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Abstract
Objectives Lymph node (LN) metastasis is a common cause of recurrence in oral cancer; however, the accuracy of distinguishing
positive and negative LNs is not ideal. Here, we aimed to develop a deep learning model that can identify, locate, and distinguish
LNs in contrast-enhanced CT (CECT) images with a higher accuracy.
Methods The preoperative CECT images and corresponding postoperative pathological diagnoses of 1466 patients with oral
cancer from our hospital were retrospectively collected. In stage I, full-layer images (five common anatomical structures) were
labeled; in stage II, negative and positive LNs were separately labeled. The stage I model was innovatively employed for stage II
training to improve accuracy with the idea of transfer learning (TL). The Mask R-CNN instance segmentation framework was
selected for model construction and training. The accuracy of the model was compared with that of human observers.
Results A total of 5412 images and 5601 images were labeled in stage I and II, respectively. The stage I model achieved an
excellent segmentation effect in the test set (AP50-0.7249). The positive LN accuracy of the stage II TL model was similar to that
of the radiologist and much higher than that of the surgeons and students (0.7042 vs. 0.7647 (p = 0.243), 0.4216 (p < 0.001), and
0.3629 (p < 0.001)). The clinical accuracy of the model was highest (0.8509 vs. 0.8000, 0.5500, 0.4500, and 0.6658 of the
Radiology Department).
Conclusions The model was constructed using a deep neural network and had high accuracy in LN localization and metastasis
discrimination, which could contribute to accurate diagnosis and customized treatment planning.
Key Points
• Lymph node metastasis is not well recognized with modern medical imaging tools.
• Transfer learning can improve the accuracy of deep learning model prediction.
• Deep learning can aid the accurate identification of lymph node metastasis.
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Abbreviations
AI Artificial intelligence
AP Average precision
CECT Contrast-enhanced computed tomography
DL Deep learning
Faster R-CNN Faster region–based convolutional neural

network
FPN Feature pyramid network
IoU Intersection over union
IRB Institutional review board
LN Lymph node
LN− Negative LN
LN+ Positive LN
Mask R-CNN Mask region–based convolutional neural

network
ML Machine learning
PR Precision/recall
ResNet101 Residual Network101
RoI Region of interest
RPN Region proposal network
SGD Stochastic gradient descent
TL Transfer learning

Introduction

Oral cancer is a prevalent malignancy worldwide with a high
recurrence rate [1, 2]. Lymph node (LN) metastasis is a com-
mon cause of recurrence for oral cancer patients [3]. Poor
identification of LN metastasis often causes undertreatment
with occult metastasis (30–40%) and overtreatment at an early
stage (60–70%), both of which could cause poor prognosis [4,
5]. Additionally, whether elective neck dissection should be
performed and the extent of tissue removal essentially depend
on the diagnosis of LN metastasis.

Currently, CT and MRI are frequently utilized to identify
the size, internal heterogeneity, and contour of LNs [6, 7].
With the adjunction of [18F]FDG PET, these imaging ap-
proaches can reach higher sensitivity [8, 9]. Despite advance-
ments in modern medical imaging technology, even experi-
enced radiologists often miss diagnoses with LN metastasis
due to limited working time and a heavy daily workload [10,
11]. Additional invasive procedures, such as fine-needle aspi-
ration biopsy, could be performed to increase the diagnostic
accuracy of suspicious LNs, which is harmful to patients [12].
Therefore, more accurate and noninvasive LN metastasis di-
agnosis methods are needed.

As a subdomain of machine learning (ML), deep learning
(DL) is a method that uses more complex network model
structures, is much better at discovering deeper features in
input data, and performs well in many practical application
scenes of ML [13, 14]. Many studies have shown that DL
achieves excellent performance in image processing problems

[15–17]. DL-based image classification and object detection
have been widely employed in the medical field to provide
supporting advice for diagnoses [13, 18–24], such as skin
cancer [25], breast cancer (LNs) [26], and COVID-19 [27].
Furthermore, DL can achieve or exceed the performance of
human experts in several tasks of medical image analysis [28,
29]. In the field of medical image processing based on DL, the
lack of annotated datasets is a major problem [18]. The intro-
duction of transfer learning (TL) to DL can alleviate the short-
age of annotated datasets. TL can improve the performance of
learning on target domains by transferring knowledge from
different but related source domains [30].

To help decrease the high misdiagnosis rate of LNs, it is
worthwhile to introduce artificial intelligence (AI) to the field
of imaging identification of LNs in oral cancer. Consequently,
this research intends to develop a DL model that can identify,
locate, and distinguish LNs in CECT images with a higher
accuracy to replace existing inefficient manual identification
methods.

Materials and methods

Patient cohort

This study was reported according to the recommendations of
the STROBE guidelines and was approved by the Institutional
Review Board (IRB) of the Ethics Committee of the Hospital
of Stomatology, Wuhan University (IRB No. 2020-B63). As
it was a retrospective study, all patients could not be identified,
only imaging data and pathological reports were collected,
and the extracted data did not contain patient names.
Therefore, consent for participation was not obtained.

The CECT images of 2773 patients with oral cancer who
were admitted to the Hospital of Stomatology, Wuhan
University, between September 1, 2012, and September 22,
2020, were retrospectively collected. After screening ac-
cording to our inclusion and exclusion criteria, 1307 in-
valid samples were removed (Table S1). The baseline in-
formation of the included patients is shown in Table 1 and
Table S2. For the 1466 included samples, 5412 images
were selected for full-layer data labeling (stage I), and
5601 images were selected for LN metastasis discrimina-
tion data labeling (stage II) (Fig. 1).

Data processing

Three researchers were specially trained by a radiologist with
20 years of working experience in our hospital to be respon-
sible for this study. All data were labeled based on patholog-
ical information for consensus regarding segmentation accu-
racy. If a consensus was not reached, researchers consulted the
radiologist to reduce personnel errors. After the labeling was
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completed, it was reviewed and approved (or modified as
needed) by the radiologist.

This study was carried out in two stages. In stage I, CECT
images were screened according to the traditional CT level
guidelines for cervical LNs (seven categories) [31]. Most of
the possible locations of LNs were included in the images,
especially the most common levels, I to V. The target areas
were outlined by forming polygons based on Label Studio (a
privately deployed platform, which is based on the open-
source data-labeling platform). For example, LNs were
outlined by polygons consisting of green dots and lines. The
remaining structures that appeared in the image were synchro-
nously outlined, such as teeth (light blue), bone (dark blue),
blood vessels (red), and other soft tissue (yellow). In stage II,
positive LN (LN+) and negative LN (LN−) were outlined by
polygons consisting of red (LN+) and green (LN−) dots and
lines, respectively, based on Label Studio (Fig. 2). Detailed
information on data processing (including CT parameters) is
provided in the Supplement.

Model introduction

Mask R-CNN, a simple, flexible, and general DL framework
in the field of instance segmentation, was introduced in this
study. Mask R-CNN adds a branch of mask generation based

on Faster R-CNN, which can realize object detection and gen-
erate high-quality masks for different instances of an object
[32].

The relevant code based on the Mask R-CNN framework
using TensorFlow was implemented. The network structure
consisted of three parts: the backbone network, region propos-
al network (RPN), and head network (Fig. S1 and S2).

Due to the similar nature of the training tasks in these two
stages, both of which were multiclass instance segmentation
(five classes in stage I and two classes in stage II), the overall
network structure was similar, but the training process param-
eter settings were different.

ResNet101, which is composed of 101 layers, was selected
as the backbone feature extraction network, and simultaneous-
ly constructed feature pyramids based on a feature pyramid
network (FPN). In the following part, C1 to C5 were em-
ployed to define the feature map output by different ResNet
convolutional layers [16]. The construction of the FPN was to
realize the fusion of features at multiple scales [33]. The ex-
tracted P2 to P6 could be utilized as the effective feature layer
of the RPN (Fig. S2).

The RPNwas used to generate a region of interest (RoI) for
the head network [34]. Considering the size of the input im-
age, five anchors of different scales—16 × 16, 32 × 32, 64 ×
64, 128 × 128, and 256 × 256—were defined. The gridlines

Table 1 Baseline information of
1466 oral cancer patients in this
study

Total (N = 1466) Male (N = 1059) Female (N = 407)

Age (median [IQR]) 55.41 [48,64] 54.80 [48,63] 57.01 [49,67]

T (tumor stage) T1 34 (2.32%) 20 (1.36%) 14 (0.96%)

T2 434 (29.60%) 287 (19.58%) 147 (10.02%)

T3 693 (47.27%) 532 (36.29%) 161 (10.98%)

T4a 305 (20.81%) 220 (15.01%) 85 (5.80%)

T4b 0 0 0

N (node stage) N0 778 (53.07%) 559 (38.13%) 219 (14.94%)

N1 268 (18.28%) 189 (12.89%) 79 (5.39%)

N2a 15 (1.02%) 10 (0.68%) 5 (0.34%)

N2b 304 (20.74%) 225 (15.35%) 79 (5.39%)

N2c 23 (1.57%) 17 (1.16%) 6 (0.41%)

N3a 0 0 0

N3b 78 (5.32%) 59 (4.02%) 19 (1.30%)

M (metastasis stage) M0 1466 (100%) 1059 (72.24%) 407 (27.76%)

M1 0 0 0

Clinical stage I 29 (1.98%) 18 (1.23%) 11 (0.75%)

II 310 (21.15%) 205 (13.99%) 105 (7.16%)

III 511 (34.85%) 385 (26.26%) 126 (8.59%)

IVA 537 (36.63%) 392 (26.74%) 145 (9.89%)

IVB 79 (5.39%) 59 (4.03%) 20 (1.36%)

IVC 0 0 0

We used the Joint Commission on Cancer eighth edition TNM classification (TNM8) criteria

IQR interquartile range
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were generated through the RPN area, and the preselection
bounding boxes that may contain objects were generated
and referred to as the proposal area. A set of RoIs was

generated according to the evaluation of each proposal area,
which greatly reduced the task size of subsequent classifica-
tion detection.

Training 
set(3,248)

Oral cancer patients amount : 2,773

1,466 patients

1,307 patients

Stage-I: Full-layer data labeling 
images:5,412

Stage-II: LN metastasis discrimination data 
labeling images:5,601

  Exclude

Validation 
set(1,624)

Test
set(540)

Building the Stage-II model

LN+ images: 192

 LN+ images: 2,950
 LN+ amount: 3,754
 LN-  amount: 2,060

 LN+ images: 1,475
 LN+ amount: 1,877
 LN-  amount: 1,030

 LN- images: 3,934
 LN- amount: 6,140

LN+ images: 1,475
LN-  images: 3,934

 LN- images: 1,475
 LN- amount: 2,519

Mirroring Rotation Random Screening

Training 
set(2,950)

Validation 
set(1,475)

Test
set(503)

Transfer
Learning

Building the Stage-I model

  LN+ images: 192
  LN-  images: 311

 Include

Fig. 1 Process of patient data collection, screening, classification, and data labeling. Flowchart of the study population and assignments for date labeling
and machine learning for construction of prediction models. LN, lymph node; LN+, positive lymph node; LN−, negative lymph node

Input CECT Image Dataset Image

St
ag

e-
I

St
ag

e-
II

Labeling ProcessFig. 2 The process of data
labeling. The process of data
labeling for the input CECT
images of stage I and stage II
using our data-labeling tools. The
dataset image used for training
was generated from labeled data
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The head network, which included a classifier model
and mask generation model, was responsible for classifi-
cation and mask generation. Both branches were simulta-
neously employed. The head network determined the ob-
ject category of the input RoI through a classifier model
and a generated mask for each instance of the object by
classifying the pixel level through a mask generation
model [32].

To minimize the influence of overfitting, the L2 regulari-
zation method was utilized for the model.

Model training

In the two stages, the loss function (L) applied was multitask
loss, which was the sum of classification loss (Lcls), bounding-
box loss (Lbox), and mask branch loss (Lmask).

L ¼ Lcls þ Lbox þ Lmask

In our study, the datasets were shuffled and split into train-
ing (60%), validation (30%), and test sets (10%). For model
training, Mask R-CNN COCO model weights were used as
the initial weights, which were optimized by the stochastic
gradient descent (SGD) strategy.

In stage I, the model was trained for 50 epochs in total on
the training set and validated after each epoch on the valida-
tion set. The trends of loss during training and validation are
shown in Fig. S3a, b.

In stage II, the LN metastasis discrimination labeled data
(enlarged by means of rotation and mirroring) were served
as the dataset. The stage II model (without TL) was
trained for 100 epochs in total. The trends of loss are
shown in Fig. S3c, d. Subsequently, the stage I model of
the training results was used as the initial model weight
for TL to improve the effect. However, the stage II-TL
model (with TL) was trained for 10 epochs in total. The
trends of loss are shown in Fig. S3e, f.

During training, validation loss was calculated after each
epoch, and model weights were saved following each epoch
that showed improvement in validation loss.

Assessment by clinicians

After model construction and optimization, another radiolo-
gist with 11 years of working experience, two surgeons with
12 and 11 years of experience, and two graduate students with
3 years of clinical experience in the Department of Oral and
Maxillofacial Head Neck Surgery were invited to identify and
distinguish LNs+. The accuracy of the model was compared
with clinicians’ results to assess the clinical usability of the
model.

Statistical analysis

The chi-square test was performed to examine the differences
in the categorical variables. A two-sided p < 0.05 means that
the corresponding estimate reaches a significant difference.
The performance of the stage I model was evaluated on the
independent test set using the average precision (AP) of the
model to measure the segmentation effect. However, in stage
II, the AP could not directly reflect the overall effect of the
model. Hence, three new customized but much stricter model
evaluation criteria were introduced: LN accuracy, LN+ accu-
racy, and clinical accuracy. Detailed information about the
calculation of the AP and PR curves and these three new
evaluation criteria are provided in the Supplement.

Results

Identify different anatomical structures (stage I)

Stage I aimed to automatically recognize different soft and
hard tissues in the cervical CECT images, especially to distin-
guish and identify LNs, hoping to achieve more accurate rec-
ognition and positioning of LNs in the next stage of training.
All anatomical structures, including teeth, bones, LNs, blood
vessels, and other soft tissues were labeled (Fig. 2). A total of
5412 CECT images were screened. The prediction result im-
age and precision/recall (PR) curve for different intersection-
over-union (IoU) thresholds of the stage I model are shown in
Fig. 3a, b.

AP50, AP60, AP70, and AP reached 72.49%, 58.72%,
35.88%, and 29.63%, respectively, for the discriminant seg-
mentation of different anatomical structures in the test set
(Table 2). The AP rapidly decreased with an increase in the
IoU threshold. Considering the small size of LNs and blood
vessels in images, the number of negative samples increased
with an increase in the IoU threshold. In summary, in stage I,
the different anatomical structures could be effectively recog-
nized in the cervical CECT images.

Accuracy of cervical LN metastasis discrimination was
improved by TL (stage II)

Stage II was designed to accurately distinguish LNmetastasis.
LN− and LN+ were specifically labeled (Fig. 2). A total of
5601CECT images were screened, in which 2126were LNs+,
with 1667 images involved, and 6140 were LNs−, with 3934
images involved (Fig. 1).

Since AP50 represented the best recognition effect in the
stage I model, only AP50 was shown in different stage II
models (Table 2). The prediction result images and the PR
curve at the default IoU (0.50) threshold of the stage II model
are shown in Fig. 3c, d.
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However, only the partial neck levels that underwent elec-
tive neck dissection had LNs’ pathological information for the
labeling process, while the LNs’ pathological information in

the neck levels without surgery was ambiguous, and the LN
status in these levels could not be labeled. But the prediction
included levels without pathological information, and when
these predicted instance objects appeared in the model evalu-
ation, the corresponding instance could not be identified in the
labeled samples. As a result, many negative samples were
generated during the matching calculation, which affected
the overall evaluation of the model, and its AP could not
directly reflect the effect of the model. Hence, three new cus-
tomized but much stricter model evaluation criteria were in-
troduced: LN accuracy, LN+ accuracy, and clinical accuracy.

Notably, when the stage I model was employed in stage II
for TL, the stage II-TL model significantly improved the dis-
crimination of cervical LN metastasis (Tables 3, 4 and 5) (p <
0.001). Each indicator reached the highest value at the 0.85

a c

b d

Fig. 3 Prediction process and PR curves. a Prediction process using the
stage I model. Predicted images I and II were generated from the input
image with confidence levels of 0.75 and 0.85, respectively. The dataset
image was labeled for comparison. b PR curves at different IoU threshold
values in stage I. c Prediction process using the stage II model. Predicted

image I was generated from the input image in the stage II model.
Predicted image II was generated from the input image in the stage II-
TLmodel. The dataset image was labeled for comparison. d PR curves of
the model before and after the stage I model was utilized for training of
transfer learning at the default IoU threshold value (0.50)

Table 2 AP of each model at different IoU thresholds

AP AP50 AP60 AP70

Stage I model 29.63 72.49 58.72 35.88

Stage II model-0.80 \ 24.35 \ \

Stage II-TL model-0.80 \ 30.63 \ \

Stage II model-0.85 \ 24.35 \ \

Stage II-TL model-0.85 \ 29.97 \ \

AP average precision, TL transfer learning,"\" means there is no value
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confidence level (Table 5). In conclusion, the stage II-TL
model achieved the highest LN accuracy (71.90%), LN+ ac-
curacy (70.42%), and clinical accuracy (85.09%) at the 0.85
confidence level.

Comparison of predicting accuracy in different neck
levels

The neck is divided into a total of seven levels based on the
topographical subdivision [30, 31]. In the stage II test set, the
data at levels I, II, and III were dominant, with 195, 191, and
198 images, respectively. These three levels were peculiarly
prone to LN metastasis in oral cancer. Therefore, the predic-
tion results of LN+ accuracy at these levels were compared.
The results indicated that for different models and different
confidence levels, the highest LN+ accuracy was obtained at
level II (Fig. 4a and Table 5).

Prediction of cervical LN metastasis: model versus
clinicians

To verify the accuracy of the model, the stage II-TL model-
0.85 predictions were compared with those of the radiologist,
surgeons, surgical students, and diagnostic reports from the
Radiology Department in our hospital. Considering that the
accurate identification of LN+ is the most important indicator,
LN+ accuracy and clinical accuracy were selected for the
comparison of the prediction results. Unfortunately, medical
imaging diagnostic reports did not describe every LN, so the

LN+ accuracy and LN accuracy of the Radiology Department
could not be calculated.

Collectively, our model achieved LN+ accuracy, which
was comparable to that of the radiologist (70.42% vs.
76.47%) (p = 0.243), and its LN+ accuracy was much higher
than that of the surgeons (42.16%) (p < 0.001) and students
(36.29%) (p < 0.001) (Table 4). Our model achieved the
highest clinical accuracy (85.09% vs. 80%, 55%, 45%, and
66.58% of the Radiology Department) (Fig. 4b and Table 5).

Discussion

In this study, DL using a neural network combined with
CECT images could identify, locate, and distinguish cervical
metastatic LNs of oral cancer patients with a very high accu-
racy and was demonstrated to exceed that of an experienced
radiologist and surgeons. Even in terms of clinical accuracy,
our model exceeded the average of the Radiology Department
in our hospital by nearly 20%. To the best of our knowledge,
this is the largest study on the prediction of cervical LN me-
tastasis by CECT images based on DL in oral cancer. Our
model was very effective not only in assisting radiologists in
accurately diagnosing LN metastasis before surgery but also
in helping surgeons in designing customized and accurate
surgical plans to improve prognosis.

For many years, neck dissection has been a major concern
for oral cancer patients worldwide. With all fields being facil-
itated by AI, especially in the medical imaging field, it is
regrettable that few studies have carried out AI analysis on
cervical LNs [25, 27, 35]. Reza et al and Yuan et al performed
texture analysis on cervical LN metastasis by dual-energy CT
and MRI, respectively, based on ML with high accuracy [36,
37]. The content of our study was CECT, consistent with
China’s national conditions because of their strong universal-
ity and applicability. [18F]FDG PET/CT can better detect oc-
cult neck metastasis than CT/MRI imaging [9]. However, this
method is expensive, and only a few large hospitals are
equipped with such expensive machines. Additionally, the
sample sizes adopted by previous researchers were measured
in units of 10 and 100, while the present study directly col-
lected data from 2773 patients and included 1466 samples
after screening. Most significantly, the present study first di-
vided the work into two stages and innovatively integrated the
idea of TL to apply the results of the first stage of the model to
the training of the second stage of the model, which signifi-
cantly improved the prediction accuracy. In previous studies,
the prediction required an experienced operator to outline the
LNs before the model recognized them, which was laborious
and time-consuming. In this study, we need only to input a
complete CECT image set of the patient into the model, after
which the prediction results can be obtained in seconds, which

Table 3 Chi-square test between TL model-0.80 and model-0.80

Right Wrong Accuracy (%) p values

TL model-0.80 209 135 60.76

Model-0.80 179 272 39.69 p = 3.92274E−09

Table 4 Chi-square test between TL model-0.85 and other models or
clinicians

Right Wrong Accuracy (%) p values

TL model-0.85 200 84 70.42

Model-0.85 175 253 40.89 p = 1.08402E−14
TL model-0.80 209 135 60.76 p = 0.011407545

TL model-0.84 202 94 68.24 p = 0.569445805

TL model-0.86 198 84 70.21 p = 0.956442618

TL model-0.90 158 108 59.40 p = 0.006720646

Radiologist 78 24 76.47 p = 0.243141608

Surgeons 85 119 42.16 p = 2.05967E−10
Students 90 159 36.29 p = 2.23635E−15
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is convenient and time-efficient with strong clinical translation
ability.

As the model built by combining DL and radiology was
noninvasive, we could use only CECT image to perform op-
erational analysis before surgery and to minimize harm to the
patients. Although the results of our study were impressive
and provide a basis for future research, more challenging
tasks, such as the identification of LNs at different levels, need
to be completed [31]. Nearly all patients included in the study
had neck LN dissection at levels I, II, and III (images domi-
nated the dataset), while only some patients had surgery at
levels IV and V. Notably, levels I to III were peculiarly prone
to LN metastasis in oral cancer. Incorrect discrimination of

LNs at levels I to III is prone to increase as LNs at these levels
are often accompanied by blood vessels. In the statistical re-
sults of our study, we presented the first analysis of discrep-
ancies in the accuracy of the prediction of LNs at different
levels and discovered that level II (upper group of the internal
jugular chain) had a much higher accuracy at any confidence
level in any model.

Although the AI utilized in the present study could greatly
facilitate the diagnosis of diseases by clinicians, the current
study has limitations. First, this was a single-center retrospec-
tive experiment; in particular, the LNs in pathological reports
and CECT images were not completely accurate in one-to-one
correspondence. Second, persuading patients to embrace this

Table 5 Stage II predictions of each model and predictions of radiologist, surgeons, students, and the Radiology Department

Clinical accuracy LN accuracy Positive LN accuracy

Total Level I Level II Level III

Model-0.80 58.45 (294/503) 45.62 (583/(1007 + 271)) 39.69 (179/(249 + 202)) 33.63 46.63 33.68

TL model-0.80 76.34 (384/503) 71.76 (846/(1007 + 172)) 60.76 (209/(249 + 95)) 56.60 64.38 53.62

Model-0.85 60.44 (304/503) 42.33 (527/(1007 + 238)) 40.89 (175/(249 + 179)) 34.93 46.24 36.36

TL model-0.85 85.09 (428/503) 71.90 (801/(1007 + 102)) 70.42 (200/(249 + 35)) 66.67 72.22 65.45

TL model-0.84 83.10 (418/503) 71.83 (811/(1007 + 122)) 68.24 (202/(249 + 47)) 64.18 70.00 62.07

TL model-0.86 85.09 (428/503) 68.38 (757/(1007 + 100)) 70.21 (198/(249 + 33)) 65.60 72.00 66.06

TL model-0.90 82.31 (414/503) 53.01 (563/(1007 + 55)) 59.40 (158/(249 + 17)) 51.69 60.17 55.88

Radiologist 80.00 (80/100) \ 76.47 (78/(91 + 11)) \ \ \

Surgeons 55.00 (55/100) \ 42.16 (43/(91 + 11)) \ \ \

Students 45.00 (45/100) \ 36.29 (45/(91 + 33)) \ \ \

Radiology Department 66.58 (976/1466) \ \ \ \ \

TL transfer learning, LN lymph node,"\"means there is no value

TL model-0.80 TL model-0.84 TL model-0.85 TL model-0.86 TL model-0.90
0.0

0.2

0.4

0.6

0.8

0.5362

0.6207
0.6545 0.6606

0.5588

0.6438
0.7000 0.7222 0.7200

0.6017
0.5660

0.6418 0.6667 0.6560

0.5169

Level I
Level II
Level III

Students

Surgeons

 Radiologist

TL model-0.85

Clinical Accuracy LN+ Accuracy

0.8509

0.8000

0.5500

0.4500 0.3629

0.7647

0.7042

0.4216

a

b

Fig. 4 Model evaluation and
prediction results. a LN+
accuracy of the stage II-TL model
at different levels at different
confidence intervals. b
Comparison results of LN+ accu-
racy and clinical accuracy among
the stage II-TL model-0.85, radi-
ologist, surgeons, and students.
TL, transfer learning; LN+, posi-
tive lymph node

4310 European Radiology (2023) 33:4303–4312



new diagnostic system remains challenging and requires
large-scale clinical application and verification. Third, be-
cause the current ability of medical imaging (e.g., CT and
MRI) to detect micrometastases in LNs with normal morphol-
ogy and dimension is rather limited [6], our model, which is
based on CECT imaging, still cannot reach satisfactory pre-
diction within this aspect. Last, multicenter prospective stud-
ies and a larger sample size are needed to validate our results
to popularize our AI results and to overcome the subtle dis-
crepancies of different CECT machines. Given these issues,
AI has great potential in cervical LN metastasis diagnosis;
however, whether it can be successfully promoted remains
to be determined.

In conclusion, despite the fact that more framework opti-
mization and large-scale verification are still required before
official clinical application, AI-DL-Mask R-CNN–assisted
CECT can accurately predict the metastasis of cervical LNs,
providing strong support for the efficient diagnosis of radiol-
ogists to a certain extent. Importantly, convenient manipula-
tion, instant diagnosis, and excellent effect endow this tech-
nology with a powerful clinical translation ability.
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