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Abstract
Objective  To develop and validate a deep learning (DL) model based on CT for differentiating bone islands and osteoblastic 
bone metastases.
Materials and methods  The patients with sclerosing bone lesions (SBLs) were retrospectively included in three hospitals. 
The images from site 1 were randomly assigned to the training (70%) and intrinsic verification (10%) datasets for develop-
ing the two-dimensional (2D) DL model (single-slice input) and “2.5-dimensional” (2.5D) DL model (three-slice input) 
and to the internal validation dataset (20%) for evaluating the performance of both models. The diagnostic performance was 
evaluated using the internal validation set from site 1 and additional external validation datasets from site 2 and site 3. And 
statistically analyze the performance of 2D and 2.5D DL models.
Results  In total, 1918 SBLs in 728 patients in site 1, 122 SBLs in 71 patients in site 2, and 71 SBLs in 47 patients in site 3 
were used to develop and test the 2D and 2.5D DL models. The best performance was obtained using the 2.5D DL model, 
which achieved an AUC of 0.996 (95% confidence interval [CI], 0.995–0.996), 0.958 (95% CI, 0.958–0.960), and 0.952 
(95% CI, 0.951–0.953) and accuracies of 0.950, 0.902, and 0.863 for the internal validation set, the external validation set 
from site 2 and site 3, respectively.
Conclusion  A DL model based on a three-slice CT image input (2.5D DL model) can improve the prediction of osteoblastic 
bone metastases, which can facilitate clinical decision-making.
Key Points 
• This study investigated the value of deep learning models in identifying bone islands and osteoblastic bone metastases.
• Three-slice CT image input (2.5D DL model) outweighed the 2D model in the classification of sclerosing bone lesions.
• The 2.5D deep learning model showed excellent performance using the internal (AUC, 0.996) and two external 

(AUC, 0.958; AUC, 0.952) validation sets.
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Abbreviations
AUC​	� Area under the ROC curve
CI	� Confidence interval
CNN	� Convolutional neural network
CT	� Computed tomography
DL	� Deep learning
MRI	� Magnetic resonance imaging
PACS	� Picture archiving and communication systems
PET	� Positron emission tomography
ROC	� Receiver operating characteristic
ROIs	� Lesion regions of interest

Introduction

Computed tomography (CT) is widely used for detecting, 
evaluating, and staging malignant tumors, and sclerosing 
bone lesions are frequently detected on CT images [1, 2]. 
Distinguishing a sclerosing bone lesion from an osteoblastic 
bone metastasis or bone island is essential to determine the 
next diagnostic steps and prepare a treatment strategy. For 
patients with a non-tumor history, diagnosing bone islands 
does not require treatment, and diagnosing osteoblastic bone 
metastases requires the primary lesion to be found to deter-
mine a treatment plan. For tumor patients, distinguishing 
bone islands from osteoblastic bone metastases can change 
tumor staging and alter treatment options.

To differentiate between bone islands and osteoblastic 
bone metastases, many methods have improved the diagnosis 
of sclerosing bone lesions, such as positron emission tomog-
raphy (PET)/CT [3], dual-energy CT [4], identification of 
the salt-and-pepper noise sign in magnetic resonance (MR) 
images [5], CT attenuation measurements [6], and radiomics 
[7]. However, PET/CT, dual-energy CT, and MR examina-
tions cannot be performed in many remote locations, and 
when they can be performed, they increase the financial 
burden of patients. In addition, radiomic methods and CT 
attenuation measurements rely on the precise delineation 
of regions of interest (ROIs), which is largely affected by 
human factors.

In contrast, advanced deep learning (DL) models over-
come these problems by using powerful feature learning 
capabilities [8, 9] and have shown the potential to help 
humans in various medical fields [10–12]. In addition, unlike 
radiomic methods, a classification model based on DL does 
not require precise delineation of tumor boundaries and can 
automatically learn to classify features in image data and 
diagnose conditions accordingly. Moreover, external verifi-
cation does not require accurate delineation of the lesions, 
increasing the possibility of using the model in various 
medical institutions.

In this study, we constructed a DL model to differentiate 
between bone islands and osteoblastic bone metastases. Our 

approach used an end-to-end pipeline that only required the 
manual selection of lesion regions in CT images and did 
not require precise lesion boundary segmentation or human-
defined features. The proposed model needed only simple 
lesion delineation to diagnose sclerosing bone lesions. To 
evaluate the DL model’s performance, we collected two 
datasets from two independent hospitals and independently 
validated the results.

Materials and methods

Datasets

This multicenter retrospective study was conducted in three 
hospitals in China. The institutional review board of the 
principal investigator’s hospital approved the study and 
waived the requirement for written informed consent.

For the development dataset, we evaluated chest and 
abdominal CT images acquired at Guangzhou Red Cross 
Hospital, Guangzhou, China from January 1, 2013, to 
March 31, 2022, that were reported to contain a bone 
island or osteoblastic bone metastases and for patients 
with a history of malignancy with high-density bone 
lesions. Initially, 1376 patients were recruited. Those 
who met the following criteria were diagnosed with a 
bone island: (1) no history of malignancy; (2) lesions 
denser than trabecular bone that were round or oblong 
or with speculated margin [6, 13, 14]; (3) no change in 
size, shape, and density on follow-up CT scans obtained 
at least 6 months later [7]; and (4) lesions displayed on 
at least three consecutive CT slices. Patients who met the 
following criteria were diagnosed with osteoblastic bone 
metastases: (1) history of malignancy; (2) no bone metas-
tases identified during previous imaging examinations, 
and local high-density lesions with a maximum diameter 
of  < 2 cm in the vertebral body or pelvic bone identi-
fied in the most recent CT image; (3) lesions displayed 
on at least three consecutive CT slices; (4) no history of 
chemotherapy, antiandrogen therapy, or bisphosphonate 
therapy prior to discovering high-density lesions [6]; and 
(5) no pathological fractures. Applying the above diag-
nostic criteria, two experienced radiologists (L.Z.P. and 
X.F., with 21 and 9 years, respectively, in musculoskel-
etal radiology) excluded 648 patients, leaving 728 (498 
cases of bone islands and 230 cases of osteoblastic bone 
metastases) enrolled in this study (Fig. 1).

To verify the DL model’s utility in clinical practice, two 
external validation datasets containing CT images of bone 
islands and osteoblastic bone metastases acquired between 
January 1, 2019, and December 31, 2021, were also obtained 
from Guangzhou Cancer Hospital (GZCH), Guangzhou, 
China and Wuhan Third Hospital (WHTH), Wuhan, China.
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Fig. 1   Workflow diagram for the development and evaluation of the 2D DL model and 2.5D DL model to differentiate between bone islands and 
osteoblastic bone metastases
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Image reading and annotation

According to the diagnosis, images were labeled as bone 
islands or osteoblastic bone metastases. All CT images were 
preprocessed on a bone window (window level, 400 HU; 
window width, 2000 HU). The lesion ROI was manually 
assigned layer-by-layer with bounding boxes on the CT 
images from three hospitals by two experienced radiolo-
gists (L.Z.P. and X.F.) using the LabelImg software (https://​
pypi.​org/​proje​ct/​label​Img/) and annotated. To apply the DL 
model, ROIs containing the lesion were manually selected 
according to the following rules: (1) the ROI of each layer 
should include the complete lesion area and lesion’s margin; 
and (2) the number of layers chosen to delineate the lesion 
should be a multiple of three (Fig. 2a). The rule was imple-
mented easily in practice because it allowed some layers of 
the lesion to be discarded and the lesion did not need to be 
exactly in the center of the ROI.

Development of the DL model

All analyses were performed using Python-based programs. 
Transfer learning was applied using the ResNet-18 DL 
model as the basic architecture of the convolutional neural 
network (CNN). The images from Guangzhou Red Cross 
Hospital were randomly assigned to the training (70%) 
and intrinsic verification (10%) datasets for developing the 
DL model and to the internal validation dataset (20%) for 
evaluating the DL model’s performance. The data input to 
the network (Supplementary Figure S1) was divided into a 
single-slice input (224 × 224 × 1 voxels) and a three-slice 
input (224 × 224 × 3 voxels) to build two-dimensional (2D) 
and “2.5-dimensional” (2.5D) DL models, respectively 
(Fig. 2b). Details of the data preprocessing and the model 
development are described in the Supplementary Material. 
The code used for training is stored in GitHub (https://​
github.​com/​Xiong​yuchao/​OBMOR​BINet).

Fig. 2   Flow chart for building a deep learning model based on CT images. a CT image acquisition and segmentation. b Residual network and 
CT-based model construction

https://pypi.org/project/labelImg/
https://pypi.org/project/labelImg/
https://github.com/Xiongyuchao/OBMORBINet
https://github.com/Xiongyuchao/OBMORBINet
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Validation of the DL model

The trained 2D and 2.5D DL models were applied to the 
internal and external test sets. The overall workflow of the 
2D and 2.5D DL model development is displayed in Fig. 1.

Statistical analysis

We used receiver operating characteristic (ROC) curves to 
demonstrate the ability of DL algorithms to classify scleros-
ing bone lesions. A ROC curve is generated by plotting the 
ratio of true positive (TP) cases (sensitivity) to false positive 
(FP) cases (specificity) by varying the predicted probability 
threshold. A larger area under the ROC curve (AUC) indi-
cates better diagnostic performance. The code used for data 
analysis is stored in GitHub (https://​github.​com/​Xiong​yucha​
oOBMO​RBINet).

Results

Clinical characteristics

Clinical characteristics of the development and external 
test sets are summarized in Table 1. The development set 
included 9066 images of 1918 sclerosing bone lesions in 498 
patients with bone islands and 230 patients with osteoblastic 
bone metastases. The WHTH external test set included 1071 
images of 122 sclerosing bone lesions in 56 patients with 
bone islands and 15 patients with osteoblastic bone metas-
tases. The GZCH external test set included 525 images of 

71 sclerosing bone lesions in 38 patients with bone islands 
and 9 patients with osteoblastic bone metastases. Detailed 
patient and lesion information is provided in the Supple-
mentary Material.

Establishment of the DL model

After 19 epochs, the training procedure was ended, with no 
further improvement in accuracy and cross-entropy loss on 
training and verification for 2D and 2.5D DL models. Using 
the 2D DL model, an accuracy of up to 98.3% was observed 
for the training set and 96.1% for the intrinsic verification 
set. Using the 2.5D DL model, an accuracy of up to 99.7% 
was observed for the training set and 98.7% for the intrinsic 
verification set.

Performance of the 2D and 2.5D DL models

Both 2D and 2.5D DL models accurately distinguished 
sclerosing bone lesions in all three validation datasets. 
The accuracies for the internal validation dataset, external 
validation dataset from WHTH, and external validation 
dataset from GZCH were 0.854, 0.871, and 0.806, respec-
tively, for the 2D DL model and 0.950, 0.902, and 0.863, 
respectively, for the 2.5D DL model (Table 2). Similarly, 
high AUC values were observed for all three validation 
datasets, and the AUC of the 2.5D DL model was higher 
than that of the 2D DL model (Fig. 3). The AUC val-
ues for the internal validation dataset, external validation 
dataset from WHTH, and external validation dataset from 
GZCH were 0.981(95% CI, 0.980–0.981), 0.940 (95% 

Table 1   Baseline characteristics

Site 1 External validation p

Total Training Verification Internal Site 2 Site 3

Number of images 9066 6336 915 1815 1071 525
Number of lesions 1918 1343 192 383 122 71
Number of patients 728 508 73 147 71 47
Age 69.49 ± 13.80 70.22 ± 12.79 68.78 ± 13.93 67.31 ± 16.66 69.65 ± 15.31 65.45 ± 17.29 0.182
Sex 0.073
  Man 372 252 37 83 34 32
  Women 356 266 36 64 37 15

Sclerosing bone lesions
  Bone islands
    Patients 498 348 50 100 56 38
    Lesions 861 603 86 172 76 43
    Images 4353 3048 435 870 549 243
  Osteoblastic bone metastases
    Patients 230 160 23 47 15 9
    Lesions 1057 740 106 211 46 28
    Images 4713 3288 480 945 522 282

https://github.com/XiongyuchaoOBMORBINet
https://github.com/XiongyuchaoOBMORBINet
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CI, 0.940–0.941), and 0.890 (95% CI, 0.890–0.892), 
respectively, for the 2D DL model and 0.996 (95% CI, 
0.995–0.996), 0.958 (95% CI, 0.958–0.960), and 0.952 
(95% CI, 0.951–0.953), respectively, for the 2.5D DL 
model. Figure 4 shows confusion matrices for the inter-
nal validation dataset, external validation dataset from 
WHTH, and external validation dataset from GZCH.

Using the 2.5D DL model, the positive predictive values 
(PPVs) for the internal validation dataset, external valida-
tion dataset from WHTH, and external validation dataset 
from GZCH were 0.983, 0.960, and 0.843, respectively. The 
proportion of false negative (FN) detections was less than 
4.13% for all validation datasets, 0.83% for the internal vali-
dation dataset, 8.12% for the external validation dataset from 

WHTH, and 4.57% for the external validation dataset from 
GZCH (Table 2).

Using the 2.5D DL model (Fig. 5), FN detections were 
obtained for 62 three-slice data from 36 lesions, including 
25 three-slice data from 14 lesions in the internal validation 
dataset, 29 three-slice data from 16 lesions in the external 
validation dataset from WHTH, and 8 three-slice data from 
6 lesions in the external validation dataset from GZCH. Of 
the 36 lesions with FN detections, 25 contained errors in all 
three-slice data, 11 contained errors in some three-slice data, 
and 26 of these lesions (41 three-slice data) were adjacent to 
cortical bone (Supplementary Table S1).

Using the 2.5D DL model, FP detections were obtained 
for 27 three-slice data from 18 lesions, including 5 

Table 2   Performance of the 2D DL model and the 2.5D DL model in different validation sets

2D DL model, a deep learning model based on a single slice input; 2.5D DL model, a deep learning model based on three-slice input

Internal validation set Site 2 Site 3

2D DL model
(n = 1815)

2.5D DL model
(n = 605)

2D DL model
(n = 1071)

2.5D DL model
(n = 357)

2D DL model
(n = 525)

2.5D DL model
(n = 175)

Accuracy 0.854 0.950 0.871 0.902 0.806 0.863
Sensitivity 0.731 0.921 0.808 0.833 0.904 0.915
Specificity 0.987 0.983 0.931 0.967 0.691 0.802
PPV 0.984 0.983 0.917 0.960 0.773 0.843
NPV 0.772 0.919 0.836 0.859 0.862 0.890
F1 Score 0.839 0.951 0.859 0.892 0.833 0.878
FP 11 (0.61%) 5 (0.83%) 38 (3.55%) 6 (1.68%) 75 (14.29%) 16 (9.14%)
FN 254 (14.0%) 25 (4.13%) 100 (9.34%) 29 (8.12%) 27 (5.14%) 8 (4.57%)

Fig. 3   Receiver operating 
characteristic curves of 2D DL 
model and 2.5D DL model 
for differentiating between 
bone islands and osteoblastic 
bone metastases in the internal 
validation set, in the external 
validation set from site 2, and in 
the external validation set from 
site 3
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three-slice data from 3 lesions in the internal validation 
dataset, six three-slice data from 3 lesions in the external 
validation dataset from WHTH, and 16 three-slice data from 
12 lesions in the external validation dataset from GZCH. 
Of the 18 lesions with FP detections, 8 contained errors in 
all three-slice data, 10 contained errors in some three-slice 
data, and 7 were adjacent to cortical bone (Supplementary 
Table S2).

Discussion

In this study, we separately developed DL models with a 
single-slice image input (2D DL model) and a continuous 
three-slice image input (2.5D DL model) to characterize 
sclerosing bone lesions detected by radiologists using CT. 
The 2.5D DL model was better able to differentiate between 
bone islands and osteoblastic bone metastases, with AUC 
values of 0.996, 0.958, and 0.952 for the internal validation 
dataset, external validation dataset from WHTH, and exter-
nal validation dataset from GZCH, respectively; the cor-
responding values for the 2D DL model were 0.981, 0.940, 
and 0.890, respectively. The 2.5D DL model differentiated 
between bone islands and osteoblastic bone metastases in the 
internal and external validation datasets with high accuracy, 

sensitivity, and specificity. To the best of our knowledge, this 
is the first multicenter study to differentiate sclerosing bone 
lesions using DL.

Although CT has greatly helped to directly distinguish 
between bone islands and osteoblastic bone metastases 
using features such as thorny radiation [15], periosteal 
reaction, soft tissue involvement, and bone destruction 
[16], only large sclerosing bone lesions can be analyzed 
and sclerosing bone lesions are often not accompanied 
by such recognizable imaging features. CT attenuation 
measurements [6, 13, 17] have shown promising poten-
tial to differentiate between bone islands and osteoblastic 
bone metastases, but their clinical applicability has been 
jeopardized because CT values are affected by factors 
such as the region selected for measurement, patient size 
[18], CT acquisition parameters, and image reconstruction 
algorithm parameters [19, 20]. CT temporal subtraction 
is capable of distinguishing osteoblastic bone metasta-
ses from bone islands, but its utility is significantly lim-
ited for patients with bone islands and those who have 
osteoblastic bone metastases but received no follow-up 
CT scan to minimize radiation exposure and/or cost [21, 
22]. Several studies [3–5] have explored the potential 
value of further imaging for diagnosing bone islands and 
osteoblastic bone metastases. Spectral CT is helpful for 

Fig. 4   Confusion matrices of the 2D DL model and 2.5D DL model in the internal validation set, in the external validation set from site 2, and in 
the external validation set from site 3
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distinguishing osteoblastic bone metastases from bone 
islands, particularly when using the standard deviation of 
CT values on high-energy virtual monochromatic spec-
tral images [4]. The salt-and-pepper noise sign in bone 
islands on chemical-shift-encoded MR images can help to 
differentiate between bone islands and osteoblastic bone 
metastases [5]. PET/CT helps to differentiate sclerosing 
bone lesions by assessing tracer uptake [3]. Although the 
aforementioned studies offer many means of distinguishing 
between bone islands and osteoblastic bone metastases, 
they require human visual assessment based on expertise 
and experience, which is operator-dependent and imposes 

many demands on imaging equipment that cannot be met 
in remote areas.

Based on the above, there is currently no objective, sim-
ple, and low-cost method to differentiate between osteo-
blastic bone metastases and bone islands. In current clinical 
practice, images of patients with no history of tumors and 
sclerosing bone lesions show typical bone islands that are 
preferentially diagnosed, but atypical manifestations of bone 
islands may raise a concern about bone metastases. Patients 
with a history of tumors, especially those associated with 
prostate cancer and breast cancer, may be concerned about 
the possibility of osteoblastic bone metastases even when 

Fig. 5   Examples of the 2.5D DL model evaluating correct and incorrect CT images in the internal validation set, in the external validation set 
from site 2, and in the external validation set from site 3
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bone islands appear normal. Osteoblastic bone metastases 
may present with a bone island-like appearance and thus be 
initially misdiagnosed, which may delay the treatment of 
osteoblast bone metastases in tumor patients. There is an 
urgent need for objective, simple, and low-cost methods to 
differentiate between osteoblastic bone metastases and bone 
islands to avoid excessive medical examination of patients 
with bone islands and delayed treatment of patients with 
osteoblastic bone metastases.

DL exploits large datasets by directly learning the cor-
relation between complex structures in raw input data and 
target outputs [23]. Numerous studies have reported the 
applicability of DL to tumor diagnosis in radiology [24]. 
However, many that evaluate well-functioning DL models 
carry a large risk of bias [25]. Using an external cohort is an 
important validation step to test for bias in DL systems [26]. 
In this study, the 2.5D DL model yielded a favorable AUC, 
sensitivity, and specificity for the internal and external test 
datasets, which indicated that the model could correctly dis-
tinguish between bone islands and osteoblastic bone metas-
tases and showed very good generalizability. Hong et al [7] 
found that CT-based radiomics was helpful for distinguish-
ing between bone islands and osteoblastic bone metasta-
ses and yielded better diagnostic performance compared 
with inexperienced radiologists. Radiomics is a traditional 
machine learning method that uses carefully chosen repre-
sentations of input data to predict target outputs. Modern 
DL techniques are based on CNNs, which use highly flex-
ible artificial neural networks to directly correlate input data 
to target outputs, and the relationships learned through this 
correlation are often true [23, 26, 27]. In our study, several 
advantages of the 2.5D DL model can be highlighted com-
pared with radiomics for distinguishing bone islands from 
osteoblastic bone metastases. First, the ROI selection based 
on CNN-based DL only needs to include the complete lesion 
instead of accurately delineating the lesion edge layer by 
layer, as in radiomics. This advantage also makes the model 
more likely to be widely used in other hospitals at all lev-
els. Second, our study recruited more patients, and a larger 
sample size could obviously ensure better reliability of the 
classification model, as confirmed by the performance of 
the 2.5D DL model using the internal and external test data-
sets. Third, CNN-based DL uses straightforward end-to-end 
problem-solving that removes the limitations of hand-crafted 
radiomics features.

The accurate classification of bone islands and osteoblas-
tic bone metastases is of great significance for China, which 
has a large population, huge differences among the levels of 
medical resources, and extremely minimal medical insur-
ance funds. Accurate diagnosis of sclerosing bone lesions as 
bone islands could reduce patient anxiety and the burden on 
the medical system by avoiding biopsies of benign lesions 
and unnecessary further imaging studies. The diagnosis 

of sclerosing bone lesions as osteoblastic bone metastases 
could allow patients to receive appropriate treatment earlier. 
However, in current clinical practice, radiologists with dif-
ferent subspecialties have different subjective interpretations 
of sclerosing bone lesions. Our 2.5D DL model can accu-
rately classify bone islands and osteoblastic bone metastases 
by simply delineating lesions, which further emphasizes its 
great clinical value and social benefits. Noguchi et al devel-
oped a DL model to identify bone metastases on CT images 
and this model achieved excellent performance [28]. How-
ever, its sensitivity and PPV for osteoblastic bone metastases 
were significantly lower than those achieved using our 2.5D 
DL model. Nevertheless, our model can be well combined 
with that of Noguchi et al to improve the accuracy of osteo-
blastic bone metastases, which further highlights the clinical 
value of our study.

In clinical practice, we are more concerned with FN 
detections produced by the 2.5D DL model. These may result 
from an ROI that includes adjacent cortical bone. Therefore, 
we suggest that when radiologists use the 2.5D DL model for 
osteoblastic bone lesion identification, they should be cau-
tious when lesions are adjacent to cortical bone. Given the 
urgency of treating osteoblastic bone metastases, the neces-
sary follow-up can be considered cost-effective.

Despite the remarkable results, our study also has some 
potential limitations. First, the features used by the DL 
model for classification are difficult to interpret. Therefore, 
when the doctor’s judgment differs from that of the trained 
model, the difference cannot be resolved by discussion. Sec-
ond, this study was retrospective and may suffer from selec-
tion bias. Bone islands may be underreported, and many 
radiologists may not comment on this type of lesion in their 
reports. Third, only lesions displayed in consecutive slices 
of three-slice CT images were included in this study. Fourth, 
this study ignored bone metastases in several locations other 
than the vertebral body or pelvic bone, the inclusion of 
which is the goal of our future research.

In conclusion, we developed a classification model of 
bone islands and osteoblastic bone metastases that achieved 
high diagnostic accuracy across different hospitals. The 
2.5D DL model demonstrated high accuracy, sensitivity, and 
specificity in differentiating between bone islands and osteo-
blastic bone metastases in the internal and external valida-
tion datasets. Our proposed DL model is simpler and more 
accurate than other radiomic models and can be generalized.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00330-​023-​09573-5.

Acknowledgements  We thank Liwen Bianji (Edanz) (www.​liwen​
bianji.​cn/​ac) for editing the language of a draft of this manuscript.

Funding  The authors state that this study has received funding from 
the Guangzhou Planned Project of Science and Technology, China 
[grant numbers: 202102010102] (XWZ). Guangzhou Science and 

https://doi.org/10.1007/s00330-023-09573-5
http://www.liwenbianji.cn/ac
http://www.liwenbianji.cn/ac


6368	 European Radiology (2023) 33:6359–6368

1 3

Technology Project of Health, China [grant numbers: 20211A010019] 
(FX), Guangzhou Planned Project of Science and Technology [grant 
numbers: 202102010031] (YYL). Guangdong Basic and Applied Basic 
Research Foundation [grant numbers: 2021A1515110703] (YYL).

Declarations 

Guarantor  The scientific guarantor of this publication is Fan Xu.

Conflict of interest  The authors of this manuscript declare no relation-
ships with any companies whose products or services may be related 
to the subject matter of the article.

Statistics and biometry  No complex statistical methods were neces-
sary for this paper.

Informed consent  Written informed consent was waived by the Insti-
tutional Review Board for the retrospective cases.

Ethical approval  Institutional Review Board approval was obtained.

Methodology 
• retrospective
• diagnostic or prognostic study
• multicenter study

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Woo S, Ghafoor S, Vargas HA (2019) Contribution of radiology 
to staging of prostate cancer. Semin Nucl Med 49:294–301

	 2.	 Bychkovsky BL, Lin NU (2017) Imaging in the evaluation and 
follow-up of early and advanced breast cancer: when, why, and 
how often? Breast 31:318–324

	 3.	 Wu J, Wang Y, Liao T et al (2021) Comparison of the relative 
diagnostic performance of [(68)Ga]Ga-DOTA-FAPI-04 and [(18)
F]FDG PET/CT for the detection of bone metastasis in patients 
with different cancers. Front Oncol 11:737827

	 4.	 Dong Y, Zheng S, Machida H et al (2015) Differential diagnosis 
of osteoblastic metastases from bone islands in patients with lung 
cancer by single-source dual-energy CT: advantages of spectral 
CT imaging. Eur J Radiol 84:901–907

	 5.	 Jeon SW, Kwack KS, Yun JS, Gho SM, Park S (2020) Salt-and-pep-
per noise sign on fat-fraction maps by chemical-shift-encoded mri: 
a useful sign to differentiate bone islands from osteoblastic metas-
tases-a preliminary study. AJR Am J Roentgenol 214:1139–1145

	 6.	 Ulano A, Bredella MA, Burke P et al (2016) Distinguishing 
untreated osteoblastic metastases from enostoses using CT attenu-
ation measurements. AJR Am J Roentgenol 207:362–368

	 7.	 Hong JH, Jung JY, Jo A et al (2021) Development and valida-
tion of a radiomics model for differentiating bone islands and 

osteoblastic bone metastases at abdominal CT. Radiology 
299:626–632

	 8.	 Heaven D (2019) Why deep-learning AIs are so easy to fool. 
Nature 574:163–166

	 9.	 Landhuis E (2020) Deep learning takes on tumours. Nature 
580:551–553

	10.	 Mu W, Jiang L, Shi Y et al (2021) Non-invasive measurement of 
PD-L1 status and prediction of immunotherapy response using 
deep learning of PET/CT images. J Immunother Cancer 9:e002118

	11.	 Xu Y, Hosny A, Zeleznik R et al (2019) Deep learning predicts 
lung cancer treatment response from serial medical imaging. Clin 
Cancer Res 25:3266–3275

	12.	 Capobianco N, Meignan M, Cottereau AS et al (2021) Deep-
learning (18)F-FDG uptake classification enables total metabolic 
tumor volume estimation in diffuse large B-cell lymphoma. J Nucl 
Med 62:30–36

	13.	 Elangovan SM, Sebro R (2018) Accuracy of CT attenuation meas-
urement for differentiating treated osteoblastic metastases from 
enostoses. AJR Am J Roentgenol 210:615–620

	14.	 Bedard T, Mohammed M, Serinelli S, Damron TA (2020) Atypi-
cal enostoses-series of ten cases and literature review. Medicina 
(Kaunas) 56(10):534

	15.	 Greenspan A (1995) Bone island (enostosis): current concept–a 
review. Skeletal Radiol 24:111–115

	16.	 Nguyen M, Beaulieu C, Weinstein S, Shin LK (2017) The inci-
dental bone lesion on computed tomography: management tips for 
abdominal radiologists. Abdom Radiol (NY) 42:1586–1605

	17.	 Sala F, Dapoto A, Morzenti C et al (2019) Bone islands inciden-
tally detected on computed tomography: frequency of enostosis 
and differentiation from untreated osteoblastic metastases based 
on CT attenuation value. Br J Radiol 92:20190249

	18.	 Ai HA, Meier JG, Wendt RE 3rd (2018) HU deviation in lung and 
bone tissues: characterization and a corrective strategy. Med Phys 
45:2108–2118

	19.	 Lamba R, McGahan JP, Corwin MT et al (2014) CT Hounsfield 
numbers of soft tissues on unenhanced abdominal CT scans: vari-
ability between two different manufacturers’ MDCT scanners. 
AJR Am J Roentgenol 203:1013–1020

	20.	 Zurl B, Tiefling R, Winkler P, Kindl P, Kapp KS (2014) Hounsfield 
units variations: impact on CT-density based conversion tables and 
their effects on dose distribution. Strahlenther Onkol 190:88–93

	21.	 Onoue K, Nishio M, Yakami M et al (2019) CT temporal subtrac-
tion improves early detection of bone metastases compared to 
SPECT. Eur Radiol 29:5673–5681

	22.	 Hoshiai S, Hanaoka S, Masumoto T et al (2022) Effectiveness of tem-
poral subtraction computed tomography images using deep learning 
in detecting vertebral bone metastases. Eur J Radiol 154:110445

	23.	 LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 
521:436–444

	24.	 Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H (2018) 
Artificial intelligence in radiology. Nat Rev Cancer 18:500–510

	25.	 Nagendran M, Chen Y, Lovejoy CA et al (2020) Artificial intel-
ligence versus clinicians: systematic review of design, reporting 
standards, and claims of deep learning studies. BMJ 368:m689

	26.	 Kleppe A, Skrede OJ, De Raedt S, Liestol K, Kerr DJ, Danielsen 
HE (2021) Designing deep learning studies in cancer diagnostics. 
Nat Rev Cancer 21:199–211

	27.	 Schmidhuber J (2015) Deep learning in neural networks: an over-
view. Neural Netw 61:85–117

	28.	 Noguchi S, Nishio M, Sakamoto R et al (2022) Deep learning-
based algorithm improved radiologists’ performance in bone 
metastases detection on CT. Eur Radiol 32(11):7976–7987

Publisher's note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/

	Deep learning–based diagnosis of osteoblastic bone metastases and bone islands in computed tomograph images: a multicenter diagnostic study
	Abstract
	Objective 
	Materials and methods 
	Results 
	Conclusion 
	Key Points 

	Introduction
	Materials and methods
	Datasets
	Image reading and annotation
	Development of the DL model
	Validation of the DL model
	Statistical analysis

	Results
	Clinical characteristics
	Establishment of the DL model
	Performance of the 2D and 2.5D DL models

	Discussion
	Anchor 20
	Acknowledgements 
	References


