchi K, Iwanczyk JS (2013) Vision 20/20: Single photon counting x-ray detectors in medical imaging. Med Phys 40:100901

    PubMed  PubMed Central  Google Scholar 

  81. Ballabriga R, Campbell M, Heijne EHM, Llopart X, Tlustos L (2007) The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance. IEEE Trans Nucl Sci 54:1824–1829

    Google Scholar 

  82. Hsieh SS (2020) Coincidence counters for charge sharing compensation in spectroscopic photon counting detectors. IEEE Trans Med Imaging 39:678–687

    PubMed  Google Scholar 

  83. Hsieh SS, Sjolin M (2018) Digital count summing vs analog charge summing for photon counting detectors: a performance simulation study. Med Phys. https://doi.org/10.1002/mp.13098

    Article  PubMed  PubMed Central  Google Scholar 

  84. Blaj G (2019) Dead-time correction for spectroscopic photon-counting pixel detectors. J Synchrotron Radiat 26:1621–1630

    CAS  PubMed  Google Scholar 

  85. Touch M, Clark DP, Barber W, Badea CT (2016) A neural network-based method for spectral distortion correction in photon counting x-ray CT. Phys Med Biol 61:6132–6153

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Portions of the work presented were supported by the National Institutes of Health under award number R01 EB028590. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. In-kind support was received from Siemens Healthineers, who own the system used for image acquisition under the terms of a sponsored research agreement with the Mayo Clinic. The authors thank Mr. Kevin Kimlinger for his assistance with manuscript preparation.

Funding

This study has received funding from the NIH and Siemens Healthineers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia H. McCollough.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Cynthia H. McCollough, PhD.

Conflict of interest

Some authors of this manuscript declare relationships with the following companies:

• Bernhard Schmidt, PhD and Thomas Flohr, PhD are employees of Siemens Healthineers.

• Cynthia McCollough, PhD is the PI of a research grant to the Mayo Clinic from Siemens Healthineers.

• Joel G Fletcher, MD receives research support from a grant to Mayo Clinic from Siemens Healthineers.

• Kishore Rajendran, PhD, is a member of the Scientific Editorial Board of European Radiology and has not taken part in the review or selection process of this article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all subjects (patients) in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• review paper

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 98 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCollough, C.H., Rajendran, K., Baffour, F.I. et al. Clinical applications of photon counting detector CT. Eur Radiol 33, 5309–5320 (2023). https://doi.org/10.1007/s00330-023-09596-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-023-09596-y

Keywords

Navigation