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A pre-treatment CT-based weighted radiomic approach combined
with clinical characteristics to predict durable clinical
benefits of immunotherapy in advanced lung cancer
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Abstract
Objectives To develop a pre-treatment CT-based predictive model to anticipate inoperable lung cancer patients' progression-free
survival (PFS) to immunotherapy.
Methods This single-center retrospective study developed and cross-validated a radiomic model in 185 patients and tested it in
48 patients. The binary endpoint is the durable clinical benefit (DCB, PFS ≥ 6 months) and non-DCB (NDCB, PFS < 6 months).
Radiomic features were extracted from multiple intrapulmonary lesions and weighted by an attention-based multiple-instance
learning model. Aggregated features were then selected through L2-regularized ridge regression. Five machine-learning classi-
fiers were conducted to build predictive models using radiomic and clinical features alone and then together. Lastly, the
predictive value of the model with the best performance was validated by Kaplan-Meier survival analysis.
Results The predictive models based on the weighted radiomic approach showed superior performance across all classifiers
(AUCs: 0.75–0.82) compared with the largest lesion approach (AUCs: 0.70–0.78) and the average sum approach (AUCs: 0.64–
0.80). Among them, the logistic regression model yielded the most balanced performance (AUC = 0.87 [95%CI 0.84–0.89], 0.75
[0.68–0.82], 0.80 [0.68-0.92] in the training, validation, and test cohort respectively). The addition of five clinical characteristics
significantly enhanced the performance of radiomic-only model (train: AUC 0.91 [0.89–0.93], p = .042; validation: AUC 0.86
[0.80–0.91], p = .011; test: AUC 0.86 [0.76–0.96], p = .026). Kaplan-Meier analysis of the radiomic-based predictive models
showed a clear stratification between classifier-predicted DCB versus NDCB for PFS (HR = 2.40–2.95, p < 0.05).
Conclusions The adoption of weighted radiomic features from multiple intrapulmonary lesions has the potential to predict long-
term PFS benefits for patients who are candidates for PD-1/PD-L1 immunotherapies.
Key Points
•Weighted radiomic-based model derived frommultiple intrapulmonary lesions on pre-treatment CT images has the potential to
predict durable clinical benefits of immunotherapy in lung cancer.

• Early line immunotherapy is associated with longer progression-free survival in advanced lung cancer.
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Abbreviations
a-MIL Attention-based multiple-instance learning
AUC Area under the curve
CT Computed tomography
DCB Durable clinical benefit
DICOM Digital Imaging and Communications inMedicine
EGFR Epidermal growth factor receptor
HR Hazard ratio.
ICC Intraclass correlation coefficient
ICI Immune checkpoint inhibitor
K-M Kaplan–Meier
KRAS Kirsten rat sarcoma 2 viral oncogene homologue
LD Linear discriminant
LL Largest lesion
ML Average-multiple-lesion
MLP Multilayer perception
NCCN National Comprehensive Cancer Network
NDCB Nondurable clinical benefit
NSCLC Non-small-cell lung cancer
PD-1 Programmed cell death protein 1
PD-L1 Programmed cell death protein ligand 1
PFS Progression-free survival
RECIST Response evaluation criteria in solid tumors
SVM Support vector machines
VOI Volume of interest
WL Weighted-multiple-lesion
Xgboost Extreme gradient boosting

Introduction

The rapid development of immune checkpoint inhibitor (ICI)
agents targeting programmed cell death protein 1 (PD-1) or
programmed cell death protein ligand 1 (PD-L1) has granted
immunotherapy a key role in the treatment of advanced lung
cancer in the past ten years [1]. The National Comprehensive
Cancer Network (NCCN) has recommended PD-1/PD-L1
blockade therapy for locally advanced and metastatic
non-small-cell lung cancer (NSCLC) without targetable
genetic mutations [2]. Nonetheless, the beneficial outcome
only exists in 15–40% of patients based on previous liter-
ature [3, 4]. The need for identifying more efficient predic-
tive biomarkers of immunotherapy responses is therefore
crucial.

PD-L1 expression status has been clinically used to select
candidates for PD-1/PD-L1 ICIs, but its efficacy as a predic-
tive biomarker is controversial, which is partially due to the
quantification nonuniformity and intratumoral heterogeneity
[5–9]. In addition, it is an invasive procedure that is not suit-
able for all patients. Therefore, a noninvasive biomarker is still

needed for the precise stratification of patients receiving
immunotherapy.

Poor prognosis was associated with several clinical fea-
tures, such as late lines of immunotherapy and the presence
of distant metastases before the treatment, but those findings
were based on relatively small cohorts [10, 11]. Computed
tomography (CT) image-based radiomics have shown prom-
ising results in evaluating tumor responses to immunotherapy,
but challenges remain in the aggregation of predictions made
at a lesion level to predict a patient-level outcome [12].
Assigning the same patient response to all lesions is a typical
lesion-wise radiomic analysis yet it fails to account for effects
induced by the unique immune-related response, specifically,
dissociated responses [13]. Other patient-level approaches in-
clude selecting the largest lesion or averaging by the mean, but
the outcomes are far from satisfactory [11, 14]. Chang et.al
used a tumor volume-based weighted radiomic features to
establish the patient-level outcome in brain metastases with
preliminary success [15]. However, this weighting strategy
does not consider factors other than tumor size. Recent studies
show that an attention-based multiple instance learning (a-
MIL) technique may help build predictive models by at-
tributing more weights to the most relevant subregions
associated with a specific classification task [16–19].
Therefore, we aimed to explore whether using the adap-
tively weighted sum of radiomic features from multiple
intrapulmonary lesions on the pre-treatment CT scans
can enhance the performance of radiomic models for
predicting long-term progression-free survival (PFS ≥ 6
months) benefit of immunotherapy. Furthermore, we
wanted to examine the complementary ability of clinical
variables to the radiomic model.

Materials and methods

Patient population and clinical data collection

This single-center study retrospectively reviewed a total of
309 patients at our hospital from June 2015 to November
2020 with pathologically confirmed advanced lung cancer
treated with at least one cycle of either PD-1 or PD-L1 ICI
therapies. The inclusion and exclusion criteria are detailed in
Fig. 1. The final 233 patients were randomly split into a
training (n = 185) and an internal test cohort (n = 48).
Patient clinical data were collected through electronic
medical records and are displayed in Table 1. The end-
point of our study was defined as the durable clinical
benefit (DCB: PFS ≥ 6 months) or the non-DCB
(NDCB: PFS < 6 months) group. PFS was defined as
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the time between the initiation of ICI to the progression of
lung cancer or the death of the patient. The progression
status was retrieved from the medical records and ap-
proved by a senior pulmonologist (M.C.) and a senior

radiologist (X.S.) according to the response evaluation
criteria in solid tumors (RECIST) version 1.1. Detailed
methods for quantifying PD-L1 expression are illustrated
in Supplementary Note 1.

Table 1 The definitions and scoring rules for clinical characteristics

Clinical
feature

Definition Scoring

Age Age of patients 0, ≤ 60 years old; 1, > 60 years old

Sex Gender of patients 0, male; 1, female

Smoking
history

The history of smoking cigarettes 0, non-smokers; 1-smokers (ever
smoker or current smoker)

Current
smoker

Have a smoking history within the past 6 months. 0, no; 1, yes

Clinical stage The clinical TNM stage was determined according to the 8th edition of the American Cancer
Society guideline for lung cancer staging.

0, stage III; 1, stage IV

ICI treatment If multiple PD-1/PD-L1 ICI treatments are involved during the disease course, the first one is
used. They are divided into three groups: pembrolizumab, nivolumab, and other
PD-1/PD-L1 inhibitors.

Pembrolizumab: 0, no; 1, yes
Nivolumab: 0, no;1, yes

Line of
therapy

A line of therapy consists of ≥ 1 complete cycle of a single agent, a regimen consisting of a
combination of several drugs, or a planned sequential therapy of various regimens.

1, First line; 2, Second line; 3, Third
line or more

Chemotherapy Whether or not the ICI regimen involves the use of chemotherapy. 0, no; 1, yes

Pathology Pathology subtypes are divided into three groups: adenocarcinoma, squamous cell carcinoma,
and other subtypes of lung cancer (small-cell lung cancer, large-cell lung cancer, and
adenosquamous carcinoma).

Adenocarcinoma: 0, no;1, yes
Squamous cell carcinoma:0, no;1, yes

Driver gene
mutation

EGFR gene mutation 0, no; 1, yes

KRAS gene mutation 0, no; 1, yes

ROS1 gene mutation 0, no; 1, yes

Metastasis
location

Pulmonary 0, no; 1, yes

Pleural 0, no; 1, yes

Brain 0, no; 1, yes

Bone 0, no; 1, yes

Adrenal gland 0, no; 1, yes

Liver 0, no; 1, yes

Others (thyroid gland, prostate, distant lymph node, and etc.) 0, no; 1, yes

Note: Other PD-1/PD-L1 ICI agents include atezolizumab, durvalumab, tislelizumab, penpulimab, and sintilimab. Abbreviations: PD-1, programmed
cell death protein 1; PD-L1, programmed cell death protein ligand 1; ICI, immune checkpoint inhibitor; EGFR, epidermal growth factor receptor;KRAS,
Kirsten rat sarcoma 2 viral oncogene homologue; ROS1, ROS proto-oncogene 1

Fig. 1 Flow chart shows
inclusion/exclusion and data split
for the single-center cohort.
Abbreviations: PD-1, pro-
grammed cell death protein-1;
PD-L1, programmed cell death
protein ligand-1; RECIST, re-
sponse evaluation criteria in solid
tumors
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Image acquisition and lesion delineation

Contrast-enhanced chest CT scans were carried out from the
lung apex to the lung base using various sets of CT scanners as
shown in Table 2. The contrast-enhanced scans were acquired
at 35 s after the injection of 80–100 mL of nonionic contrast
material (Ultravist 300, Bayer Schering Pharma AG; or
Ioversol 320, Hengrui Pharmaceutical Co., Ltd) intravenously
at a rate of 2.5 mL/s.

The anonymized original Digital Imaging and
Communications inMedicine (DICOM) images were normal-
ized and standardized before being imported into the Dr. Wise
research platform, on which lesions were automatically delin-
eated using algorithms described in the previous literature
[20]. The results were confirmed and modified on axial im-
ages slice by slice with mediastinal (width: 450 HU, level: 50
HU) and lung (width: 1200 HU, level: −600 HU) window
settings by a senior thoracic radiologist (L.S.) without knowl-
edge of response status. The volume of interest (VOI) was
drawn based on the criteria described in Supplementary
Note 2 and Supplementary Fig. 1. A maximum of five lesions
were retained for each patient based on their longest diam-
eters. For the purpose of reliability analysis, a randomly
selected 30 cases were drawn by a second senior radiolo-
gist (W.S.).

Feature extraction and aggregation methods

A total of 1454 radiomic features were extracted for each VOI
using the PyRadiomics (version 3.0.1) package in Python
(version 3.8). More details can be found in Supplementary
Note 3.

All features were normalized before being aggregated to
form the patient-level radiomic features in the following three
ways:

a. Largest lesion approach (LL): radiomic feature of the
largest (3D diameter) lesion.

b. Average-multiple-lesion approach (ML): average of
summed radiomic features of up to five lesions.

c. Weighted-multiple-lesion approach (WL): sum of
adaptively weighted radiomic feature of up to five le-
sions. The weighted coefficients were determined by
an a-MIL model that was developed in the training
cohort. The weight coefficients for lesions in the test
cohort were generated by the attention-based algorithm
embedded in the a-MIL model. A detailed illustration
of this technique is shown in Supplementary Note 4
and the codes in Python were available on GitHub at
h t tps : / /g i thub .com/zhj twx/ immuni ty_WL for
reproducibility purposes.

Feature selection and model development

The feature selection and model development were con-
ducted in the training cohort. The patient-level radiomic
features underwent three preliminary procedures in a se-
quential order as shown in Fig. 2d. Firstly, the features
that were robust to changes in variations in contour delin-
eation (intraclass correlation coefficient (ICC) of inter-
observer variability > 0.8) were retained. Secondly, fea-
tures that were significantly related to the clinical out-
come (p value < 0.05 in the Mann–Whitney U test

Table 2 Parameters of CT scanners

Parameters Peking Union Medical College Hospital

CT system
informa-
tion

CT scanner system Dual Source CT
(Siemens Healthcare)

Spectral CT (Discovery
CT750 HD scanner, GE
Medical Systems)

Spectral CT (IQon CT,
PHILIPS)

64-channel CT (Aquilion
64 CT, Toshiba)

Somatom
Definition Flash

Somatom
Force

Number of patients 101 94 22 8 8
CT scan

parame-
ters

Tube voltage 120 kVp 120 kVp 120 kVp 120 kVp
Tube current Variable tube current with

automatic tube-current mod-
ulation activated

Variable tube current with
automatic tube-current
modulation activated

Variable tube current with
automatic tube-current
modulation activated

Variable tube current with
automatic tube-current
modulation activated

Rotation time 0.5 s 0.6 s 0.5 s 0.5 s
Detector collimation 64 × 0.6 mm 64 × 0.625 mm 64 × 0.625 mm 64 × 0.625 mm
Pitch 1.2 0.984 1.2 0.984
Arterial phase 35 s after injection 35 s after injection 35 s after injection 35 s after injection
Image matrix 512 × 512 512 × 512 512 × 512 512 × 512
Field of view 350 × 350 mm 350 × 50 mm 350 × 350 mm 350 × 350 mm
Reconstruction slice

thickness/slice in-
crement

1 mm/1 mm 0.625 mm/0.625 mm 1 mm/1 mm 5 mm/5 mm

Reconstruction
algorithm

standard resolution standard resolution standard resolution standard resolution

3921European Radiology  (2023) 33:3918–3930

https://github.com/zhjtwx/immunity_WL


analysis) were remained. Lastly, Pearson’s correlation co-
efficient (PCC) of each of the two features was calculated
and for the correlated pair (PCC ≥ 0.85), the one with the
lower p value was remained. Both the radiomic and clin-
ical features were then fed to the L2-regularized ridge-
embedded logistic regression (ridge regression) to select
the representative features (coefficient > 0.001) that were
associated with the clinical outcome. Unsupervised hier-
archical clustering was performed on these representative
radiomic features using heatmaps to comprehend their
structure (Fig. 2e).

The radiomic model was then built based on the selected
radiomic features using five machine learning classifiers: lo-
gistic regression (LR), support vector machines (SVM), ex-
treme gradient boosting (Xgboost), multilayer perception
(MLP), and linear discriminant (LD). The fivefold cross-
validation technique was applied and the average performance
in the 4 sub-datasets and 1 sub-dataset from five iterations was
reported as the training and validation performance respec-
tively. Similar approaches were used to build the integrated
model with the additional selected clinical features. All
models were validated in the test cohort. The entire workflow
is depicted in Fig. 2.

Statistical analysis

Differences in all variables between the DCB and the NDCB
were assessed using the Mann–Whitney U test for continuous
variables and the chi-square test or Fisher’s exact test for cat-
egorical variables as appropriate. The reliability of segmenta-
tion was analyzed using the Dice similarity coefficient, and for
radiomic features, the ICC and Bland-Altman plots were used.
The Gradient weighted Class ActivationMapping was used to
visualize the representative radiomic features.

The diagnostic performance was evaluated by classifica-
tion sensitivity, specificity, accuracy, F1 score, positive pre-
dictive value, negative predictive value, and area under the
curve (AUC). A two-sided 95% confidence interval for
AUC was constructed following the approach of Hanley and
McNeil [21]. Performance among different models was com-
pared with the Delong test. Calibration curves and decision
curve analysis were performed to evaluate the predictive ac-
curacy and clinical utility of the models.

The Kaplan–Meier (K-M) survival curve method and Cox
proportional hazards model were used to analyze PFS. To
generate a binary classification, the cutoff thresholds for the
prediction probabilities generated by all models were

Fig. 2 Workflow of model construction. a Multiple lesions were
delineated on the Deep-wise labeling system online. b Radiomic features
were extracted from multiple lesions. c The three patient-level analyses
were performed with (1) radiomic feature from the largest lesion (LL),
(2) average radiomic features from multiple lesions per patient (ML), and
(3) weighted sum of radiomic features from multiple lesions per patient
(WL). See the “Materials and methods” section for details. d The robust
and uncorrelated radiomic features were then selected through three pre-
liminary steps. The L2-ridge regression was the last feature selection

step to reduce redundancy. e Representative features were displayed
using unsupervised hierarchical clustering. f The model was cross-
validated in the training cohort and then validated in the independent test
cohort. g Receiver operating characteristic (ROC) curves were drawn. *:
denotes the p value of radiomic features between the durable clinical
benefit (DCB) and the non-DCB group in the training cohort examined
by the Mann–Whitney U test. Abbreviations: ICC, intraclass correlation
coefficient; PCC, Pearson’s correlation coefficient
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established using the maximum Youden index in the training
cohort. Different curves were compared using the log-rank
test. A subgroup analysis was performed to evaluate the
model’s stratification ability in patients using pembrolizumab.
A two-sided p value < 0.05 was used to indicate statistical
significance throughout the study. All statistical analyses were
performed with the R statistical package.

Results

Patient cohort

Patients with DCB account for 62.9% and 64.9% of the pa-
tients in the training and test cohort respectively. The median

PFS in the entire cohort was 7.7 months (training: 7.6 months;
test: 8.4 months). The data for the PD-L1 expression level
were available in 89 (38% of the entire cohort) patients. The
clinical and demographic characteristics of the patients in our
analysis are summarized in Tables 3 and 4. There were no
significant differences in the demographic and clinical char-
acteristics between the two cohorts (p > 0.05). Early line ther-
apy, KRAS genetic mutation, and the combination of chemo-
therapy were significantly associated with DCB, while the
presence of bone metastasis before immunotherapy was asso-
ciated with NDCB. For chemotherapy agents, compared with
single-drug, the dual-drug regimen was significantly associat-
e d w i t h b e t t e r c l i n i c a l o u t c ome s i n t h e t e s t
cohort (Supplementary Table 1). Nevertheless, no single che-
motherapy regimen showed remarkable superiority over

Table 3 Demographic characteristics and the therapy regimen of patients in the analysis

Characteristics Training cohort n = 185 p value Test cohort n = 48 p value

NDCB DCB NDCB DCB

Age, median (range) 64 (34–78) 64 (40–79) .252 60 (36–72) 63 (48–77) .237

Sex Male 49 (71) 90 (78) .317 12 (71) 24 (77) .731

Female 20 (29) 26 (22) 5 (29) 7 (23)

Smoking history Non-smokers 31 (45) 38 (33) .098 8 (47) 12 (39) .760

Smokers 38 (55) 78 (67) 9 (53) 19 (61)

Current smoker No 48 (70) 69 (60) .169 13 (77) 19 (61) .350

Yes 21 (30) 47 (40) 4 (23) 12 (39)

Clinical stage III 10 (15) 29 (25) .090 0 (0) 10 (32) .009*

IV 59 (85) 87 (75) 17 (100) 21 (68)

ICI treatment Pembrolizumab 33 (48) 66 (57) .062 7 (41) 21 (68) .203

Nivolumab 20 (29) 17 (15) 6 (35) 6 (19)

Others# 16 (23) 33 (28) 4 (24) 4 (13)

Line of therapy First 22 (32) 75 (65) ≤ .001* 6 (35) 22 (71) .044*

Second 31 (31) 33 (28) 7 (41) 7 (23)

Third+ 16 (23) 8 (7) 4 (24) 2 (6)

Chemotherapy No 44 (64) 46 (40) .003* 9 (53) 12 (39) .518

Yes 25 (36) 70 (60) 8 (47) 19 (61)

Chemo. agent AC 9 (36) 31 (44) .732 1 (13) 5 (26) .017*

AP 1 (4) 2 (3) 0 (0) 2 (11)

CE 2 (8) 9 (13) 0 (0) 0 (0)

DOC 1 (4) 0 (0) 2 (25) 0 (0)

EP 0 (0) 1 (1) 0 (0) 0 (0)

GC 0 (0) 1 (1) 1 (13) 0 (0)

GP 2 (8) 4 (6) 2 (25) 1 (5)

T 1 (4) 1 (1) 1 (13) 0 (0)

TC 9 (36) 21 (30) 1 (13) 11 (58)

Note: Values are expressed as number (%), if not defined otherwise. *: p value < 0.05. #: Other ICI treatments include atezolizumab, durvalumab,
tislelizumab, penpulimab, and sintilimab

Abbreviations: NDCB, non-durable clinical benefit; DCB, durable clinical benefit; ICI, immune checkpoint inhibitor; Chemo., chemotherapy; AC¸
pemetrexed and carboplatin; AP¸ pemetrexed and cisplatin; CE¸ carboplatin and etoposide; DOC¸ docetaxel; EP¸ etoposide and cisplatin; GC¸ gemcit-
abine and carboplatin; GP¸ gemcitabine and cisplatin; T¸ paclitaxel; TC¸ paclitaxel and carboplatin
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another. The elevated expression of PD-L1 was associated
with epidermal growth factor receptor (EGFR)-wild type and
Kirsten rat sarcoma 2 viral oncogene homologue (KRAS)
mutation (Supplementary Table 2).

Representative features

There was high agreement between the segmentations drawn by
two radiologists (Dice coefficient of 0.89 [95%CI 0.87–0.91] for
the largest lesion and 0.90 [95%CI 0.87–0.93] for multiple le-
sions). Five representative clinical featureswere identified: age (≤
60 or > 60), clinical stage (III or IV), bone metastasis, line of
therapy (first, second, or third+), and the use of pembrolizumab.

Nineteen, twenty-one, and twenty-five radiomic features were
selected individually using the LL, ML, and WL approaches.
The number of features that remained at every selection step is
shown in Supplementary Fig. 2. ICCs and the Bland-Altman
plots showed excellent robustness of the selected features
(Supplementary Table 3 and Supplementary Fig. 3). The unsu-
pervised clustering analysis of all representative features resulted
in three clusters. Features showed differential expression between
the DCB and NDCB cases in both cohorts (Supplementary Fig.
4). A complete list of the representative features and their coef-
ficients in the integrated models with different feature construc-
tion methods is shown in Supplementary Table 4. In the WL-
based integrated model, the most contributable clinical feature

Table 4 Immunopathologic features and metastasis statuses of tumor before the initiation of immunotherapy

Characteristics Training cohort n = 185 p value Test cohort n = 48 p value

NDCB DCB NDCB DCB

Pathology ADC& 29 (42) 48 (41) .759 10 (59) 15(52) .556

SCC 33 (48) 52 (45) 7 (41) 16(50)

Others^ 7 (10) 16 (14) 0 (0) 0(0)

EGFR mutation No 58 (84) 106 (91) .129 11 (65) 28(90) .051

Yes 11 (16) 10 (9) 6 (35) 3(10)

KRAS mutation No 67 (97) 100 (86) .019* 15 (88) 30(97) .283

Yes 2 (3) 16 (14) 2 (12) 1(3)

ROS1 mutation No 63 (91) 112 (97) .178 16 (94) 29(94) 1.000

Yes 6 (9) 4 (3) 1 (6) 2(6)

PD-L1 expression TPS < 1% 10 (14) 13 (11) .113# 2 (12) 5(16) .571#

1% ≤ TPS < 50% 11 (16) 18 (16) 2 (12) 5(16)

TPS ≥ 50% 3 (4) 17 (15) 0 (0) 3(10)

Unknown 45 (65) 68 (59) 13 (76) 18(58)

Pulmonary metastasis No 40 (58) 80 (69) .130 10 (59) 19(61) 1.000

Yes 29 (42) 36 (31) 7 (41) 12(39)

Pleural metastasis No 46 (67) 79 (68) .840 11 (65) 19(61) 1.000

Yes 23 (33) 37 (32) 6 (35) 12(39)

Brain metastasis No 59 (85) 108 (93) .092 14 (82) 27(87) .686

Yes 10 (15) 8 (6.9) 3 (18) 4(13)

Bone metastasis No 45 (65) 92 (79) .034* 11 (65) 28(90) .051

Yes 24 (35) 24 (21) 6 (35) 3(10)

Adrenal gland metastasis No 59 (85) 97 (84) .733 14 (82) 25(81) 1.000

Yes 10 (15) 19 (16) 3 (18) 6(19)

Liver metastasis No 60 (87) 109 (94) .112 13 (77) 27(87) .428

Yes 9 (13) 7 (6) 4 (3) 4(13)

Other metastases No 58 (84) 102 (88) .456 15 (88) 27(87) 1.000

Yes 11 (16) 14 (12) 2 (12) 4(13)

Note: Values are expressed as number (%), if not defined otherwise. *: p value < 0.05. #: p values are calculated using the cases with known PD-L1
statuses. &: TheADC subtype includes 1 invasivemucinous adenocarcinoma. ^: Other pathology types include small-cell lung cancer (n = 12), large-cell
lung cancer (n = 7), and adenosquamous carcinomas (n = 4)

Abbreviations: NDCB, non-durable clinical benefit;DCB, durable clinical benefit; ADC, adenocarcinoma; SCC, squamous cell carcinoma; TPS, tumor
proportion score; EGFR, epidermal growth factor receptor; ROS1, ROS proto-oncogene 1; KRAS, Kirsten rat sarcoma 2 viral oncogene homolog
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was the line of therapy, and for radiomic features,
GLCM_Correlation and GLDM_SDHGLE showed the largest
coefficient in the negative and positive directions respectively
(Supplementary Fig. 5).

Comparison of model performance

Among the three aggregation methods, the AUCs of the WL-
based models were superior to those of the other two approaches
in all classifiers but MLP, in which the performance of the WL-
based radiomicmodel was not significantly better than that of the
LL-based radiomic model in the test cohort (Fig. 3).

The WL-based radiomic model with logistic regression
classifier yielded the most balanced performance to dis-
cern DCB from NDCB with AUCs of 0.87 [0.84–0.89],
0.75 [0.68–0.82], 0.80 [0.68–0.92] in the training,

validation, and test cohort respectively (Supplementary
Table 5). With the addition of five clinical characteristics,
the WL-based integrated model reached a significantly
better AUC than the radiomic model and the clinical mod-
el, as presented in Table 5 and Fig. 4. The calibration and
decision curve analysis curves for the above models are
shown in Supplementary Fig. 6 and 7. The performance of
the a-MIL model for differentiating DCB from NDCB was
given in Supplementary Note 5.

Figure 5 illustrates the discriminability of the log GLDM
(SDHGLE) feature and the wavelet GLCM (correlation) fea-
ture for representative DCB and NDCB patients before ICI
therapy. We observed a higher textural heterogeneity pattern
on lesions of the DCB patient compared with the NDCB pa-
tient. In addition, heavier weights were attributed to the small-
er lesion in most circumstances.

Fig. 3 Comparison of the area under the curves (AUCs) of different
predicative models based on three patient-level analyses. a, b The
AUCs of the radiomic models for discerning DCB (PFS ≥ 6 months)
from NDCB (PFS < 6 months) in the cross-validation (a) and the test
cohort (b). c, d The AUCs of the integrated models discerning DCB from
NDCB in the cross-validation (c) and the test cohort (d). The Y axis
represents AUCs and the X axis represents different classifiers. The bar
in green denotes the model’s performance based on WL-based radiomic
features. P values were obtained by comparing the AUC of the integrated

model with the AUCs of the other two models [LL-(blue) and ML-(or-
ange) based radiomic models] using the Delong test. Note: * denotes p
value < 0.05, ** denotes p < 0.01, *** denotes p value < 0.001.
Abbreviations: LL, largest-lesion approach; ML, average-multiple-
lesion approach; WL, weighted-multiple-lesion approach; DCB, durable
clinical benefit; NDCB, non-durable clinical benefit; LR, logistic regres-
sion; SVM, support vector machines; Xgboost, extreme gradient
boosting; MLP, multilayer perception; LD, linear discriminant
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Stratified pretreatment PD-L1 expression as a predic-
tor of durable PFS

As illustrated in Supplementary Table 6, the positivity
rate for PD-L1 expression was 66% (59 out of 89) if the
cut-off was 1%, with an accuracy of 61.8% (55 of 89) and
an AUC of 0.57 (95% CI: 0.44–0.70) in differentiating

DCB from NDCB. If the cut-off was set at 50%, the
positivity rate reached 26% (23 out of 89), with an
accuracy of 50.6% (45 of 89) and an AUC of 0.61
(95% CI: 0.49–0.73) in differentiating DCB from
NDCB. More than 46% (41 of 89) of patients with low
expression of PD-L1 (tumor proportion score < 50%)
experienced DCB.

Table 5 The performance of the logistic regression-based integrated model was compared with the clinical and the radiomic model in each of three
feature construction approaches

DCB vs. NDCB Training cohort (validation fold) Test cohort

Model type AUC [95%CI] ACC F1 SPE SEN PPV NPV p value AUC [95%CI] ACC F1 SPE SEN PPV NPV p value

Clinical 0.71 [0.64, 0.78] 0.77 0.84 0.59 0.88 0.78 0.75 0.047* 0.80 [0.67, 0.92] 0.79 0.83 0.71 0.84 0.84 0.71 0.59
LL_Radiomic 0.71 [0.63, 0.78] 0.67 0.72 0.68 0.67 0.78 0.55 0.016* 0.75 [0.61, 0.89] 0.75 0.80 0.71 0.77 0.83 0.63 0.039*
LL_Integrated 0.80 [0.74, 0.86] 0.80 0.76 0.79 0.80 0.73 0.86 Ref. 0.79 [0.66, 0.92] 0.79 0.79 0.83 0.76 0.81 0.86 Ref.
Clinical 0.71 [0.64, 0.78] 0.77 0.84 0.59 0.88 0.78 0.75 0.051 0.80 [0.67, 0.92] 0.79 0.83 0.71 0.84 0.84 0.71 0.084
ML_Radiomic 0.71 [0.63, 0.78] 0.71 0.68 0.71 0.78 0.63 0.83 0.003** 0.73 [0.59, 0.87] 0.71 0.72 0.94 0.58 0.95 0.55 0.002**
ML_Integrated 0.80 [0.74, 0.86] 0.80 0.75 0.80 0.70 0.78 0.81 Ref. 0.80 [0.67, 0.92] 0.80 0.77 0.80 0.88 0.71 0.92 Ref.
Clinical 0.71 [0.64, 0.78] 0.77 0.84 0.59 0.88 0.78 0.75 0.008** 0.80 [0.67, 0.92] 0.79 0.83 0.71 0.84 0.84 0.71 0.008**
WL_Radiomic 0.75 [0.68, 0.82] 0.78 0.82 0.77 0.79 0.85 0.69 0.011* 0.80 [0.68, 0.92] 0.81 0.86 0.71 0.87 0.84 0.75 0.026*
WL_Integrated 0.86 [0.80, 0.91] 0.83 0.86 0.78 0.85 0.87 0.76 Ref. 0.86 [0.76, 0.96] 0.85 0.89 0.82 0.87 0.90 0.78 Ref.

Note: p value: the area under the curve (AUC) of the clinical model and the radiomic model were compared to the integrated models using the DeLong
test. *: p value < 0.05. **: p value < 0.01. Abbreviations: NDCB, non-durable clinical benefit; DCB, durable clinical benefit; CI, confidence interval;
ACC, accuracy; SPE, specificity; SEN, sensitivity; PPV, positive predictive value; NPV, negative predictive value; LL, largest lesion approach; ML,
average-multiple-lesion approach; WL, weighted-multiple-lesion approach, Ref., reference

Fig. 4 Displays of the receiver operating characteristic (ROC) curves of
clinical, radiomic, and integrated models. a–c ROC curves of clinical
(red), radiomic (blue) and integrated (green) logistic regression model
built with the LL-based radiomic features (a), ML-based radiomic fea-
tures (b) and WL-based radiomic features (c) for differentiating DCB

from NDCB in the cross-validation cohort. d–f ROC curves of clinical
(red), radiomic (blue) and integrated (green) logistic regression model
built with the LL-based radiomic features (d), ML-based radiomic fea-
tures (e), and WL-based radiomic features (f) for differentiating DCB
from NDCB in the test cohort

3926 European Radiology  (2023) 33:3918–3930



Predictive ability for PFS of different predictive
models

As illustrated in Fig. 6 and Supplementary Table 7, the inte-
grated model showed better performance for predicting PFS
than the other two models (HR = 2.90 [95% CI: 2.15–
3.84], p = 0.014 in the test cohort). In the pembrolizumab
subgroup analysis, a higher score stratified by the radiomic
and integrated models was significantly associated with a
longer PFS (Supplementary Fig. 8). The results of Cox
regression and K-M analysis for the pembrolizumab sub-
group are displayed in Supplementary Table 8.

Discussion

In this study, we collected a relatively large cohort of ad-
vanced lung cancer patients and constructed models to

identify patients who were more likely to obtain durable clin-
ical benefits using PD-1/PD-L1 targeted therapies. In the
meantime, we explored the method of weighting the sum of
radiomic features from multiple intrapulmonary lesions to
construct the predictive models and found that it exhibited
superior performance to discriminate DCB from NDCB com-
pared with the conventional approaches. Furthermore, an in-
tegrated predictive model was constructed using the WL-
based radiomic features and five clinical features, reaching
AUCs of 0.86 in both the cross-validation dataset and test
cohorts.

Considering the presence of immunotherapy-specific un-
conventional response patterns, the patient-level radiomic
analysis that incorporates features from multiple lesions is
gaining more attention [12, 14, 22]. MIL is a useful tool to
aggregate features from multiple imaging patches (instances)
that represent one bag-level characteristic [23]. Back in 2020,
Zhang et al adopted an MIL-based supporter vector machine

Fig. 5 Baseline chest contrast-enhanced CT (CECT) images and visualizing
heatmaps of class activation in an image of two lung cancer patients presented
with durable clinical benefit (DCB) and non-DCB (NDCB). aThisDCBcase
used penpulimab (PFS = 19.1 months). b This NDCB case used sintilimab
(PFS = 5 months). L1 and L2 each represents an individual tumor lesion
identified on CECT scans. Both lesions shrank significantly at follow-
up 6 weeks after the first course of therapy. (i, iv) represent two
original tumor lesions in the mediastinal window of CECT. (ii, v)
represent GLDM_SmallDependenceHighGrayLevelEmphasis
(SDHGLE) feature heatmaps with corresponding tumor lesions of

CECT. (iii, vi) represent GLCM_correlation feature heatmaps with cor-
responding tumor lesions of CECT. (vii) shows the attributed weight
coefficients of corresponding radiomic features of L1 and L2 in the LL
(largest lesion), ML (average-multiple-lesion) and WL (weighted-multi-
ple-lesion) approaches, respectively. Note: GLDM-SDHGLE measures
the joint distribution of small dependence with higher gray-level values,
and a greater value indicates a smaller dependence of higher gray-level
values and less homogeneous textures; GLCM-Correlation measures the
linear dependency of gray-level of neighbouring pixels, and a higher
value indicates a less smooth gradient of the pattern in the image
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to identify the survival-related high-risk subregions in mag-
netic resonance imaging (MRI) scans for glioblastoma [16].
More recently, Li et.al. proposed an attention-based MIL
framework to compute weights for each segmented patch in
an abundance of chest CT images and identified regions
that were most correlated with the assessment of COVID-
19 severity [17]. Another study in histopathology by Lu
et al aggregated patch-level features into slide-level rep-
resentations and assigned scores to each patch to represent
the significance to the collective slide-level representa-
tions for a specific classification (e.g., clear cell renal
carcinoma) [18]. Here, we treated each delineated lesion
as an instance and adaptively weighed them to represent
the patient-level clinical outcome. As illustrated in Fig. 5,
the difference in radiomic features between the DCB and
NDCB group is distinctive in the smaller lesion, to which
a higher weight was attributed. It demonstrates the
strength and validity of our method.

The later line of immunotherapy was associated with poor
prognosis. A similar finding was reported in Tunali et al’s
study, in which they argued that multiple systematic treat-
ments induced an “immune-desert” microenvironment that
compromised the efficacy of immunotherapy [10, 24].
Currently, using pembrolizumab or atezolizumab as first-line
therapy for metastatic lung cancers with high expression of
PD-L1 has gained increasing acknowledgment [2, 25].

However, our study recognized that a significant proportion
of patients who had low expression of PD-L1 (< 50%) could
still reach DCB from PD-1/PD-L1 targeted immunotherapies.
It highlights the need to identify a more precise predictive
biomarker. Given our predictive model only requires pre-
treatment CT images and basic clinical information, it can
serve as an alternative and noninvasive biomarker to direct
personalized therapeutic immunotherapy regimen, especially
for those with unknown PD-L1 statuses.

GLDM_SDHGLE and GLCM_Correlation are the two
textural features from our integrated model that had the
largest coefficients in the positive and negative directions
respectively. By visualizing them on the heatmaps, we
identified a ring structure surrounding the tumor margin.
Previous literature suggested that peritumoral texture fea-
tures are associated with tumor infiltrating lymphocytes
that can predict tumor response to immunotherapy
[26–28]. The identified marginal characteristics in our
study, though not being biologically validated, may be
correlated with the recruitment of active lymphocytes.

The positive association between KRAS-mutated status and
immunotherapy’s efficacy was identified in our study and in
previous literature as well. Chen et al argued that KRAS-
mutation induced an inflammatory tumor microenvironment
that may result in the elevation of tumor burden [29, 30].
Other studies indicate that this environment also triggers the

Fig. 6 Kaplan-Meier (KM) progression-free survival (PFS) curve analy-
ses. a–c KM curves on the cross-validation cohort for model scores gen-
erated by (a) logistic regression (LR)-based clinical model, (b) LR-based
radiomic model and (c) LR-based integrated model. d–f KM curves on
the test cohort for scores generated by (d) LR-based clinical model, (e)

LR-based radiomic model, and (f) LR-based integrated model. All
radiomic and the integrated models displayed here were built with the
weighted-multiple-lesion (WL)-based patient-level radiomic features.
The cutoff threshold of the clinical, radiomic, and integrated model for
the PFS risk stratification is 0.51, 0.43, and 0.67 respectively
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elevated expression of PD-L1 although no agreement has been
made yet [31, 32]. Our finding suggests the prognostic value of
KRAS mutation in PD-1/PD-L1 targeted therapies in lung can-
cer. Nonetheless, further studies in a larger KRAS-mutated co-
hort are needed to further warrant this statement.

We acknowledge the limitations of our study. The first is
the retrospective nature of this single-center study. Although
an internal independent test cohort was adopted, further exter-
nal validation in a prospective cohort is warranted. Second, we
used a relatively small sample size to train a deep learning–
based model, although the precise annotations and radiomic
features were used to reduce the network complexity. Third,
the peritumoral region was not included in our radiomic ana-
lysis, whichmay result in the loss of useful information related
to the distribution of tumor-infiltrated lymphocytes around the
tumor. Fourth, PD-L1 expression data were unavailable for
most patients in our cohort. Combing it with our radiomic
signature may enhance the predictive performance of the
models. Fifth, we aggregated the radiomic features to give
more weight to the most relevant lesion but did not capture
inter-lesion heterogeneity and differential patterns of response
in patient. Lastly, there is a deficiency of biological validation
due to the retrospective nature of our data. Further studies are
warranted to help explain the biological significance of the
radiomic biomarker.

Conclusion

Our noninvasive predictive model based on the weighted sum
of radiomic features from multiple intrapulmonary lesions
holds considerable promise as a new approach to bring sub-
stantial survival benefits to lung cancer patients who are can-
didates for immunotherapy.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-09337-7.
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