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Abstract
Objectives  To explore the relationship between indices of hypoxia and vascular function from 18F-fluoromisonidazole 
([18F]-FMISO)-PET/MRI with immunohistochemical markers of hypoxia and vascularity in oestrogen receptor–positive 
(ER +) breast cancer.
Methods  Women aged  > 18 years with biopsy-confirmed, treatment-naïve primary ER + breast cancer underwent 
[18F]-FMISO-PET/MRI prior to surgery. Parameters of vascular function were derived from DCE-MRI using the extended 
Tofts model, whilst hypoxia was assessed using the [18F]-FMISO influx rate constant, Ki. Histological tumour sections were 
stained with CD31, hypoxia-inducible factor (HIF)-1α, and carbonic anhydrase IX (CAIX). The number of tumour microves-
sels, median vessel diameter, and microvessel density (MVD) were obtained from CD31 immunohistochemistry. HIF-1α 
and CAIX expression were assessed using histoscores obtained by multiplying the percentage of positive cells stained by the 
staining intensity. Regression analysis was used to study associations between imaging and immunohistochemistry variables.
Results  Of the lesions examined, 14/22 (64%) were ductal cancers, grade 2 or 3 (19/22; 86%), with 17/22 (77%) HER2-
negative. [18F]-FMISO Ki associated negatively with vessel diameter (p = 0.03), MVD (p = 0.02), and CAIX expression 
(p = 0.002), whilst no significant relationships were found between DCE-MRI pharmacokinetic parameters and immuno-
histochemical variables. HIF-1α did not significantly associate with any PET/MR imaging indices.
Conclusion  Hypoxia measured by [18F]-FMISO-PET was associated with increased CAIX expression, low MVD, and 
smaller vessel diameters in ER + breast cancer, further corroborating the link between inadequate vascularity and hypoxia 
in ER + breast cancer.
Key Points 
• Hypoxia, measured by [18F]-FMISO-PET, was associated with low microvessel density and small vessel diameters, cor 
   roborating the link between inadequate vascularity and hypoxia in ER + breast cancer.
• Increased CAIX expression was associated with higher levels of hypoxia measured by [18F]-FMISO-PET.
• Morphologic and functional abnormalities of the tumour microvasculature are the major determinants of hypoxia in cancers  
   and support the previously reported perfusion-driven character of hypoxia in breast carcinomas.
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Abbreviations
[18F]-FMISO	� [18F]-fluoromisonidazole
CAIX	� Carbonic anhydrase IX
CD31	� Cluster of differentiation 31
ER	� Oestrogen receptor
HIF-1α	� Hypoxia-inducible factor 1α
kep	� Contrast efflux rate constant (min−1)
Ki	� Tracer influx rate constant (mL/mL/min)
Ktrans	� Contrast influx transfer rate constant 

(mL/g/min)
MVD	� Microvessel density (vessels/mm2)
SUV	� Standardised uptake value (g/mL)
Tmax/M	� Maximum tumour-to-muscle ratio
ve	� Extravascular-extracellular volume 

fraction
vp	� Plasma volume fraction

Introduction

In breast cancer, like most solid tumours, the pathophysiol-
ogy of the microenvironment is characterised by an irregu-
lar vascular network resulting in perfusion anomalies and 
hypoxia. The transcription factor hypoxia-inducible factor 
1α (HIF-1α) is regarded as the master regulator of cellular 
adaptation to hypoxia supporting angiogenesis and the meta-
bolic rewiring of tumours to a state which is less depend-
ent on oxygen and nutrients [1]. Hypoxia is associated with 
tumour aggressiveness, therapeutic resistance, and metas-
tasis in various cancers [2, 3], and is also recognised as a 
key factor contributing to poor clinical outcomes in patients 
with oestrogen receptor–positive (ER +) breast cancer [4]. 
Previous studies have demonstrated that overexpression of 
hypoxia-associated proteins at diminished oxygen levels, 
including HIF-1α and its downstream target, carbonic anhy-
drase IX (CAIX), is associated with suppressed oestrogen 
receptor-α (ER-α) levels [5, 6], a dedifferentiated phenotype 
[7], resistance to endocrine treatment [8–10], breast cancer 
recurrence [11], and shorter disease-free survival [12].

Whilst the potential clinical utility of HIF-1α and CAIX 
in ER + breast cancer has been discussed by several authors 
[7–12], the relationships between the in vivo tumour patho-
physiology and the expression of hypoxia-regulated pro-
teins are underexplored for this cancer type. Imaging with 
magnetic resonance imaging (MRI) and positron emission 
tomography (PET) has been used to probe pathophysiologi-
cal aspects of the breast cancer microenvironment in vivo, 
including perfusion and hypoxia [13–15]. Dynamic con-
trast–enhanced (DCE) MRI has been widely employed in 
clinical studies for the characterisation of tumour vascular 
function [16], whilst PET with [18F]-labelled nitroimida-
zoles, such as [18F]-fluoromisonidazole ([18F]-FMISO), 
can provide measures of intracellular hypoxia [17, 18]. 

[18F]-FMISO-PET has shown prognostic potential in 
patients with ER + tumours [19] as well as utility in predict-
ing response to primary endocrine [20] and anti-angiogenic 
treatment [21, 22]. Yet, despite the prognostic relevance of 
hypoxia in ER + disease, there is a paucity of clinical imag-
ing studies in ER + breast tumours relating functional param-
eters of the tumour microenvironment to histopathological 
evidence or other biomarkers, with only three reports com-
paring [18F]-FMISO-PET with HIF-1α immunohistochem-
istry [20] or tumour-secreted cytokine expression [19, 22].

The aim of this study was to complement information 
from the immunohistochemical expression of endogenous 
markers of hypoxia (HIF-1α, CAIX) and vascularity (CD31) 
with imaging parameters of hypoxia and vascular function 
from simultaneous [18F]-FMISO-PET/MRI in treatment-
naïve ER + breast cancer. Given that functional imaging 
and immunohistochemistry probe different aspects of the 
tumour hypoxic microenvironment—[18F]-FMISO-PET 
and DCE-MRI interrogate intracellular hypoxia and perfu-
sion, respectively, whilst immunohistochemistry reports on 
hypoxia-mediated molecular events [18]—exploring asso-
ciations between parameters determined from these tech-
niques may provide additional insight into hypoxia in this 
cancer type for disease characterisation. To our knowledge, 
this study is the first to correlate in vivo imaging parameters 
from [18F]-FMISO-PET and DCE-MRI with immunohisto-
chemical markers of hypoxia and vascularity in ER + breast 
cancer.

Methods

Study participants

Women aged  > 18 years with biopsy-confirmed primary 
breast cancer  > 10 mm in diameter on mammography and/
or ultrasound and undergoing surgery as the first line of 
treatment were included in this prospective study (February 
2017–November 2018). Exclusion criteria included previous 
history of surgery or radiotherapy for cancer, benign breast 
disease, inadequate renal function, pregnancy, lactation, 
and contraindications to MRI. The study was approved by 
a National Research Ethics Committee (NRES Committee 
East of England – Cambridge Central, 14/EE/0145) and the 
Administration of Radioactive Substances Advisory Com-
mittee (ARSAC), UK. Written, informed consent was pro-
vided by all study participants.

PET/MRI acquisition

PET/MR examinations were performed on a SIGNA PET/
MR scanner (GE Healthcare) as previously described [15]. 
In brief, participants underwent a 60-min simultaneous PET/
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MR scan of the breasts 120 min post injection (p.i.) of a 
target activity of 300 MBq [18F]-FMISO. Emission data 
were reconstructed in 12 × 5-min image frames using time-
of-flight ordered-subsets expectation–maximisation with 
data corrections as implemented on the scanner (Supple-
mental Methods). Plasma radioactivity concentration from 
two venous blood samples obtained at the start and end of 
the PET/MR scan was used to scale an [18F]-FMISO popu-
lation-based arterial input function [15], allowing calcula-
tion of the [18F]-FMISO influx rate constant, Ki, by Patlak 
plot analysis [23]. The MRI protocol included the manu-
facturer’s two-point Dixon sequence for PET attenuation 
correction, T1- and T2-weighted images, and a DCE series 
(Supplemental Table 1). DCE-MRI involved acquisition 
of five pre-contrast image volumes, followed by 43 phases 
after intravenous bolus injection of 0.1 mmol/kg of Gadovist 
(Bayer Healthcare). B1

+ transmission field non-uniformity 
was measured using a Bloch-Siegert sequence, whilst the 
variable flip angle (VFA) method was used for measurement 
of baseline T1, as required for the pharmacokinetic analysis 
of DCE-MRI data (Supplemental Methods) [15, 24].

Image analysis

Three radiologists (1, 3, and  > 20 years of experience in 
breast MRI, respectively) reviewed the MRI examina-
tions and identified lesions in consensus. Tumour regions 
were manually delineated in OsiriX, version 8.0.2 (Pixmeo 
SARL) on the peak-enhancing volume of the DCE-MRI 
series on all axial sections encompassing the enhancing 
tumour mass and including multifocal/multicentric disease. 
Bilateral cancers were regarded as independent lesions [25].

DCE‑MRI  Pharmacokinetic analysis of DCE-MRI series was 
performed in MIStar, v3.2.63 (Apollo Medical Imaging) 
using the extended Tofts model to calculate the following: 
contrast influx rate constant, Ktrans; efflux rate constant, kep; 
extravascular-extracellular volume fraction, ve; and plasma 
volume fraction, vp. Additionally, the enhancing tumour vol-
ume (ETV) was calculated using the signal enhancement 
ratio method with thresholds of  > 70% and  > 100% for early 
percent enhancement and signal enhancement ratio, respec-
tively (Supplemental Methods) [26].

PET  PET images from 150 to 180 min p.i. were visually 
evaluated by a nuclear medicine physician and a radiolo-
gist (> 20 and 1 year of experience in PET imaging, respec-
tively) in consensus. [18F]-FMISO uptake in lesions was 
visually compared to that in surrounding breast tissue and 
graded using a 4-point scale (0 = uptake lower than/equal 
to fibroglandular tissue; 1 = mildly increased; 2 = moder-
ately increased; 3 = high/marked uptake). Following reg-
istration to the peak-enhancing volume of the DCE-MRI 

series, image frames from the entire acquisition duration 
(i.e. 120–180 min p.i.) were used for the determination of 
the [18F]-FMISO influx rate constant, Ki, as a more spe-
cific measure of tumour hypoxia by Patlak analysis (Sup-
plemental Methods) [23, 27]. Registered frames from 150 
to 180 min p.i. were averaged and used for the determination 
of [18F]-FMISO mean and maximum standardised uptake 
values normalised by body weight (SUVmean, SUVmax), 
and maximum tumour-to-muscle (Tmax/M) ratio within 
the tumour regions defined on the DCE-MRI. The mean 
radioactivity concentration in bilateral regions of the pec-
toral muscle was used to define normoxic tissue for Tmax/M 
calculations.

Histopathology and immunohistochemistry

Histopathological information including tumour patho-
logical size, histological subtype, grade, oestrogen recep-
tor (ER), progesterone receptor (PR), and human epidermal 
growth factor receptor-2 (HER2) status were obtained from 
surgical pathology reports. Immunohistochemistry was per-
formed on representative 3-µm-thick formalin-fixed and par-
affin-embedded (FFPE) tumour sections, which were stained 
for CD31, HIF-1α, and CAIX on a BOND III autostainer 
(Leica Biosystems) using previously optimised conditions 
(Supplemental Table 2). All stained tumour sections were 
visually evaluated by two breast pathologists blinded to the 
imaging variables. For HIF-1α and CAIX, staining intensity 
was scored from 0 to 3 (0 = absent, 1 = mild, 2 = moderate, 
3 = strong), and multiplied by the percentage of positive 
cells stained to generate a histoscore. CD31-stained slides 
were digitised on an Aperio AT2 scanner (Leica Biosys-
tems) at × 40 magnification with a resolution of 0.25 µm/
pixel, and the following parameters were obtained using the 
HALO image analysis software (Indica Labs): total number 
of microvessels, median vessel diameter (μm), and microves-
sel density (MVD; number of vessels/mm2). The overall pat-
tern of staining distributions was classified as either diffuse 
or heterogeneous when staining was accentuated focally in 
central or peripheral areas of the section.

Statistical analysis

Statistical analysis was performed using jamovi, version 
1.2.26 (The jamovi project, 2020) or RStudio, version 
1.3.1370 (RStudio Team, 2020). Continuous data were 
assessed for normality using the Shapiro-Wilk test. Corre-
lations between ordinal, or ordinal and continuous variables 
were assessed using Kendall’s τb, and Spearman’s ρ when 
continuous variables were used. Associations between imag-
ing and clinicopathological variables were examined using 
linear regression or mixed-effects models with a hierarchical 
data structure and random intercepts for subjects. Negative 
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binomial or zero-inflated negative binomial regression was 
used where the response variable consisted of count (CD31 
microvessel count) or discrete continuous (HIF-1α or CAIX 
histoscores) data as appropriate. Where the ensuing residu-
als from linear regression or mixed models were not nor-
mally distributed as indicated by normality tests, dependent 
variables (i.e. continuous PET/MR variables) were loga-
rithmically transformed to yield more normally distributed 
residuals. Regression results were reported as slope coeffi-
cients ± standard error (SE) or absolute percent change with 
95% confidence intervals (CI) for log-transformed variables. 
Effect sizes are given as incidence rate ratios (IRR) with 
95% CI for negative binomial and zero-inflated models, or 
R2 for linear regression. p values  < 0.05 were considered 
statistically significant.

Results

The study population comprised 22 women with 25 biopsy-
confirmed, ER + breast cancers. PET/MRI data from two 
participants (two cancers) were excluded from correlations 
with immunohistochemistry due to inadequate acquisition of 
DCE-MRI and poor pharmacokinetic model-fitting, respec-
tively. Sufficient diagnostic tissue material for immunohisto-
chemistry was available for 22 tumour samples (20 partici-
pants). CD31 and CAIX expression data were available for 
all 22 tumour samples, whereas HIF-1α immunohistochem-
istry was performed in 21/22 (95%) cancers.

Tumour characteristics are summarised in Table 1. All 
cancers were ER + with the majority (14/22; 64%) being 
invasive ductal carcinomas (IDC), grade 2 or 3 (19/22; 86%), 
and negative for HER2 (17/22; 77%).

Expression of CD31, HIF‑1α, and CAIX 
and relationships with clinicopathological variables

Of the 22 cancers stained with CD31, 50% (11/22) showed 
heterogeneous expression patterns, with 6/11 (54%) of these 
exhibiting pronounced staining in the periphery of the lesion 
(Table 2). The number and diameter of tumour microvessels 
associated positively with pathological size (IRR [95% CI]: 
1.02 [1.01–1.04], p = 0.002) and HER2 negativity (R2 = 0.27, 
p = 0.01), respectively; no significant correlations were 
observed with other clinicopathological variables (Supple-
mental Figs. 1–3).

HIF-1α staining was found in 17/21 (80%) lesions, which 
was characterised as either mild or moderate (Table 2). 
Heterogeneous staining distributions were observed in 
11/17 (65%) tumours, with 8/11 (72%) lesions displaying 
accentuated staining in the central portion of the specimen 
(Table 2). Cancers with an in situ component had higher 
HIF-1α histoscores (IRR [95% CI]: 4.84 [0.93–20.2], 

p = 0.04); associations with other clinical parameters were 
not significant (Supplemental Fig. 4).

CAIX was detectable in 6/22 (27%) tumours (Table 2). Of 
these, 4/6 (66%) cancers displayed heterogeneous expression 
patterns with pronounced staining in central areas of the 
specimen (Table 2). CAIX expression associated with larger 
tumour size (IRR [95% CI]: 1.02 [1.01–1.03], p < 0.001) and 
HER2 positivity (IRR [95% CI]: 1.65 [1.15–2.35], p = 0.006) 
(Supplemental Fig. 5). Additionally, the percentage of posi-
tive cells stained associated positively with tumour grade 
(IRR [95% CI]: 1.51 [1.10–2.91], p = 0.01).

Table 1   Characteristics of tumours (n = 22) with an immunohisto-
chemistry outcome

a Calculated in n = 20 patients
b Data presented as mean ± standard deviation (SD)
c Cancers with the presence of both ductal and lobular components
d Data presented as median [range]
e Pathological tumour size was defined as the largest tumour diameter 
measured on surgical specimens
f Calculated in n = 20 cancers, for which both DCE-MRI and immuno-
histochemistry data were available
ER + , oestrogen receptor–positive; HER2 − , human epidermal 
growth factor 2-negative; HER2 + , human epidermal growth factor 
2-positive

Characteristics n (%)

Age at diagnosis (years)a,b 60 ± 12
Histological subtype
  Invasive ductal carcinoma (IDC) 14 (64)
  Invasive lobular carcinoma (ILC) 4 (18)
  Mixedc 2 (9)
  Invasive mucinous carcinoma (IMC) 2 (9)

Nuclear grade
  1 3 (14)
  2 10 (45)
  3 9 (41)

Molecular subtype
  ER + /HER2 −  17 (77)
  ER + /HER2 +  5 (23)

Carcinoma in situ
  Absence 4 (18)
  Presence 18 (82)

Necrosis
  Absence 19 (86)
  Presence 3 (14)

Nodal (N) statusa

  Negative 12 (60)
  Positive 8 (40)

Pathological tumour size (mm)d 22 [10–63]
Tumour longest diameter on MRI (mm)d,e 25.6 [10–60]
Tumour volume (cm3)d,f 2.19 [0.29–21.17]
Enhancing tumour volume (cm3)d,f 1.85 [0.29–12.95]
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HIF-1α expression associated positively with MVD, 
whilst negative correlations were found between CAIX 
expression and CD31 vascularity indices, which were not 
statistically significant (Fig. 1a). No significant correla-
tion was observed between HIF-1α and CAIX histoscores 
(ρ = 0.20, p = 0.39), with 6/17 (35%) HIF-1α-positive 
tumours showing positive CAIX expression (Fig. 1b).

Relationships between immunohistochemistry 
markers and 18F‑FMISO‑PET/MR imaging indices

Figure 2 illustrates representative examples of two cancers 
stained with HIF-1α, CAIX, and CD31 together with para-
metric images indicating hypoxia (Ki) and perfusion (Ktrans) 
from [18F]-FMISO-PET and DCE-MRI, respectively. Rep-
resentative static [18F]-FMISO-PET images (150–180 min 
p.i.) alongside the corresponding DCE-MRI phase at peak 
enhancement are shown in Fig. 3. Results from the visual 
analysis of [18F]-FMISO uptake in tumours are given in 
Table 3.

Except for a significant positive association between 
the number of tumour microvessels and ETV (slope ± SE: 
0.01 ± 0.18, p = 0.02), pharmacokinetic parameters from 
DCE-MRI did not significantly correlate with CD31 
measures (Fig.  4a–c; Supplemental Table  3). In con-
trast, negative relationships were observed between 
[18F]-FMISO K i and CD31 vascular parameters 
(Fig. 4d–f), which were statistically significant for MVD 
(slope ± SE: − 0.016 ± 0.006, R2 = 0.26, p = 0.02) and ves-
sel diameter (slope ± SE: − 0.43 ± 0.18, R2 = 0.23, p = 0.03) 
(Supplemental Table 3).

DCE-MRI parameters showed no significant relationships 
with HIF-1α or CAIX histoscores (Fig. 5a, b; Supplemental 
Table 4), aside from ETV which was positively associated 
with HIF-1α expression (slope ± SE: 0.11 ± 0.04, R2 = 0.24, 
p = 0.01), whilst a negative relationship was observed with 

Table 2   Summary of immunohistochemistry results for CD31, 
HIF-1α, and CAIX

a Data presented as median [range]
b Data presented as mean ± SD

Characteristic Metric

CD31 [n = 22 lesions]
  Microvessel count (number)a 15,643 [2364–49,074]
  Microvessel density (MVD; vessels/mm2)b 50.3 ± 21.9
  Microvessel diameter (μm)b 10.10 ± 0.75
  Staining distribution
    Diffuse, n (%) 11 (50)
    Heterogeneous, n (%) 11 (50)

HIF-1α [n = 21 lesions]
  Intensity score
    0 – No staining, n (%) 4 (19)
    1 – Mild, n (%) 13 (62)
    2 – Moderate, n (%) 4 (19)
    3 – Strong, n (%) 0 (0)
  % Staininga 5 [0–20]
  Histoscorea 0 [0–40]
  Staining distribution [n = 17 positive lesions]
    Diffuse, n (%) 6 (35)
    Heterogeneous, n (%) 11 (65)

CAIX [n = 22 lesions]
  Intensity score
    0 – No staining, n (%) 16 (73)
    1 – Mild, n (%) 0 (0)
    2 – Moderate, n (%) 2 (9)
    3 – Strong, n (%) 4 (18)
  % Staininga 0 [0–20]
  Histoscorea 5 [0–40]
  Staining distribution [n = 6 positive lesions]
    Diffuse, n (%) 2 (33)
    Heterogeneous, n (%) 4 (67)

Fig. 1   Associations between HIF-1α and CAIX expression. a Correlations (Kendall’s τb) between HIF-1α or CAIX histoscores and CD31 
parameters. b Cross-tabulation of HIF-1α and CAIX immunohistochemistry results
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CAIX (slope ± SE: − 0.13 ± 0.04, R2 = 0.17, p = 0.01). 
[18F]-FMISO Ki showed a positive association with CAIX 
histoscore (slope ± SE: 1.3 × 10−4 ± 7.9 × 10−3, R2 = 0.40, 
p = 0.002), whilst no significant associations were observed 
between PET parameters and HIF-1α expression (Fig. 5c, d; 
Supplemental Table 4). Additionally, [18F]-FMISO visual 
scores were not significantly correlated with immunohisto-
chemistry results (Supplemental Table 5).

Discussion

A key aim of this study was to explore associations between 
imaging parameters from [18F]-FMISO-PET/MRI and 
endogenous immunohistochemical markers of hypoxia and 
vascularity in ER + breast cancer. Hypoxia, measured by the 

[18F]-FMISO influx rate constant Ki, was associated with 
increased CAIX expression, low MVD, and smaller vessel 
diameters. Additionally, we found a negative relationship 
between enhancing tumour volume (ETV) from DCE-MRI 
and CAIX expression. These findings are consistent with 
the notion that morphologic and functional abnormalities 
of the tumour microvasculature are the major determinants 
of hypoxia in cancers [28] and corroborate the previously 
reported perfusion-driven character of hypoxia in breast 
carcinomas [15].

In agreement with previous reports, CAIX expression was 
positively correlated with tumour size, grade, and HER2 
positivity [11, 29], whilst the presence of in situ carcinoma 
associated with HIF-1α positivity [30]. Staining distribu-
tions for HIF-1α and CAIX were predominantly heterogene-
ous and mainly confined to the central portion of tumours, as 

Fig. 2   Representative images of HIF-1α, CAIX, and CD31 staining 
in tumour sections of two representative ER + breast cancers together 
with parametric maps indicating hypoxia (Ki) and perfusion (Ktrans) 
from [18F]-FMISO-PET and DCE-MRI, respectively. Extra-tumoural 
areas on Ki and Ktrans maps have been masked to only indicate val-
ues inside the tumour. Immunostaining for HIF-1α, CAIX and CD31 
can be seen in brown colour. a Invasive mucinous carcinoma (IMC) 
with ductal carcinoma in  situ (DCIS), grade 2, ER + /HER2 − with 
a diffuse staining pattern of mild intensity for HIF-1α (histoscore: 
5) and strong CAIX immunostaining throughout the tumour section 
(histoscore: 40). Moderate vascularity can be interpreted from CD31 

(MVD: 40.6 vessels/mm2), which was mainly observed in peripheral 
areas of the section. The [18F]-FMISO Ki map revealed the pres-
ence of hypoxia in the entire tumour region. Areas of increased per-
fusion were observed towards the edges of the tumour on the Ktrans 
map. b Invasive ductal carcinoma (IDC) with DCIS, grade 3, ER + /
HER2 + with mild heterogenous staining for HIF-1α (histoscore: 
2) and negative CAIX expression. CD31 staining indicated moder-
ate vascularity (MVD: 40.0 vessels/mm2), which was prominent in 
areas of increased HIF-1α expression. Mild-moderate hypoxia was 
observed on the 18F-FMISO Ki map corresponding to regions of 
hypoperfusion on the Ktrans map
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previously described for breast cancer [31]. Irregular spatial 
relationships were found between CD31 staining patterns 
and those of CAIX or HIF-1α, with several samples showing 
colocalisation of CD31 and hypoxia-related proteins. The 
presence of HIF-1α in regions with high vascular density is 
consistent with the HIF-dependent upregulation of angio-
genic factors [1]. Additional pathophysiological mecha-
nisms, including the metabolic state of the tumour, long 
oxygen diffusion distances, and interstitial fluid pressure, 
may explain the co-existence of hypoxia in highly vascular-
ised regions [32, 33].

Whilst increased CAIX expression correlated with 
[18F]-FMISO Ki, no associations were observed between 
HIF-1α and PET hypoxia indices. Furthermore, we observed 
a weak correlation between HIF-1α and CAIX expression, 
with the majority of HIF-1α-positive lesions lacking co-
expression of CAIX. Although changes in tumour oxygen 
levels between imaging and surgery may have contributed 
to the poor association between PET variables and HIF-1α 

expression, our findings are in keeping with previous stud-
ies in various tumours, including breast cancer, reporting 
the absence of a significant association between HIF-1α and 
hypoxia [34, 35] or HIF-1α-related proteins [35–37]. Nota-
bly, in several types of cancer, including ER + breast malig-
nancy, various oncogenic signalling mechanisms have been 
shown to activate HIF-1α-related pathways independent of 
hypoxic stimulation [6, 37–40]. Since CAIX overexpres-
sion is the generally accepted sequela of hypoxia-induced 
HIF-1α activation [41], our results strengthen the notion 
that the overexpression of HIF-1α in primary ER + breast 
cancer may be largely hypoxia-independent. This assertion 
is further corroborated by the observation that most of our 
cancer samples were HIF-1α-positive despite the absence of 
necrosis [42]. In this context, several authors have postulated 
that CAIX may provide a more reliable marker of hypoxia in 
tumours than HIF-1α, given its strong regulation by hypoxia-
related processes and long half-life after hypoxic induction, 
allowing for the identification of chronically hypoxic tumour 
areas [43].

Consistent with the proangiogenic role of HIF-1α, we 
observed a positive association between HIF-1α expression 
and both MVD and ETV. Furthermore, there was a tendency 
for a negative association between CAIX and CD31 immu-
nohistochemistry. Although pharmacokinetic parameters 
from DCE-MRI exhibited positive and negative associations 
with HIF-1α and CAIX expression, respectively, our results 
did not demonstrate statistically significant relationships. 
Given that ER + breast tumours are generally characterised 
by lower blood flow [44] and potentially perfusion-driven 
hypoxia [15], the lack of a significant association between 

Fig. 3   Representative transaxial images from two patients with ER + /
HER2 − breast cancer. Left: Dynamic contrast-enhanced (DCE) MRI 
at peak enhancement; centre: [18F]-FMISO-PET (150–180  min p.i.) 
overlaid on the peak-enhancing DCE-MRI; right: [18F]-FMISO-PET 
(150–180  min p.i.). a Invasive ductal carcinoma (IDC), grade 

2 with high [18F]-FMISO uptake in the tumour (SUVmax = 1.9; 
SUVmean = 1.4; Tmax/M = 1.5). b Invasive mucinous carcinoma 
(IMC) with ductal carcinoma in  situ (DCIS), grade 3, with moder-
ate [18F]-FMISO uptake in the tumour (SUVmax = 1.2; SUVmean = 1.0; 
Tmax/M = 1.0)

Table 3   Summary of results from the visual analysis of [18F]-FMISO 
uptake in tumours with an immunohistochemistry outcome (n = 22 
lesions)

Characteristic Metric

18F-FMISO visual score [n = 22 lesions]
  0 – Lower than/equal to surrounding tissue 2 (9%)
  1 – Mildly increased 3 (14%)
  2 – Moderately increased 12 (54%)
  3 – High/marked 5 (23%)
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DCE-MRI functional metrics and hypoxia-related proteins 
suggests that the oxygenation status of this breast tumour 
type may be largely but not uniquely defined by tumour 
perfusion. Our findings are supported by previous research 
in prostate [45, 46], head-and-neck [47], and endometrial 
cancers [48], and further demonstrate that hypoxia is a com-
bination of tumour-intrinsic and microenvironment-related 
factors [47].

Similarly, no significant relationships were observed 
between DCE-MRI parameters and CD31 immunohisto-
chemistry, although ETV positively associated with the 
number of tumour microvessels. Earlier studies exploring 
associations between DCE-MRI and immunohistochemical 
markers of vascularity in breast tumours have demonstrated 
conflicting results, with several authors reporting significant 
correlations with semi-quantitative metrics [49–52], whilst 

Fig. 4   Scatter plots and regression lines for associations between 
PET/MR imaging variables and CD31 microvascular param-
eters. a–c Contrast influx rate constant Ktrans (mL/g/min) and (d–f) 

[18F]-FMISO influx rate constant Ki (mL/mL/min) vs microvessel 
count, microvessel density (MVD; vessels/mm2), and microvessel 
diameter (μm), respectively

Fig. 5   Scatter plots and regres-
sion lines for associations 
between PET/MR imaging 
variables vs HIF-1α and CAIX 
expression. a, b Contrast influx 
rate constant Ktrans (mL/g/min) 
and (c, d) [18F]-FMISO influx 
rate constant Ki (mL/mL/min) 
vs HIF-1α or CAIX histoscore, 
respectively
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variable associations were observed with pharmacokinetic 
parameters [53–57]. The inconsistent relationships between 
histologic measures of vascularity and pharmacokinetic 
parameters from DCE-MRI between various studies can be 
partially explained by differences in metrics used for DCE-
MRI quantification, and the inability to accurately register 
2D images of histopathological samples with corresponding 
slices from 3D imaging data, as well as the absence of a 
standardised method for vascularity quantification on immu-
nohistochemistry, with antibody type and measurement 
methods being variable amongst studies. However, it should 
also be noted that histologic measures of vascularity are not 
precisely related to the functional properties of the tumour 
microvasculature, which are critical for the interpretation of 
DCE-MRI pharmacokinetic results [16, 57].

The main limitation of our study was the small sample 
size, predominantly comprising ductal cancers. Although 
our findings should be confirmed in a larger breast cancer 
cohort, it should be noted that ER + IDC represents the 
most common histological subtype of breast carcinoma 
with a higher tendency for hypoxia and the expression of 
hypoxia-related proteins [29, 30]. Furthermore, comparison 
of whole-tumour imaging metrics vs single-slice histology 
parameters did not permit the assessment of intratumoural 
heterogeneity.

In conclusion, in ER + breast cancer, hypoxia measured 
by [18F]-FMISO-PET associated negatively with MVD and 
microvessel diameter derived from CD31 immunohisto-
chemistry, whilst a positive correlation was observed with 
CAIX expression. No relationships were observed between 
DCE-MRI pharmacokinetic metrics and immunohistochemi-
cal markers. The combination of multimodal in vivo imaging 
and immunohistochemistry facilitates interrogation of differ-
ent aspects of the tumour pathophysiology, with multimodal 
imaging also providing assessment of the whole tumour. 
Taken together, the data presented here can be viewed as 
providing indication of the benefit of non-invasive multi-
modal assessment of the tumour microenvironment, which 
may complement information from histopathology in pro-
viding additional disease characterisation or evaluating 
therapeutic response.
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