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Fetal MRI radiomics: non-invasive and reproducible quantification
of human lung maturity
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Abstract
Objectives To assess the reproducibility of radiomics features extracted from the developing lung in repeated in-vivo fetal MRI
acquisitions.
Methods In-vivo MRI (1.5 Tesla) scans of 30 fetuses, each including two axial and one coronal T2-weighted sequences of the
whole lung with all other acquisition parameters kept constant, were retrospectively identified. Manual segmentation of the lungs
was performed using ITK-Snap. One hundred radiomics features were extracted from fetal lung MRI data using Pyradiomics,
resulting in 90 datasets. Intra-class correlation coefficients (ICC) of radiomics features were calculated between baseline and
repeat axial acquisitions and between baseline axial and coronal acquisitions.
Results MRI data of 30 fetuses (12 [40%] females, 18 [60%] males) at a median gestational age of 24 + 5 gestational weeks plus
days (GW) (interquartile range [IQR] 3 + 3 GW, range 21 + 1 to 32 + 6 GW) were included. Median ICC of radiomics features
between baseline and repeat axial MR acquisitions was 0.92 (IQR 0.13, range 0.33 to 1), with 60 features exhibiting excellent
(ICC > 0.9), 27 good (> 0.75–0.9), twelve moderate (0.5–0.75), and one poor (ICC < 0.5) reproducibility. Median ICC of
radiomics features between baseline axial and coronal MR acquisitions was 0.79 (IQR 0.15, range 0.2 to 1), with 20 features
exhibiting excellent, 47 good, 29 moderate, and four poor reproducibility.
Conclusion Standardized in-vivo fetal MRI allows reproducible extraction of lung radiomics features. In the future, radiomics
analysis may improve diagnostic and prognostic yield of fetal MRI in normal and pathologic lung development.
Key Points
• Non-invasive fetal MRI acquired using a standardized protocol allows reproducible extraction of radiomics features from the
developing lung for objective tissue characterization.

• Alteration of imaging plane between fetal MRI acquisitions has a negative impact on lung radiomics feature reproducibility.
• Fetal MRI radiomics features reflecting the microstructure and shape of the fetal lung could complement observed-to-expected
lung volume in the prediction of postnatal outcome and optimal treatment of fetuses with abnormal lung development in the
future.
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Abbreviations
GLCM Grey Level Co-occurrence Matrix
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Introduction

Radiomics describes an image analysis process, where a large
number of quantitative features are extracted from image data
using predefined statistical operations [1]. The aim of
radiomics is to identify visually imperceptible image features
that characterize a specific tissue or predict a certain outcome,
thereby maximizing the extraction of potentially useful infor-
mation from medical images [2]. While this concept has thus
far primarily been applied to oncologic imaging to improve
outcome prediction [3, 4], recently it is increasingly used in
non-oncologic imaging, including in-vivo fetal imaging of the
developing lung [5].

Fetal MRI plays a major role in the assessment of cases
with sonographically suspected abnormalities of lung de-
velopment [6]. It helps guide the managing team and par-
ents in optimizing peri- and postnatal treatment planning,
which may include intubation and/or extracorporeal mem-
brane oxygenation [7]. While conventional visual assess-
ment of fetal MRI requires considerable expertise and
years of experience, fetal MRI data is well-suited for
radiomics analysis owing to the fact that image acquisition
is performed in a standardized fashion according to inter-
nationally accepted ISUOG Practice Guidelines [8].
Objective quantitative image analysis using radiomics in
addition to subjective visual interpretation of fetal MRI
findings has the potential to improve tissue characteriza-
tion, and accuracy of outcome prediction in cases with
abnormal lung development. In the future, fetal MRI
radiomics features correlating with postnatal clinical pa-
rameters, such as the need for mechanical ventilation or
extra-corporeal membrane oxygenation, could help guide
clinicians and parents with regard to optimal postnatal
treatment planning. Additionally, fetal MRI radiomics
may facilitate access to state-of-the art diagnostics in
places with limited resources or expertise.

However, some radiomics features have been shown to be
affected by alterations in image acquisition parameters, and
repeated acquisitions [9, 10]. Preceding its targeted ap-
plication in the imaging assessment of developmental
lung diseases (for instance pulmonary hypoplasia due to
premature rupture of membranes, congenital diaphrag-
matic hernia, etc.), radiomics feature reproducibility ana-
lysis is an essential prerequisite [2]. Currently, there is a
lack of evidence regarding the robustness of quantitative
radiomics features, particularly of the lung, extracted
from fetal MRI data against repeated image acquisition.
Therefore, this study was performed to assess the repro-
ducibility of one hundred first- and second-order
radiomics features extracted from the fetal lung in repeat-
ed in vivo MRI acquisitions using the open-source pack-
age Pyradiomics [11], which has been widely used in lung
imaging and beyond.

Methods

This retrospective study was approved by the institutional
review board of the Medical University of Vienna, and the
need for informed consent was waived.

Patients

In accordance with previous test-retest studies assessing the
robustness of radiomics features in repeated MRI examina-
tions [10, 12, 13], thirty cases were retrospectively included.
Fetuses with normal and fetuses with pathologic lung devel-
opment were included in this radiomics feature reproducibility
study. The hospital image database containing clinically indi-
cated routine fetal MRI scans was searched for examinations
that included repeated axial and coronal T2-weigthed se-
quences of the fetal lung between January 2016 and
February 2022. Cases were excluded for lack of ultrasound-
based gestational age, presence of MR artefacts, such as fetal
or maternal motion, incomplete representation of the lungs, or
if the lung was visible on less than 5 images in any image
stack. Gestational age calculated based on ultrasound exami-
nation was recorded and is given in weeks plus days post
menstruation.

Fetal MRI

All fetal MRI data were acquired for clinical routine purposes
using one 1.5-T scanner (Ingenia, Philips Healthcare) and a
body coil. Indications for fetal MRI consisted of
sonographically suspected organ malformations, such as
ventriculomegaly, macrocephaly, or focal lung lesion, and
sonographically unclear situations due to oligo- or
anhydramnios. Repeated T2-weighted MRI acquisitions of
the fetal lungs were routinely obtained in order to ensure
artifact-free image data for lung volumetry, and—if found to
be present—to allow confirmation of pulmonary hypoplasia
based on the second acquisition, according to the clinical re-
ferral. In each case, two axial and one coronal acquisition of a
standardized T2-weighted sequence were acquired using the
following parameters: field of view 200 to 300 mm, slice
thickness 3 to 4 mm (thinner slices used in early gestation),
gap 0.3 to 0.4 mm, 256 x 256 matrix, shortest repetition time
(7536.2 to 31,575 msec), echo time 100 ms, and flip angle
90°. No sedation or contrast was administered, and specific
absorption rate levels exceeded 2W/kg bodyweight in none of
the fetal MRI scans. Acquisition times of each sequence, times
between the start points of baseline and repeat axial, and base-
line axial and coronal MR acquisitions were recorded. In eight
fetuses, two coronal T2-weighted acquisitions were available,
and a subgroup analysis to assess radiomics feature reproduc-
ibility in repeated coronal acquisitions was performed.
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Radiomics

Following image data anonymization and export from the in-
stitute’s PACS (Dedalus HealthCare), manual segmentation of
the lungs was performed on all 30 baseline axial, 30 repeat
axial, and 30 coronal image stacks using open-source software
ITK-Snap [14]. Lung segmentation included abnormal lung
areas in cases with pathologic lung development and was per-
formed by one radiologist with five years of experience in fetal
MRI (F.P.). Lung segmentation masks and MRI images were
exported as nifti-files, and radiomics features were extracted
using the open-source Python package pyradiomics running
under Python 3.7.1 [11]. Image normalization was enabled by
setting the normalize parameter to 'true' and the normalizeScale
parameter to 100. To prevent grey values below the mean from
becoming negative when normalising, the voxelArrayShift pa-
rameter was set to 300 (3 SDs x 100), so that only outlier values
> 3 SDs below the mean would remain negative. Images were
discretized, as needed, with the binWidth parameter set to 5. For
resampling, the interpolator was defined as ‘sitkBSpline’, and
the resampledPixelSpacing parameter was set to '[2,2,2]'.
Radiomics features from the following feature classes were
included: First Order (n = 18), 3D Shape (n = 14), Grey
Level Co-occurrence Matrix (GLCM, n = 22), Grey Level
Size Zone Matrix (GLSZM, n = 16), Grey Level Run Length
Matrix (GLRLM, n = 16), and Grey Level Dependence Matrix
(GLDM, n = 14). A complete list of radiomics features is given
in the supplementary material. In total, ninety radiomics feature
value sets were extracted from 30 baseline axial, 30 repeat axial,
and 30 coronal MR acquisitions. Figure 1 shows the radiomics
feature extraction process.

Statistical evaluation

Statistical analysis was conducted using R version 4.0.5 (R
Core Team). Intra-class correlation coefficients (ICC) were
calculated to assess radiomics feature reproducibility extract-
ed from repeated fetal MR acquisitions using the psych R
package (version 2.1.9). The two-way mixed effects model
(ICC3) and single-rater unit were applied. This was perform-
ed, firstly, between baseline and repeat axial fetal MRI acqui-
sitions, and, secondly, between baseline and repeat axial and
coronal acquisition. Radiomics feature reproducibility was
considered excellent for ICCs > 0.9, good for > 0.75 to 0.9,
moderate for 0.5 to 0.75, and poor for < 0.5 [15].

Results

MRI data of 12 (40%) female and 18 (60%) male fetuses,
acquired at a median gestational age of 24 + 5 gestation weeks
(GW) (IQR 3 + 3 GW, range 21 + 1 to 32 + 6 GW) were
included in this study. Pulmonary development was unre-
markable in 21 of 30 (70%), eight of 30 (26.7%%) had pul-
monary hypoplasia due to oligo- or anhydramnios, and one of
30 (3.3%) had a focal lung lesion (see the Supplementary
Material for a complete list of fetal pathologies). Figure 2
provides an example of abnormal lung development affecting
the microstructure of the fetal lung. Meanmaternal age was 29
years (IQR 7.4 years, range 17.7 to 42.3 years). Median ac-
quisition times of the initial axial, repeat axial, and coronal T2-
weighted sequences were 1.3 min (IQR 0.7 min, range 0.7 to
2.5 min), 1.4 min (IQR 0.8 min, range 0.6 to 2.3 min), and

Fig. 1 Graphical summary
illustrating the segmentation and
feature extraction process: A
baseline axial T2-weighted
sequence of the fetal lungs was
acquired, and the lung manually
segmented on all images. Three-
dimensional lung masks were
used to extract radiomics features
from fetal MRI image data (top
row, shown in green). This
process was repeated in a repeat
axial acquisition (middle row,
shown in red), and a coronal
acquisition (bottom row, shown
in purple). Lung radiomics
features extracted from the
baseline axial acquisition (shown
in green) were compared to
features extracted from the repeat
axial (shown in red) and coronal
(shown in purple) acquisitions to
assess their reproducibility
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1.3 min (IQR 0.3 min, range 0.5 to 2.8 min), respectively. The
median time intervals between baseline and repeat axial, and
baseline axial and coronal acquisitions were 4 min (IQR 5.8
min, range 0.7 to 24.2 min) and 4.8 min (IQR 4.5 min range
0.9 to 22.6 min), respectively.

For radiomics features extracted from baseline and repeat
axial T2-weighted sequences, the median ICC was 0.92 (IQR
0.13, range 0.33 to 1) (Fig. 3). Reproducibility of the 100
analyzed radiomics features in baseline and repeat axial MR
acquisitions was excellent in 60 (60%), good in 27 (27%),
moderate in 12 (12%), and poor in 1 (1%) (Fig. 4).

For radiomics features extracted from baseline axial and
coronal T2-weighted sequences, the median ICC was 0.79
(IQR 0.15, range 0.2 to 1) (Fig. 3). Radiomics feature repro-
ducibility between baseline axial and coronal MR acquisition
was found to be excellent in 20 (20%), good in 47 (47%),
moderate in 29 (29%), and poor in 4 (4%) (Fig. 4). The ten
best reproducible radiomics features between baseline and
repeat axial and baseline axial and coronal acquisitions are
given in Table 1. Table 2 shows radiomics features with ex-
cellent reproducibility between both baseline and repeat axial,
and baseline axial and coronal acquisitions.

The median segmented lung volumes (shape feature
MeshVolume) were 24.97 mL (IQR 17.01 mL) for baseline
axial, 24.15 mL (IQR 18.23 mL) for repeat axial, and 23.95
mL (IQR 19.49 mL) for the coronal acquisitions.
MeshVolume showed a high reproducibility between baseline
and repeat axial (ICC 0.996), and baseline axial and coronal
(ICC 0.99) MRI acquisitions. A complete list of radiomics
feature ICCs is provided in the Supplementary Material.

The subgroup analysis of lung radiomics feature reproduc-
ibility in repeated coronal T2-weighted acquisitions in 8 of 30

(26.7%) fetuses showed similar feature ICCs compared
to repeated axial acquisitions (see Supplementary
Figures 1 and 2).

Discussion

In this study, radiomics feature reproducibility in repeatedly
acquired in-vivo fetal MRI was assessed. Excellent reproduc-
ibility of a majority of radiomics features extracted from the
developing lungs in a transparent process was demonstrated if
image acquisition parameters remained constant. Alteration of
imaging planes in repeated acquisitions had a negative impact
on radiomics feature reproducibility, decreasing the pool of
highly reproducible features. These results validate the use
of radiomics, i.e. visually not appreciable yet potentially clin-
ically relevant quantitative image features, in fetal MRI of the
lung. Combining visual and quantitative radiomics-based as-
sessment of the developing lung has the potential to advance
fetal MRI by increasing the amount of relevant information
that can be extracted from routinely acquired image data
[16, 17].

Fetal MRI is an elegant tool for the evaluation of fetal lung
development, as—using T2-weighted sequences—it provides
insights into the microstructural expansion of fetal future air-
spaces reflected by an increase in lung signal intensity [18].
However, the possibility for diagnostic exploitation of this
phenomenon remains limited, as lung signal intensities show
a wide variation at a given gestational stage, and are influ-
enced by a variety of technical factors, such as field strength,
fetal and coil position, number and position of coil elements,
B = 0 inhomogeneities, maternal habitus, and others. Due to

Fig. 2 Coronal T2-weighted fetal MR images (a–d) of two fetuses with
premature rupture of membranes and subsequent anhydramnios and
pulmonary hypoplasia (a, c) at gestation weeks 23 (a) and 32 (c), and
of two fetuses with normal lung development (b, d) at gestation weeks 23
(b) and 32 (d). Fetuses with premature rupture of membranes,
anhydramnios and pulmonary hypoplasia exhibit hypointense lung

tissue (a, c) compared to the lung tissue of normal controls at the same
gestational age (b, d). Radiomics analysis can quantify deviations in
shape and microstructural tissue qualities and may in the future
complement lung volume to improve prenatal assessment of lung
development
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this lack of robustness, the evaluation of microstructural lung
tissue properties using signal intensity quantification by MRI
was never systematically introduced into clinical practice.
Despite its initial scientific assessment in 2004 by Osada
et al [19], and vast experiences by different groups with var-
iable success [7, 18, 20–27] (see Table 3), this approach never
reached the capabilities ofMR-based fetal lung volumetry and
the parameter of observed-to expected lung volumes in the
detection and prognostic assessment of pulmonary hypoplasia
[28]. However, complementing lung size and growth by
tissue-specific markers reflecting lung maturity is still a plau-
sible and promising line of research to improve diagnostic
specificity and prognostic accuracy in these cases.

Fetal MRI provides standardizable three-dimensional im-
age data acquisition of the lung and different tissue contrasts
(e.g. T1, T2, diffusion-weighted images, echoplanar imaging,
etc.), making it well-suited for radiomics analysis.
Furthermore, fetal MRI is highly useful even in cases with
oligo- or anhydramnios where ultrasound assessment is diffi-
cult but lung changes can be expected. For these reasons, fetal
MRI radiomics has the potential to provide useful quantitative
features for tissue characterization, as previously shown in the
fetal brain: Sanz-Cortés et al extracted texture features from
brain MRI in GW 37 of fetuses with adequate versus delayed
growth and developed a regression model to distinguish these
groups with an accuracy of more than 90% [29]. The same
group went on to show that fetal MRI brain texture features
could identify small for gestational age fetuses with impaired
neonatal behaviour [30]. Radiomics analysis of the fetal lung
based on ultrasound was first explored in 1985 by Cayea et al,
who failed to show an association between texture features
and tissue maturity [31]. Since then, Palacio’s group showed
non-invasive prediction of lung maturity, and neonatal respi-
ratory distress based on ultrasound radiomics analysis delivers
comparable accuracy to amniocentesis [32–34].

In order to ensure the safe and meaningful application of
radiomics, radiomics features must be robust against technical
parameters in order to reflect (patho-) physiological tissue char-
acteristics rather than factors associated with image acquisition.
Therefore, a radiomics feature reproducibility analysis, such as a
test-retest experiment is required by the Radiomics Quality
Score, which was proposed by Lambin et al as a benchmark
for high-quality radiomics research [2]. Despite the crit-
ical importance of radiomics feature reproducibility
analyses, there is a paucity of evidence in fetal imaging.

�Fig. 3 Intra-class correlation coefficients for all 100 extracted radiomics
features between baseline and repeat axial acquisitions (red line), and
between baseline axial and coronal acquisitions (blue line). CI
confidence interval, GLCM Grey Level Co-occurrence Matrix, GLDM
Grey Level Dependence Matrix, GLRLM Grey Level Run Length
Matrix, GLSZM Grey Level Size Zone Matrix, ICC Intra-class
correlation coefficient
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One study by Perez-Moreno et al found that gray-level co-
occurrence matrix, local binary patterns, and rotation-
invariant local phase quantization delivered reproducible
texture features from different lung regions in ultrasound im-
ages [35]. However, fetal ultrasound-based lung radiomics

analysis has thus far been performed based on two-
dimensional image data at the level of the four-chamber view,
in lung tissue that is representative of the whole lung accord-
ing to the examiner’s subjective impression. This approach is
prone to introduce variation due to fetal heart positioning, fetal
body position, imaging depth, and sonographer experience,
among other factors. Furthermore, fetal ultrasound is impaired
by oligo- or anhydramnios, where lung pathology is common.

This study demonstrates the high reproducibility of a ma-
jority of radiomics features extracted from three-dimensional
fetal MRI data of the entire fetal lung. Critically, the presented
results highlight the large proportion of radiomics feature with
excellent reproducibility in repeated acquisitions is larger if
acquisition parameters including imaging plane are kept con-
stant. In the case of imaging plane alteration, particularly the
number of second-order features (GLCM, GLDM, GLRLM,
and GLSZM), which are likely to reflect relevant but visually
not perceptible tissue characteristics, is reduced (37 vs 7
second-order radiomics features with ICC > 0.9). Therefore,
the presented data indicate that—if used in a consistent fash-
ion in a consistent (preferentially axial) imaging plane—
radiomics prove to be the first robust approach to gain insights
into lung maturity and its microstructural tissue properties by
non-invasiveMR imaging. Specifically, radiomics-based ana-
lysis of fetal lung development in fetal MRI may identify
reproducible predictors of postnatal respiratory outcome, such
as the need for mechanical ventilation or extra-corporeal
membrane oxygenation. Thus, fetal MRI lung radiomics
may complement observed-to-expected fetal lung volume in
guiding clinicians and parents with regard to optimal postnatal
management in the future. The demonstrated reproducibility
of fetal MRI lung radiomics features and the potential impact
of this technique on postnatal outcome prediction encourage
the systematic application of fetal MRI radiomics in the as-
sessment of developmental pathologies of the fetal lung.

Fig. 4 Percentages of features showing excellent (intra-class correlation
coefficient > 0.9), good (0.75–0.9), moderate (0.5–0.75), and poor (< 0.5)
reproducibility between baseline and repeat axial acquisitions (left), and
between baseline axial and coronal acquisitions (right). Features are

grouped according to classes, and percentages are illustrated as barplots.
GLCM Grey Level Co-occurrence Matrix, GLDM Grey Level
Dependence Matrix, GLRLM Grey Level Run Length Matrix, GLSZM
Grey Level Size Zone Matrix

Table 1 Top ten reproducible radiomics features

Top 10 Feature name Feature class ICC

Axial vs. axial Energy First order 0.996

TotalEnergy First order 0.996

VoxelVolume Shape 0.996

MeshVolume Shape 0.996

RunLengthNonUniformity GLRLM 0.996

MajorAxisLength Shape 0.994

GrayLevelNonUniformity GLSZM 0.993

DependenceNonUniformity GLDM 0.993

SurfaceArea Shape 0.993

SizeZoneNonUniformity GLSZM 0.992

Axial vs. coronal RunLengthNonUniformity GLRLM 0.995

SurfaceArea Shape 0.995

VoxelVolume Shape 0.991

MeshVolume Shape 0.990

GrayLevelNonUniformity GLSZM 0.990

DependenceNonUniformity GLDM 0.986

SizeZoneNonUniformity GLSZM 0.985

MajorAxisLength Shape 0.983

Maximum3DDiameter Shape 0.978

MinorAxisLength Shape 0.972

Top ten reproducible fetal MRI lung radiomics features according to
intra-class correlation coefficients between baseline and repeat axial,
and between baseline axial and coronal acquisitions. GLCM Grey Level
Co-occurrence Matrix, GLDM Grey Level Dependence Matrix, GLRLM
Grey Level Run Length Matrix, GLSZM Grey Level Size Zone Matrix
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There are several limitations to this study. First, the included
sample size of thirty cases is small but comparable to previous
works investigating radiomics feature reproducibility in test-
retest studies [10, 12, 13]. Second, this study was performed
using the same 1.5-T scanner at a single center, limiting the
generalizability of the presented findings. However, in most fetal
imaging centers, one scanner is reserved and optimized for fetal

MRI. Third, the impact of motion artefacts on radiomics feature
reproducibility was not assessed as respective cases were exclud-
ed. Future studies to evaluate the impact of motion, including
post-processing techniques for artifact reduction, on radiomics
feature reproducibility are needed. Fourth, this study only
assessed radiomics features extracted from T2-weighted images
- which have so far been shown to be the most promising in the

Table 2 Radiomics features with
excellent reproducibility Feature class Feature name ICC axial vs. axial ICC axial vs. coronal

Shape VoxelVolume 0.996 0.991

MeshVolume 0.996 0.990

MajorAxisLength 0.994 0.983

SurfaceArea 0.993 0.995

Maximum3DDiameter 0.985 0.978

MinorAxisLength 0.981 0.972

Maximum2DDiameterRow 0.981 0.921

Maximum2DDiameterSlice 0.976 0.956

Maximum2DDiameterColumn 0.969 0.926

LeastAxisLength 0.964 0.955

SurfaceVolumeRatio 0.957 0.918

First order Energy 0.996 0.957

TotalEnergy 0.996 0.957

GLCM ClusterShade 0.966 0.943

GLRLM RunLengthNonUniformity 0.996 0.995

GrayLevelNonUniformity 0.984 0.932

GLSZM GrayLevelNonUniformity 0.993 0.990

SizeZoneNonUniformity 0.992 0.985

GLDM DependenceNonUniformity 0.993 0.986

GrayLevelNonUniformity 0.983 0.923

Fetal MRI lung radiomics features with excellent reproducibility (intra-class correlation coefficient > 0.9) both
between baseline and repeat axial acquisitions and between baseline axial and coronal acquisitions. GLCM Grey
Level Co-occurrence Matrix, GLDM Grey Level Dependence Matrix, GLRLM Grey Level Run Length Matrix,
GLSZM Grey Level Size Zone Matrix, ICC intra-class correlation coefficient

Table 3 Previous studies assessing lung signal intensity ratios

Group Quantitative parameter Research goal Cases Success

Keller et al [20] Lung-to-liver, lung-to-amniotic fluid,
lung-to-muscle SIRs

Distinguish between normal and impaired
lung development

n = 35 No

Brewerton et al [21] Lung-to-liver SIR Detect pulmonary hypoplasia after 25
gestational weeks

n = 141 Yes

Oka et al [22] Lung-to-liver SIR Predict postnatal respiratory insufficiency n = 110 Yes

Moshiri et al [23],
Ogawa et al [24]

Lung-to-liver SIR Demonstrate association with gestational age n = 82, n = 81 Yes

Mills et al [25] Lung-to-liver, lung-to-spleen,
lung-to-muscle SIRs

Demonstrate association with gestational age n = 335 Yes

Matsushita et al [26],
Balassy et al [18]

Lung-to-liver SIR Predict survival in congenital diaphragmatic
hernia cases

n = 15, n = 25 No

Yamoto et al [27],
Dutemeyer et al [7]

Lung-to-liver SIR Predict survival in congenital diaphragmatic
hernia cases

n = 33, n = 125 Yes

Previous fetal MRI studies investigating the use of signal intensity ratios for quantitative assessment of lung development. SIR signal intensity ratio
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assessment of fetal lung growth. Finally, human segmentation of
fetal lungs may have introduced variability. However, the pre-
sented results show high ICCs between segmented lung volumes
for repeated acquisitions, which is likely due to the clarity of lung
visualization on fetal MRI. Previous studies confirm lung seg-
mentation can be performed reliably, even in severe pulmonary
hypoplasia [36, 37].

In conclusion, this study demonstrates a high reproducibility
of a majority of radiomics features extracted from the fetal lung
in repeated standardized MR acquisitions using a transparent
process. This provides validation for the safe and meaningful
use of radiomics in fetal MRI of normal and pathologic lung
development. Caution is warranted if different imaging planes
are used, as the pool of highly reproducible potential image
biomarkers decreases. Thus, provided standardized (preferen-
tially axial) image acquisition is performed, fetal MRI
radiomics has the potential to increase the diagnostic and prog-
nostic yield of fetal MRI of the developing lung in the future.
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