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Predicting pathological complete response of neoadjuvant
radiotherapy and targeted therapy for soft tissue sarcoma
by whole-tumor texture analysis of multisequence MRI imaging
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Abstract
Objectives To construct effective prediction models for neoadjuvant radiotherapy (RT) and targeted therapy based on whole-
tumor texture analysis of multisequence MRI for soft tissue sarcoma (STS) patients.
Methods Thirty patients with STS of the extremities or trunk from a prospective phase II trial were enrolled for this analysis. All
patients underwent pre- and post-neoadjuvant RT MRI examinations from which whole-tumor texture features were extracted,
including T1-weighted with fat saturation and contrast enhancement (T1FSGd), T2-weighted with fat saturation (T2FS), and
diffusion-weighted imaging (DWI) sequences and their corresponding apparent diffusion coefficient (ADC) maps. According to
the postoperative pathological results, the patients were divided into pathological complete response (pCR) and non-pCR (N-pCR)
groups. pCR was defined as less than 5% of residual tumor cells by postoperative pathology. Delta features were defined as the
percentage change in a texture feature from pre- to post-neoadjuvant RT MRI. After data reduction and feature selection, logistic
regression was used to build prediction models. ROC analysis was performed to assess the diagnostic performance.
Results Five of 30 patients (16.7%) achieved pCR. The Delta_Model (AUC 0.92) had a better predictive ability than the
Pre_Model (AUC 0.78) and Post_Model (AUC 0.76) and was better than AJCC staging (AUC 0.52) and RECIST 1.1 criteria
(AUC 0.52). The Combined_Model (pre, post, and delta features) had the best predictive performance (AUC 0.95).
Conclusion Whole-tumor texture analysis of multisequence MRI can well predict pCR status after neoadjuvant RT and targeted
therapy in STS patients, with better performance than RECIST 1.1 and AJCC staging.
Key points
• MRI multisequence texture analysis could predict the efficacy of neoadjuvant RT and targeted therapy for STS patients.
• Texture features showed incremental value beyond routine clinical factors.
• The Combined_Model with features at multiple time points showed the best performance.
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Abbreviations
ADC Apparent diffusion coefficient
AJCC American Joint Committee on Cancer
AUC Area under the receiver operating

characteristic curve
CI Confidence interval
CNN Convolutional neural network
DCA Decision curve analysis
DWI Diffusion-weighted imaging
FNCLCC French Federation of Cancer Centers

Sarcoma Group
GLCM Gray level co-occurrence matrix
GLDM Gray level dependence matrix
GLRLM Gray level run length matrix
GLSZM Gray level size zone matrix
ICC Intraclass correlation coefficient
MDT Multidisciplinary treatment
MRI Magnetic resonance imaging
N-pCR Non-pathological complete response
OR Odds ratio
PCC Pearson correlation coefficient
pCR Pathological complete response
RECIST Response Evaluation Criteria in Solid Tumors
ROC Receiver operating characteristic
RT Radiotherapy
STS Soft tissue sarcoma
T1FSGd T1-weighted with fat saturation and contrast

enhancement
T2FS T2-weighted with fat saturation

Introduction

Soft tissue sarcoma (STS) is a relatively rare malignant tumor
of mesenchymal origin, accounting for 1% of all malignant
tumors [1]. In the modern era, limb-conserving wide resection
in combination with neoadjuvant or adjuvant radiotherapy
(RT) is the preferred treatment for nonmetastatic STS, with
similar survival results as amputation but much better quality
of life. With the results from the SR-2 randomized controlled
trial, neoadjuvant RT is becoming the mainstream treatment
modality due to lower radiation doses, smaller target volumes,
and less irreversible late toxicities. However, the efficacy of
preoperative RT alone is usually not satisfactory, with the vas-
cular tortuosity and high proliferation commonly seen in STS as
the main reasons of radiotherapy resistance. As reported, only
approximately 8 to 10% of patients can achieve pathological
complete response (pCR) after neoadjuvant RT [2–7].
Meanwhile, tyrosine kinase inhibitors (TKIs) can select appro-
priate targets, such as vascular endothelial growth factor receptor
(VEGFR), platelet-derived growth factor receptor (PDGFR),

and stem cell factor (SCF) receptor/c-kit, to block tumor-
related signaling pathways, normalize the vascularization, and
improve the oxygenation in tumor [8–10]. Thus, the combina-
tion of RT and targeted therapy could improve the pCR rate to
approximately 20 to 30% [4–6]. It has been shown that patients
who achieve pCR have a better long-term prognosis [11, 12].
Therefore, if the pCR status after neoadjuvant RT with targeted
therapy for STS can be predicted by a noninvasive diagnostic
modality with high accuracy, it will be of great clinical help.

However, the optimal efficacy evaluation criteria for neo-
adjuvant therapy for STS are still unclear. As the most com-
monly adopted clinical evaluation criteria for solid tumors, the
Response Evaluation Criteria in Solid Tumors (RECIST) ver-
sion 1.1 [13] does not perform well for STS, since the volume
changes in STS are not necessarily related to efficacy due to
underlying factors, including necrosis, intratumoral hemor-
rhage, and cystic changes [14–16]. Some studies have
attempted to predict pCR with the AJCC stage at onset, but
they have had little success [17–19]. The recently published
Choi criteria [14, 20–22] provide new perspectives for early
response evaluation by adding the signal or density change of
enhanced scanning; however, it is still inconclusive for STSs
on account of the limited numbers of reports and patients.

Magnetic resonance imaging (MRI) has high tissue resolu-
tion and is recognized as the most accurate modality for STS.
Texture analysis (TA) can extract and calculate the grayscale
changes in pixels or voxels from medical images and analyze
quantitative image features to reflect the deep heterogeneity of
tumor tissue [23]. It has shown certain value in the patholog-
ical grading and prognosis prediction of STS and differentia-
tion of benign andmalignant soft tissue masses [24–28]. From
the perspective of treatment efficacy, some recent studies have
shown good predictive performance [17, 29] in predicting the
efficacy of neoadjuvant RT and/or chemotherapy in STS
through the combination of radiomics features at multiple time
points (delta radiomics).

However, there is no research about the prediction accura-
cy of MRI-based radiomics for patients receiving neoadjuvant
RT and targeted therapy. Therefore, this study aimed to incor-
porate comprehensive MRI sequences to predict the pCR sta-
tus of neoadjuvant RT and TKI in STS.We also compared the
predictive performance of our models with that of the RECIST
1.1 criteria and AJCC stage.

Materials and methods

Patients

Patients were enrolled from a prospective phase II trial investi-
gating the safety and efficacy of neoadjuvant RT and targeted

3985European Radiology  (2023) 33:3984–3994



therapy (a multi-targeted TKI) for STS (*NCT05167994/
ChiCTR2000033377, NCT05235100), with a prospective col-
lection ofMRI images before and after neoadjuvant RT. A total
of 30 patients with STS admitted to the radiotherapy depart-
ment of this research institution from July 2020 to April 2022
were enrolled in this study. The following inclusion criteria
were applied: ① patients were older than 18 years; ② STS
was pathologically proven, with an intermediate to high grade,
maximum tumor size ≥ 5 cm, and deeply located tumor (≥ 2
items met); ③ neoadjuvant RT was required after multidisci-
plinary treatment (MDT) discussion; ④ no regional nodes or
distant metastases were present; and ⑤ MRI was performed
before and after neoadjuvant RT, and the image quality was
good. The exclusion criteria were as follows: ① RT was not
completed as planned; and ② MRI images before and/or after
RT were missing or could not be compared. This study was
performed in accordance with the Declaration of Helsinki, and
informed consent was obtained from all subjects. The treatment
and clinical efficacy assessment are detailed in the
SupplementaryMaterials. The flow diagram of the study cohort
is shown in Fig. 1.

MR techniques

MRI scanning

All patients underwent MRI before and at the end of neo-
adjuvant RT. All MRI examinations were performed on a
3.0-T system (GE Discovery MR 750, General Electric
Medical Systems) with an eight-element phased-array
wrap-around surface coil. Both the field of view and the
matrix matched the location and size of the tumor. The
sequences included T1FSGd, T2FS, diffusion-weighted

imaging (DWI), and their corresponding apparent diffu-
sion coefficient (ADC) maps. The contrast agent used
was gadoterate meglumine (Gd-DOTA), with a dose of
0.1 mmol/kg body weight, intravenously injected at a
flow rate of 2.0 mL/s and then flushed with 20 mL of
normal saline. The delayed images of enhanced scanning
were collected 2 min after the injection of contrast agent.
The details of all sequences are listed in Table S1.

Imaging analysis

Tumor segmentation

The whole tumor was manually delineated slice-by-slice by
two radiologists (with 3 years and 5 years of STS imaging
diagnosis experience) using ITK-SNAP (version 2.2.0,
www.itksnap.org) software and reviewed by an expert
radiologist with 20 years of STS imaging diagnosis
experience who was blinded to the clinical or pathological
information. Regions of interest (ROIs) were delineated on
each sequence independently. The scope of the ROI included
the entire tumor and avoided peritumoral edema.

Feature extraction

First, each MRI scan of each patient was normalized with Z
scores to obtain a standard normal distribution of image inten-
sities. Feature extraction was then performed on images of all
sequences (T1FSGd, T2FS, DWI, ADC) for each patient. Each
image had 107 texture features, including 14 shape features,
25 first-order features, 22 gray level co-occurrence matrix
(GLCM) features, 16 gray level run length matrix (GLRLM)
features, 16 gray level size zone matrix (GLSZM) features,

Fig. 1 Flow diagram of the study
cohort
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and 14 gray level dependence matrix (GLDM) features. All
texture features were obtained from open-source
PyRadiomics (http://www.radiomics.io/pyradiomics.html) as
recommended by IBSI [30]. Delta features were defined as the
percentage change in a texture feature from pre- to post-
neoadjuvant RT MRI. The calculation formula of the delta
texture feature is as follows: Delta texture feature = (XPre −
XPost) / XPre, where XPre is the pre-neoadjuvant RT texture
feature and XPost is the post-neoadjuvant RT texture feature.
The processes of tumor segmentation and feature extraction
are shown in Fig. 2.

Feature selection and model construction

Data reduction and feature selection processes were per-
formed to select the most relevant features for constructing
the models. pCR status was defined as less than 5% of re-
sidual tumor cells by postoperative pathology. First, the
texture features on pre, post, and delta images that were
significantly different between the pCR group and the
non-pCR (N-pCR) group were screened out. Second, the
diagnostic efficacy of the above features was assessed by
correlation tests and the area under the curve (AUC) meth-
od, and texture parameters with a high diagnostic efficacy
and low correlation between groups (r < 0.8) were screened
out. Finally, the statistically significant texture features
were further screened out through logistic regression, and
the Pre_Model , Pos t_Model , De l ta_Model , and

Combined_Model were established. In addition, the predic-
tive ability of AJCC staging and RECIST 1.1 was assessed
to compare the performance of various models.

Statistical analysis

The data were analyzed using R software (version 3.6.1;
http://www.Rproject.org) and MedCalc (ver. 10.3.0.0,
MedCalc software). All data were assessed for a normal
distribution using the Kolmogorov–Smirnov test. The t test
was used to compare the differences between continuous
variables, while the chi-square test or Fisher’s exact test
was used to compare the differences between categorical
variables. p values were corrected for multiple compari-
sons by Bonferroni. The intraclass correlation coefficient
(ICC) was used to investigate interobserver agreement.
The correlation between groups was judged by calculating
the Pearson correlation coefficient, and r > 0.8 indicated a
high correlation. Multivariate binary logistic regression
analysis was conducted with a forward stepwise approach
to select variables and construct models. The Mann–
Whitney U test was used to evaluate the difference in the
RadScore between the pCR group and the N-pCR group for
each model. Receiver operating characteristic (ROC)
curves were applied to evaluate the diagnostic performance.
The Youden index was used to determine the optimal
threshold, and the AUC, sensitivity, specificity, and accu-
racy were calculated. The DeLong method was used to

Fig. 2 Workflow of texture feature analysis. Abbreviations: T1FSGd, T1-
weighted with fat saturation and contrast enhancement; T2FS, T2-
weighted with fat saturation; DWI, diffusion-weighted imaging; ADC,

apparent diffusion coefficient; ICC, intraclass correlation coefficient;
PCC, Pearson correlation coefficient; ROC, receiver operating
characteristic
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compare the AUC values of all models. The Hosmer–
Lemeshow test was used to assess the goodness-of-fit of
the models. Decision curve analysis (DCA) was performed
according to the method of Vickers et al [31]. DCA

explored the benefit of different models by calculating the
net benefit of each decision strategy at each threshold prob-
ability. In this study, a two-sided p value < 0.05 was con-
sidered statistically significant.

Table 1 Clinical, pathological,
and radiological data of the
patients

Characteristic All patients pCR N-pCR p value

Sex

Male 18 (60%) 5 (100%) 13 (52%) 0.066

Female 12 (40%) 0 (0%) 12 (48%)

Age at diagnosis (y) 54 (22, 75) 67 (52, 75) 52 (22, 72) 0.037*

Size 10.71 ± 4.26
(cm)

10.10 ± 2.46
(cm)

10.84 ± 4.57
(cm)

0.731

Location

Upper limb 4 (13.3%) 0 (0%) 4 (16%) 0.373

Lower limb 18 (60%) 3 (60%) 15 (60%)

Trunk 8 (26.7%) 2 (40%) 6 (24%)

T stage

1 3 (10%) 0 (0%) 3 (12%) 0.867

2 9 (30%) 2 (40%) 7 (28%)

3 14 (46.7%) 3 (60%) 11 (44%)

4 4 (13.3%) 0 (0%) 4 (16%)

Grade

GX 3 (10%) 0 (0%) 3 (12%) 0.211

G1 2 (6.6%) 0 (0%) 2 (8%)

G2 14 (46.7%) 2 (40%) 12 (48%)

G3 11 (36.7%) 3 (60%) 8 (32%)

AJCC stage

I 5 (16.7%) 0 (0%) 5 (20%) 0.487

II 0 (0%) 0 (0%) 0 (0%)

III 25 (83.3%) 5 (100%) 20 (80%)

Histology

Liposarcoma/myxoid liposarcoma 11 (36.7%) 2 (40%) 9 (36%) 0.76

Fibrosarcoma/Myxofibrosarcoma 8 (26.7%) 0 (0%) 8 (32%)

Undifferentiated pleomorphic
sarcoma

4 (13.3%) 2 (40%) 2 (8%)

Inflammatory myofibroblastoma 2 (6.6%) 0 (0%) 2 (8%)

Other sarcomas 5 (16.7%) 1 (20%) 4 (16%)

Margin status post-operation

Negative 27 (90%) 5 (100%) 22 (88%) 1.00

Positive 3 (10%) 0 (0%) 3 (12%)

Treatment

Radiotherapy + anlotinib 19 (63.3%) 3 (60%) 16 (64%) 0.978

Radiotherapy + apatinib 8 (26.7%) 2 (40%) 6 (24%)

Radiotherapy 3 (10%) 0 (0%) 3 (12%)

Clinical efficacy as per RECIST 1.1

PR 13 (43.3%) 2 (40%) 11 (44%) 0.889

SD 17 (56.7%) 3 (60%) 14 (56%)

Other sarcomas included pleomorphic rhabdomyosarcoma, round cell sarcoma, epithelioid sarcoma,
myofibroblastoma, and synovial sarcoma. Grading was performed according to the French Federation of
Cancer Centers Sarcoma Group (FNCLCC). AJCC, American Joint Committee on Cancer; RECIST 1.1,
Response Evaluation Criteria in Solid Tumors version 1.1. *p < 0.05
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Results

Patient characteristics

Thirty patients (18 males, 12 females; mean age, 53.0 ± 15.3
years) were included in this study, of which 5 patients (16.7%)
showed pCR on postoperative pathology. All clinical and
pathological data are shown in Table 1.

Feature selection

All parameters showed good interobserver agreement
(ICC > 0.8). Among pre, post, and delta texture fea-
tures, there were 4, 2, and 6 texture features, respective-
ly, which were significantly different between the pCR
and N-pCR groups (p < 0.05). Details of the texture

features are shown in Table 2. Then, the Pearson corre-
lation coefficient was calculated for the above features
in their respective groups. An AUC comparison of the
texture features with r > 0.8 between the two groups
was carried out, and the texture features with lower
AUCs were excluded. There were 3, 2, and 5 pre, post,
and delta texture features, respectively, that met the re-
quirements; see Tables S2–S4 for details.

Model construction

The selected texture features were included in the multivariate
logistic regression analysis, and texture features with p < 0.05
were excluded. The final texture feature of pre was
Pre_T2_original_shape_Flatness, the texture feature of post
was Post_T1_original_shape_Flatness, and the texture

Table 2 Remaining features after the significant difference test

Texture feature pCR N-pCR p value AUC (95%CI)

Pre_T2_original_glrlm_GrayLevelVariance 15.28 ± 5.33 25.70 ± 14.22 0.012* 0.728 (0.536~0.920)

Pre_T2_original_shape_Flatness 0.57 ± 0.20 0.44 ± 0.10 0.023* 0.776 (0.410~1)

Pre_T2_original_firstorder_Range 954.48 (862.21, 1029.47) 1153.75 (1085.38, 1506.50) 0.024* 0.824 (0.674~0.974)

Pre_T2_original_firstorder_Kurtosis 3.36 ± 0.48 4.06 ± 0.84 0.03* 0.736 (0.519~0.953)

Post_T1_original_shape_Flatness 0.55 ± 0.15 0.44 ± 0.08 0.028* 0.760 (0.417~1)

Post_ADC_original_gldm_HighGrayLevelEmphasis 74.87 ± 10.42 95.89 ± 45.06 0.048* 0.712 (0.534~0.890)

Delta_T1_original_glcm_ClusterShade −3.59 (−181.53, 0.16) 0.77 (0.23, 1.16) 0.013* 0.856 (0.667~1)

Delta_T1_original_shape_Sphericity −0.08 (−0.14, −0.05) 0.02 (−0.06, 0.03) 0.037* 0.800 (0.590~1)

Delta_T2_original_glszm_SizeZoneNonUniformity −0.50 (−1.09, −0.09) 0.22 (−0.13, 0.55) 0.011* 0.864 (0.711~1)

Delta_T2_original_firstorder_Energy −0.35 (−0.48, −0.11) 0.30 (−0.05, 0.45) 0.042* 0.792 (0.634~0.950)

Delta_T2_original_firstorder_Range −0.40 ± 0.39 −0.05 ± 0.34 0.048* 0.736 (0.520~0.952)

Delta_T2_original_firstorder_TotalEnergy −0.35 (−1.21, −0.21) 0.17 (−0.40, 0.48) 0.048* 0.784 (0.614~0.953)

AUC, area under the receiver operating characteristic curve; CI, confidence interval; * < p 0.05

Table 3 Model performance for predicting pCR status after neoadjuvant RT and targeted therapy in patients with STS

Model AUC 95% CI Sensitivity (%) Specificity (%) Accuracy (%)

Pre_Model 0.78 0.410~1 80 88 86.7
Pre_T2_original_shape_Flatness

Post_Model 0.76 0.417~1 80 88 83.3
Post_T1_original_shape_Flatness

Delta_Model 0.92 0.788~1 80 92 83.3
Delta_T1_original_glcm_ClusterShade
Delta_T2_original_glszm_
SizeZoneNonUniformity

Combined_Model 0.95 0.874~1.000 100 84 88.7
Pre_T2_original_shape_Flatness
Post_T1_original_shape_Flatness
Delta_T1_original_glcm_ClusterShade
Delta_T2_original_glszm_
SizeZoneNonUniformity

AJCC 0.52 0.305~0.743 100 16 56.7
RECIST 1.1 0.52 0.260~0.780 60 44 58.1

AUC, area under the receiver operating characteristic curve; CI, confidence interval; AJCC, American Joint Committee on Cancer; RECIST 1.1,
Response Evaluation Criteria in Solid Tumors version 1.1
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features of delta were Delta_T1_original_glcm_ClusterShade
and Delta_T2_original_glszm_SizeZoneNonUniformity. The
corresponding models were established by logistic regression.
The Combined_Model was constructed by incorporating all
the above texture features. The details of the multivariate lo-
gistic regression models are listed in Table 3.

Model comparison and evaluation

The differences in the RadScore between the pCR and N-pCR
groups for each model are shown in Fig. 3. There were sig-
nificant differences in the RadScore between the pCR and N-
pCR groups for the Delta_Model and Combined_Model (p <

Table 4 Multivariate logistic regression analysis

Model OR 95%CI p value Model fit

Pre_Model 0.03

Pre_T2_original_shape_Flatness 0.29 0.11~0.80 0.023*

Post_Model 0.06

Post_T1_original_shape_Flatness 0.23 0.06~0.79 0.028*

Delta_Model 0.482

Delta_T1_original_glcm_ClusterShade 1 1.00~1.00 0.08*

Delta_T2_original_glszm_
SizeZoneNonUniformity

1.42 1.16~1.75 0.02*

Combined_Model 0.998

Pre_T2_original_shape_Flatness 2.31 0.37~14.6 0.4

Post_T1_original_shape_Flatness 0.23 0.03~1.83 0.2

Delta_T1_original_glcm_ClusterShade 1 1.00~1.00 0.014*

Delta_T2_original_glszm_
SizeZoneNonUniformity

1.43 1.13~1.81 0.006*

OR, odds ratio;CI, confidence interval. The goodness-of-fit of the logistic regressionmodel was assessed using the Hosmer–Lemeshow test, and a model
with p > 0.05 was considered to be well fitted. *p < 0.05

Fig. 3 Distribution of the RadScore between the pCR and N-pCR groups
in the four models. Density width indicates the frequency of the
RadScore. The middle line in each box indicates the median value of

the RadScore, and the lower and upper boundaries of the box indicate
the first and third quartiles, respectively. Whiskers indicate the 95% con-
fidence interval
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0.05). The performance and ROC curves of each model are
shown in Table 4 and Fig. 4. Similarly, the DCA curves
showed that both the Delta_Model and Combined_Model
have better net returns than the None model and the All model
over a wide range of risk thresholds between 0.1 and 1.0 (Fig.
5). The diagnostic performance of the Combined_Model was
significantly better than that of AJCC staging and RECIST 1.1
criteria, with AUC values of 0.952 vs. 0.524 and 0.520 (p <
0.05), respectively. Even with the Delta_Model alone, the
AUC values were also significantly higher than those of
AJCC and RECIST 1.1 (0.92 vs. 0.524 and 0.520, p < 0.05).

Discussion

To our knowledge, this is the first study to construct efficacy
prediction models based on multisequence and whole-tumor
texture parameters at multiple time points (pre, post, and delta)
of neoadjuvant RT and TKI for STS. The Combined_Model,
in which all texture parameters of all time points were incor-
porated, had the highest diagnostic performance (AUC 0.952),
followed by the Delta_Model (AUC 0.92), compared to rou-
tinely used RECIST 1.1 criteria and AJCC staging.
Multisequence whole-tumor texture analysis can better predict
the pCR results of neoadjuvant RT and TKI for STS.

We primarily focused on the early response prediction of
STS patients receiving neoadjuvant RT and TKI. In themodern
era, TKIs have played an emerging role in the treatment of
STSs as radio-sensitizing agents [4–7]. Although previously
published papers focused on the radiomics-based efficacy pre-
diction of neoadjuvant RT and/or chemotherapy [15, 16], it
remains unknown whether there is a difference with the addi-
tion of targeted therapy. It is important to screen tumors that are
more sensitive to this combined treatment modality because the
addition of TKIs will add some moderate toxicities, which
means more harm than benefit for insensitive patients; further-
more, some patients may need chemotherapy earlier. Our study
showed that patients with certain MR features are highly likely
to achieve pCR after preoperative RT plus TKI, which can
possibly help guide personalized treatment in the future.

This study included three sequences (T1FSGd, T2FS, and
DWI) and ADC maps to predict the efficacy of neoadjuvant
RT and TKI for STS. Gao et al [32] predicted the efficacy of
neoadjuvant RT in 30 patients by using the radiomics features
of ADC maps [32]. Crombé et al [29] analyzed 65 patients
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ytivitisneS

AJCC
Recist_1.1
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Delta_Model
Combined_Model

Fig. 4 Comparison of the diagnostic performance of all models. AJCC,
American Joint Committee on Cancer; RECIST 1.1, Response
Evaluation Criteria in Solid Tumors version 1.1

Fig. 5 Decision curve analysis
(DCA) of the four models. The
net benefit is calculated by
subtracting the proportion of
false-positive patients from the
proportion of true-positive pa-
tients, weighted by the relative
harm of a false-positive result and
a false-negative result. The two
extreme strategies “treat all” and
“treat none” are displayed as a
reference. A decision model
shows a clinical benefit if the de-
cision curve shows a larger net
benefit than both reference
strategies
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treated with neoadjuvant chemotherapy by using MRI (T2WI)
before and after treatment. The sequences in Peeken’s study
[17] on 161 sarcoma patients were also T1FSGd and T2FS
[17]. In contrast to the above studies, the sequences in our
study were more complete and further reduced the differences
caused by inconsistent machine models. At the same time, the
features finally included in our model construction were all
from T1FSGd and T2FS sequences, similar to the results of
Peeken et al’s [17] study. It is worth noting that the texture
features corresponding to DWI and ADCwere excluded in the
feature screening process, which undercuts the argument that
the research sequences were more complete than those in pre-
vious research. Although the field strength of theMRI scanner
in our study (3.0 T) was better than that of Gao’s et al [32]
study (0.35 T), the features from DWI and ADC were still
slightly inferior in predicting the efficacy of STS and thus
were not included for model construction. This may be related
to the low signal-to-noise ratio (SNR) of DWI and ADC im-
ages [33]. In the future, the application of functional MRI
(IVIM, DKI, etc.) or deep learning studies may help improve
the prediction accuracy of diagnostic models for neoadjuvant
RT of STS.

The Combined_Model in our study, which incorporat-
ed the image textures at all time points, had the best di-
agnostic performance (AUC 0.952), and the Delta_Model
also had good performance (AUC 0.92). Compared with
that of Peeken et al [17] (AUC of 0.75), that of Crombé
et al [29] (AUC of 0.86), and that of Gao et al [32] (AUC
of 0.91), the model in our study performed better for the
following reasons: we used image textures at multiple
time points to better reflect the changes in tumor morphol-
ogy and heterogeneity and our patients were enrolled pro-
spectively with all MR images acquired on one machine.
In terms of specific texture features, there were three tex-
ture features that were finally included in our model,
among which Flatness and SizeZoneNonUniformity were
two texture features also included in the model of Peeken
et al [17] (Delta-T1FSGd, Delta-T2 FS), and the Flatness
texture feature was also statistically significant in
Crombé’s study (p < 0.05). Flatness shows the relation-
ship between the largest and smallest principal compo-
nents in the ROI shape. SizeZoneNonUniformity mea-
sures the variability of size zone volumes in the image,
with a lower value indicating more homogeneity in size
zone volumes. Both these features reflect tumor heteroge-
neity in morphology, while another texture parameter in
our study, ClusterShade, reflects the stability of the tumor
grayscale. Although we focused on different neoadjuvant
therapies for STSs, it seems that there was some consis-
tency in the efficacy prediction by texture features. We
also discuss some advances in the clinical and pathologi-
cal evaluation of neoadjuvant therapy for STS, as detailed
in the Supplementary Materials.

This study also has some limitations. First, this study is
a single-center study with a relatively small number of
patients, so a larger sample size is needed to further refine
or validate the model, and with different machines for
more generalizability would be the next step. Second, on-
ly 3 patients received RT alone due to consent withdraw-
al, but TKI was used as an RT-sensitizing drug in this
prospective study, so we still enrolled them in this study.
Our research is the first to report the early response eval-
uation of neoadjuvant RT and TKI; thus, it is still infor-
mative. Finally, the small sample size inevitably leads to
the risk of model overfitting, and we demonstrate in the
Supplementary Material that other selection or model con-
struction methods are available for reference. Meanwhile,
feature extraction requires manual or semiautomatic tumor
contouring, and the results may therefore be partially bi-
ased, although two radiologists contoured the ROIs inde-
pendently and another senior radiologist reviewed them.

Conclusions

Our study shows that multisequence whole-tumor texture ana-
lysis based on MRI can well predict pCR status after neoad-
juvant RT plus targeted therapy in patients with STS com-
pared with the RECIST 1.1 criteria and AJCC staging. The
combined prediction model with features at multiple time
points showed the best prediction effect, followed by the
Delta_Model. The prediction of pCR may help clinicians in-
dividualize clinical treatment strategies in the future. Further
large-scale studies and model validation are needed to trans-
late our findings into clinical practice.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-09362-6.
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