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Key Points
• Characterisation and quantification of tissue fat on MRI can be used to provide information on disease processes.
• Fat in bone and lymph nodes up until recently have not been exploited for diagnostic purposes or response monitoring in 

prostate cancer.
• Fat imaging on MRI using Dixon/PDFF sequences has the potential to add clinical value in the future but prospective 

data is needed.
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Abbreviations
FF  Fat fraction
LN  Lymph node
mDIXON  Modified Dixon
Mp-MRI  Multi-parametric MRI
PCa  Prostate cancer
PDFF  Proton density fat fraction
PSMA PET-CT  Prostate specific membrane antigen 

PET-CT
sFF  Signal fat fraction
WB-MRI  Whole-body MRI

Introduction

Multi-parametric MRI (mp-MRI) plays a pivotal role in 
the prostate cancer (PCa) diagnostic pathway allowing 
for localisation, local staging and risk stratification [1]. 
Detection of lymph node (LN) and bony metastases is of 
utmost importance as this alters disease stage and man-
agement, and predicts biochemical recurrence following 
radiotherapy and overall survival [2]. The conventional 
imaging standard for detecting metastases utilises CT 
and bone scan, but increasingly prostate-specific mem-
brane antigen PET/CT (PSMA PET-CT) is now used [3]. 
Whilst meta-analyses have demonstrated superiority of 
PSMA PET-CT in detecting metastatic disease compared 
to conventional imaging methods, it could be resource-
intensive and not widely available [4].

Whole-body MRI (WB-MRI) has been gaining 
increasing traction as a non-ionising alternative, which 
may be more affordable and has potential comparative 
sensitivity to PSMA PET-CT in detecting bony metas-
tases [5, 6]. Additionally, technological advances have 
potential to reduce scan time to under 1 h [7]. WB-MRI 
is also garnering interest as a plausible adjunct to mp-
MRI to allow ‘one-stop’ comprehensive assessment of 
PCa [8]. With numerous MRI sequences at hand, new 
data is emerging on the most efficacious protocol to 
employ. This editorial focuses on the use of fat fraction 
(FF) imaging as a quantitative tool for assessing nodal 
and bony disease in PCa.
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Dixon imaging and fat fraction sequences

Dixon imaging, which is routinely employed in WB-MRI, 
utilises the chemical shift property of protons to generate 
in-phase/opposed phase images. Then using mathematical 
reconstruction techniques, ‘water-only’ or ‘fat-only’ images 
are generated in a single acquisition [9]. This permits the 
derivation of fat content, expressed as ‘signal fat fraction’ 
(sFF), which is the signal generated by protons in fat as a 
fraction of total signal from fat and water protons within the 
voxel [10]. Proton density FF (PDFF) is equivalent to sFF 
in the absence of biophysical and technical factors that can 
confound the MR signal from fat and water [11]. It is thus 
considered a more accurate and reliable sequence [10, 11]. 
FF has been demonstrated to be useful in conditions such 
as hepatic steatosis and myeloma [12, 13]. Furthermore, 
previous studies have shown that using a modified Dixon 
protocol (mDixon) has similar diagnostic performance to 
conventional T1 fast spin echo for detecting nodal and bony 
metastases in PCa, whilst reducing WB-MRI acquisition 
time to < 20 min [7]. Depending on the parameters used, 

deriving sFF from this protocol may only add an extra min-
ute to total scan time [14].

Detecting nodal and bone metastases

Nodal disease is determined primarily by size on CT and MRI 
where a threshold of >1 cm in short axis dimension indicates 
metastatic involvement [15]. However, it has been shown that 
around 10–35% of ‘normal’ size LNs harbour microscopic 
metastases on histology [16, 17]. Moreover, false positives 
can occur in the context of reactive hyperplasia and granu-
lomatous infiltration [18]. This may produce inaccuracies in 
nodal staging by conventional CT and/or MRI [19].

PCa predominantly causes sclerotic bony lesions [20]. 
DWI is widely used in assessing bony disease but can be 
prone to false positives in the context of traumatic oedema, 
degenerative disease, infection, infarction and hypercellular 
red marrow deposits, resulting in reduced sensitivity [21]. 
DWI is also vulnerable to motion and susceptibility artefact 
which can limit its interpretation [22].

Fig. 1  Fat fraction changes 
in nodal lesions following 
systemic therapy for respond-
ing and non-responding lesions. 
Red areas on the colour scale 
indicates fat fraction of 100%, 
while blue areas indicate little 
or no fat content. Fat fraction 
map changes in a responding 
large left external iliac node 
(red arrow) pre (A) and post-
treatment (B) shows little to no 
fat content at baseline. A poorly 
responsive paraaortic node 
(black arrows) shows high fat 
content at baseline (C) and loss 
of fat at 1 year (D) following 
systemic therapy. (Included 
with permission from Adeleke 
2020) [25]
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Recent evidence for fat fraction imaging

Nodal metastases

Nodal disease assessment using sFF has been demon-
strated in several small-scale studies. O’Callaghan et al 
analysed mDIXON MRI data in 5 men with PCa and PET-
proven nodal disease and found that sFF was significantly 
lower in those nodes with 18F-choline PET-positivity 
compared to PET-negative nodes despite no significant 
difference in LN size [23]. Similar findings were reported 
in a retrospective analysis of 43 nodes in 11 patients: 
mean sFF was significantly lower in 18F-choline PET-pos-
itive nodes, but there was no statistical difference in size, 
T2 signal or ADC demonstrated between positive and 
negative nodes [24]. A larger study assessing 131 nodes 
in 40 patients with radio-recurrent disease highlighted 
the discriminatory ability of sFF as a marker of nodal 
disease status and exhibited excellent accuracy (ROC-
AUC 0.86) [17]. Furthermore, in the same study, across 
28 nodes in 13 patients who received androgen depriva-
tion therapy, baseline median sFF was significantly lower 

across treatment responders than non-responders (Fig. 1). 
This highlights the potential of sFF to be a predictor of 
treatment response in the radio-recurrent cohort [17].

Bone metastases

sFF can also assess derangements in marrow fat, which 
has been shown to correlate with histological and molecu-
lar analyses [26]. A pilot study on castration-resistant PCa 
found that sFF was significantly lower in bony metasta-
ses compared to normal bone; median sFF was 14% in 
positive biopsies compared to 71% in normal biopsies 
(p < 0.05) [27]. sFF has also been shown to be a predic-
tor of response in bony lesions. In a study involving 17 
patients with radio-recurrent disease (22 bony lesions) 
who received systemic therapy, baseline median sFF was 
significantly lower in lesions that responded compared to 
non-responders [25] (Fig. 2).

Similar findings have been reported using PDFF. 
Schmeel et al prospectively evaluated 66 patients (11 
patients had PCa) who were referred for MRI spine and 
found PDFF was significantly lower in malignant spine 

Fig. 2  Fat fraction changes in 
bone lesions following systemic 
therapy for responding and 
non-responding lesions. Red 
coloured areas on the scale 
indicates fat fraction of 100% 
whilst blue indicates little or 
no fat content. Changes in fat 
fraction maps pre-treatment 
(A) and post-treatment (B) for 
a responding lesion in the L4 
vertebral body (red arrow). A 
non-responding lesion in the 
right pelvis (black arrow) at 
baseline (C), which has not 
changed at 1 year (D) follow-
ing systemic therapy. (Included 
with permission from Adeleke 
2020) [25]
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lesions compared to benign lesions such as osteoporosis, 
end-plate degeneration and haemangiomas. Furthermore, 
ROC analysis of PDFF cutoff values found a PDFF of 
6.4% was optimal in differentiating between malignant 
and benign causes with an AUC of 0.97 [14]. A similar 
cutoff was reported by Yoo et al [28]. This may help to 
prevent unnecessary downstream invasive investigations 
such as bone biopsies.

The diagnostic accuracy of sFF compared to DWI has 
also been directly compared. Donners et al retrospectively 
evaluated 42 malignant (12 of whom had PCa) and 27 
osteoporotic vertebral fractures in 38 patients. Whilst both 
sFF and ADC were significantly lower in pathological 
fractures compared to non-malignant fractures, the AUC 
value of sFF was significantly higher than that of ADC 
[29]. Kwack et al reported similar findings when assess-
ing the diagnostic performance of PDFF versus ADC in 
differentiating between benign and malignant causes of 
vertebral bone marrow lesions and found PDFF had sig-
nificantly higher diagnostic accuracy [30].

Conclusion

Recent evidence has highlighted the feasibility of sFF as a 
rapid sequence which can detect malignant nodal and bone 
lesions. sFF has also been shown to have comparable or 
even superior diagnostic accuracy to ADC when evaluating 
benign versus malignant bone marrow lesions. sFF could 
compliment DWI and could potentially be incorporated 
into the routine mp-MRI protocol and/or routinely derived 
in WB-MRI protocol in the PCa imaging pathway. Further 
large-scale, prospective studies involving different PCa 
cohorts are required to corroborate these findings and to 
compare FF to other reference standards.
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