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Abstract
Objectives  Radiomics image data analysis offers promising approaches in research but has not been implemented in clinical 
practice yet, partly due to the instability of many parameters. The aim of this study is to evaluate the stability of radiomics 
analysis on phantom scans with photon-counting detector CT (PCCT).
Methods  Photon-counting CT scans of organic phantoms consisting of 4 apples, kiwis, limes, and onions each were per-
formed at 10 mAs, 50 mAs, and 100 mAs with 120-kV tube current. The phantoms were segmented semi-automatically and 
original radiomics parameters were extracted. This was followed by statistical analysis including concordance correlation 
coefficients (CCC), intraclass correlation coefficients (ICC), as well as random forest (RF) analysis, and cluster analysis to 
determine the stable and important parameters.
Results  Seventy-three of the 104 (70%) extracted features showed excellent stability with a CCC value > 0.9 when compared in 
a test and retest analysis, and 68 features (65.4%) were stable compared to the original in a rescan after repositioning. Between 
the test scans with different mAs values, 78 (75%) features were rated with excellent stability. Eight radiomics features were 
identified that had an ICC value greater than 0.75 in at least 3 of 4 groups when comparing the different phantoms in a phan-
tom group. In addition, the RF analysis identified many features that are important for distinguishing the phantom groups.
Conclusion  Radiomics analysis using PCCT data provides high feature stability on organic phantoms, which may facilitate 
the implementation of radiomics analysis likewise in clinical routine.
Key Points 
• Radiomics analysis using photon-counting computed tomography provides high feature stability.
• Photon-counting computed tomography may pave the way for implementation of radiomics analysis in clinical routine.
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Introduction

Radiomics analysis is widely used in clinical research due to 
the rising interest in transforming subjective and qualitative 
to objective and quantifiable medical image analysis. This 
pixel-based extraction of features from imaging data prom-
ises additional insights beyond the level of information vis-
ible to the human eye [1] using dedicated software packages 
[2]. The further information consists of a vast number of 
features of the region of interest (ROI), fostering the big data 
trends in healthcare and creating new possibilities and prom-
ises, especially in oncologic imaging [3, 4]. It is evident that 
radiomics is able to outperform traditional clinical scores [5, 
6] and shows promising results in terms of outcome predic-
tion [7, 8], and tumor classification [4, 9, 10]. Besides onco-
logic imaging, radiomics analysis paved the way for future 
developments also in cardiovascular imaging by outlining a 
better risk stratification, e.g., via coronary plaque analysis 
[11], and defining potential biomarkers for the development 
of arteriosclerosis [12]. Additionally, potential myocardial 
diffuse fibrosis could be detected by radiomics analysis [13]. 
The power of radiomics analyses has also been shown in 
lung fibrosis [14, 15], kidney stones [16], and COVID pneu-
monia [17, 18]. Even the ability of a CT-derived radiomics 
score to predict the added benefit of adjuvant chemotherapy 
following surgery in patients with non-small cell lung cancer 
could be demonstrated by using three intratumoral and 10 
peritumoral CT radiomics features [19].

Despite these excellent capabilities, radiomics analysis 
has not been implemented in clinical practice. One of the 
most important limitations for clinical implementation is 
the lack of comparability of radiomics analyses. In the past, 
several studies have demonstrated the influence of various 
parameters on the stability of radiomics features, including 
multiple image acquisition parameter settings such as tube 
voltage, reconstruction kernel, choice of contrast agent and 
contrast media phases, slice thickness, and the choice of the 
scanner which impede the reproducibility [20, 21].

Even the choice of segmentation method [22] and fea-
ture extraction software can have an influence on radiomics 
feature stability [23]. For accurate texture analysis, optimal 
spatial resolution and signal-to-noise ratio have been defined 
as the two most important image quality factors [24–26]. In 
the past, these parameters may have been impacted by the 
indirect conversion of X-ray photons to an electrical signal 
with an intermediate scintillator-based step.

Through the implementation of photon-counting CT 
(PCCT), this hurdle could be possibly addressed. This new 
technology allows direct conversion of the X-ray photons 
into electric pulses without the need of converting into vis-
ible light, as in traditional energy-integrating CT (EICT). 
Hence, each photon that reaches the detector contributes to 
the final image. Additionally, a threshold for image noise 

can be set for each photon, reducing the overall image noise 
and in total resulting in better spatial resolution, lower beam-
hardening artifacts, and better signal-to-noise ratio [27, 28].

Primary studies have shown radiomics feature proper-
ties compared between EICT and PCCT [29, 30], but to our 
knowledge, an organic phantom-based analysis regarding 
scan and rescan as well as reposition feature stability with 
mAs variance on PCCT has not been studied. The aim of 
this study is to analyze feature stability within the organic 
phantoms as well as the possibility of radiomics-based dif-
ferentiation between different phantom groups. We hypothe-
sized that given its technical innovation, PCCT may provide 
improved radiomics feature stability.

Materials and methods

Study design

For this phantom-based single-center study, 16 organic 
phantoms were included consisting of four apples, four 
onions, four limes, and four kiwis. The methodological 
structure of the study is shown in Fig. 1.

CT imaging

All 16 phantoms were scanned in one session on a first-gen-
eration whole-body dual-source PCCT system (NAEOTOM 
Alpha; Siemens Healthcare GmbH). Underlying scan param-
eters were a tube voltage of 120 kV and gantry rotation time 
of 0.25 s. The in-plane resolution of the PCCT is 0.11 mm. 
A three-level variance was established for mAs, consisting 
of a scan with 10 mAs, 50 mAs, and 100 mAs. Each of these 
scans was repeated again immediately afterward without 
any change in the phantom position or the underlying scan 
parameters. In the next step, all phantoms were rotated 90° 
in the same direction (clockwise) and all scans including 
rescans and mAs variation were repeated (Fig. 1).

CT imaging analysis

Axial images of all scans were reconstructed with a slice 
thickness of 1 mm (increment 1 mm) using a soft tissue 
kernel (Br40). This data was exported and stored in Digital 
Imaging and Communications in Medicine (DICOM) file 
format. DICOM files were converted to Neuroimaging Infor-
matics Technology Initiative (NIFTI) file format for further 
processing with a dedicated segmentation tool (MITK work-
bench, version 2021.10) [31]. Segmentation for each organic 
phantom in each scan was done semi-automatically by a 
clinical radiologist with 3 years of experience in segmenta-
tion. Figure 2 shows an example segmentation as well as the 
original DICOM images.
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Fig. 1   Study flowchart
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Radiomics feature extraction

Phantom segmentations were further analyzed by radiom-
ics feature extraction using a dedicated imaging biomarker 
standardization initiative definition–based Python pack-
age (PyRadiomics, version 3.0.1.) [2]. For each phantom 
regarding each scan, first-order features, shape features, and 
second-order features (in total 104 features), namely gray 
level co-occurrence matrix (GLCM), gray level dependence 
matrix (GLDM), gray level size zone matrix (GLSZM), 
gray level run length matrix (GLRLM), and neighboring 
gray tone difference matrix (NGTDM), were extracted. The 
extraction was performed with voxel normalization, resam-
pling to 2 × 2 × 2 mm and rebinning with a fixed bin width 
of 25 HU. The Chebyshev distance is 1.

Statistical analysis

All statistical analyses were performed in R (R Core Team 
2021) and RStudio (version 1.3.1093) [32].

The statistical analysis was performed in four steps (I to IV):

In the first step (I), concordance correlation coefficient 
(CCC) analysis was used to determine the feature stability 
between test and retest for the original and repositioned 
phantoms. In the CCC analysis, a default of ≥ 0.9 was 
defined as a threshold for feature stability in the test-
rest setting. This threshold was defined in accordance to 
Mcbride et al (2005): “A proposal for strength-of-agree-
ment criteria for Lin’s concordance” [33].
In the second step (II), the feature stability between the 
scans with different mAs values (10 mAs, 50 mAs, and 100 
mAs) was determined by intraclass correlation coefficient 
(ICC) analysis, for which ICC (3,1) (a fixed set of raters, 
no average observations) was used as recommended in lit-
erature [34]. In the ICC analyses performed, in accordance 

with Koo and Li, values below 0.5, between 0.5 and 0.75, 
between 0.75 and 0.9, and above 0.90 were considered sug-
gestive of poor, moderate, good, and excellent stability [35].
In the next step (III), two different stability tests were 
performed: In the inter-phantom group stability test, the 
stability of the radiomics features was compared between 
two different groups (for example, the group of apples and 
onions), while in the intra-phantom group stability test, 
the stability of the individual phantoms within a phantom 
group (for example, between apples 1 and 4) was tested 
using ICC analysis. For this ICC analysis, ICC (3,1) was 
likewise used as explained in step II.
In step IV, a random forest (RF) analysis was performed 
with the Boruta algorithm in R [36] to determine the fea-
ture importance with respect to the discrimination of the 
different phantom groups. For each parameter variable, 
shadow variables are created by permutation by the algo-
rithm. If the real variable is significantly more important 
than the shadow variable, high importance is assigned to 
the feature by the algorithm.

In addition, the feature correlations were calculated by 
Pearson’s correlation coefficients and were visualized in form 
of heatmaps using the “ComplexHeatmap” package in R.

Results

Feature stability analysis

Test–retest stability and reposition stability (I)

In the CCC analysis performed (I), 73 features (70% of the 
extracted features) with excellent stability (CCC value > 0.9) 
could be identified in the comparison between the test and 
retest scan (Supplementary Table 1). For non-shape features, 

Fig. 2   Example segmentation of 
each phantom group
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66% of the features still showed excellent stability. All of 
the extracted shape features showed excellent stability. 
Percentage-wise, there were more stable first-order features 
than second-order features: 14 of the 18 extracted first-order 
features (78%) showed excellent stability with a CCC value 
above 0.9 while 46 of the 73 extracted second-order features 
(63%) showed excellent test–retest stability.

In comparison between the original test and the first 
reposition scan, 68 features showed a CCC value above 0.9 
(65.4%).

Stability with different mAs values (II)

The ICC analysis in the next evaluation step (II) of the test 
scans with different mAs values resulted in 78 (75%) fea-
tures with excellent stability.

Inter‑phantom group stability (III)

The phantom group is defined by the four fruit/vegetable 
categories. To analyze the feature stability between the dif-
ferent phantom groups, all apples, onions, kiwis, and limes 
respectively were included in one group each. To compare 
the group of, e.g., apples against the group of, e.g., onions, 
an inter-phantom group stability test was performed. In step 
(III), the comparison of radiomics stability of individual 
phantoms within a phantom group resulted in a total of 8 
features with an ICC value > 0.75 across at least 3 of the 
total 4 phantom groups: original_firstorder_90Percentile, 
original_firstorder_Median, original_firstorder_Robust-
MeanAbsoluteDeviation, original_glcm_Correlation, 
original_glszm_GrayLevelNonUniformityNormalized, orig-
inal_glszm_SizeZoneNonUniformity, original_glszm_Zone-
Percentage, and original_ngtdm_Contrast (see Table 1). The 
results of the ICC analysis are presented in Fig. 3.

Intra‑phantom group stability analysis

To investigate the comparative stability of radiomics features 
within each phantom group, ICC values were compared 

(Fig. 3). For the intra-phantom group stability analysis, the 
phantom group was defined by the fruit/vegetable category, 
meaning one group consisted, for example, of four apples. 
For apple and onion phantoms, two features reached an ICC 
value of above 0.9. For the kiwi and lime phantom, this 
value was reached in 29 and 19 features, respectively.

Table 2 offers an overview of the distribution of stable 
features by test type and by category.

Feature selection

Feature importance (IV)

The performed Boruta random forest analysis (step IV) 
revealed that 88 of the 104 extracted radiomics features 
(84.6%) were important for the discrimination between dif-
ferent phantom types. The results are shown as a Boruta 
plot in Fig. 4.

Cluster analysis

The created phantom selective heatmap with all extracted 
radiomics features is shown in Fig. 5. The different phantom 
groups can be visually distinguished as individual clusters. 
Figure 6 shows a heatmap with the features determined in 
the ICC analyses (step III) that are stable over at least 3 
phantom groups.

Discussion

In this study, we demonstrated that the vast majority of the 
extracted radiomics features (70% of the parameters) have 
excellent test–retest stability on scans in the novel photon-
counting CT. Several shape-based features and first-order 
features show a CCC value of > 0.999. DependenceNonU-
niformity, as a measurement of the similarity of depend-
ence throughout the image, is the non-shape-based feature 
with the highest CCC value (0.99929).

Table 1   Stable features defined 
as ICC > 0.75 (analysis of the 
radiomics stability between 
the individual phantoms of a 
phantom group) in at least 3 
phantom groups

Feature Apple Kiwi Lime Onion

original_firstorder_90Percentile 0.44 0.936 0.81 0.995
original_firstorder_Median 0.167 0.92 0.99 0.9636
original_firstorder_RobustMeanAbsoluteDeviation 0.767 0.92 0.897  < 0.001
original_glcm_Correlation 0.8 0.92 0.932 0.529
original_glszm_GrayLevelNonUniformityNormalized 0.83 0.9 0.77 0.22
original_glszm_SizeZoneNonUniformity 0.86 0.9 0.92 0.322
original_glszm_ZonePercentage 0.79 0.88 0.781 0.1535
original_ngtdm_Contrast 0.79 0.95 0.83 0.376
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In step III, 8 features could be identified, which were 
stable in 3 of 4 phantom groups, respectively (see Table 1). 
It shows that the selected first-order features in apples do 
not seem to be stable (possibly due to a larger individual 
deviation of shape and size within the apple group com-
pared to the other phantom groups) as well as instabil-
ity of all selected second-order features in onions. This 
may be explained by the multilayer structure of the onions 
with air between the individual layers, which could lead 
to larger differences in the calculation of the non-shape 
features. Given the varying feature stability measured as 
ICC between the phantom groups, an inherent phantom-
related heterogeneity cannot be fully ruled out. Therefore, 
the overall feature stability may be underestimated.

To date, radiomics analysis has not yet been established 
in daily clinical practice due to the lack of comparability. In 
the past, multiple studies showed the influence of variable 
parameters on radiomics texture analysis. Zhao et al investi-
gated the influence of different slice thicknesses on radiom-
ics features using a chest phantom. In comparison to 5-mm 
slice thickness, 1.25- and 2.5-mm slice thicknesses were 

better suitable for homogeneity, volume, density means, and 
density SD gray level co-occurrence matrix (GLCM) energy. 
Additionally, the influence of different reconstruction algo-
rithms on radiomics features was analyzed, outlining the 
standard reconstruction algorithms being best for density 
SD, whereas the lung reconstruction algorithms for density 
to mean, respectively [37].

In a phantom study by Jensen et al, radiomics features 
differed between ROI sizes and volume in both MRI and 
CT even though a homogenous phantom without any tex-
ture differences was used. Comparing both techniques, CT 
features were more stable than MRI features when tested for 
significance with the Mann–Whitney U test. On the other 
hand, OCCCs show excellent (> 0.90) agreement for dif-
ferent MR-derived features, but not for CT-derived features 
[38]. Mackin et al investigated the influence of sixteen differ-
ent CT scanners, produced by four different manufacturers, 
and different acquisition parameters on a CT phantom in 
2018. They outlined a changeability of radiomics features 
between the different scanners, suggesting that the compa-
rability of radiomics studies depends on the consistency of 

Fig. 3   ICC analysis between the individual phantoms of a phantom group

Table 2   Distribution of stable 
features by test type (test–retest 
stability, reposition stability, 
and mAs stability) and by 
feature category (shape features, 
first-order features, and second-
order features)

Stable shape features 
in %

Stable first-order features 
in %

Stable second-
order features 
in %

Test–retest stability (CCC) 100 77.8 63
Reposition stability (CCC) 85 66.7 61.6
mAs stability (ICC) 100 94.4 65.8
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image acquisition and reconstruction. Additionally, Mackin 
et al compared the radiomics features of a phantom with 
radiomics features derived from non-small cell lung cancer 
(NSCLC) tumors and proved comparability of variability in 
radiomics features between both groups [39].

Recently, Dunning et al scanned different organic sam-
ples (zucchini, onions, and oranges) on photon-counting 
detector CT (PCD-CT) and energy-integrating detector 
CT (EID-CT) at two dose levels. They calculated fourteen 
relevant radiomics features in each image for each sample 
and compared those between both scanners. Their results 
outlined a notable change by at least 50% of 13 out of 14 
radiomics features at both dose levels by improved resolu-
tion of PCD-CT. Additionally, the higher Dunn Index of 
radiomics features derived from PCD-CT indicates better 
cluster separation for classification (Dunn Index 1.99 and 
1.80 for PCD-CT and EID-CT respectively at 10 mGy and 
2.44 (PCD-CT) and 1.65 (EID-CT) at 60 mGy), indicating 
an impact of high-resolution PCD-CT on radiomics analy-
sis [30]. Our study goes one step further and outlines that 
this potential impact of high-resolution PCCT on radiomics 

analysis offers excellent test–retest stability on an organic 
phantom. In comparison, Peng et al detected stability of 
radiomics features in a test–retest setting between differ-
ent time points on different conventional EID-CT in only 
20.93% (CCC 0.56 ± 0.31) using an anthropomorphic thorax 
phantom consisting of three parts: body model, the inter-
nal structure of the lung, and simulated nodules. In further 
investigation steps, they compared the stability on different 
CT scanners and with varying image acquisition and recon-
struction parameters including pitch, rotation time, tube 
voltage, tube current, FOV, slice thickness, reconstruction 
kernel, and iteration level. The tube current (mA/s) showed 
an ICC of 0.54 ± 0.32 (34.29%) [40]. Another study recently 
compared feature properties of non-scarred left ventricu-
lar myocardium between EICT and PCCT scanners. While 
mean and standard deviation derived from first-order fea-
tures were mostly comparable between both detector types, 
higher-order features showed marked differences in mean 
and standard deviation, outlining the potential influence of 
the PCD through higher spatial resolution, better signal-to-
noise ratio, and better detection of lower-energy photons 
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Fig. 4   Output of the random forest feature selection ranked by importance using the Boruta algorithm
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Fig. 5   Split by phantom group 
heatmap of all radiomics 
parameters

Fig. 6   Inter-phantom stable 
features heatmap (ICC > 0.75)
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on texture analysis [29]. In comparison to our study, this 
study did not focus on test–retest variability and not on intra-
scanner comparability of radiomics features.

Varghese et al evaluated the reproducibility and robust-
ness of computed tomography–based texture analysis met-
rics in 2021 using CT images of a customized 3D-printed 
texture phantom consisting of six different texture pat-
terns. The 3D phantom was scanned on four CT scanners 
of different manufacturers to assess reproducibility. For 
robustness assessment, varying CT imaging parameters 
were used (slice thickness, field of view, tube voltage, and 
tube current). In total, 23.2% of the features showed excel-
lent robustness and reproducibility (ICC ≥ 0.9) [41]. Even 
though our study shows better reproducibility, we used 
only one scanner and one varying image parameter (tube 
current), so further investigations on PCCT must follow.

The fact that the benefits of the novel technology of PCCT 
have already found their way into the clinical routine is already 
shown by a proof-of-concept study demonstrating that the spec-
tral information in PCCT data sets can be used to help to detect 
and quantify anemia on contrast-enhanced scans [42] as well 
as preliminary studies outlining potential imaging biomarkers 
for arteriosclerosis in periaortic adipose tissue [12] and diffuse 
myocardial damage through coronary artery calcifications [13].

Our study also has several limitations. As a single-center 
study, no comparison of features between two different PCCT 
scanners was possible. Additionally, no analysis regarding 
feature stability between different types of scanners was 
obtained. Both issues should be addressed in further studies 
in the future to show a possible more stable feature analysis 
on PCCT in comparison to conventional EID-CT.

In conclusion, this study outlines the high stability of 
a large proportion of radiomics features using PCCT in a 
phantom model. In the past, radiomics analysis was ham-
pered by the lack of comparability, which may be overcome 
by PCCT technology and therefore foster the implementa-
tion of a more stable radiomics analysis in clinical routine.
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